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Optimization of Course Locationsin Fiber-Placed Panels for
General Fiber Angle Distributions

Adriana W. Blon?* Mostafa M. Abdalla Zafer Qirdal®

aAerospace Structures, Delft University of Technology, Kluyverweg 1, 2629HS Delft, The
Netherlands

Abstract

Fiber-reinforced composites are usually designed usimgtent fiber orientation in each ply.
In certain cases, however, a varying fiber angle might ber&ble for structural performance. This
possibility can be fully utilized using tow placement teology. Because of the fiber angle variation,
tow-placed courses may overlap and ply thickness will budebn the surface. This thickness build-
up affects manufacturing time, structural response, arfd@eiquality of the finished product.

This paper will present a method for designing compositesplvith varying fiber angles with
composite plates or panels. The thickness build-up withplyais predicted as function of ply
angle variation using a streamline analogy. It is found thatthickness build-up is not unique and
depends on the chosen start locations of fiber courses. @ldtar courses are formulated in terms
of minimizing the maximum ply thickness, maximizing sugasmoothness or combining these
objectives with and without periodic boundary conditions.

Key words: A. Laminate, A. Structural composite, A. Fibers, E. Fibexqggment, Optimization

1 Introduction

In industry fiber-reinforced composites are usually desthasing a constant fiber orientation in
each ply. The fiberangles in these laminates are typicaBp0and+45 degrees. Traditionally the
choice of these lay-ups was motivated by manufacturapilibile nowadays lay-ups with chang-
ing or even non-conventional fiber angles are avoided becafuthe lack of allowables. However,
research -on composites with a varying in-plane fiber ortemtéhas shown that variable stiffness
can be beneficial for structural performance [1-17], bee&asiable-stiffness laminates are able to
redistribute the loading more efficiently than constaiffreiss laminates. In most cases curvilin-
ear fiber paths manufactured by tow placement are used ttraotihe variable-stiffness laminates
[4,5,9-11, 15, 18-20]. Jegley, Tatting and Gurdal [9—EHidned variable-stiffness flat plates with
holes and demonstrated their effectiveness by buildingestthg several specimens.

Due to fiber angle variation, a tow-placed shell typicallpigits gaps and/or overlaps between adja-
cent courses and ply thickness will change along the suféadel, 18]. The amount of gap/overlap
affects structural response, manufacturing time, andwsarfjuality of the finished product.

This paper presents a method for designing composite phéshvhave spatially varying fiber an-
gles. Since fiber-reinforced laminates usually consist oftiple plies, optimizations for specific
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loading conditions result in multiple plies with differefiber angle distributions. The fiber angle
distribution per ply can be used as a direct input for therojziition, as is done by most researchers
so far [1-20], or it can be obtained in a post processing stbpre an optimum laminate stiffness
distribution is approximated as closely as possible, asrite=dl by Setoodeh [21]. In these opti-
mizations the ply thickness is usually assumed to be cofstatiout taking into consideration
manufacturing issues. In the current paper the fiber anglkeilaition per ply is assumed given,
being one of the plies within an optimized laminate. Thekh&ss build-up is predicted as func-
tion of ply angle variation using a streamline analogy. fioisnd that the thickness build-up is not
unique and depends on the chosen start locations of fibesewu®ptimal distributions of fiber
courses are formulated in terms of minimizing the maximuyntpickness or maximizing surface
smoothness, either with or without periodic boundary ctods. Subsequently the discrete thick-
ness build-up resulting from the tow-placement processeattetermined based on the streamline
distribution. Results will be compared to the smeared tigsls approximation. An overview of the
analysis sequence is given in Fig. 1. Finally, a number ofiegions for the developed methods
and suggestions for future research are given.

