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Abstract

This paper presents a campaign of experimental tests performed on a silicone elastomer filled with silica

particles. These tests were conducted under controlled temperatures (ranging from -55oC to +70oC) and

under uniaxial tension and in shearing modes. In these two classes of tests, the specimens were subjected

to cyclic loading at various deformation rates and amplitudes and relaxation tests at various levels of

deformation. A statistical hyper-visco-elasto-plastic model is then presented, which covers a wide loading

frequency spectrum and requires indentifying only a few characteristic parameters. The method used to

identify these parameters consists in performing several successive partial identifications with a view to

reducing the coupling effects between the parameters. Lastly, comparisons between modeling predictions

and the experimental data recorded under harmonic loading, confirm the accuracy of the model in a relatively

wide frequency range and a large range of deformations.

Key words: Hyperviscoplastic behavior, Rheological model, Payne effect, Gent-Fletcher effect, Filled

elastomer.

1. Introduction

Elastomers belong to the high polymer family i.e. they consist of macromolecular chains of various

lengths, with and without ramifications. This structure confers on these materials a low level of rigidity

and a high level of deformability. In addition, the reinforcement of these materials with fillers accentuates

their dissipative behavior. Because of these properties, especially their damping capacity, these materials

are widely used in industry. The application on which this study focuses is that of the drag dampers for

helicopters. These parts connect helicopter blades to the rotor and attenuate the drag movement. Designing

these parts, which are often related to safety, imposes a guarantee of high reliability under extreme operating

conditions (dynamic loading with multi-frequency and large amplitudes, thermal constraints, etc). Meeting
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these specifications requires good knowledge of the mechanical behavior of the constitutive materials. In

addition, the behavior of an elastomer can depend heavily on the temperature, the degree of cross-linking

and the type of particles incorporated (carbon or silica), etc.

During recent decades, several approaches have been used by previous authors to model various behavioral

aspects of elastomers:

• To describe the static behavior of the material, a hyperelastic approach was used in: Treloar (1943,

1957) where statistical models were proposed; and Mooney (1940); Rivlin (1958); Hart-Smith (1966);

Ogden (1972), which involved the use of phenomenological approaches.

• Some authors have used the damage mechanics approach to describe the softening behavior occurring

during the first loading cycles, which is known as the Mullins effect, see Mullins (1947); Harwood et al.

(1967). A theoretical framework was proposed by Govindjee and Simo (1991, 1992) in the case of a

hyperelastic behavior. A similar approach was described in Simo (1987); Miehe (1995) in the case of

a viscoelastic material.

• In Holzapfel and Reiter (1995); Holzapfel and Simo (1996a,b); Lion (1997), a thermomechanical cou-

pling model was developed, which takes into account the temperature dependence of the mechanical

characteristics and describes the temperature changes resulting from the mechanical dissipation.

• Furthermore, to model the viscoelastic effects of these materials, a framework of the Finite Non Linear

Viscoelasticity has been proposed by several authors. These models can be classified in the following

groups, depending on the type of formulation used:

Those using an integral approach, which were mainly developed for modeling non linear materials with

evanescent memory. These approaches describe the behavior of the material using equations giving

the stress tensor in terms of the strain history. Rivlin (1958); Coleman (1964); Christensen (1971);

Coleman and Noll (1961); Lianis (1963); Chang et al. (1978); Morman (1988).

Those using a differential approach, based on the concept of intermediate states commonly used to

describe finite elastic-plastic deformations (see Sidoroff (1973, 1974)). Defining intermediate states

provides the internal variables needed to describe the behavior. This approach can be said to be

an extension of rheological models in the case of large strains: Sidoroff (1977); Le Tallec (1990);

Le Tallec and Rahier (1994); Leonov (1992). The local state method, Lemâıtre and Chaboche (1996),

provides the theoretical framework of this formulation, and the internal variables are provided by the

intermediate states.

And those using micro-physically motivated models for filled elastomers, which are often based on

hypotheses about the interactions between the agglomerates of fillers and the gum matrix: Drozdov

(2001a,b); Drozdov and Dorfmann (2002, 2003); Drozdov et al. (2004), or about the mechanisms
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underlying the deformation and rearrangement of the macro-molecular network: Tanaka and Edwards

(1992); Drozdov (1998, 2000); Reese (2003).

