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Introduction

Dans un contexte de développement des transports ferroviaires urbains et péri-urbains, la réduction des nuisances sonores apparaît comme un enjeu majeur. Afin d'agir efficacement à la source, il est indispensable d'identifier et d'étudier les sources responsables de ces nuisances. Pour des vitesses inférieures à 300 km/h, le bruit de roulement constitue la source principale du bruit ferroviaire [START_REF] Mellet | High speed train noise emission : Latest investigation of the aerodynamic/rolling noise contribution[END_REF].

La modélisation du bruit de roulement a été initiée par Remington et reprise par Thompson [START_REF] Thompson | A review of the modelling of wheel/rail noise generation[END_REF], notamment à travers le modèle TWINS [START_REF] Thompson | Experimental validation of the TWINS prediction program for rolling noise, Part 1 : description of the model and method[END_REF]. Dans ce modèle, le déplacement vertical relatif au niveau du contact roue/rail (dû aux irrégularités des surfaces de roulement) engendre des vibrations qui se propagent dans la voie. Le rayonnement acoustique des éléments tels que le rail, les roues et les traverses constitue le bruit de roulement. Ce modèle a montré que la contribution du rail au bruit de roulement reste importante pour des fréquences comprises entre 500 et 1200 Hz [START_REF] Thompson | A review of the modelling of wheel/rail noise generation[END_REF]. Ces prédictions ont en partie pu être observées lors de campagnes de mesures utilisant des méthodes dérivées du principe de formation de voies ; une source importante et étendue a été identifiée au niveau du rail [START_REF] Pallas | Tram noise emission : spectral analysis of the noise source contributions[END_REF]. Cependant, le principe du traitement d'antenne tel qu'il est utilisé actuellement est mal adapté à ce type de source [START_REF] Kitagawa | Comparison of wheel/rail noise radiation on Japanese railways using the TWINS model and microphone array measurements[END_REF]. En effet, le comportement vibro-acoustique du rail, en particulier la propagation de vibrations sur une très grande distance dans certaines gammes de fréquences, conduit à le considérer comme une source étendue ayant une grande longueur de cohérence.

Dans l'étude présentée ici, le rayonnement acous-tique du rail est caractérisé par des paramètres vibratoires (amplitudes des excitations, nombres d'ondes complexes) que l'on cherche à estimer à l'aide d'un réseau de microphones. La méthode proposée consiste à minimiser l'erreur entre les matrices interspectrales modélisée et mesurée sur les microphones de l'antenne. Dans un premier temps, le modèle vibro-acoustique retenu pour le rail est présenté. Les caractéristiques du champ acoustique qui en résultent sont ensuite étudiées. Enfin, par minimisation de l'erreur entre modèle et mesures, certains paramètres vibratoires sont évalués dans le cas simple d'une ou plusieurs excitations fixes, en ne considérant qu'un seul type d'onde vibratoire. Des résultats de simulations viennent appuyer et compléter l'étude analytique.

Modélisation du rail 2.1 Modèle vibratoire

Un modèle continu classique est adopté [START_REF] Knothe | Modeling of railway track and vehicle/track interaction at high frequencies[END_REF] dans lequel le rail est assimilé à une poutre épaisse de Timoshenko. Pour cette étude, une pose sur ballast est retenue. Les systèmes ballast-traverse-semelle sont modélisés par des impédances mécaniques localisées de type ressort-masse-ressort notées s(ω). Pour des longueurs d'onde inférieures à l'espacement a entre traverses (jusqu'à environ 1500 Hz), ces supports discrets peuvent être remplacés par un support continu de raideur linéique équivalente s ′ (ω) = s(ω)/a. Une représentation schématique de ce modèle est donnée figure 1. Le déplacement vertical du rail en réponse à une force unitaire en z 0 , appelé fonction de Green, s'écrit [START_REF] Hamet | Railway noise : use of the Timoshenko model in rail vibration studies[END_REF] :

G ω (z, z 0 ) = F d e -k d |z-z0| + iF p e -ikp|z-z0| (1) 
Dans l'équation La figure 2 représente l'atténuation en dB/m de ces deux ondes ainsi que les fréquences caractéristiques du système. Ces fréquences correspondent aux résonances des différents éléments de la voie. Pour une onde de type e -γ|z-z0| , l'atténuation ∆ en dB/m est calculée ainsi : ∆ = ℜ(γ) × 20 log e. Avec ℜ(γ) la partie réelle de γ.

