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Optimization of Course Locations in Fiber-Placed Panels for
General Fiber Angle Distributions

Adriana W. Bloma,∗ Mostafa M. Abdallaa Zafer G̈urdala

aAerospace Structures, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The
Netherlands

Abstract

Fiber-reinforced composites are usually designed using constant fiber orientation in each ply.
In certain cases, however, a varying fiber angle might be favorable for structural performance. This
possibility can be fully utilized using tow placement technology. Because of the fiber angle variation,
tow-placed courses may overlap and ply thickness will buildup on the surface. This thickness build-
up affects manufacturing time, structural response, and surface quality of the finished product.

This paper will present a method for designing composite plies with varying fiber angles with
composite plates or panels. The thickness build-up within aply is predicted as function of ply
angle variation using a streamline analogy. It is found thatthe thickness build-up is not unique and
depends on the chosen start locations of fiber courses. Optimal fiber courses are formulated in terms
of minimizing the maximum ply thickness, maximizing surface smoothness or combining these
objectives with and without periodic boundary conditions.

Key words: A. Laminate, A. Structural composite, A. Fibers, E. Fiber placement, Optimization

1 Introduction

In industry fiber-reinforced composites are usually designed using a constant fiber orientation in
each ply. The fiber angles in these laminates are typically 0,90, and±45 degrees. Traditionally the
choice of these lay-ups was motivated by manufacturability, while nowadays lay-ups with chang-
ing or even non-conventional fiber angles are avoided because of the lack of allowables. However,
research on composites with a varying in-plane fiber orientation has shown that variable stiffness
can be beneficial for structural performance [1–17], because variable-stiffness laminates are able to
redistribute the loading more efficiently than constant-stiffness laminates. In most cases curvilin-
ear fiber paths manufactured by tow placement are used to construct the variable-stiffness laminates
[4, 5, 9–11, 15, 18–20]. Jegley, Tatting and Gürdal [9–11] designed variable-stiffness flat plates with
holes and demonstrated their effectiveness by building andtesting several specimens.
Due to fiber angle variation, a tow-placed shell typically exhibits gaps and/or overlaps between adja-
cent courses and ply thickness will change along the surface[9–11, 18]. The amount of gap/overlap
affects structural response, manufacturing time, and surface quality of the finished product.
This paper presents a method for designing composite plies which have spatially varying fiber an-
gles. Since fiber-reinforced laminates usually consist of multiple plies, optimizations for specific
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loading conditions result in multiple plies with differentfiber angle distributions. The fiber angle
distribution per ply can be used as a direct input for the optimization, as is done by most researchers
so far [1–20], or it can be obtained in a post processing step,where an optimum laminate stiffness
distribution is approximated as closely as possible, as described by Setoodeh [21]. In these opti-
mizations the ply thickness is usually assumed to be constant, without taking into consideration
manufacturing issues. In the current paper the fiber angle distribution per ply is assumed given,
being one of the plies within an optimized laminate. The thickness build-up is predicted as func-
tion of ply angle variation using a streamline analogy. It isfound that the thickness build-up is not
unique and depends on the chosen start locations of fiber courses. Optimal distributions of fiber
courses are formulated in terms of minimizing the maximum ply thickness or maximizing surface
smoothness, either with or without periodic boundary conditions. Subsequently the discrete thick-
ness build-up resulting from the tow-placement process canbe determined based on the streamline
distribution. Results will be compared to the smeared thickness approximation. An overview of the
analysis sequence is given in Fig. 1. Finally, a number of applications for the developed methods
and suggestions for future research are given.

Fiber angle distribution
θ (x,y)

Optimization for
smoothness / maximum thickness

Thickness distribution
t (x,y)

Determine
corresponding streamlines

Streamfunction
Ψ (x,y)

Determine increment
for plotting streamlines

Discrete thickness distribution
t
d
 (x,y)

Fig. 1. Analysis sequence

2 Streamline Analogy

For the construction of discrete fiber paths a streamline analogy is being used. For this application
each streamline represents the centerline of a course, or ifthe course width is made infinitely small
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each streamline will represent a single fiber. Mathematically a streamline is represented by a stream
function

Ψ(x, y) = C (1)

which connects all the points with a constant valueC. For a given fiber angle distributionθ(x,y),
the streamlines can be found by solving the following partial differential equation:

dΨ

ds
=

∂Ψ

∂x

dx

ds
+

∂Ψ

∂y

dy

ds

= Ψ,x cos θ +Ψ,y sin θ = 0

(2)

A unique solution for the stream function (and thus the location of the stream lines) depends on
the boundary conditions. Before seeking a solution to the stream function, additional considerations
relevant to the physical representation of the fiber paths are in order.