In this paper, a meso-physically motivated approach is used to model the response of the material, in

large strain and at various frequencies and temperatures. A statistical approach is then proposed to develop

a model based on the generalization of an assembly of rheological models. The advantage of this statistical

rheological model is that it can be used to simulate the behavior of the material in a wide frequency range

while requiring only a few parameters to be identified.

First we present the results of a series of experimental tests, which were carried out on a silicone elastomer

filled with silica. These tests were uniaxial tension and shear tests and were performed under controlled

temperature (ranging from −55oC to +70oC) and under various loading conditions (Relaxation tests, quasi-

static and dynamic loading at various strain rates). The results show the dependence of the behavior of

the material on the temperature, as well as on the strain-rate (Fletcher-Gent effect, see Fletcher and Gent

(1953)) and the amplitude of the strain (Payne effect, see Harwood et al. (1967)). The constitutive model is

then developed on the basis of the fundamental principle of thermodynamics of continuous media, adapted

to finite strain theory. Using the concept of intermediate configurations (multiplicative decomposition of the

deformation gradient) and in line with the theory of thermodynamics of irreversible processes, and under the

hypothesis of the normal dissipation depending only on the internal variables, the constitutive equation and

the flow rules are obtained. A statistical approach is then applied, in order to extend this rheological model

to a wide range of strain rates and to account for the plastic behavior of the material. In the following

section, this statistical hyper-visco-plastic model is analyzed in the case of simple loads, with a view to

propose a strategy for identifying its parameters. For this purpose, analytical solutions are developed to

simulate the relaxation response and the hardening test, respectively. In the case of cyclic loading, a semi-

analytical response was obtained using a symbolic and numeric computation software. These identifications

were performed at various temperatures. Lastly, using the semi-analytical solution under sinusoidal shear

loading conditions at various frequencies and amplitudes, the effect of parameters such as the temperature,

frequency and loading amplitude on the harmonic response of the elastomer are analyzed.

2. Experimental analysis

2.1. Description of the experimental tests

An experimental campaign was conducted on a silicone (dimethyl-vinyl-siloxan vulcanized by peroxide)

reinforced with silica particles. The glass transition temperature of this elastomer is approximately −105oC.

The following tests were carried out:

• Uniaxial tensile tests on specimens with a dumbbell shape (H2 according to standard NF T46-002),

to determine the quasi-static behavior and the relaxation response of the material.
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Figure 1: Double-shearing specimen.

• Shear tests on Double-Shearing specimens (DS, see Figure 1). These specimens were successively sub-

jected to: a quasi-static loading-unloading cycle; relaxation tests at various shearing levels; triangular

cyclic loading, at various strain rates (from 0.03s−1 to 10s−1) and various amplitudes (12.5%, 25%

and 50%).

All these tests were performed under controlled temperatures (ranging from −55oC to +70oC) in a climatic

chamber cooled by injecting nitrogen and heated with an electrical resistance and the airflow. In the tensile

tests, monitoring and deformation measurements were performed with a laser extensometer.

Remark 1 (Mullins effect) To eliminate the Mullins effect (see Mullins (1947); Harwood et al. (1967)) and

therefore to characterize the behavior of the stabilized material, a softening process was first induced by

applying about ten cycles with an amplitude greater than the maximum strain imposed during the series of

tests.

Remark 2 (Temperature stabilization) To avoid errors in the temperature measurement, a waiting period

of ten minutes was fixed between each characterization test to allow the temperature to reach equilibrium

inside the specimen. The characterization time was sufficiently short to avoid a too strong self-heating

phenomena in the specimen.

2.2. Experimental results

Relaxation tests: In the relaxation tests, the specimen was subjected to various strain levels: 25%, 50%

and 100% under tension loading; 20%, 30% and 54% under shear strain. The response of the material

is described by the evolution of the normalized stress1 versus time. The curves presented in Figure 2(a)

and Figure 2(c) show that at temperatures above the ambient temperature, the evolution of these stresses

during relaxation was always independent of the strain amplitude. At these temperatures, the relaxation

mechanism seems independent of the strain level, under both tension and shear loading; whereas at lower

temperatures, the responses doesn’t show the same linearity of the stress depending on the deformation,

especially in the case of uniaxial tension tests (see Figure 2(b)). The graphs in Figure 2(b) and Figure 2(d)

1For relaxation tests, normalized stress is obtained by dividing the total stress by the instantaneous stress.
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(a) Effects of the elongation under tension loading (T =

25oC)
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(b) Effects of the temperature under tension loading.
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(c) Effects of the strain amplitude under shear loading

(T = 25oC).
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(d) Effects of the temperature under shear loading.