Modélisation acoustique

Comme dans la référence [START_REF] Thompson | Investigation into the validity of two-dimensional models for sound radiation from waves in rails[END_REF], le rail est assimilé à une ligne de monopôles répartis continûment sur son axe comme le montre la figure 3. La pression acoustique en un point de l'espace de coordonnées cylindriques (r, z) est alors donnée par l'intégrale :

p(r, z) = ∫ +∞ zs=-∞ iωdQ(z s ) e -ikrs(z,zs) 4πr s (z, z s ) (2) 
avec : z s l'abscisse d'un monopôle élémentaire sur l'axe z, r s la distance entre le monopôle d'abscisse z s et le point d'observation. dQ(z s ) est le débit massique élémentaire de la source placée à l'abscisse z s ; il est proportionnel à la vitesse vibratoire du rail en ce point. Pour effectuer le calcul numérique de la pression, l'intégrale (2) est discrétisée. La distance D zs entre deux monopôles successifs doit être suffisamment petite par rapport aux longueurs d'onde vibratoires dans le rail et dans l'air. Une précision suffisante est assurée pour :

D zs = 1 5 min(λ air , λ rail ) (3) 
en imposant D zs < 0.1 m pour assurer une bonne estimation proche du rail.

3 Particularités du champ acoustique rayonné par le rail La figure 2 montre que l'atténuation de l'onde propagative varie avec la fréquence de l'excitation. L'onde de champ proche est quant à elle fortement atténuée quelle que soit la fréquence. Les cartographies suivantes illustrent les conséquences de ces différents comportements sur le champ acoustique rayonné par le rail pour deux fréquences caractéristiques. 

Cas simple : un seul contact d'amplitude inconnue

On considère dans un premier temps le cas d'un contact unique à l'abscisse z 0 . Les nombres d'onde complexes dans le rail sont connus pour l'onde propagative et l'onde de champ proche ; les paramètres dynamiques de la voie ont par exemple été déterminés au marteau de choc. Seule l'amplitude du champ, liée à l'amplitude de l'excitation et au facteur de rayonnement, est inconnue. Pour ce cas simple, une écriture analytique de la solution du problème de minimisation est possible. Le champ de pression p(r, z) donné par l'équation (2) est proportionnel à un champ de pression élémentaire p 0 (r, z) :

p(r, z) = A • p 0 (r, z) = A • ∫ +∞ zs=-∞ -ω 2 G ω (z 0 , z s ) e -ikrs (z,zs) 4πrs(z,zs) d zs (5) 
où A est l'amplitude complexe du champ élémentaire. Le critère Λ peut donc s'écrire :

Λ = ∑ m,n |Γ m,n -|A| 2 (P 0 • P 0 † ) m,n | 2 = ∑ m,n |Γ m,n -|A| 2 M m,n | 2 (6) 
avec : P 0 le vecteur des N mic pressions élémentaires sur l'antenne M la matrice spectrale élémentaire modélisée. En posant |A| 2 = α (α > 0), le critère (6) atteint un minimum lorsque sa dérivée par rapport à α est nulle :

∂Λ ∂α = 0 ⇔ α = ∑ m,n M m,n Γ * m,n ∑ m,n |M m,n | 2 (7) 
où Γ * m,n est le conjugué de Γ m,n . Remarque : A est supposé ici déterministe. Dans le cas d'une variable aléatoire, les expressions ( 6) et [START_REF] Hamet | Railway noise : use of the Timoshenko model in rail vibration studies[END_REF] restent valables : il suffit de substituer à |A| 2 la variance σ a 2 de A.

Performances de l'estimateur en présence de bruit

Dans le cas où un bruit additif spatialement blanc, centré et de puissance moyenne σ 2 , se superpose aux signaux mesurés, la matrice spectrale est donnée par :

Γ = Γ + σ 2 I Nmic (8) 
avec I Nmic la matrice identité de dimension N mic (nombre de microphones).

