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Abstract. In partially ionized, magnetically confined plasmas, the diffusive
fluxes of the different species are coupled. Additionally, the fluxes are directionally
coupled as well due to the Lorentz force. The challenge in modelling of multi-
component, magnetized plasmas is to take care of this coupling in the numerical
method. In this paper, a complex form of the Stefan-Maxwell equations is used,
to account for the coupling between the flow directions. To handle the coupling
between the species fluxes in the finite volume method, a generalised, coupled form
of the exponential scheme is used. The presented numerical method is applied
to a magnetically confined hydrogen jet. The results show that the numerical
method is capable of describing typical characteristics of magnetized plasmas,
such as anisotropic diffusion and the presence of a pressure gradient sustained by
the Lorentz force.
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1. Introduction

Magnetically confined, partially ionized plasmas have several interesting applications,
such as the plasma source Magnum-PSI, which is used for material research under
ITER relevant conditions [1]. To model such plasmas, a multi-component approach is
needed, where the effect of the magnetic field on the diffusive fluxes of the different
species is taken into account. The diffusive flux of a species in a partially ionized,
magnetically confined plasma is not simply a linear function of the gradient of the
density or mass fraction; the diffusive fluxes of all the species are coupled. In addition,
the flow directions across and around the magnetic field lines are coupled via the
Lorentz force.

The coupling between the flow directions across and around the field lines makes it
more difficult to calculate the diffusion velocity from the Stefan-Maxwell equations. To
overcome this difficulty, we will use a complex from of the Stefan-Maxwell equations,
based on the approach presented in [2, 3]. We will extend the approach of [2, 3] to
ambipolar diffusion in a magnetic field. To deal with the coupling between the diffusive
fluxes of the species in the finite volume approach, we will use the discretization
method of [4] where the coupling between the species fluxes is preserved.

The numerical method is tested on an illustrative example of Magnum PSI: an
expanding hydrogen plasma. It is shown that the numerical method is capable of
describing typical characteristics of Magnum PSI (and other magnetized plasmas),
such as anisotropic diffusion and the presence of a pressure gradient sustained by the
Lorentz force.

This paper is organised as follows. Section 2 explains how the diffusive fluxes in
a magnetized plasma are obtained. In Section 3 these fluxes are discretized with the
finite volume method in order to solve the species mass balances. Section 4 presents
the model description; the results of the model are given in Section 5. The paper ends
with a short conclusions section.

2. Stefan-Maxwell equations and constraints

In the presence of a magnetic field ~B, the Stefan-Maxwell equations for the diffusive
velocity ~vk of species k can be written as [2]:

∑

l

fkl ( ~vk − ~vl) −
nkqk

p
~vk × ~B +

yk

p
~j × ~B = ~dk, (1)

with fkl the mutual friction coefficient between species k and l, ~dk the diffusion driving
force, nk the number density, qk the charge, p the pressure, yk the mass fraction and
~j the current density. In the absence of pressure diffusion and thermophoresis, but in
the presence of the ambipolar electric field ~Eamb, the diffusion driving force is given
by:

~dk = −∇xk +
nkqk

p
~Eamb +

nkqk

p
~v × ~B, (2)

with xk the mole fraction of species k and ~v the mass averaged velocity of the plasma.
The friction coefficients fkl are nonlinear functions of the composition and can be
written as:

fkl =
xkxl

Dkl
, fkk ≡ 0, (3)
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with Dkl the usual binary diffusion coefficient [5, 6]. Note that the friction coefficients
are symmetric: fkl = flk, and positive: fkl > 0. Introducing the friction matrix
F = (Fkl), with the elements Fkl given by:

Fkl =





∑

s

fks if k = l,

−fkl if k 6= l,
(4)

the Stefan-Maxwell equations can be rewritten as:
∑

l

Fkl~vl −
nkqk

p
~vk × ~B +

yk

p
~j × ~B = ~dk. (5)

Note that
∑

l Fkl = 0, which demonstrates that F is singular and hence non-invertible.