Figure 2: Response of the material in relaxation tests: first Piola-Kirchoff stress vs time. The vertical axis corresponds to the

total stress divided by the instantaneous stress (normalized stress).

show the dependence of the relaxation response on the temperature. The relaxation response was therefore

more sensitive to the temperature in the [−55oC,−25oC] range than at higher temperatures (above 25oC).

Quasi-static shear response: The quasi-static test was a loading-unloading test, performed at low strain

rate (γ̇ = 0.03s−1) and for three shear amplitudes (γmax = 12.5%, 25% and 50%). The stress-strain curves

given in Figure 3 show that even at low rates of deformation, the material shows dissipative behavior. It

will therefore be necessary to take the plasticity into account when developing the constitutive model.
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Figure 3: Quasi-static responses recorded in loading-unloading shear tests: first Piola-Kirchoff stress vs shear strain (shear

rate: γ̇ = 0.03s−1, temperature: T = 25oC).

Cyclic tests: Cyclic tests were carried out under triangular loading conditions with gradually increasing

amplitude. At each amplitude, a dozen cycles were applied. The values of the parameters in this set of tests

were as follows:

• Temperature (T ): 70oC, 40oC, 25oC, −25oC, −40oC and −55oC.

• Shear rate (γ̇): 0.03s−1, 0.1s−1, 0.3s−1, 1s−1, 3s−1 and 10s−1.

• Shear amplitude (γmax): 12.5%, 25% and 50%.

Figures 4(a) and 5 show the effects of the loading amplitude on the stabilized response. Qualitatively, these

responses show the strong non-linearity at high amplitudes. In addition, it is worth noting the decrease in the

global stiffness observed when the strain amplitude increases. These results therefore clearly confirm that this

phenomenon, which is known as the Payne effect, is more pronounced at low temperatures (see Figure 5(a)).

In previous studies, this softening has often been attributed to the plastic behavior of elastomers reinforced

with fillers.

As with other visco-elastic polymer materials, the influence of the strain rate was more classical (see Figures

4(b) and 6) at all the temperatures tested: an increase in the global stiffness and the cyclic dissipation with

the strain rate were clearly observed.

Lastly, the hysteresis loops presented in Figure 7 show the strong influence of the temperature on the behavior

of the material. It can be seen in particular that: a softening and a decrease in the cyclic dissipation occurs

as the temperature increases; at low temperatures the hysteresis loop shows a nonlinear behavior, which

is characterized by: the angular point, the stiffening observed at the end of the cycle and the contraction
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(a) Stabilized cycles (T = 25oC, γ̇ = 0.3s−1), effect of

the strain amplitude.
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Figure 4: Cyclic responses in triangular shear tests: first Piola-Kirchoff stress vs shear strain (temperature: T = 25oC). The

first cycles has been removed to keep only stabilized responses.
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(a) Global stiffness vs strain amplitude
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(b) Cyclic dissipation vs strain amplitude

Figure 5: Effects of the strain amplitude on the response of the material to triangular cyclic shearing tests for various temper-

atures (γ̇ = ±0.3s−1).

of the loop at zero strain. These non-linear features, which are more pronounced at low temperatures, are

consistent with plastic behavior. These results therefore confirm that plastic behavior begins to predominate

when the material approaches the glass transition point.

In conclusion, the following aspects of the behavior have to be taken into account in the model:

• The geometric non-linearities due to large strains.
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Figure 6: Effects of the strain rate on the response of the material under triangular cyclic shearing tests at various temperatures

(γmax = 50%).
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Figure 7: Effects of the temperature on the response of the the material under triangular cyclic shearing (γmax = 50%,

γ̇ = ±10s−1).

• The dissipative behavior induced by viscous effects which should be coupled to the hyperelasticity.

• The model must be able to describe the behavior in a wide range of strain rates, and in particular, to

reflect the Feltcher-Gent effect.

• The effects of plasticity on the behavior, including the Payne effect in particular.

Other phenomena, such as the Mullins effect and the self-heating of the material, were also observed during

in this experiments. However, these aspects will not be integrated directly into the model developed in
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Figure 8: Intermediate configuration.

study, because their analysis has been widely discussed in the literature, see Mullins (1947, 1956, 1959);

Mullins and Tobin (1965); Govindjee and Simo (1991, 1992).

