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Abstract

The paper is devoted to an optimal (i.e. noise robust) determination of stress

intensity factors and crack tip locations based on a displacement field mea-

sured over an arbitrarily shaped domain. As the minimization of the noise

sensitivity is included within the proposed extraction technique, this is es-

pecially dedicated to corrupted displacement fields, e.g. as measured by an

optical technique. The main idea is to construct for mode I and II fields an

extracting function so that its L2 scalar product with the actual displacement

field yields the sought parameter. The extracting function is also constrained

to be orthogonal to a set of admissible elastic fields. Two applications are

considered to illustrate the technique. The first example deals with a fatigue

crack in steel for which small scale yielding occurs. A second example with a
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low signal / noise ratio illustrates the capability of the approach to analyze

a crack in silicon carbide with sub-pixel openings.

Keywords: Full field measurement, noise sensitivity, stress intensity

factors, uncertainty
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Nomenclature

ani Amplitude of a displacement field decomposed over Williams’ series

{A} Vector representation of ani

AT Transpose of matrix or vector A

{dA} Vector representation of perturbation on ani

{bi} Vector form of the correlation residual at iteration i

[C] Covariance matrix for the displacement uncertainties

D Diameter of the integration domain

E Young’s modulus

f Reference image

g Deformed image

G Energy release rate

I int Interaction integral

J Rice’s J-integral

, k Derivation with respect to kth spatial coordinate

Ki Stress intensity factor in mode i = I or II

KIo Reference value for KI

δK Perturbation on the stress intensity factor K

K−1
I First mode I super-singular factor

K−3
I Third mode I super-singular factor

[L] Linking matrix
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m Pixel map

M Set of integer that indexes basis function

[M] Projection matrix corresponding to ni functions

[M]−1 Inverse of [M]

n Integer indexing Williams’ fields

ni Basis functions the experimental displacement field

[N] Search direction for digital image correlation

p Physical size of a pixel

[P] Condensed matrix form of the interaction integral

q Virtual crack extension field

r Distance to the crack tip

r0 Radius of the masked zone around the crack tip

R Load ratio

Rcor Correlation residual

R Extraction residual

{U} Vector representation of the nodal displacement field

{dU} Vector representation of the nodal displacement perturbation

u Displacement field

ua Auxiliary displacement field

{Ua} Vector representation of the nodal auxiliary displacement field

uexp, uexp
i Experimental displacement field, and i-th component

Ju1K, Ju2K Displacement jumps in the tangential and normal directions, respectively
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[V] Matrix representation of the nodal extractor field

{V1} Vector representation of the nodal extractor field associated with a1

{vint} Extractor vector field associated with I int

{Vint} Vector representation of the nodal extractor field associated with I int

xi Local coordinate system at the crack tip (i = 1, 2)

xI Shift of the tip from its actual position along x1

z Position of a point in the complex plane

Γ Crack path

δ Kronecker symbol

{∆} Vector representation of δi1

κ Kolossov’s constant

{Λ} Vector representation of Lagrange multipliers

µ Lamé’s coefficient

ν Poisson’s ratio

σ Standard deviation of image noise

σc Standard deviation of sensor noise

σy Yield stress

σ Stress tensor associated with u

σa Auxiliary stress tensor associated with ua
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φn
I Mode I fields in Williams’ series

φn
II Mode II fields in Williams’ series

ϕj
ik φ

j
i functions projected on the interpolation basis nk

[Φ] matrix that collects in its rows the components of all φj
i functions

projected on the interpolation basis nk

ψi Extracting functions

{Ψi} Vector representation of the nodal extracting function

θ Polar angle of the current point with respect to the crack tip axis

τK Noise sensitivity of mode I stress intensity factor

τK−1 Noise sensitivity of mode I first super singular factor

Ω Integration domain

∂Ω Boundary of the integration domain

〈...〉 Average value

∇ Gradient operator

6



1. Introduction

One of the central issues of Fracture Mechanics is to evaluate global pa-

rameters (e.g. stress intensity factors) from a given displacement field. This

is an important question for numerical modeling [18, 1, 7, 19, 16] and also

an essential problem for experimental characterization [14, 12, 6, 21, 28, 32]

of cracks. One of the main difficulties of this problem is the issue of scale,

namely, not too large (to avoid structural effects) but not too small (to

keep clear from the inelastic behavior, or numerical discretization biases).