As stated earlier, the streamlines represent the central path of a finite width course. Unless the
streamlines are parallel, the successive courses will always overlap each other when no gaps are al-
lowed between them (or alternatively, the gaps will form between the passes if two successive finite
width passes are not allowed to overlap). The amount of overlap depends on the distance between
the course centerlines. If the distance is decreased, then the overlap area is increased. Although in
reality these overlaps are discrete, a first approximation to the amount of overlap could be made
by smearing out this discrete overlap to form a continuous thickness distribution. In this case, the
smeared thickness,t, will be inversely proportional to the distance between adjacent courses, which
can be explained as follows. If a number ofN courses with a given width,w, and thickness has a
fixed volumeV , and if these successive courses are placed closer than the width of the courses, then
the total width covered is less thenN ·w, and the thickness has to be increased in order to maintain
the same material volumeV .

When the distance between two streamlines is|dn|, thent ∝ 1/|dn| (as explained above). Since
Ψ,n = dΨ/dn anddΨ between two streamlines is constant according to Eq. (1) thethicknesst will
be proportional toΨ,n as follows:

t ∝
1

|dn|
=

1

dΨ/Ψ,n

=
Ψ,n

dΨ
∝ Ψ,n (3)

If dΨ is assumed to be a unity, thent = Ψ,n, which can be used to derive a direct correlation
between the thickness distribution and the fiber angle variation (see Appendix A):

−s∇ (ln t) = n∇θ (4)

in whichs andn represent the tangent and normal vectors to a streamline, respectively, as shown in
Fig. 2. The physical explanation of Eq. (4) is that the changein thickness along a streamline depends
on the change of the fiber orientation perpendicular to that streamline. Since both vectorss andn
depend on the given fiber angle distributionθ(x, y), the only unknown in Eq. (4) is the thickness.
Hence, the thickness can now be determined by solving this equation, but since it is a differential
equation boundary conditions are needed in order to obtain aunique solution. In accordance with
streamline theory, boundary conditions are only needed at the inflow boundary, where the inflow
boundary is arbitrarily defined by:

s ·N ≤ 0 (5)

wheres is the vector tangent to the streamline andN is the outward normal vector to the boundary,
as shown in Fig. 2. By changing the thickness at the inflow boundary, the thickness distribution
inside the domain and at the outflow boundaries will change.
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n s
θ

Inflow boundary
Outflow boundary

x

y

N

N

Fig. 2. Streamline definitions

3 Determining Boundary Conditions

There exist an infinite number of possible boundary conditions for which the thickness distribution
associated with the streamlines can be found, but the most difficult part is to find the ones that are
physically sensible for the problem in hand. In this paper the boundary conditions are established
such that they fulfill a certain optimality condition. The optimality conditions to be demonstrated in
this paper are minimization of maximum thickness, maximization of smoothness, and a combination
of these two. In addition, constraints such as periodicity of the boundary conditions can be enforced
as well.

3.1 General Solution

By using the following change of variables:τ = ln t, Eq. (4) becomes:

−s∇τ = n∇θ (6)

The above equation is solved numerically by discretizing the derivatives, so that it is written as:

[M ]τ = B (7)

where [M ] is the matrix that represents the left hand side of Eq. (6),τ is the vector that represents
τ at every grid point andB is the vector that represents the right hand side of Eq. (6), as well as
the boundary conditions. If the thickness at the inflow boundaries is assumed to be equal to one
everywhere (τ = ln t = ln 1 = 0), a nominal solution can be found forτ , which will be referred to
asτ0. A general solution of Eq. (7) can be expressed as:

τ = τ0 + [T ]τ in (8)

where each columnj in matrix [T ] represents the influence of boundary grid pointj on the thickness
distribution in the complete domain, while satisfying Eq. (7). Since these columns are independent
of each other and since Eq. (7) is a linear equation, any linear combination of these columns also
represents a solution, as given by Eq. (8). The entries inτ in all render the thickness at a single point
on the inflow boundary. By substituting Eq. (8) in Eq. (7), thethickness can be optimized for one of
the criteria mentioned earlier by usingτ in as design variables.
Often it is desired to have at least one layer of material everywhere so that no gaps exist. Therefore
it is required that the thickness over the entire domain is atleast one, such thatτ ≥ 0 in all opti-
mizations described below. Optimization is performed by using the optimization toolbox in Matlab
[22]
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3.2 Minimized Maximum Thickness

Minimizing the maximum thickness of the plate is the first optimality criterion that will be elab-
orated on in this paper. This criterion is relevant for judging how practical the resulting thickness
distribution would be in a real life structure, as well as fordetermining the manufacturability of
a plate with constant thickness for a given fiber angle distribution. If the thickness build-up is too
severe (i.e. if one point is 100 or 1000 times thicker than theaverage plate thickness) it will not be
practical for realistic structures.
In order to solve the min-max problem, the bound formulationas introduced by Olhoff [23] is used.
This formulation introduces a new variableα, which represents the maximum thickness and which
also serves as the new objective function for the minimization. Additionally, a constraint on the
thickness at each grid point is being introduced so that the thickness never exceeds the minimized
maximum thickness,α. Mathematically:

Fmin = α

s.t. τi ≤ α i = 1, 2, ..., Ng

(9)

whereNg is the number of grid points. The design variables that result from the optimization are
substituted in Eq. (8) and then the thickness distribution is found by changing variables again:
ti = eτi .

3.3 Maximized Smoothness

Another possible optimization objective is to maximize thesmoothness of the thickness distribution
of the composite panel. Although in reality the change in thickness will always be discrete due to
the discrete nature of tow courses, it would still be desirable for ply drops/overlaps to be distributed
throughout the panel rather than to be concentrated at particular regions. In order to achieve this
objective, smoothness is defined as the norm of the rate of change of thickness.
Smoothness is maximized by minimizing theH1-norm of the thickness:

min
1

2
τT [K]τ (10)

where [K] is the matrix that discretizes the Laplacian. Substituting the expression forτ (Eq. (8))
into the argument of Eq. (10) gives:

1

2
τT [K]τ =

1

2
τT
0
[K]τ0 + τT

0
[K][T ]τ in+

1

2
τTin[T ]

T [K][T ]τ in (11)

The first term on the right hand side of Eq. (11) is constant, sothat the objective function to be
minimized is:

Fmin =
1

2
τTin[Kr]τ in − frτ in (12)

with

[Kr] = [T ]T [K][T ]

f r = −τT
0
[K][T ]

(13)

The minimum of Eq. (12) can be found by differentiating it andequating it to zero, so that:

[Kr]τ in = f r (14)

This is a linear system that can be solved forτ in. However, the [Kr]-matrix is one time singular
and therefore one entry ofτ in is given an assumed value so that the system can be solved. After the
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solution is substituted in Eq. (8), a constant can be added toτ such that the condition ofτ ≥ 0 is
being met (this will not change theH1-norm, but will change the absolute value of thickness).

3.4 Combined Objective Function

Since both minimizing the maximum thickness and maximizingthe smoothness are valid opti-
mization criteria, designers might consider combining thetwo in order to obtain a better design.
Depending on the design requirements, different weightingfactors can be assigned to the individual
criterion. The objective functions of Eqs. (9) and (12) can then be combined to form a new objective
function:

Fmin = (1− w)
α

α∗
+ w

1

2
τTin[Kr]τ in − f rτ in

1

2
τTin

∗

[Kr]τ in
∗ − frτ in

∗

(15)

In this equationw is the weighting factor that indicates the importance of thesmoothness in the opti-
mization. Furthermore the two objective functions are normalized byα∗ and1

2
τTin

∗

[Kr]τ in
∗ − f rτ in

∗,
respectively, whereα∗ is the smallest maximum thickness obtained from Eq. (9) andτ in

∗ are the
design variables for maximum smoothness as obtained by Eq. (12).