Fiber angle distribution
8 (x.y)

Optimization for
smoothness / maximum thickness

Thickness distribution
t(x,y)

Determine
corresponding streamlines

Streamfunction
W (x.y)

Determine increment
for plotting streamlines

Discrete thickness distribution
t, (<)

Fig. 1. Analysis sequence

2 Streamline Analogy

For the construction of discrete fiber paths a streamlinéoggas being used. For this application
each streamline represents the centerline of a coursetha dourse width is made infinitely small



each streamline will represent a single fiber. Mathemagieastreamline is represented by a stream
function

U(z,y) =C (1)

which connects all the points with a constant vaftieFor a given fiber angle distributiof(x,y),
the streamlines can be found by solving the following padifferential equation:

v _ovds 0V dy
ds  Oxrds Oy ds @)
U ,cosf+ VW ,sinf =0

A unique solution for the stream function (and thus the limcabf the stream lines) depends on
the boundary conditions. Before seeking a solution to tteast function, additional considerations
relevant to the physical representation of the fiber pathsaorder.

As stated earlier, the streamlines represent the centthlgiaa finite width course. Unless the
streamlines are parallel, the successive courses willyalwaerlap each other when no gaps are al-
lowed between them (or alternatively, the gaps will formamsn the passes if two successive finite
width passes are not allowed to overlap). The amount of apetépends on the distance between
the course centerlines. If the distance is decreased, lfeeoverlap area is increased. Although in
reality these overlaps are discrete, a first approximatiotné amount of overlap could be made
by smearing out this discrete overlap to form a continuoigkttess distribution. In this case, the
smeared thickness,will be inversely proportional to'the distance betweeraadpt courses, which
can be explained as follows. If a numberfcourses with a given widthy, and thickness has a
fixed volumeV/, and if these successive courses are placed closer tharndtheofithe courses, then
the total width covered is less thén- w, and the thickness has to be increased in order to maintain
the same material volunmié.

When the distance between two streamlinellig, thent « 1/|dn| (as explained above). Since
U,,, =d¥/dn andd¥ between two streamlines is constant according to Eq. (1thibkness will

be proportional tol ,, as follows:

1 1 v,
X —=————=—xV, 3
*lan] ~ avjw, ~ av > 3)
If d¥ is assumed to be a unity, then= V¥ ,,, which can be used to derive a direct correlation
between the thickness distribution and the fiber angle tiangsee Appendix A):

—3V (Int) =7nVe (4)

in which's andm represent the tangent and normal vectors to a streamlgecgvely, as shown in
Fig: 2. The physical explanation of Eg. (4) is that the changleickness along a streamline depends
on the change of the fiber orientation perpendicular to ttraamline. Since both vectogsand7n
depend on the given fiber angle distributiéfx, v), the only unknown in Eg. (4) is the thickness.
Hence, the thickness can now be determined by solving thiatem, but since it is a differential
equation boundary conditions are needed in order to obtaimgue solution. In accordance with
streamline theory, boundary conditions are only needebetriflow boundary, where the inflow
boundary is arbitrarily defined by:

5-N<0 (5)
wheres is the vector tangent to the streamline ads the outward normal vector to the boundary,

as shown in Fig. 2. By changing the thickness at the inflow bauy) the thickness distribution
inside the domain and at the outflow boundaries will change.



Inflow boundary
- = = Outflow boundary

Fig. 2. Streamline definitions

3 Determining Boundary Conditions

There exist an infinite number of possible boundary conatifor which the thickness distribution
associated with the streamlines can be found, but the mifistudtipart is to find the ones that are
physically sensible for the problem in hand. In this paperlibundary conditions are established
such that they fulfill a certain optimality condition. Thetmpality conditions to be demonstrated in
this paper are minimization of maximum thickness, maxirnizeof smoothness, and a combination
of these two. In addition, constraints such as periodidithe boundary conditions can be enforced
as well.