An additional difficulty arises when the displacement field is extracted from

experimental data that are corrupted by measurement uncertainties. Min-

imizing the effect of this noise on the determination of Fracture Mechanics

parameters is a key property, which is addressed in the present study.

Two approaches of Linear Elastic Fracture Mechanics are usually distin-

guished, namely, the energy and the kinematic (or static) approaches. The

energy release rate G [8] and J-integral [27] and are two complementary

methods that evaluate the amount of energy released in a virtual extension

of the crack. The kinematic approach defines the stress intensity factors [13]

for a 2D solid as a limit

KI ∝ lim
r→0

µ

√

2π

r
Ju2K KII ∝ lim

r→0
µ

√

2π

r
Ju1K (1)

In 2D linear elasticity, the following result

J = G ∝ K2
I +K2

II

µ
(2)
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unifies the two approaches. One of the properties of these quantities is their

quadratic dependence in the displacement field and the stress intensity factors

respectively. From this observation, a class of methods devoted to mixed

mode separation has been developed (see, e.g. Refs. [17, 5, 4]). Among those,

the interaction integral reads as a trilinear form of the actual displacement

field u, an auxiliary field ua and a virtual crack extension (VCE) field q

I int = −
∫

Ω

[

σa
mlum,lδkj − (σa

ijui,k + σiju
a
i,k)
]

qk,j dΩ (3)

where Einstein’s convention is used, The auxiliary field is chosen to extract

separately mode I and II stress intensity factors. Usually, the asymptotic

crack tip fields in modes I and II are used to obtainKI andKII , respectively.

The VCE field is constrained by a few assumptions. First, it must vanish

outside Ω, be equal to x1 at the crack tip and be parallel to x1 along the

crack faces. For a given choice of q, I int is a bilinear symmetric positive

definite form. Thus the interaction integral may be viewed as a scalar product

related to the energy norm defined by J or G. The stress intensity factors

are then estimated from this energy-based scalar product between the actual

and auxiliary displacement fields.

The most popular stress intensity factor extracting methods dedicated to

experimental applications is based on least squares minimization of the gap

between the asymptotic crack tip field and the actual displacement field. One

focuses on the crack opening displacement only [6] or on full fields [14, 28, 32].

The interaction integral has recently been used to measure stress intensity
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factors [21] and optimized [24] to reduce the influence of measurement un-

certainties on the determination of the sought parameter. The reduction of

the noise sensitivity is also one of the aims of the approach proposed herein.

In the present paper, it is shown that all these techniques, interaction

integrals as well as least squares extraction, can be recast within the frame-

work detailed in Section 2. It will be shown that the optimized version of

the interaction integral [24] and least squares extraction are local optima

with respect to noise sensitivity. The technique proposed herein allows for

the numerical determination of an optimal extracting function. Theoretical

crack displacement fields and corresponding Fracture Mechanics parameters

are detailed in Section 2 as well as the formulation of an optimal noise-robust

extractor. A numerical resolution is also proposed in this section. Then the

Digital Image Correlation (DIC) algorithm used herein to measure displace-

ment fields is briefly presented to derive its noise sensitivity in Section 3.

Last, in Section 4, two examples are discussed. The first one is dedicated

to a fatigue crack in a steel sample where a confined plastic zone exists at

the crack tip. Stress intensity factors and crack tip position are estimated

using the optimal extraction of appropriate crack displacement field param-

eters. Second, the extraction of stress intensity factors is examined from a

low signal-to-noise ratio displacement field of a brittle material.
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2. Problem formulation

2.1. Crack displacement fields

Let us consider a semi-infinite planar crack whose normal is aligned along

the x2 axis, and crack front parallel to the x3 axis. The crack corresponds

to the domain x2 = 0 and x1 < 0. Crack displacement fields u in the

linear elastic regime are computed as a double infinite series of Kolossov-

Muskhelishvili (K & M) functions [31] φn
I and φn

II for modes I and II. The

complex plane formulation reveals convenient in the present case. A point

z in the complex plane x1 + ix2 is represented in polar coordinates (r, θ)

such that z = reiθ. The crack tip is located at the origin, z = 0, and the

semi-infinite crack extends in the direction θ = ±π.