3. Constitutive equations

3.1. Some generalities about rheological modeling

Using the concept of the local intermediate configuration, introduced by Sidoroff (1974, 1975), the

transformation gradient tensor F is split into a viscous and an elastic parts:

F = Fe · Fv. (1)

Then, assuming that the Clausius-Duhem inequality can be written in Eulerian terms as follows (neglecting

the thermal effects):

φ = σ : D− J−1ρ0ψ̇, (2)

where ρ0 is the density in the initial configuration, φ is the intrinsic dissipation, σ is the Cauchy stress

tensor and D represents the Eulerian strain rate tensor:

D =
1

2

(

L+ LT
)

with L = Ḟ · F−1, (3)

J denotes the determinant of the gradient tensor F, and ψ is the free specific energy which is expressed as

the sum:

ψ(B,Be) = ψv(Be) + ψ0(B) (4)

where B = F · FT and Be = Fe · FT
e are sets of independent thermodynamic variables.

So, one can express ψ̇ as follows:

ψ̇ =
∂ψ0

∂B
: Ḃ+

∂ψv

∂Be

: Ḃe (5)
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The time derivatives of the left Cauchy-Green tensor and the local changes in volume are given by:

Ḃ = L ·B+B · LT (6)

J̇ = J (1 : L) (7)

where 1 is the identity tensor, and:

Ḃe = L ·Be +Be · LT − 2Ve ·Do
v ·Ve (8)

where Ve is the purely elastic strain tensor (i.e. coming from the polar decomposition Fe = Ve ·Re) and

Do
v = Re ·Dv ·RT

e (9)

is the objective measure of the anelastic strain rate. By injecting equations (6), (7) and (8) in (5), the

variation of the free energy can be written as follows:

ψ̇ =

(

2B · ∂ψ0

∂B

)

: D+

(

2Be ·
∂ψv

∂Be

)

: D−
(

2Ve ·
∂ψv

∂Be

·Ve

)

: Do
v (10)

with the incompressibility conditions:

D : 1 = 0, Do
v : 1 = 0 (11)

Using the assumption of the normal dissipation, (we choose a quadratic pseudo-potential of dissipation, ϕv,

depending only on Do
v), the constitutive equation and the evolution law are obtained as follows2:

σ = σ0 + σv − p1 with



























σ0 =

[

2ρ0J
−1B · ∂ψ0

∂B

]D

σv =

[

2ρ0J
−1Be ·

∂ψv

∂Be

]D

(12)

∂ϕv

∂Do
v

=

[

2ρ0J
−1Ve ·

∂ψv

∂Be

·Ve

]D

(13)

where p is the hydrostatic pressure due to the local incompressibility condition. Equations (12) and (13)

can be said to be a generalization of the classical Zener rheological model to the case of finite strain.

3.2. A statistical approach for a hyper-visco-plastic model

The constitutive model must first reflect the behavior of the material in a wide range of strain rates,

but it also has to account for the effects of the plasticity, such as the Payne effect, and the behavior of the

material at low temperatures. Previous studies have shown that plasticity gives good agreement between the

2the symbol D stands for the deviatoric operator.
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Figure 9: Statistical hyper-visco-plastic model

experimental data and the model at low temperatures (Boukamel et al. (2005)), and that some rheological

models are suitable for modeling the behavior under a given range of loads (Olsson and Austrell (2001);

Miehe and Keck (2002); Nedjar (2002)). Under more complex loading conditions, rheological models with

several branches (see Figure 9(a)) seem to account satisfactorily for the behavior of the material. However,

the disadvantage of these models is that they require identifying a large number of parameters.

In order to overcome this difficulty, a statistical approach was developed, whereby the assembly of discrete

rheological branches is extended to a continuous model with an infinite number of branches. The advantage

of this method is that it covers a wide range of retardation times (or a large frequency spectrum). This

approach gives the advantages of a multi-branch assembly without increasing the number of parameters in

the model.