En pratique, Γ est estimée par une moyenne sur K observations. Soit α l'estimée de α en présence de bruit. En utilisant les équations [START_REF] Hamet | Railway noise : use of the Timoshenko model in rail vibration studies[END_REF] et [START_REF] Thompson | Investigation into the validity of two-dimensional models for sound radiation from waves in rails[END_REF], on peut écrire le biais relatif (équation 9) et la variance relative (équation 10) de l'estimateur :

α -α α = 1 N mic • 1 R s/b (9) 
V ar(α)

α 2 = 1 K • [ 2 N mic R s/b + 1 N mic 2 R s/b 2 ] (10) 
où R s/b est le rapport signal à bruit linéaire, défini par le rapport de σ 2 et de la puissance moyenne sur les microphones de l'antenne.

Les équations ( 9) et (10) montrent que les performances de l'estimateur ne dépendent pas de la fréquence. Même lorsqu'il y a autant de bruit que de signal, l'erreur d'estimation sur α reste inférieure à 1 dB en moyenne.

Sous cette hypothèse de bruit spatialement blanc, seule la diagonale des matrices spectrales porte la contribution du bruit, introduisant de ce fait le biais évoqué précédemment. Pour pallier à ce problème, il est possible de modifier le critère à minimiser, en excluant les éléments diagonaux des matrices spectrales. L'estimateur ainsi défini n'est plus biaisé, mais une attention toute particulière devra être portée aux résultats obtenus dans les cas plus complexes.

Performances de l'estimateur en présence d'erreurs sur le modèle

La méthode décrite précédemment repose sur la minimisation d'une erreur entre mesures et prévisions issues d'un modèle. Jusqu'à présent, les paramètres de ce modèle sont supposés connus, à l'exception de l'amplitude A de l'excitation. Cette partie présente les résultats d'une étude de robustesse vis-à-vis d'erreurs sur ces paramètres, sans bruit de mesure sur les microphones.

La matrice spectrale mesurée est simulée à partir du modèle vibro-acoustique. Pour la matrice spectrale modélisée, des erreurs sont introduites sur les paramètres suivants : position du contact, atténuation ou nombre d'onde de l'onde propagative. Dans les illustrations numériques, pour une fréquence f donnée l'antenne comporte 13 microphones, espacés de façon à vérifier le critère de Shannon spatial (d ≤ λ air /2) ; sa longueur L est donc spécifique à chaque fréquence. L'antenne est disposée parallèlement au rail à 3 m de celui-ci. La position du centre de l'antenne z c sur cet axe est un paramètre qui varie de 0 à 5 m (l'origine z c = 0 étant face au contact z 0 ).

Lorsqu'une erreur est introduite sur l'atténuation de l'onde propagative, la robustesse est vérifiée pour les fortes atténuations : pour une erreur de ±10 dB/m sur l'atténuation, on constate moins de 1 dB d'erreur sur l'estimation de α. Pour les faibles atténuations, une imprécision sur l'atténuation peut se traduire par une forte erreur sur l'estimation de α, et ceci d'autant plus que l'antenne est excentrée du point de contact (figure 6). Plus généralement, c'est lorsque l'antenne est en face du contact que l'erreur d'estimation est minimale. résultats montrent que la position z 0 du contact est un paramètre à connaître avec précision, surtout pour les basses fréquences. En effet, en hautes fréquences, lorsque les ondes rayonnées par le rail sont planes, la position de l'antenne dans un tel champ invariant dans l'espace importe peu. En pratique, cette information de position du contact par rapport à l'antenne sera a priori assez bien connue.

Amplitude et atténuation inconnues

Étude du critère à minimiser

On suppose à présent que deux paramètres sont inconnus, à savoir l'amplitude de l'excitation et l'atténuation de l'onde propagative dans le rail. La solution de ce problème, par une approche de minimisation de l'erreur entre les matrices spectrales mesurée et modélisée, n'a pas de solution analytique simple. La résolution nécessite l'utilisation d'une méthode d'optimisation. Au préalable, nous analysons le comportement du critère à minimiser, et notamment l'existence éventuelle de minima locaux ou de zones plus vastes où la fonction coût varie faiblement autour de la solution. On considère une antenne microphonique de structure similaire à celle de la section 4.3.