The displacement field u is conventionally represented by its complex

writing, u = u1 + iu2. It is expanded as a double series

u(r, θ) =
∑

i=I,II

∑

n

ani φ
n
i (r, θ) (4)

where ani are the sought parameters, and φn
i reference fields that form the

complete set of linear elastic fields satisfying a condition of zero traction

along the crack path:

• even n

φn
I (r, θ) = rn/2

(

κeinθ/2 − n

2
ei(4−n)θ/2 + (

n

2
+ 1)e−inθ/2

)

(5)

φn
II(r, θ) = irn/2

(

κeinθ/2 +
n

2
ei(4−n)θ/2 − (

n

2
− 1)e−inθ/2

)

(6)
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• odd n

φn
I (r, θ) = (−1)(n+1)/2rn/2

(

κeinθ/2 − n

2
ei(4−n)θ/2 + (

n

2
− 1)e−inθ/2

)

(7)

φn
II(r, θ) = i(−1)(n−1)/2rn/2

(

κeinθ/2 +
n

2
ei(4−n)θ/2 − (

n

2
+ 1)e−inθ/2

)

(8)

where κ is Kolossov’s constant, κ = (3 − ν)/(1 + ν) for plane stress or

κ = (3− 4ν) for plane strain conditions.

The partition between mode I and II is performed on the basis of the

following symmetries

φn
I (z) = φ

n
I (z)

φn
II(z) = −φn

II(z)
(9)

All these fields are self-similar, and thus are homogeneous functions of

the distance to the crack tip r. It is convenient to label them with the

integer index n that indicates the exponent of the power-law dependence

of the displacement with r, that is n/2. With this convention, all elastic

displacement fields are generated with −∞ < n < ∞. All odd indices

label fields with a discontinuity across the crack mouth, whereas even indices

correspond to continuous fields. To mention just a few examples, n = 0

corresponds to translations either parallel (hence termed I) or perpendicular

(labeled II) to the crack path, n = 1 are the classical mode I and mode II

displacement fields whose amplitudes are proportional to the corresponding

stress intensity factors. The case n = 2 gives access to either the T-stress

component for mode I, or rigid body rotation about the crack tip for mode II
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(no discontinuity is involved here since 2 is even). Larger indices correspond

to “subsingular” fields that may capture the remote heterogeneity of the

loading, but do not affect the fracture behavior at the crack tip.

Classically, i.e. within the framework of Linear Elastic Fracture Mechan-

ics, only n ≥ 0 fields are considered, since negative indices would correspond

to physically unrealistic displacement fields with a diverging elastic energy

density at the crack tip. However, inelastic behaviors are typically activated

in the vicinity of the crack tip, in the so-called process zone, so that the

above linear elastic decomposition does not hold. If a small domain close to

the crack tip that contains all non-linearities is omitted, the displacement

field in the complementary domain will naturally contain contributions from

such n < 0 fields [9, 25, 10] (referred to as “supersingular” in the sequel).

They are necessary to account for the most general problem where both the

small and large r regions are omitted from the elastic description.

2.2. Fracture Mechanics parameters

Considering the expression of the general crack tip field in Equations (5)

to (8), the following recurrence formulas are obtained

∂φn
j

∂x1

= −n

2
φn−2

j (10)

The derivative with respect to the crack tip position xc being the opposite

of the above equation, it shows that a mis-positioning of the crack tip along

its axis will give rise to a supersingular contribution φ−1
j , away from the

immediate vicinity of the crack tip. Therefore, in order to estimate the crack
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tip position, the displacement field is decomposed by using n = 1 and n = −1

order functions

a1jφ
1
j + a−1

j φ
−1
j = a1j

(

φ1
j + 2

a−1
j

a1j

∂φ1
j

∂xc

)

(11)

For the symmetric part of u, i.e. for mode I, this result is interpreted as a

Taylor expansion of the usual crack tip field whose tip would be shifted from

the actual one by an offset distance xI such that

xI = 2
a−1
I

a1I
(12)

Calculating xI from a−1
I (i.e. ∝ K−1

I ) and a1I (i.e. ∝ KI), an estimate of the

offset between the assumed crack tip position and the actual one is obtained.