3.1 General Solution
By using the following change of variables= In ¢, Eq. (4) becomes:
“5VT =71V (6)
The above equation is solved numerically by discretizirggdérivatives, so that it is written as:
(M]7=B )

where [M] is the matrix that represents the left hand side of Eq.%@3,the vector that represents
T at every grid point and3 is the vector that represents the right hand side of Eq. Gjvell as
the boundary conditions. If the thickness at the inflow bauries is assumed to be equal to one
everywheref = Int = In 1 = 0), a nominal solution can be found fer which will be referred to
asTy. A general solution of Eq. (7) can be expressed as:

T=To+ [T]Fin (8)

where each columpin matrix [1'] represents the influence of boundary grid pgioh the thickness
distribution in the complete domain, while satisfying Ef).(Since these columns are independent
of each other and since Eq. (7) is a linear equation, anydiceabination of these columns also
represents a solution, as given by Eg. (8). The entrigg jrall render the thickness at a single point
on the inflow boundary. By substituting Eqg. (8) in Eq. (7), thiekness can be optimized for one of
the criteria mentioned earlier by usifig, as design variables.

Often it is desired to have at least one layer of materialyavieere so that no gaps exist. Therefore
it is required that the thickness over the entire domain Isagt one, such that > 0 in all opti-
mizations described below. Optimization is performed hipgishe optimization toolbox in Matlab
[22]



3.2  Minimized Maximum Thickness

Minimizing the maximum thickness of the plate is the firstioyatlity criterion that will be elab-
orated on in this paper. This criterion is relevant for judghow practical the resulting thickness
distribution would be in a real life structure, as well as flmtermining the manufacturability of
a plate with constant thickness for a given fiber angle distion. If the thickness build-up is too
severe (i.e. if one point is 100 or 1000 times thicker tharaterage plate thickness) it will not be
practical for realistic structures.

In order to solve the min-max problem, the bound formulaéisintroduced by Olhoff [23] is used.
This formulation introduces a new variakle which represents the maximum thickness and which
also serves as the new objective function for the minimiratAdditionally, a constraint on the
thickness at each grid point is being introduced so thathtoktess never exceedsthe minimized
maximum thicknessy. Mathematically:

Fmin =«
9)

st m<a i=1,2,..,N,

whereN, is the number of grid points. The design variables that tésuin the optimization are
substituted in Eq. (8) and then the thickness distribut®found by changing variables again:
t; = e’

3.3 Maximized Smoothness

Another possible optimization objective is to. maximize sheoothness of the thickness distribution
of the composite panel. Although in reality the change ickhess will always be discrete due to
the discrete nature of tow courses, it would still be des&réd ply drops/overlaps to be distributed
throughout the panel rather than to be concentrated atpkatiregions. In order to achieve this
objective, smoothness is defined as the norm of the rate ojehaf thickness.

Smoothness is maximized by minimizing thig-norm of the thickness:

. 1
min §FT[K]F (10)
where [K] is thesmatrix that discretizes the Laplacian. Substitytine expression for (Eq. (8))
into the argument of Eq. (10) gives:
1 1
—7K]T = f{[K]?a + 70 [K[T)7Fin + =74 [TV [K][T)Fin (11)
The first term on the right hand side of Eq. (11) is constanthst the objective function to be
minimized is:

Fmin = %F;I;L [Kr]Fin - ?rFin (12)
with
K, = [T K][T
] = [T [T 13
fr =T [K][T]
The minimum of Eq. (12) can be found by differentiating it atliating it to zero, so that:

This is a linear system that can be solvedfgy. However, the [{,.]-matrix is one time singular
and therefore one entry @f,, is given an assumed value so that the system can be solved tiAdt



solution is substituted in Eq. (8), a constant can be add&dstech that the condition af > 0 is
being met (this will not change thig;-norm, but will change the absolute value of thickness).