The model presented here, can be motivated in micro-physical terms by the heterogeneity of reinforced

elastomers, especially in the case of a silicone elastomer slightly filled with silica particles. In order to

account for this heterogeneity, it is therefore assumed that the elastomeric matrix is dense and that the

inclusions, which consist of particles of silica agglomerated together with a thin rubber bond, are supposed

to be slightly reticulated (see for instance Drozdov and Dorfmann (2003)). Based on these assumptions, the

behavior of the elastomer can be defined as follows:

• The behavior of elastomeric matrix is hyperelastic ;

• The behavior of the inclusions is hyper-visco-elastic (an extension of the Maxwell model to large

strains);
11



• The inclusion/matrix interfaces is assumed to have a hyper-elasto-plastic behavior (an extension of

the Saint-Venant model to large strains).

Two statistic quantities are introduced, namely:

• ωi, which denotes the activation energy of the mechanism inclusion/matrix, i.e. the energy required

to break the links at the interface (Drozdov (2000)),

• and Pi which represents the probability of that a population of inclusion corresponds to the activation

energy ωi.

The discrete form of the statistical model can be written:






















ψ = ψ0(B) +
N
∑

i=1

ψ̃v (ωi,Be(ωi))Pi + ψp(Bep)

ϕ =

N
∑

i=1

ϕ̃v (ωi,D
o
v(ωi))Pi + ϕ⋆

p(σp)

(14)

where Do
p denotes the anelastic objective strain rate of the elasto-plastic branch (same definition as in

equation (9)), ψ0 denotes the specific free energy associated with the matrix, whereas ψ̃v and ψp are the free

energies associated with the inclusions and the inclusions/matrix interfaces, respectively. ϕ̃v and ϕ⋆
p are the

pseudo-potential of dissipation3 corresponding to the inclusions and to the interface, respectively.

Using the continuous statistical model in Figure 9(b) to generalize this formulation, we obtain:














ψ = ψ0(B) +

∫ ∞

0

ψ̃v (ω,Be(ω))P (ω)dω + ψp (Bep)

ϕ =

∫ ∞

0

ϕ̃v (ω,D
o
v(ω))P (ω)dω + ϕ⋆

p (σp)

(15)

where ω is a random variable associated with the activation energy of a relaxation micromechanism, and

P (ω) is the probability that a population of fillers has the given value ω.

Substituting the potentials (15) in equations (12) give the constitutive equation of the statistical model4:

σ = σ0 +

∫ ∞

0

σ̃v(ω)P (ω)dω + σp − p1 with































































σ0 = 2ρ0J
−1

[

B · ∂ψ0

∂B

]D

σ̃v(ω) = 2ρ0J
−1

[

Be(ω) ·
∂ψ̃v(ω)

∂Be(ω)

]D

σp = 2ρ0J
−1

[

Bep · ∂ψp

∂Bep

]D

(16)

3The symbol ⋆ denotes a Legendre-Fenchel transformation.
4In the hyperelasto-plastic branch, F is split into an elastic part Fep and a plastic part Fpp, (F = Fep ·Fpp). The objective

measure of the plastic strain rate D
o
p is therefore defined in the same way as D

o
v (see (9)).
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and the following evolution laws:

∂ϕ̃v(ω)

∂Do
v(ω)

= 2ρ0J
−1

[

Be(ω) ·
∂ψ̃v(ω)

∂Be(ω)

]D

(17)

Do
p =

[

∂ϕ⋆
p

∂σp

]D

(18)

The various forms of the potentials can be chosen so that: the neo-Hookean incompressible hyperelastic

model for the matrix behavior; the neo-Hookean form, for the hyperelasticity of the inclusions and the

inclusions/matrix interface; a quadratic form for the pseudo-potential of viscous dissipation of the inclusions;

and a perfectly plastic pseudo-potential at the interface. These choice can be written as follows:


























































































ρ0ψ0 = C1 (I1(B)− 3)

ρ0ψ̃v(ω) = G(ω) (I1(Be(ω))− 3)

ϕ̃v(ω) =
η(ω)

2
Do

v : Do
v

ρ0ψp = Ap (I1(Bep)− 3)

ϕ⋆
p =< ‖σp‖ − χ >

(19)

where C1 is the coefficient of the neo-Hookean density, G(ω) and η(ω) are two functions of the random

variable ω, χ and Ap are the parameters involved in the hyper-elasto-plastic branch, < . > denotes the

Mac-Cauley brackets and ‖σp‖ =
√
σp : σp.

