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Abstract 

We derive the Casimir force expression from Maxwell’s stress tensor by means of original 

quantum-electro-dynamical cavity modes.  In contrast with similar calculations, our method does 

not rely on formal mathematical extrapolation relations [5] with not necessarily rigorous  

properties [6]. 

Introduction 

The effect of the quantum nature of the electro-magnetic field manifests itself if retarded 

potentials between atoms and molecules are considered, as shown by Casimir and Polder [1]. A 

similar effect appears in Lifshitz’s theory [2,3] of forces between dielectric solid bodies. In the 

limiting case, where dielectrics are replaced by perfectly conducting plates, i.e. by letting the 

dielectric constants go to infinity, Lifshitz recovers the attractive force for which Casimir derived 

in 1948 expression [4] 

(1)       z = a 

with the plates located at z = 0 and z = a.   

In his derivation Casimir considers the zero point energy inside the cavity, which is a purely 

quantum-electro-dynamical notion, and he obtains the force as represented by its derivative with 

respect to the distance a.  

Here a difficulty appears given the fact that if the zero-point energy density 

(2)   

is summed over all possible modes , an infinite meaningless result appears. Casimir has solved 

the problem by demonstrating how unphysical infinities disappear by introducing compensations 

from the surroundings outside the cavity. However, this delicate problem has given rise to 



numerous subsequent studies [5], most of them based on purely formal mathematical 

extrapolation methods. 

Another way, chosen by some authors for computing the Casimir force, consists in writing down 

an expression derived directly from Maxwell’s stress tensor instead of differentiating the energy 

relation [5,6]. Unfortunately this method does not remove the divergencies brought about by 

summation over modes so that here again convergence generation procedures are required. Some 

time ago Brown and Maclay [7] presented a very special Green’s function method for 

dealing with divergencies. Numerous other methods have been published since for which we 

refer to the book of K.A.Milton [5]. 

In this work we evaluate Maxwell’s stress tensor by means of specific quantum-electro-

dynamical cavity modes which to our knowledge have not been considered so far in the literature 

in this context. The advantage of using these modes lies in the fact that they allow to perform a 

rigorous mathematical treatment, with at the end a clear identification of the term that has to be 

discarded as unphysical.  

We thus try to show that it is possible to obtain the correct zero-point result by simply using 

adequate cavity mode functions and perform a straightforward summation over all modes.  

Naturally, Green’s function methods, initiated e.g. by Lifshitz [2] and developed by many 

authors, will always remain attractive as they approach the problem from the general angle 

of quantum field fluctuation theory. 

The cavity modes 

We consider a cavity made of two plane parallel perfectly conducting metallic plates located at 

distances z = 0 and z = a respectively. We write the electric field vector inside the cavity in the 

form 

(3)    

with, for a given frequency, a function of the space coordinates  and , the 

usual annihilation and creation operators respectively. Introducing the expectation value of the 

quantity in the vacuum state  we then have 

(4)   

Considering now the zero point energy density in the cavity as given by the expression 



(5)   

where  is the surface of the quare shaped plates, the quantity given by eq.(4) can be linked to 

the electro-magnetic energy density , i.e.twice its electric part, by means of the following 

relation: 

(6)   

Here we have added the index k as the corresponding wave number.  

We now turn to the function which for a given mode with wave vector  has to fullfill two 

conditions: 

i)  the zero charge condition inside the cavity expressed by the relation 

(7)   

ii)  the continuity condition of the parallel components at the boundaries, which for conducting 

plates amounts to setting 

(8)  for z = 0, z = a. 

A candidate obeying these conditions is given by the expression [8] 

(9)         

Moreover, by averaging over space coordinates eq.(6) then takes the form 

(10a)   

(10b)  

with  

(11)   

The Casimir force 



The force exerted by the cavity field on the conducting plates can be deduced from Maxwell’s 

stress tensor 

(12)      with   i,j = x,y,z 

where the electric and magnetic field quantities refer to their values at the boundaries. For the 

electric field these are given by eq.(8)  and (9) . For the magnetic field they can be deduced from 

the relation 

(13)   

yielding the following results 

(14)  

(15)   

Taking the square of the quantity given by eq.(13) and averaging over coordinates x,y, we then 

obtain 

(16)    

with 

(17)   

Replacing the quantities of eq.(12) by these averages together with, as a result of eq.(9), 

(18)    

we arrive at the relation 

(19)   

recalling that . 

In order to determine the value of the amplitude factor  we notice that the average energy 

density of the fluctuating field inside the cavity must be homogeneous everywhere including the 

border region. This fact can be expressed by the relation 



(20)   =  

From the definitions of eq.(9) we thus obtain 

(21)   

With  given by eq.(10b) we have 

(22)   

where the explicit expression of eq.(7) for  together with 

(23)   

has been introduced. 

We now have to sum over mode numbers . Letting the auxiliary quantity L go to 

infinity we make the usual replacement  This then yiedls for the 

force the expression: 

(24)      (summing over all positive integers) 

This expression is highly divergent as it should, given the facts mentioned in the introduction. 

Therefore a convergence factor has to be inserted which, following Fierz [9], we choose to be 

 

Naturally the result will depend on the frequency cut-off involving the value of  The sum on 

the r.h.s. of eq.(24) can be done exactly as shown in the appendix , yielding the result 

(25)        with  a Bernoulli number 

Hence the second term on the r.h.s. is equal to the Casimir force as given by eq.(1) 



 

 

 

Discussion 

A general rule in quantum physics stipulates that the result of any actual measurement 

involving the zero-point energy should be proportional to  with a small 

characteristic length [10]. This is because the measurement reflects the average over a small 

but finite region in space.  Applied to the Casimir effect  with , this means that in 

eq.(25) only the second term on the r.h.s. is physically significant, and that therefore the 

question of compensation of the a - independent infinity is irrelevant. This argument makes 

our method different from the numerous approaches which consider in detail compensation 

of singulaties by various procedures. 

Note finally that the expression (A1) represents twice (2 polarization states) the derivative 

with respect to a of the corresponding energy density expression, provided however that the 

derivative of the convergence factor can be ignored. This latter important condition has 

been investigated in detail in ref. [11] . 

Conclusion 

We present a derivation of the Casimir formula by evaluating Maxwell’s stress tensor in terms of 

quantum electrodynamical cavity modes. The calculations do not involve any non rigorous 

mathematical manipulations and convergence is achieved on purely physical grounds. 
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Appendix 

With k given by eq.(23) we obtain for the expression 

(A1)  

We evaluate this quantity by making the following substitutions [9] : 

  ;   

We thus obtain 

(A2)     

The integral can be calculated exactly with the result 

(A3)   

After generating the factor by deriving the exponential twice with respect to , the sum over 

n reduces to a geometric series. This yields the expression 

(A4)   

Introducing Bernoulli numbers  defined by 

(A5)   

we expand the expression (A4) as follows: 

(A6)   



Letting be an infinitesimal quantity, eq.(A6) reduces to 

(A7)   

with  

We thus recover the result of eq.(25).. 

  
 