More generally, if confined plasticity develops at the crack tip, the above

decomposition does not hold down to the crack tip. However, excluding the

plastic region (or a larger one) around the crack tip allows one to resort to the

above decomposition for the elastic displacement. Hence, the above described

procedure leads to a unique and consistent definition of the “equivalent elastic

crack tip,” i.e. the one that would provide the most accurate correspondence

between the displacement field of the medium under study and that of a

cracked homogeneous elastic medium with the same stress intensity factor.

This strategy straightforwardly applies to any order function. The proper

interpretation of this quantity is based on the analysis of a domain where all

crack tip non-linearities have been cut out. The elastic description, which

contains any negative order (supersingular) field contribution, can thus be

13



extrapolated down to the (elastic equivalent) crack tip. By construction, or

definition of the crack tip, the n = −1 or dipolar crack amplitude vanishes.

The quadrupolar term (n = −3) is the first non vanishing intrinsic charac-

teristic of the crack strain field. For all types of non-linearity (e.g. plasticity,

damage, cohesive crack tip) the amplitude a−3 exists, and provides a unique

and well defined scalar signature of the non-linearities. Higher order terms

are associated with fields that vanish more quickly away from the crack tip.

To summarize, for a complete identification of the mechanical state of a

material around the crack tip, first a correct position is searched for. Second,

stress intensity factors are estimated using the estimated crack tip position.

This procedure may be performed iteratively.

2.3. Extraction problem

Let us consider that the displacement field, u, is measured on the surface

of a cracked sample. This experimentally measured displacement field is

decomposed onto an interpolation basis

uexp(x1, x2) =
∑

i∈M

uexp
i ni(x1, x2) (13)

In the domain where non-linearities can be neglected, the actual displacement

field, u, theoretically belongs to the space generated by the basis functions

{φ} as a solution to a Linear Elastic Fracture Mechanics problem. Hence,

amplitudes aji are introduced such that [see Equation (4)]

u(x1, x2) =
∑

j

[

ajIφ
j
I(x1, x2) + ajIIφ

j
II(x1, x2)

]

(14)
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The (best) determination of amplitudes aji — collectively designated by the

vector form {A} — is the objective of the present paper.

The measured displacement field is restricted to the interpolation space

generated by the function basis ni, and, in the case of digital image correla-

tion, it is itself obtained by a least squares minimization of an L2 norm as

recalled in the next Section. Introducing the “mass matrix”

Mij =

∫

Ω

ni(x1, x2) · nj(x1, x2) dΩ (15)

the measured displacement field reads

uexp(x1, x2) = M−1
ij

(
∫

Ω

nj(x1, x2) · u(x1, x2) dΩ

)

ni(x1, x2) (16)

where Einstein’s convention is used. uexp is thus expressed as

uexp(x1, x2) =
(

ajIϕ
j
Ii + ajIIϕ

j
IIi

)

ni(x1, x2) (17)

where ϕj
ik can be rewritten in matrix form [Φ] that collects in its rows the

components of all φj
i functions projected on the interpolation basis nk.

To estimate amplitudes {A}, it is proposed to introduce a set of extracting

functions {ψ} in the interpolation space so that

∫

Ω

ψi(x1, x2) · Φjknk(x1, x2) dΩ = δij (18)

Numerically, it is more convenient to work with amplitudes Ψiq of ψi func-

tions on nq interpolation functions, or ψi(x1, x2) = Ψiqnq(x1, x2). The above

conjugation property is rephrased as

Ψiq

(
∫

Ω

nq(x1, x2) · nk(x1, x2) dΩ

)

Φjk = δij (19)
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For the set of functions {ψ}, their scalar product with the measured dis-

placement field yields the following identity
∫

ψi(x1, x2) · uexp(x1, x2) dΩ = ai (20)

or

{A} = [Ψ][M]{U} (21)

where {U} collects all uexp
k . For numerical implementation, it is convenient

to compute matrix [V] = [M][Ψ]T , so that the extraction of {A} is given by

the following product

{A} = [V]T{U} (22)

For this reason, [V] are referred to as “extractors” or extracting functions.

The present procedure is general and may be tailored to measure as many

amplitudes ai as there are degrees of freedom in the measured displacement

field. However, in practice, a lack of accuracy will hinder the performance

of the extraction. Thus only a limited set of functions φ and ψ will be

considered. As a consequence, the conjugation property (19) is not sufficient

to compute the extractors. It is proposed to supplement these conditions with

another type of constraint, i.e. noise-robustness, as detailed in the following

section. A similar approach was also proposed in the framework of the virtual

fields method [2].