To define the distribution function P (ω), a classical Gaussian distribution centred at the origin and charac-

terized by the standard deviation Ω was adopted:

P (ω) =
1

∫∞

0
P (ω)dω

Exp

[

−
(ω

Ω

)2
]

(20)

To choose the functions G(ω) and η(ω), which describe the variations in the hyperelastic and viscous

characteristics depending on ω, several forms were tested. The functions giving the best match with the

experimental data were of the form:


























G(ω) = G0Exp [ω] ,

η(ω) = η∞

[

ln [
√
ω + 1]

ω
+ 1

]

(21)

In fact, these expressions for the hyperelastic and viscous characteristics lead to a decreasing evolution of

the retardation time depending on ω. Combining this variation with the distribution function (20) makes it

possible to focus on the instantaneous elastic response rather than on the delayed response.
13
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Figure 10: Evolution of statistical functions: predominance of the instantaneous elasticity.

Lastly, by injecting (19) in (16), we obtain the constitutive equation:

σ = σ0 +

∫ ∞

0

σ̃v(ω)P (ω)dω + σp − p1 with











































σ0 = 2C1B
D

σ̃v(ω) = 2G(ω)Be(ω)
D

σp = 2ApBep
D

(22)

and by using (19), (17) and (18) in (8), we obtain the following flow rules:

Ḃe(ω) = L ·Be(ω) +Be(ω) · LT − 4
G(ω)

η(ω)
Be(ω) ·Be(ω)

D (23)

Ḃep = L ·Bep +Bep · LT − 2 < ‖σp‖ − χ >
σp

‖σp‖
·Bep (24)

The statistical hyper-visco-plastic model given by expressions (22) therefore includes 6 parameters which

have to be identified, 5 of which are determinist parameters (C1, G0, η∞, Ap, χ) and one of which is a

statistical parameter (Ω).

4. Identification of the model parameters

To identify the model parameters by fitting the response of the model to the experimental data, an algo-

rithm implemented in the MATHEMATICA software was used. This algorithm, is based on a minimization

of the sum of the squared differences between the experimental data and the analytical or semi-analytical

responses. The latter are obtained by simulating the uniaxial tension tests and the double shear tests, in

which the responses are assumed to be homogeneous and incompressible.
14



4.1. Analytical forms of tension responses

Under uniaxial tension, the elastic and anelastic gradients of the transformation are written as follows,

respectively:

F =











λ 0 0

0 1√
λ

0

0 0 1√
λ











, Fa =











λa 0 0

0 1√
λa

0

0 0 1√
λa











(25)

Substituting these expressions into the constitutive equations and the complementary law (22), the response

of the material under various loading modes can be obtained using an analytical form or after a numerical

solving.

4.1.1. Relaxation test

To obtain the relaxation response, the instantaneous and delayed stresses are written in terms of the

axial component of the first Piola-Kirchoff stress tensor Π, (σ = Π11):



























































σ0 = 2
(

λ3 − 1
)

[(

C1 +

∫ ∞

0

G(ω)P (ω)dω

)

1

λ2

]

+

√

3

2

χ

λ

σ∞ = 2
C1

λ2

(

λ3 − 1
)

+

√

3

2

χ

λ

σ̇|t=0 = −8

3

(

2λ3 − λ− 1

λ3

)
∫ ∞

0

G(ω)2

η(ω)
P (ω)dω

(26)

where σ0 is the instantaneous stress response and σ∞ is the infinite (long-time) stress response.

4.1.2. Hardening test

The axial stress is written here in the quasi-static case, in the form:

σ(λ) =
2

λ

[

C1

λ

(

λ3 − 1
)

+Ap

λ3e − 1

λe

]

(27)

The plastic and elastic elongations λp and λe are given by:

λ̇p =< λ̇ > H (λ− λy) and λe =
λ

λp
(28)

where H is a hardening function which is obtained from eq. (24) λy is the elongation corresponding to the

plastic yield:

λy =







































3

√

√

√

√

1

2
+

√

1

4
−
(

b

3

)3

+
3

√

√

√

√

1

2
−

√

1

4
−
(

b

3

)3

if b ≤ 3
3
√
4

2

√

b

3
Cos

[

1

3

(

π −Acos

(

−1

2

(

3

b

)
3

2

))]

if b ≥ 3
3
√
4

with b =
χ

2Ap

√

3

2
(29)
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Lastly, the residual strain at zero stress λ0 corresponds to the equation σ(λ0) = 0 when λ̇ < 0, which can

be written as a function of (C1, Ap, χ) and the maximum strain.