3.4 Combined Objective Function

Since both minimizing the maximum thickness and maximizing smoothness are valid opti-
mization criteria, designers might consider combiningtilue in order to obtain a better design.
Depending on the design requirements, different weightotprs can be assigned to the individual
criterion. The objective functions of Egs. (9) and (12) daerntbe combined to form a new objective
function:

1=T
5T, Tin — TLIL
Foin = (1 — w)% +w 1_2TT[ ] f (15)
@ §Tin [KT]T’”L - f7~Ti7L

In this equationv is the weighting factor that indicates the importance ofsnhmothness inthe opti-
mization. Furthermore the two objective functions are relined bya* and2 in [Kr]ﬂn* — Tﬁm*,
respectively, where* is the smallest maximum thickness obtained from Eq. (9)7and are the
design variables for maximum smoothness as obtained byl2y. (

3.5 Periodic Boundary conditions

The present formulation would also be valid for cylindrisalells since points on a cylindrical
surface are in one to one correspondence to points on a gedéapanel. Nevertheless, an important
difference exists; in the case of a cylindrical shell'theusoh must be periodic. When the ply
angle variation is periodic, continuity in thickness isabed by including the thickness periodicity
constraints in the optimization routines described ab&wee.periodicity iny-direction, this takes
the form:

7(24,0) = 7(x:, b) 0<ua; <l (16)
wherel is the length and is the width of the panel.

4 Discrete Fiber Courses

Once the smeared thickness distribution is obtained thraurge of the optimizations described
above, the corresponding stream function can be obtain@uéyrating? ,, overdn:

U(x,y) = [ ¥ ,dn
av d:c /d\I/ dyd
dx dn
= /\Il,zd:c+/\117ydy

17)

The derivatives of with respect tac andy can be expressed as functionslof and¥ ,, as follows:

V., =V, cos0 -V ,sind
(18)
v, =V,sinf+ ¥V, cosd

SinceV ; = 0 andV ,, = t, the combination of Egs. (17) and (18) will give:
x Yy
U(x,y) = —/ t(z",y*)sinf(a*, y*)dz* +/ t(z",y*) cosO(x™, y*)dy* (19)
0 0

Botht(x,y) andd(x, y) are known functions, so that(z, y) can be solved. By plotting the contour
lines of ¥ at fixed increments the streamlines are found that couldesemt the centerlines of the



actual fiber courses. The constant of integration will datee the exact location of the fiber courses,
which can be used for staggering in case of multiple plies wie same fiber angle distribution.
Once the course centerlines are known, discrete coursdseaamstructed by calculating the course
edges. If a point on the path centerline is defined by, y.} the course edges are found by:

Te = T Fpsinb,
(20)
Ye = Yo L pcosb.

wherep is half the total course width arft}. is the fiber orientation angle &t:., y.}, as shown.in
Fig. 3. When the centerline reaches the domain boundary dge is still inside the domain and
therefore the centerline is extrapolated until both edgeatside the domain boundary (e.g. the
blue lines in Fig. 3). After determining the location of theucse boundaries the number of layers
at each pointin the laminate can be found.

extrapolation

ke
e

domain boundary

Fig. 3. Finite width course and path extrapolation

5 Results

Firstthe results for a panel with a one-dimensional fibetedigtribution are presented. The differ-
ences between the optimization criteria are shown and fhueirce of periodic boundary conditions
on the thickness distribution are demonstrated. For théiseia the corresponding thickness distri-
butions resulting from discrete courses are also givenoi®kdhe thickness distributions for two
panels with a polynomial angle distribution in two directioare compared.

5.1 Unidirectional Fiber Angle Variation

To illustrate the differences between the various optityaliteria described in section 3, an exam-
ple panel is analyzed which has the following linear angléatin in x-direction:

0(z,y) = —30 — 30% (21)



such that the fiber orientation is -30 degrees at the left sidhe panel { = 0) and -60 degrees
at the right side of the panet (= [). The length to width ratio of the panel is 3. This fiber angle
distribution is only used for illustration of the presentd@ory and is not part of an optimized
laminate definition.

5.1.1 Smeared Thickness Distribution

The thickness distribution of a panel for which the maximimckness is minimized is shown in

Fig. 4(a). The resulting thickness along the left and topeeidgunity, indicating that there are no
overlaps on these sides. The maximum thickness occurs ifower right corner of the panel.