3.5 Periodic Boundary conditions

The present formulation would also be valid for cylindricalshells since points on a cylindrical
surface are in one to one correspondence to points on a rectangular panel. Nevertheless, an important
difference exists; in the case of a cylindrical shell the solution must be periodic. When the ply
angle variation is periodic, continuity in thickness is obtained by including the thickness periodicity
constraints in the optimization routines described above.For periodicity iny-direction, this takes
the form:

τ(xi, 0) = τ(xi, b) 0 ≤ xi ≤ l (16)

wherel is the length andb is the width of the panel.

4 Discrete Fiber Courses

Once the smeared thickness distribution is obtained through one of the optimizations described
above, the corresponding stream function can be obtained byintegratingΨ,n overdn:

Ψ(x, y) =

∫

Ψ,ndn

=

∫

dΨ

dx

dx

dn
dn+

∫

dΨ

dy

dy

dn
dn

=

∫

Ψ,xdx+

∫

Ψ,ydy

(17)

The derivatives ofΨ with respect tox andy can be expressed as functions ofΨ,s andΨ,n as follows:

Ψ,x = Ψ,s cos θ −Ψ,n sin θ

Ψ,n = Ψ,s sin θ +Ψ,n cos θ
(18)

SinceΨ,s = 0 andΨ,n = t, the combination of Eqs. (17) and (18) will give:

Ψ(x, y) = −

∫ x

0

t(x∗, y∗) sin θ(x∗, y∗)dx∗ +

∫ y

0

t(x∗, y∗) cos θ(x∗, y∗)dy∗ (19)

Both t(x, y) andθ(x, y) are known functions, so thatΨ(x, y) can be solved. By plotting the contour
lines ofΨ at fixed increments the streamlines are found that could represent the centerlines of the
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actual fiber courses. The constant of integration will determine the exact location of the fiber courses,
which can be used for staggering in case of multiple plies with the same fiber angle distribution.
Once the course centerlines are known, discrete courses canbe constructed by calculating the course
edges. If a point on the path centerline is defined by{xc, yc} the course edges are found by:

xe = xc ∓ p sin θc

ye = yc ± p cos θc

(20)

wherep is half the total course width andθc is the fiber orientation angle at{xc, yc}, as shown in
Fig. 3. When the centerline reaches the domain boundary one edge is still inside the domain and
therefore the centerline is extrapolated until both edges are outside the domain boundary (e.g. the
blue lines in Fig. 3). After determining the location of the course boundaries the number of layers
at each point in the laminate can be found.

{xc, yc}

{xe, ye}

{xe, ye}

p θ
d
o
m

a
in

b
o
u
n
d
a
ry

extrapolation

co
ur

se
ed

ge
ce

nt
er

li
ne

Fig. 3. Finite width course and path extrapolation

5 Results

First the results for a panel with a one-dimensional fiber angle distribution are presented. The differ-
ences between the optimization criteria are shown and the influence of periodic boundary conditions
on the thickness distribution are demonstrated. For these criteria the corresponding thickness distri-
butions resulting from discrete courses are also given. Second, the thickness distributions for two
panels with a polynomial angle distribution in two directions are compared.

5.1 Unidirectional Fiber Angle Variation

To illustrate the differences between the various optimality criteria described in section 3, an exam-
ple panel is analyzed which has the following linear angle variation in x-direction:

θ(x, y) = −30− 30
x

l
(21)
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such that the fiber orientation is -30 degrees at the left sideof the panel (x = 0) and -60 degrees
at the right side of the panel (x = l). The length to width ratio of the panel is 3. This fiber angle
distribution is only used for illustration of the presentedtheory and is not part of an optimized
laminate definition.