4.2. Shear responses

In the case of shear tests, the gradient tensors are taken to be as follows:

F =











1 γ 0

0 1 0

0 0 1











, Fa =











λa1
γa 0

0 λa2
0

0 0 1
λa1

λa2











(30)

4.2.1. Relaxation test

With the approximation, λai
= 1, the instantaneous and delayed stress relaxation terms (τ = Π12) are

given by:


























































τ0 = 2γ

(

C1 +

∫ ∞

0

G(ω)P (ω)dω

)

+

√
2

2
χ

τ∞ = 2C1γ +

√
2

2
χ

τ̇t=0 = −8γ

∫ ∞

0

G(ω)2

η(ω)
P (ω)dω

(31)

4.2.2. Hardening test

The response of the material under quasi-static loading/unloading can be approximated as follows. The

shearing stress is written:

τ(γ) = 2C1γ + 2Apγe (32)

The plastic and elastic shear strain γp and γe are given by:

γ̇p =< γ̇ > H (γ − γy) and γe = γ − γp (33)

where γy is the shear strain corresponding to the plastic yield:

γy =

√

√

√

√

√

√

√

9 +
3χ2

2A2
p

− 3

2
≃

√
2χ

4Ap

(34)

4.2.3. Cyclic test

More generally, based on expressions (30), the response to a cyclic shear test can be obtained by writing

the constitutive equations (22). This leads to a system of differential equations, the solutions of which are

{γa, λa1
, λa2

}. These systems can be solved using a Runge-Kutta scheme.
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4.3. Identification algorithm

The identification of the parameters of the model X = {C1, G0, η∞, Ap, χ,Ω} can be reduced to the

minimization of the difference between the experimental curves {(λi, σi), i = 1, NT } and {(γi, τi), i = 1, NS}
and the theoretical responses (λ, σ(λ,X)) and (γ, τ(γ,X)). This difference is characterized by the least

square distance:

E(X) =

√

√

√

√

NT
∑

i=1

ξi (σi − σ(λi,X))
2
+

NS
∑

i=1

ηi (τi − τ(γi,X))
2
, (35)

where ξi and ηi are the weights associated with the tensile and shear tests, respectively.

This minimization problem is solved using Powell’s iterative algorithm (see Fletcher (1987)), which is a

conjugate direction method without gradient calculation. This algorithm is combined with a one-dimensional

minimization procedure in each direction which is based on a quadratic interpolation of the function to be

minimized.

In short, the identification procedure consists of:

1. determining of the response of the material with a set of model parameters, under a given loading mode;

2. calculating the least square difference between the modeling predictions and the experimental data;

3. applying the iterative procedure to minimize the least square difference.

4.4. Identification strategy

Given the complexity of the model, the number of parameters which have to be identified and the

multiplicity of the experimental data required to identify these parameters, it was necessary to develop

a strategy for decoupling the various stages in the identification procedure. This identification strategy

was based on the distinction between the instantaneous and delayed responses, as well as between the

effects of viscosity and plasticity. Based on the analytical or semi-analytical results outlined in the previous

paragraphs, the following strategy was therefore adopted:

1. Quasi-static and delayed responses are used to identify the parameters C1, Ap and χ.

2. The other parameters, G0, Ω and η∞, can be obtained by fitting the values to the instantaneous or

cyclic responses at various strain rates.

Table (1) summarizes the successive steps in the identification strategy.

5. Results and Discussion

5.1. Identification results

The six model parameters (C1, G0, η∞, Ap, χ, Ω) were identified successively, at various temperatures

(−55oC, −40oC, −25oC, 25oC, 40oC and 70oC) and at various strain rates (3s−1, 10s−1). The values

obtained are given in table (2).
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Loading Model analysis Parameters identified

Hardening test under tension

t

λ

(Quasi-static λ̇→ 0)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

S
tr
e
ss
(M

P
a
)

Strain

Pre-identification of: C∗
1 , A

∗
p and χ∗

Delayed response during

relaxation
e

t

λ1,γ1

λ2,γ2

λ3,γ3

DeltatDeltatDeltat

(Under tension or shear loading)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

S
tr
e
ss
(M

P
a
)

Strain

Correction of: C1, Ap and χ

Instantaneous stress during

relaxation
e

t

λ1,γ1

λ2,γ2

λ3,γ3

DeltatDeltatDeltat

(Under tension or shear loading)

0 25 50 75 100 125 150 175
0

0.1

0.2

0.3

0.4

0.5

0.6

S
tr
e
ss
(M

P
a
)

Time (Sec)

Estimation of G∗
0 and Ω∗

Under triangular shear loading

t

γ

(At various γ̇i values)

-0.2 -0.1 0 0.1 0.2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

S
tr
e
ss
(M

P
a
)

Strain

Correction of G0 and Ω

Identification of η∞.