The thickness distribution of a panel with maximized smae#s is presented in Fig. 4(b). When
compared to the first panel the maximum thickness is inctelag@pproximately 20 percent, while
smoothness is improved by 40 percent. The smeared thickoegee combined objective with

= 0.5 is plotted in Fig. 4(c). Since both maximum thicknesd amoothness are included in the
objective function, the increase in maximum thickness iy @rpercent, while the improvement in

smoothness is 30 percent when compared to the first panallyFinpanel with periodic boundary

conditions is shown in Fig. 4(d). The maximum thickness @$ fhanel is more than 40 percent
larger than the smallest maximum thickness, and also smes#his decreased.

___]

(a) Smallest maximum thickness (b) Maximum smoothness
(c) Combined objectives (d) Periodic boundary conditions
T T T

1 11 1.2 13 1.4 15 1.6 1.7 18

Fig. 4. Thickness distribution for various optimizatioiteria

5.1.2 Discrete Thickness Distribution

The discrete thickness distributions corresponding toftluie smeared thickness distributions of
Figs. 4 are shown in Figs. 5. The width of these courses wasrassto be 1/6 of the panel width.
The white areas in the figure indicate overlaps, while blagkans are one layer thick.

Fig. 5(a) clearly shows the least amount of overlap. If a teaté with constant thickness was de-
sired, the fiber paths obtained by this optimization can leel as basic paths and the overlaps could
be eliminated by cutting individual tows on the sides of tharses. The smoothness of the laminate
in Fig 5(b) is not readily apparent, until multiple plies atacked on top of each other and staggered
with respect to each other. The combined objective lamioatgg. 5(c) is indeed in between the
laminates of Figs. 5(a) and 5(b). Finally, the relativelgkathickness build-up of the laminate with
periodic boundary conditions is translated in large oyedeeas, as shown in 5(d).



(a) Smallest maximum thickness (b) Maximum smoothness

(c) Combined objectives (d) Periodic boundary conditions

Fig. 5. Discrete thickness build-up (black = 1 layer, whit2 kyers)

5.2 Two Dimensional Fiber Angle Distributions

In Fig. 6 the smeared thickness for two different fiber anggérithutions are presented. The graphs
on the left correspond to a two-dimensio&l’ order Lobatto polynomial and the graphs on the
right correspond to a two-dimensior#l order Lobatto polynomial, as described by Setoodeh [21].
The angle distributions shown represent one ply in a laraittet resulted from an optimization to
match a given optimal lamination parameter distributiorclasely as possible [21]. Due to the
smaller number of design variables of t% order polynomial when compared to tB& order
polynomial (4 versus 9 variables), the latter better madche given stiffness distribution. For more
details on the laminate optimization the reader is refetoeéference [21].

In Figs. 6(c) and 6(d) the thickness due to a uniform unit imfie plotted. In both figures regions
with values smaller than one are present, which indicatasiththese areas there is no complete
coverage of the surface. In other areas the thickness isrlérgn one, implying that overlaps are
present. For th@"? order polynomial (Fig. 6(c)) the largest thickness is alfiug times larger
than the thinnest region, while for t88¢ order polynomial the thickest region is more than a
million times thicker than the thinnest region. If no gaps altowed and all thicknesses were scaled
accordingly, this would result in a non-acceptable amotinverlap for the last variation.
Optimizing the thickness distribution in order to elimiegaps and to minimize maximum thickness
results in the smeared thicknesses shown in Figs. 6(e) @nhd’Bé maximum thickness of tHz?
order polynomial distribution is reduced by approximat8¥ percent, while the the amount of
overlap for the3”? order polynomial distribution is reduced from one milliam anly 186 times
maximum overlap.

Finally smoothness is maximized in Figs. 6(g) and 6(h) atcthe&t of increased thickness. For the
second order polynomial the increase is thirty percentjenur the third order polynomial the
increase is 145 percent.