2.1. Along, across and around the field lines

In the rest of the paper, we will assume that the plasma is cylindrically symmetric and
that the magnetic field points in the axial direction. The Stefan-Maxwell equations
can then be separated into the directions along, across and around the field lines
(Figure 1). In the direction along the field lines (‖), the Stefan-Maxwell equations are

�

⊥

~B

‖

Figure 1. The directions along (‖), across (⊥) and around (�) the magnetic field
lines.

not influenced by the magnetic field and can be written as:
∑

l

Fklv
‖
l = d

‖
k. (6)

The flow directions across (⊥) and around (�) the field lines are coupled:
∑

l

Fklv
⊥
l − nkqk

p
v�k B +

ykj�B

p
= d⊥k , (7)

∑

l

Fklv
�
l +

nkqk

p
v⊥k B − ykj⊥B

p
= d�k . (8)

The Stefan-Maxwell equations along the field lines can be solved independently from
the other directions. The directions across and around the field lines need to be solved
together, which can be done by putting together the ⊥ and � direction in a 2N × 2N
system, with N the number of species. However, from a computational viewpoint, it
is favorable to use complex arithmetic [7].
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To facilitate coupled solving of the directions across and around the field lines,
the Stefan-Maxwell equations are made complex by adding i times equation (8) to
equation (7):

∑

l

Fkl

(
v⊥l + iv�l

)
− nkqkB

p

(
v�k − iv⊥k

)
+

ykB

p

(
j� − ij⊥

)

= d⊥k + id�k . (9)

Substitution of j⊥ =
∑

k nkqkv⊥k and j� =
∑

k nkqkv�k gives:
∑

l

Fkl

(
v⊥l + iv�l

)
− nkqkB

p

(
v�k − iv⊥k

)
+

ykB

p

∑

l

nlql

(
v�k − iv⊥k

)

= d⊥k + id�k . (10)

When we introduce the complex diffusion velocity ṽk = v⊥k + iv�k , this can be written
as: ∑

l

Fklṽl + i
nkqk

p
ṽkB − i

yk

p

∑

l

nlqlṽlB = d⊥k + id�k . (11)

By adding‡:

−nkqk

p
B
∑

l

ylṽl + yk

∑
l nlql

p
B
∑

l

ylṽl = 0, (12)

to each equation, the Stefan-Maxwell equations can be written in matrix vector form
as:

(F + iF′) ṽ = d⊥ + id�, (13)

where the matrix F′ is given by [2, 3]:

F′ = (I − y ⊗ u)B (I − u ⊗ y) , B = diag
(

niqiB

p

)
, (14)

where u = (1, . . . , 1)T, y = (y1, . . . , yN)T, and ⊗ denotes the dyadic product of two
vectors. The matrix F + iF′ is singular and has nullspace u.

The singularity in F + iF′ can be removed by applying the mass flux constraint∑
k ykṽk = 0 to the set of Stefan Maxwell equations [8]:

(F + iF′ + αy ⊗ y) ṽ = d⊥ + id�, (15)

where α is a positive parameter. Inversion of (15) now gives:

ṽ = (F + iF′ + αy ⊗ y)−1 (d⊥ + id�)

= (G + iG′)
(
d⊥ + id�) . (16)

Note that instead of direct inversion of the Stefan-Maxwell system, it is possible to
use iterative methods as discussed for example in [2]. These iterative methods are
computationally cheaper than direct inversion. We will not discuss this method here,
since in our case the largest computational expense lies in solving the discretized
species mass balances (Section 3), and not in the inversion of the Stefan-Maxwell
system on each grid point. The real part of the expression (16) gives the diffusion
velocity perpendicular to the magnetic field:

v⊥ = Gd⊥ −G′d�. (17)

‡ This expression is added to bring the matrix F′ to a symmetric form. Since the expression added
equals zero, it does not change the diffusion velocities.
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The imaginary part gives the diffusion velocity around the field lines:

v� = Gd� + G′d⊥. (18)

The driving forces still contain the ambipolar field. In the next section, we will explain
how the ambipolar field can be eliminated from the equation.