Quelle que soit la fréquence observée, et quelle que soit la position z c du centre de l'antenne par rapport au contact, on constate l'existence d'une vallée le long de laquelle Λ varie très peu. La figure 8 tion que nous utilisons dans un premier temps, est un algorithme de programmation séquentielle quadratique (méthode SQP), particulièrement adapté aux problèmes non linéaires sous contraintes comme le nôtre [START_REF] Biggs | Constrained Minimization Using Recursive Quadratic Programming[END_REF]. Même lorsque l'on initialise à proximité du minimum, l'algorithme converge vers une mauvaise solution quelle que soit le cas étudié (fréquence, position de l'antenne). Le problème ainsi défini est mal conditionné. 

N contacts d'amplitude inconnue

On considère à présent N contacts, associés à N roues sur le rail. Les contacts sont supposés décorrélés et d'amplitudes inconnues. Par extension de la section 4.1, chaque contact d'indice u à l'abscisse z u (u ∈ [[1, N ]]) engendre un champ acoustique qui s'écrit sous forme d'un champ élémentaire p u (r, z) multiplié par une amplitude complexe A u . Le champ acoustique total rayonné par le rail excité par l'ensemble de ces N contacts s'écrit :

p(r, z) = ∑ N u=1 A u • p u (r, z) = ∑ N u=1 A u • ∫ +∞ -∞ -ω 2 G ω (z u , z s ) e -ikrs (z,zs) 4πrs(z,zs) d zs (12) 
Sous l'hypothèse de décorrélation des N excitations, la matrice spectrale modélisée sur les N mic capteurs s'écrit :

Γ mod = N ∑ u=1 σ u 2 Γ u (13) 
avec : σ u 2 la variance de l'amplitude du contact u, Γ u la matrice spectrale sur les N mic capteurs relative au contact u.

Des équations (13) et (4) on déduit le critère Λ pour N contacts :

Λ = ∑ n,m |Γ n,m | 2 -2 ∑ u α u U u + ∑ u,v α u α v V u,v (14) avec 
: U u = ∑ m,n (P u ) * m Γ m,n (P u
) n , P u le vecteur de la pression unitaire modélisée sur l'antenne, relatif au contact u,

V u,v = ∑ m (P u ) m (P v ) * m 2 , α u = σ u 2 
Ainsi, d'après l'équation (14), trouver les α u qui minimisent Λ revient à résoudre :

∀u ∈ [[1, N ]] ∂Λ ∂α u = 0 (15) 
D'après les équations (14) et (15) minimiser le critère Λ pour N contacts revient à résoudre le système matriciel :

   V 1,1 • • • V 1,N . . . . . . . . . V N,1 • • • V N,N       α 1 . . . α N    =    U 1 . . . U N    (16) 
La solution d'un tel système est unique si et seulement si la matrice V est inversible. Dans ce cas, si les α u trouvés sont positifs, ils sont également solution du problème d'optimisation. Dans les autres cas, lorsque la matrice V n'est pas inversible ou que les α u trouvés ne sont pas tous positifs, il faudra utiliser un algorithme d'optimisation pour minimiser le critère (14) sous contrainte de positivité des α u . En l'absence de bruit, les résultats obtenus par inversion de la matrice V sont bien les solutions du problème d'optimisation, sur l'ensemble de la gamme de fréquence étudiée (jusqu'à 3000 Hz).