Based on these results, the plate with the second order diggiéoution would be preferred to
the third order distribution, because the amount of overaplting from the latter is not practical
from a manufacturability point of view. Due to the strearalEnalogy presented in this paper this
observation can be made without having to fit discrete caursthe given fiber angle distribution.
Once a configuration has been selected, the discrete cauegebing one of the boundary condi-
tions can be generated. In Fig. 7(a) the discrete courses dioiform unit inflow are shown. The
white areas indicate gaps, as was already predicted by thkesiie values smaller than one in the
continuous thickness distribution of Fig. 6(c). Figs. 7dhyl 7(c) display the discrete thickness dis-
tributions for respectively the smallest maximum thiclgxaad maximum smoothness conditions.
These plots indicate that the maximum number of layers fntaximum smoothness distribution
is indeed larger, while the difference in smoothness is itificant due to the small number of
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Fig. 6. Fiber angle and thickness distributions3of and3”? order Lobatto polynomials

layers in this ply.

The ply-thickness optimization can be used to judge if it fdego obtain a constant-thickness
ply by cutting tows on the outside of fiber courses. In the azsthe 3x3 Lobatto variation the
amount of overlap as predicted by the streamline analoggadyr indicates that too many overlaps
would occur and that cutting tows is inefficient. The 2x2 Lidbaariation on the other hand has a
maximum overlap of 6 layers, for which a local reduction @& tourse width by a factor 6 can result
in a constant-thickness ply. Using fiber placement this ésitde, since the course width could be
reduced from 32 to 5 or 6 tows locally in order to eliminatedlerlaps. In other cases the thickness
distribution might be fed back to the laminate optimizationtine in order to include the effect of
thickness buildup in the optimization, instead of assunairgnstant thickness per ply.

6 Conclusionsand Outlook

In this paper it was demonstrated that a stream line analagybe successfully used to predict
and influence the thickness distribution in a ply with valgafiber angles. Different objectives
for optimization were considered, and in the future othetgh as minimum volume, might be

10
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(a) Discrete thickness build-up for 2x2 Lobatto (b) Discrete thickness build-up for 2x2 Lo-
with uniform inflow batto with smallest maximum thickness

7))

0 1 2 3 4 5 6

(c) Discrete thickness build-up for 2x2 Lobatto
with maximum smoothness

Fig. 7. Discrete thickness build-up

explored as well. The thickness information can be useddgguf a constant-thickness ply can
be obtained, as constant thickness is often assumed in tmeizgtion phase of variable-stiffness
laminate design. Alternatively, the thickness optimigatresult can be included in the laminate
optimization in order to take thickness buildup.into acddorihe laminate design.

In addition to one-ply designs, the developed methods doeldsed to design complete laminates
with both varying fiber angles and varying thickness. One-ag@gh would be to design the laminate
using lamination parameters and thickness [7, 8, 21] asadlyatarying design variables, and then
as a post-processing step, multiple plies with varying faregles and their corresponding thickness
distributions could be fit in order to match both the desituaihation parameters and thickness
distribution as close as possible.

Finally, a similar method can be developed for curved sedan order to expand the applicability
of the method.

Appendix A

The derivatives of the stream function are:

V,2 = -V ,sinf = —tsinf

(22)
v,y = V¥ ,cosf = tcosl
The second derivatives of the stream function are:
W,y = —tcost-0, —sinf -t
U yp = —tsind -0, +cos -1,
Continuity of the second derivatives of the stream funciioplies that¥ ,, = ¥ . so that:
U oy —V o =t(cosf -0, —sing-0,)—(sinf-t,+cosf-t,)=0 (24)

11



Rearrangement gives:

—(cos@% +sin9t’%) = —sinf -0, +cosb-0, (25)

Using the following definitions:

—sinf — 0 o
n= 0=
cos 0 0y
(26)
cos _ ta/t
5= V(nt) =<’
sin ty/t
Eq. (25) can be written as:
—5V(Int) =nVH (27)
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