2.2. Zero-current constraint

For the direction across and along the field lines, the ambipolar (zero current)
constraint is applied. We assume that there is cylindrical symmetry (with the magnetic
field pointing in the z-direction). As a consequence, current can flow around the field
lines without causing charge separation. The driving forces along, across and around
the field lines can thus be written as:

d‖ = d̃‖ + z
E

‖
amb

p

d⊥ = d̃⊥ + z
E⊥

amb

p

d� = d̃� (19)

The zero-current constraint for the ‖ and ⊥ direction can be written as:

〈z,v‖〉 = 0,

〈z,v⊥〉 = 0, (20)

where z = (n1q1, . . . , nNqN )T and 〈〉 denotes the inner product in species space.
Substitution of the expression for v‖ and v⊥ gives:

〈z,G

(
d̃‖ + z

E
‖
amb

p

)
〉 = 0,

〈z,G
(
d̃⊥ + z

E⊥
amb

p

)
−G′d̃�〉 = 0, (21)

from which we can determine the expression for the ambipolar field:

E
‖
amb

p
= −〈z,Gd̃‖〉

〈z,Gz〉
,

E⊥
amb

p
= −〈z,Gd̃⊥ −G′d̃�〉

〈z,Gz〉
. (22)

Backsubstitution of the ambipolar field in the expressions of the velocities across and
around the field lines gives:

v‖ =
(
G −

Gz ⊗Gz
〈z,Gz〉

)
d̃‖,

v⊥ =
(
G − Gz ⊗Gz

〈z,Gz〉

)
d̃⊥ −

(
G′ − Gz ⊗G′z

〈z,Gz〉

)
d̃�,

v� =
(
G′ − G′z⊗Gz

〈z,Gz〉

)
d̃⊥ +

(
G +

G′z ⊗G′z
〈z,Gz〉

)
d̃�. (23)

Note that the matrices relating the diffusion velocities to the driving forces are
singular and have nullspace z. This problem was also identified by Giovangigli [9]
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for the case without magnetic field, but in his paper no concrete matrix modifications
were proposed. In Appendix A.2, we show appropriate matrix modifications; for a
more detailed explanation of these modifications we refer to a future publication [10].
Appendix A explains how the species mass balances are obtained from (23). In the
next section, we discuss how the species mass balances are discretized.

3. Discretization

As explained in Appendix A, the stationary mass balance for species k in a two-
dimensional, axisymmetric symmetry can be written as:

∑

l

((
∂‖U

‖
kl + ∂⊥U⊥

kl

)
yl −

(
∂‖Γ

‖
kl∂‖ + ∂⊥Γ⊥

kl∂⊥

)
yl

)
= Sk, (24)

with U‖ =
(
U

‖
kl

)
, U⊥ =

(
U⊥

kl

)
, Γ‖ =

(
Γ‖

kl

)
and Γ⊥ =

(
Γ⊥

kl

)
the convection and

diffusion matrices along and across the field lines as derived in Appendix A. It can be
seen that the mass balances for all species form a coupled set of convection-diffusion
equations. As shown in [4], these can not be discretized using the traditional (scalar)
finite volume schemes.

To overcome this problem, a coupled form of the exponential scheme has been
introduced [11, 4]. In this coupled scheme, the solution vectors on the grid points are
coupled via discretization matrices instead of discretization coefficients :

ACyC = AEyE + AW yW + ANyN + ASyS + sC∆x, (25)

with sC the source on the central point C and ∆x the grid spacing. The discretization
coefficients on the central(C), east(E), west(W ), north(N) and south(S) nodal points
are given by:

AE =
1

∆x
ΓB(Pe), AN =

1
∆x

ΓB(Pn)

AW =
1

∆x
ΓB(−Pw), AS =

1
∆x

ΓB(−Ps)

AC = AE + AW + AN + AS , (26)

with P the Péclet matrix, which is defined as P = ∆xΓ−1U; the subscripts e, n, w and
s denote the interface location where the Péclet matrix is calculated. The Bernoulli
function B() is given by:

B(z) =
z

ez − 1
. (27)

Calculation of the of the Bernoulli function of the Péclet matrix is done by
diagonalization of the Péclet matrix:

P = VΛV−1 = V




λ1

. . .
λN


V−1, (28)

B(P) = VB(Λ)V−1 = V




B(λ1)
. . .