2.4. Noise robustness

Being obtained from experimental data (e.g. images), uexp is inevitably

corrupted by measurement uncertainties, whose influence on the extracted
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coefficients is to be reduced as much as possible. A perturbation vector of

the component of uexp in the interpolation basis is denoted by {dU}. This

perturbation is defined as a zero average noise

〈{dU}〉 = {0} (23)

with the following correlation kernel

〈{dU}{dU}T 〉 = [C]σ2 (24)

when the inputs (i.e. the images) of the correlation algorithm are affected

by a spatially uncorrelated noise with a standard deviation σ. Section 3 is

devoted to the analysis of correlation kernel [C].

The displacement uncertainty subsequently affects the extracted coeffi-

cients ai, and by using Equation (22), the corresponding perturbation reads

{dA} = [V]T{dU} (25)

Consequently, {dA} is also of zero mean and its variance becomes

〈{dA}{dA}T 〉 = [V]T [C][V]σ2 (26)

This result quantifies the effect of measurement noise on the extracted coef-

ficients. Noise robustness is achieved through the minimization of the above

quantity. For instance, one single amplitude (e.g. stress intensity factor

KI ∝ a1I) may be searched for. In that case, only 〈dKI〉 is to be mini-

mized. If several quantities are to be estimated, the minimization of each

variance leads to the determination of the corresponding extractor.
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2.5. Optimal extraction

The procedure of optimal extraction is based on the joint use of the

conjugation property (19) and the noise robustness condition (26). Let us

consider that a1 is searched for. Only a reduced set of meaningful elastic fields

will be considered, namely i ∈ [n0;n1], so that the conjugation conditions are

written as

Ψ1kMkjΦij = δ1i (27)

Reverting to {V1} vector, the above equations are recast as

V1jΦij = δ1i (28)

Under these constraints, the minimum of

R =
1

2
V1iCijVj1 (29)

is sought. This constrained minimization problem is solved by using Lagrange

multipliers denoted by {Λ}






[C] [Φ]T

[Φ] [0]

















{V1}

{Λ}











=











{0}

{∆}











(30)

It is worth noting that if [C] is proportional to the identity matrix, i.e. if

the noise is considered as uncorrelated and uniform (white noise), then the

optimal extractor is exactly the least squares extractor. Thus least squares

extraction is the best extractor for a white noise.

As mentioned in the introduction, the interaction integral [21, 24] can be

read as a scalar product between the actual displacement and an auxiliary
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displacement with respect to a given norm involving an interaction Eshelby

tensor integrated over the domain affected by a virtual extension of the crack.

In the displacement functional basis, the interaction integral is rewritten in

a matrix-vector format as

I int = {Ua}T [P]{U} (31)

Thus, if {Vint} = [P]{Ua}, I int is computed in a similar formalism as {A}

and interaction integrals can be recast in the framework proposed herein.

They are associated with a given extracting field vint. Due to the Eshelbian

norm in the interaction integral, its associated extracting field is in the sub-

space of fields that satisfy the extraction conditions. The specific form of

the weight function introduces restrictions on the associated extractor field,

so that the sub-space to which it belongs is much smaller than the general

case considered herein. The optimal version proposed in Ref. [24] is thus a

local minimizer of the noise sensitivity. This property will be illustrated in

the example section.

Up to now, the nature of domain Ω was not specified precisely. The only

(implicit) property is that it should only contain a region of space where

linear elasticity holds. However, it may contain holes, it may not include the

crack mouth, it may have a complicated boundary, and the above formulation

will still hold. Such a tolerant formulation is suited to the exploitation of

image correlation data where information may be lacking in some regions.

This is to be contrasted with the interaction integral formalism that requires
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at least a good capturing of the displacements along the crack faces.

The present framework will be applied to two examples dealing with dis-

placement fields measured by DIC, which is briefly summarized in the next

section.