5.1.1 Smeared Thickness Distribution

The thickness distribution of a panel for which the maximum thickness is minimized is shown in
Fig. 4(a). The resulting thickness along the left and top edge is unity, indicating that there are no
overlaps on these sides. The maximum thickness occurs in thelower right corner of the panel.
The thickness distribution of a panel with maximized smoothness is presented in Fig. 4(b). When
compared to the first panel the maximum thickness is increased by approximately 20 percent, while
smoothness is improved by 40 percent. The smeared thicknessfor the combined objective withw
= 0.5 is plotted in Fig. 4(c). Since both maximum thickness and smoothness are included in the
objective function, the increase in maximum thickness is only 7 percent, while the improvement in
smoothness is 30 percent when compared to the first panel. Finally a panel with periodic boundary
conditions is shown in Fig. 4(d). The maximum thickness of this panel is more than 40 percent
larger than the smallest maximum thickness, and also smoothness is decreased.

(a) Smallest maximum thickness (b) Maximum smoothness

(c) Combined objectives (d) Periodic boundary conditions

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Fig. 4. Thickness distribution for various optimization criteria

5.1.2 Discrete Thickness Distribution

The discrete thickness distributions corresponding to thefour smeared thickness distributions of
Figs. 4 are shown in Figs. 5. The width of these courses was assumed to be 1/6 of the panel width.
The white areas in the figure indicate overlaps, while black regions are one layer thick.

Fig. 5(a) clearly shows the least amount of overlap. If a laminate with constant thickness was de-
sired, the fiber paths obtained by this optimization can be used as basic paths and the overlaps could
be eliminated by cutting individual tows on the sides of the courses. The smoothness of the laminate
in Fig 5(b) is not readily apparent, until multiple plies arestacked on top of each other and staggered
with respect to each other. The combined objective laminateof Fig. 5(c) is indeed in between the
laminates of Figs. 5(a) and 5(b). Finally, the relatively large thickness build-up of the laminate with
periodic boundary conditions is translated in large overlap areas, as shown in 5(d).
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(a) Smallest maximum thickness (b) Maximum smoothness

(c) Combined objectives (d) Periodic boundary conditions

Fig. 5. Discrete thickness build-up (black = 1 layer, white =2 layers)

5.2 Two Dimensional Fiber Angle Distributions

In Fig. 6 the smeared thickness for two different fiber angle distributions are presented. The graphs
on the left correspond to a two-dimensional2nd order Lobatto polynomial and the graphs on the
right correspond to a two-dimensional3rd order Lobatto polynomial, as described by Setoodeh [21].
The angle distributions shown represent one ply in a laminate that resulted from an optimization to
match a given optimal lamination parameter distribution asclosely as possible [21]. Due to the
smaller number of design variables of the2nd order polynomial when compared to the3rd order
polynomial (4 versus 9 variables), the latter better matched the given stiffness distribution. For more
details on the laminate optimization the reader is referredto reference [21].
In Figs. 6(c) and 6(d) the thickness due to a uniform unit inflow is plotted. In both figures regions
with values smaller than one are present, which indicates that in these areas there is no complete
coverage of the surface. In other areas the thickness is larger than one, implying that overlaps are
present. For the2nd order polynomial (Fig. 6(c)) the largest thickness is aboutfive times larger
than the thinnest region, while for the3rd order polynomial the thickest region is more than a
million times thicker than the thinnest region. If no gaps are allowed and all thicknesses were scaled
accordingly, this would result in a non-acceptable amount of overlap for the last variation.
Optimizing the thickness distribution in order to eliminate gaps and to minimize maximum thickness
results in the smeared thicknesses shown in Figs. 6(e) and 6(f). The maximum thickness of the2nd

order polynomial distribution is reduced by approximately35 percent, while the the amount of
overlap for the3rd order polynomial distribution is reduced from one million to only 186 times
maximum overlap.
Finally smoothness is maximized in Figs. 6(g) and 6(h) at thecost of increased thickness. For the
second order polynomial the increase is thirty percent, while for the third order polynomial the
increase is 145 percent.
Based on these results, the plate with the second order angledistribution would be preferred to
the third order distribution, because the amount of overlapresulting from the latter is not practical
from a manufacturability point of view. Due to the streamline analogy presented in this paper this
observation can be made without having to fit discrete courses to the given fiber angle distribution.
Once a configuration has been selected, the discrete coursesmatching one of the boundary condi-
tions can be generated. In Fig. 7(a) the discrete courses fora uniform unit inflow are shown. The
white areas indicate gaps, as was already predicted by the smaller the values smaller than one in the
continuous thickness distribution of Fig. 6(c). Figs. 7(b)and 7(c) display the discrete thickness dis-
tributions for respectively the smallest maximum thickness and maximum smoothness conditions.
These plots indicate that the maximum number of layers for the maximum smoothness distribution
is indeed larger, while the difference in smoothness is not significant due to the small number of
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(a) Angle distribution for 2x2 Lobatto (b) Angle distribution for 3x3 Lobatto
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(c) Uniform inflow for 2x2 Lobatto
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(d) Uniform inflow for 3x3 Lobatto
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(e) Minimized thickness for 2x2 Lobatto
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(f) Minimized thickness for 3x3 Lobatto
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(g) Maximized smoothness for 2x2 Lobatto
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(h) Maximized smoothness for 3x3 Lobatto