B(λN )


V−1, (29)

with V the matrix with the eigenvectors of P as its columns and Λ a diagonal
matrix with the eigenvalues λi of the Péclet matrix. It can thus be seen that the
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coupled scheme boils down to: 1) Decoupling the system by changing to the basis
of eigenvectors, 2) Discretization of the decoupled system with the scalar exponential
scheme, 3) Transforming back to the original basis.

4. Model description

As an illustrative example for Magnum PSI, we will present a two-dimensional
convection-diffusion problem for a hydrogen plasma in a magnetic field. Note that the
aim of this example is not to give a complete, self-consistent model of Magnum PSI,
but to test the ability of the method to describe its characteristic properties. These
properties include magnetic confinement of the charged particles and the presence of
a radial pressure gradient.

Simulations are performed with the plasma modelling platform Plasimo for
different values of the magnetic field. More information on Plasimo can be found in
[12]. In the simulations, we solve mass and momentum balances for the plasma bulk
and each modelled species individually. The energy balance is not solved, instead
we assume a constant temperature of 10000 K for both the electrons and the heavy
particles.

4.1. Flow field

The flow field is calculated by solving the mass and momentum balance for the bulk
plasma. The momentum balance is given by:

∇ · (ρ~v~v) = −∇p + ∇ · ~~τ +~j × ~B, (30)

with ~~τ the viscosity tensor and ρ the mass density which is related to the species
densities via:

ρ =
∑

k

nkmk. (31)

The current in the Lorentz force term ~j × ~B on the right hand side of the momentum
balance needs to be calculated from the diffusion velocities. Since we assumed that
the plasma is ambipolar and axisymmetric, there are no radial and axial currents, but
there is a current in azimuthal direction:

j� =
∑

k

nkqkv�k . (32)

This azimuthal current with an axial magnetic field gives a radial Lorentz force on the
flow. Overall mass conservation is given by:

∇ · (ρ~v) = 0. (33)

Plasimo uses the SIMPLE algorithm[13] in combination with Karki corrections[14] to
solve equations (30) and (33) for compressible flows. Velocities are calculated on a
co-located grid. Majumdar interpolation [15] is used to avoid oscillations.

4.2. Composition

In the composition calculation, it is assumed that the plasma consists of H , H+

and electrons. Chemical reactions are neglected. The mass and momentum (Stefan-
Maxwell eq.) balances are solved as described in Sections 2 and 3.
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4.3. Geometry and boundary conditions

The geometry and grid of the model are depicted in figure 2. The geometry is
cylindrically symmetric and the magnetic field points in the axial direction. The

1

5

2

3

4

B

(a) geometry

0 0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

0.02

0.025

0.03

(b) grid

Figure 2. Geometry and grid of the model. 1) inlet of the plasma source, 2)
wall, 3) gas exhaust, 4) wall/end plate, 5) symmetry axis.

small cylinder on the left represents the plasma source. The right part of the figure
gives the vessel and a gas exhaust. Note that grid stretching is applied in the arc
region and the gas exhaust.

At the walls, no-slip boundary conditions are applied to both (radial and axial)
velocity components. At the inlet of the arc, and at the gas exhaust, the pressure is
prescribed to 15000 Pa and 1000 Pa respectively; homogeneous Neumann conditions
are applied for the velocity components. At the symmetry axis homogeneous Neumann
boundary conditions are applied to both the velocity and the pressure.