Conclusion

Le caractère étendu du rail en fait une source acoustique difficile à caractériser avec les méthodes de traitement d'antenne classiques ; le champ acoustique qu'il rayonne présente en effet des propriétés trop hétérogènes avec la fréquence. Dans cet article, une méthode d'optimisation paramétrique basée sur la minimisation d'un critère d'erreur quadratique est proposée ; il s'agit de l'erreur commise entre la matrice spectrale mesurée sur l'antenne et une matrice spectrale calculée à partir d'une modélisation vibro-acoustique du rail. Des simulations ont permis de vérifier la robustesse de cette méthode aux erreurs de modélisation pour un cas simple où seule l'amplitude de l'excitation est inconnue. Lorsque deux paramètres sont inconnus, l'utilisation de plusieurs positions pour l'antenne rend le problème d'optimisation mieux conditionné. Enfin, pour N contacts d'amplitude inconnue, les premiers résultats sont encourageants. Actuellement, des cas plus complexes sont étudiés : superposition de plusieurs ondes avec des paramètres inconnus supplémentaires (nombres d'onde).
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 1 Figure 1 -Modélisation du rail sur son support
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 23 Figure 2 -Atténuation des ondes de flexion verticales dans le rail
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 45 Figure 4 -Phase du champ acoustique rayonné par le rail à 350 Hz
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 67 Figure 6 -Erreur d'estimation sur α en fonction de l'erreur sur l'atténuation, à 1000 Hz (∆ = 0.28 dB/m)
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 8 Figure 8 -Visualisation de Λ autour du point solution (f = 550 Hz, z c = 3 m)
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 429 Figure 9 -Visualisation du Critère Λ (f = 550 Hz, z c1 = 3 m, z c2 = 5 m) Le critère Λ tel qu'il est défini présente un minimum plus marqué que lorsqu'il est défini en n'utilisant qu'une seule position pour l'antenne. Le point solution se situe à la croisée des vallées minimum de Λ 1 et Λ 2 . Les premiers tests effectués avec un algorithme d'optimisation basés sur une méthode SQP montrent que la convergence vers la solution est systématique ; le problème ainsi posé est mieux conditionné. De nombreux paramètres d'entrée peuvent et doivent être ajustés afin d'améliorer les performances de l'algorithme ; le choix des conditions initiales est notamment déterminant. L'objectif de notre étude ne portant pas sur cet aspect, nous nous arrêterons à ces résultats préliminaires obtenus pour une utilisation naïve de l'algorithme. Nous avons néanmoins pu vérifier qu'avec le critère (11), la convergence est assurée sur l'ensemble de la gamme de fréquence, même lorsque l'on initialise loin de la solution, ou proche d'une vallée minimum.

Table 1 -

 1 Elles sont caractérisées par une amplitude et un nombre d'onde complexe qui dépendent des paramètres physiques du rail et de son support (les paramètres utilisés dans cette étude sont donnés table1). On peut ainsi distinguer : -une onde potentiellement propagative d'amplitude F p et de nombre d'onde complexe k p ; -une onde de champ proche d'amplitude F d et de nombre d'onde complexe k d . Cette onde fortement atténuée est également appelée onde évanescente, elle existe dans un proche voisinage du point d'excitation. Paramètres mécaniques de la voie[START_REF] Hamet | Railway noise : use of the Timoshenko model in rail vibration studies[END_REF] 

	Rail		Support	
	Module d'élasticité (N/m 2 )	2 • 10 11	Masse d'une demie traverse (kg)	80
	Coefficient pertes internes	de	4 • 10 -3	Raideur de la se-melle (N/m)	3 • 10 8
	Module de cisaille-ment (N/m 2 )	7.7 • 10 10 Facteur de pertes dans la semelle	3.10 7
	Masse volumique (kg/m 3 )	8000	Raideur du ballast (N/m)	7.5 • 10 7
	Rigidité en flexion verticale (Nm 2 )	6.4 • 10 6	Facteur de pertes dans le ballast	3 • 10 7
	Masse par unité de longueur (kg/m)	60		
	Coefficient de ci-saillement	0.4		

1, on distingue deux types d'ondes de flexion qui peuvent se propager dans le rail, de part et d'autre de l'excitation.

Une source est placée en z 0 , puis tous les D zs mètres de part et d'autre du point d'excitation jusqu'à atteindre 60 dB d'atténuation pour l'onde vibratoire propagative. L'amplitude de chaque source est proportionnelle à la vitesse vibratoire du rail, elle-même déterminée en utilisant le modèle décrit dans la section 2.1. Ainsi, les sources élémentaires sont cohérentes et les champs associés interfèrent ; ceci confère au champ acoustique résultant des propriétés particulières (cf.[START_REF] Thompson | Investigation into the validity of two-dimensional models for sound radiation from waves in rails[END_REF]).

Méthode d'optimisation paramétriqueLe champ de pression décrit précédemment est mesuré au moyen d'un réseau de N mic microphones. Pour une fréquence f , on construit la matrice interspectrale Γ de dimension N mic × N mic . Parallèlement, une matrice spectrale modélisée Γ mod est calculée à partir du modèle vibro-acoustique décrit dans les sections 2.1 et 2.2. Elle dépend de plusieurs paramètres (amplitudes des forces de contact, nombres d'onde complexes dans le rail) que l'on cherche à déterminer par minimisation d'un critère basé sur l'erreur quadratique entre les matrices spectrales Γ et Γ mod :