Fig. 6. Fiber angle and thickness distributions for2nd and3rd order Lobatto polynomials

layers in this ply.
The ply thickness optimization can be used to judge if it possible to obtain a constant-thickness
ply by cutting tows on the outside of fiber courses. In the caseof the 3x3 Lobatto variation the
amount of overlap as predicted by the streamline analogy already indicates that too many overlaps
would occur and that cutting tows is inefficient. The 2x2 Lobatto variation on the other hand has a
maximum overlap of 6 layers, for which a local reduction of the course width by a factor 6 can result
in a constant-thickness ply. Using fiber placement this is feasible, since the course width could be
reduced from 32 to 5 or 6 tows locally in order to eliminate theoverlaps. In other cases the thickness
distribution might be fed back to the laminate optimizationroutine in order to include the effect of
thickness buildup in the optimization, instead of assuminga constant thickness per ply.

6 Conclusions and Outlook

In this paper it was demonstrated that a stream line analogy can be successfully used to predict
and influence the thickness distribution in a ply with variable fiber angles. Different objectives
for optimization were considered, and in the future others,such as minimum volume, might be
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0 1 2 3 4 5 6

(a) Discrete thickness build-up for 2x2 Lobatto
with uniform inflow

0 1 2 3 4 5 6

(b) Discrete thickness build-up for 2x2 Lo-
batto with smallest maximum thickness

0 1 2 3 4 5 6

(c) Discrete thickness build-up for 2x2 Lobatto
with maximum smoothness

Fig. 7. Discrete thickness build-up

explored as well. The thickness information can be used to judge if a constant-thickness ply can
be obtained, as constant thickness is often assumed in the optimization phase of variable-stiffness
laminate design. Alternatively, the thickness optimization result can be included in the laminate
optimization in order to take thickness buildup into account in the laminate design.
In addition to one-ply designs, the developed methods couldbe used to design complete laminates
with both varying fiber angles and varying thickness. One approach would be to design the laminate
using lamination parameters and thickness [7, 8, 21] as spatially varying design variables, and then
as a post-processing step, multiple plies with varying fiberangles and their corresponding thickness
distributions could be fit in order to match both the desired lamination parameters and thickness
distribution as close as possible.

Finally, a similar method can be developed for curved surfaces in order to expand the applicability
of the method.

Appendix A

The derivatives of the stream function are:

Ψ, x = −Ψ,n sin θ = −t sin θ

Ψ, y = Ψ,n cos θ = t cos θ
(22)

The second derivatives of the stream function are:

Ψ,xy = −t cos θ · θ,y − sin θ · t,y

Ψ,yx = −t sin θ · θ,x + cos θ · t,x

(23)

Continuity of the second derivatives of the stream functionimplies thatΨ,xy = Ψ,yx so that:

Ψ,xy −Ψ,yx = t(cos θ · θ,y − sin θ · θ,x)− (sin θ · t,y + cos θ · t,x) = 0 (24)

11
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Rearrangement gives:

−
(

cos θ
t,x
t

+ sin θ
t,y
t

)

= − sin θ · θ,x + cos θ · θ,y (25)

Using the following definitions:

n =







− sin θ

cos θ







∇θ =







θ,x

θ,y







s =







cos θ

sin θ







∇(ln t) =







t,x/t

t,y/t







(26)

Eq. (25) can be written as:
−s∇(ln t) = n∇θ (27)
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