At the symmetry axis and gas exhaust, homogeneous Neumann conditions are
applied for all species. At the other boundaries the composition is prescribed. In the
arc, the mass fraction of H+ is set to 0.2, while in the vessel the H+ mass fraction is
set to 1e-4. The mass fractions of the electrons and H at the wall are determined by
constraints

∑
k qkyk/mk = 0 and

∑
k yk = 1, respectively.

5. Results

The model was run with magnetic strengths of 0, 1 and 3 Tesla. The increasing
magnetic field strength has the most pronounced effect on the H+ density, as shown
in figure 3. Comparing the simulations with and without magnetic field, it can clearly
be seen that radial diffusion at the exit of the plasma source is strongly reduced in the
simulations with magnetic field. The simulation at 3 Tesla shows more pronounced
magnetic confinement (narrower beam) than the simulation at 1 Tesla. Qualitatively,
this is comparable to the experimental results of [16, 17]. Additionally, at 3 Tesla, a
hollow profile may be observed in the centre of the beam.

The degree of magnetization can be expressed in the Hall parameter, which is
defined as the ratio between the Larmor frequency and the collision frequency of the
electrons:

H =
Ωe

νe
=

qeB

meνe
, (34)

with Ωe the Larmor frequency and νe the collision frequency. In figure 4, a radial
profile of the Hall parameter, pressure and ambipolar field can be seen. As can be
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Figure 3. H+ densities for different values of the magnetic field. The stronger
the magnetic field, the narrower (more confined) the plasma beam becomes. In
the 3 Tesla simulation, a slightly hollow profile can be observed.
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seen, the Lorentz force on the bulk flow due to the azimuthal current gives rise to a
radial pressure gradient. The increased pressure in the centre of the beam increases the
collision frequency and thereby reduces the Hall parameter, leading to greater radial
diffusion of the ions. We believe this is the mechanism which causes the hollow profile
in the ion density, and the flattened profile of the pressure and the Hall parameter.

Whereas in an unmagnetized plasma the ambipolar field points outward, since
the ions are the less mobile species, it is negative for magnetized plasmas, where the
electrons are the less mobile species. This effect is clearly visible in figure 4. Due to
the hollow profile in the ion density of the 3 Tesla simulation, there is a small region
where the ambipolar field is positive.

In figure 5, the axial plots of the pressure and the Hall parameter can be seen.
When the plasma is magnetized, the pressure on the axis is larger in the expansion
region, due to the earlier mentioned radial Lorentz force. At the inlet of the plasma
source where the pressure is high the Hall parameter is low. As the plasma expands
the Hall parameter increases, because of the decreasing pressure.
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Figure 4. Radial plots at the axial position z=0.1. In the pressure, the ambipolar
field as well as in the Hall parameter, the increasing confinement at increasing
magnetic fields can be observed.
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Figure 5. Axial plots of the pressure and the Hall parameter on the axis. The
lower the pressure, the higher the Hall parameter.
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6. Conclusions

We discussed a method for the modelling of multi-component, magnetized plasmas
with a finite volume scheme. In this method, both the coupling between the flow
directions and the species is conserved. The coupling between the flow directions is
taken into account by using the Stefan Maxwell equations in complex form. In the
discretization, the coupling between the species was taken into account by using a
coupled form of the exponential scheme.

As a test case, we used the method to model an expanding hydrogen jet under
increasing magnetic field strengths. The results showed expected characteristics of
magnetized jets, such as magnetic confinement of the ions, radial pressure gradients
and reversal of the ambipolar field.