Table 1: Identification strategy: C1, Ap and χ are identified on quasi-static and delayed responses, G0, Ω and η∞ are obtained

by fitting the values to the instantaneous or cyclic responses at various strain rates.
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Error (%)

T (oC) c1 (MPa) ap (MPa) χ (Mpa) a0 (MPa) η∞ (MPa.s) Ω 3s−1 10s−1

-55 0.538 2.424 0.107 0.151 0.14 1.56 10.84 12.43

-40 0.486 2.109 0.088 0.136 0.105 1.56 12.45 12.17

-25 0.451 1.767 0.075 0.121 0.096 1.56 15.28 11.82

25 0.386 1.23 0.04 0.0614 0.063 1.56 7.98 8.75

40 0.359 1.024 0.031 0.059 0.056 1.56 7.78 6.79

70 0.342 0.855 0.02 0.051 0.053 1.56 10.15 6.86

Table 2: Parameters identified at various temperatures.
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Figure 11: Comparison between stabilized hysteretic cycles at various temperatures and strain rates. The solid line show the

model response, the points show the experimental results.

The table (2) also gives the relative identification error obtained for each temperature and each strain

rate. A maximum of 15% of error is obtained and the figure 11 shows two examples of identification results.

A good agreement between the predictions of the model and the experimental data is observed in the shear

tests, at various temperatures and strain rates.

Lastly, Figure 12 shows the evolution of the model parameters identified (normalized) versus the temper-

ature. These curves suggest an exponential decay of all the parameters with the increase of the temperature,

except for Ω, which has been fixed at all temperatures, since it characterized only the range of retardation

times to be covered by the model. This result shows that the present model seems consistent as the evolution

of the parameters between the temperature is monotonous in the temperature range considered.

5.2. Relevance of the model

Comparisons between the results of the model predictions and the experimental data (which has not been

used for identification), obtained under sinusoidal shear loading conditions, show that the model accurately
19
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Figure 13: Comparison of the global response of the model (solid line) and experimental data (points) in bi-harmonic shear

test.

predicts the effects observed experimentally, namely, the Payne effect (see Harwood et al. (1967)), as shown

in Figure 14(c), and The Gent-Fletcher effect (see Fletcher and Gent (1953)) as shown in Figure 14(a).

In addition, figures 14(b) and 14(d) show the existence of good agreement between the simulated and the

experimental data on the cyclic dissipation depending on the frequency and the amplitude.

Other comparisons made in multi-harmonic loading in shear tests also shows the ability of this model

to accurately simulate the behavior of materials subjected to a combination of several loads at different

frequencies (see figure (13)). These results show that the present model can successfully predict the complex

behavior of a highly dissipative silicone rubber for a large range of strain amplitudes and strain rates with
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Figure 14: Comparisons between modeling predictions (solid line) and experimental data (points).

a few number of material parameters.

6. Conclusion

In this study, a statistical approach was used to develop a hyper-visco-plastic model covering a wide

frequency range. This approach has the same advantages of classical multi-branch models, such as the

ability to simulate the behavior of material for several decades of retardation time, but it do not show the

same inconvenient as only a few number of material parameters are required (6 in the present model).

A series of experiments were conducted under various loading and temperature conditions, in order to

identify the parameters involved in the model, using an algorithm developed with the MATHEMATICA

software library. To optimize this identification procedure, a relevant strategy was adopted, which consisted

in distinguishing between the various stages in the procedure and thus reducing the effects of coupling
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between the parameters.

The results obtained at various temperatures show the ability of this model to simulate the behavior of the

material in a wide range of temperatures. In addition, the comparisons between the modeling predictions and

the experimental data recorded at various frequencies and strain amplitudes have shown a good agreement.

The present model is therefore capable to reproduce the complex behavior of filled rubber in particular the

Gent-Fletcher and Payne effects.
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