Although in this paper it was assumed that the plasma is cylindrically symmetric
and the magnetic field points in the axial direction, it should, in principle, be possible
to apply the method to more general magnetic configurations. Fluxes could be
calculated in terms of the directions along, across and around the field lines; after
that the fluxes could be transformed to the directions of the cell faces. However, in
this transformation, special attention should be paid to the consistency of fluxes at
the interface of two adjacent cells, which is of utmost importance in the finite volume
method.
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Appendix A. The species mass balances

The stationary mass balance for species k can be written as:

∇ · (ρ~vyk) + ∇ · (ρ ~vkyk) = Sk, (A.1)

with ρ the mass density, yk the mass fraction of species k, ~v the mass averaged velocity
of the plasma, ~vk the diffusion velocity and Sk the mass source term. Rewriting (A.1)
in components along and across the field lines gives:

∂‖ρv‖yk + ∂‖ρv
‖
kyk + ∂⊥ρv⊥yk + ∂⊥ρv⊥k yk = Sk. (A.2)

In this appendix, we will rewrite the total mass flux to:

ρv‖yk + ρv
‖
kyk =

∑

l

(
U

‖
klyl − Γ‖

kl∂‖yl

)
, (A.3)

ρv⊥yk + ρv⊥k yk =
∑

l

(
U⊥

klyl − Γ⊥
kl∂⊥yl

)
, (A.4)

where U‖, U⊥, Γ‖ and Γ⊥ are the convection and diffusion matrix parallel and
perpendicular to the field, respectively.
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Appendix A.1. Conversion to mass fractions

To be able to solve the species mass balances for the mass fractions yk, the diffusion
driving forces need to be expressed in the massfractions and the gradients of the mass
fractions. Specification of the driving forces gives:

v‖ = −
(
G − Gz⊗ Gz

〈z,Gz〉

)
∂‖x, (A.5)

v⊥ = −
(
G −

Gz⊗ Gz
〈z,Gz〉

)
∂⊥x + (A.6)

(
G − Gz ⊗Gz

〈z,Gz〉

)
v�B

p
z +

(
G′ − Gz ⊗G′z

〈z,Gz〉

)
v⊥B

p
z.

The gradients of the mole fractions can be converted to the gradients of the mass
fractions via a matrix:

∂‖x = M̃∂‖y, ∂⊥x = M̃∂⊥y. (A.7)

Special care has been taken to make M̃ non-singular [8]. The vector z can be converted
to y via:

z = Ny, (A.8)

with N = diag (ρqk/mk). Note that the driving forces proportional to the gradient of
the mass fractions will end up in the diffusion matrix. The forces proportional to the
mass fractions will end up in the convection matrix together with the mass averaged
velocity.

Appendix A.2. Regularization

In order to keep the diffusion matrix Γ non-singular, the matrix
(
G − Gz⊗Gz

〈z,Gz〉

)
should

be non-singular. It can, however, be seen that z is in the nullspace of this matrix. To
remove this singularity, the matrices need to be regularized. This can be done by the
following modification:

(
G − Gz ⊗Gz

〈z,Gz〉

)
+ βw ⊗w, (A.9)

with w = M̃−Tq and q = (q1/m1, . . . , qN/mN)T. The coefficient β is a positive
parameter.

Appendix A.3. Conversion to mass fluxes

The diffusive velocity vectors v‖ and v⊥ can be converted to the diffusive mass fluxes
J‖ and J⊥ by multiplication with the species mass densities:

J‖ = Rv‖, (A.10)
J⊥ = Rv⊥, (A.11)

with R = diag (ρyk).



A finite volume model for multi-component diffusion in plasmas 16

Appendix A.4. Convection and diffusion matrix

Combination of Sections Appendix A.1, Appendix A.2 and Appendix A.3 gives the
following expressions of the convection and diffusion matrices:

Γ‖ = R
(
G− Gz ⊗Gz

〈z,Gz〉
+ βw ⊗w

)
M̃, (A.12)

Γ⊥ = R
(
G− Gz ⊗Gz

〈z,Gz〉
+ βw ⊗w

)
M̃,

U‖ = ρv‖I,

U⊥ = ρv⊥I +
Bv�

p
R
(
G−

Gz ⊗Gz
〈z,Gz〉

)
N

+
Bv⊥

p
R
(
G′ − G′z ⊗Gz

〈z,Gz〉

)
N. (A.13)
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