3. Digital image correlation

In the following, 2D displacement measurements are considered by using

pictures f and g of a sample surface. The passive advection of the texture

between the reference f and deformed g images reads

f(m) = g(m+ uexp(m)) (32)

over the entire pixel map m. From the knowledge of f and g, the measure-

ment problem consists in identifying uexp as accurately as possible. As such,

the problem is ill-posed, unless additional assumptions are made on the dis-

placement field so that the information is sufficient to determine uexp with a

reasonable accuracy. The quadratic difference is integrated with respect to

m over a domain Ω (i.e. a Galerkin approach to the measurement problem)

Rcor =

∫

Ω

[f(m)− g(m+ uexp(m))]2 dΩ (33)

and considered as a residual Rcor to be minimized with respect to the set

of kinematic unknowns. Adopting a general discretization scheme of the

displacement field (see Equation (13)) allows for the measurement of the

degrees of freedom uexp
i .
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At this level of generality, many choices can be made to measure 2D dis-

placement fields. When 2D images are considered, 4-noded elements defined

on a square grid (i.e. bi-linear functions of x1 and x2 [33]) may be chosen (it

is referred to as Q4-DIC [3]). Enriched kinematics (à la X-FEM [15]) may

also be considered to describe weak or strong discontinuities associated with

Q4 elements (i.e. XQ4-DIC [22, 20]). In all the previous cases, no hypotheses

are made concerning the underlying material behavior. When the latter is

known (e.g. linear and isotropic elasticity), integrated approaches can be de-

veloped to directly evaluate mechanically significant quantities (e.g. elastic

properties [11] or even stress intensity factors [28, 9, 25]). This last route is

not followed hereafter, rather so-called Q4 and XQ4 kinematics are measured

and subsequently post-processed.

The interpolation functions being chosen, the minimization of Rcor is

carried out using a modified Newton procedure

[N]{Ui} = {bi} (34)

that is iteratively solved until convergence is reached. The following defini-

tion holds for the search direction [N] of the modified Newton procedure and

the residual {bi} at iteration i

Nkl =

∫

Ω

(nk(m) ·∇f(m)) (nl(m) ·∇f(m)) dΩ (35)

and

bik =

∫

Ω

(nk(m) ·∇f(m))
(

f(m)− g(m+ (uexp(m))i)
)

dΩ (36)

21



The gradient of the image as well as sub-pixel interpolations have been the

subject of publications in the literature [30, 29]. A standard choice is a finite

difference gradient and cubic spline interpolation.

Let us now consider that the images are affected by noise. It is assumed

that f is a pure (noise free) reference image and noise is reported on f −

g. This noise is considered as spatially uncorrelated, of zero mean and its

variance is equal to twice the variance of the sensor noise σ2
c . Typical values

for σc are 1 or 2 gray levels for 8-bit pictures. As a consequence, the image

noise is reported on the LHS {bi} of Equation (34) for which the variance

reads

〈bikbil〉 = 2σ2
c

∫

Ω

(nk(m) ·∇f(m)) (nl(m) ·∇f(m)) dΩ (37)

The search direction [N] then leads to the displacement perturbation

〈{dU}{dU}T 〉 = 2σ2
c [N]−1[N][N]−1 (38)

The correlation kernel of the displacement uncertainty is identified as

[C]σ2 = 2σ2
c [N]−1 (39)

Covariance matrix [C] is directly related to the image texture (i.e. its gradi-

ent) and the chosen measurement basis nk. The joint use of the last results

(Equations (39) and (30)) allows for the computation of the optimal extractor

precisely suited to a specific image, and a chosen kinematic basis.
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4. Examples

The present section shows the application of the above formalism to two

examples. In the first one — a fatigue test on a steel specimen — the

above described procedure is used to identify the crack tip position and

stress intensity factors. The second one deals with a brittle ceramic material

for which a very low signal-to-noise ratio is observed. In that case, the

extraction of the mode I stress intensity factor is addressed, and a comparison

is performed with alternative techniques.

4.1. Fatigue test on a steel CCT specimen

This first example is devoted to the analysis of a CCT specimen made of

XC48 (or C45) steel with Young’s modulus of 190 GPa and Poisson’s ratio

of 0.3. The cyclic yield strength σy (offset: 0.2 %) is equal to 210 MPa.

The specimen is subjected to cyclic tension with a load ratio R = 0.4. In

the present analysis, only the stage corresponding to the maximum load

level is considered after about 300,000 cycles for which the crack size 2a =

14.5 mm. The sample thickness is equal to 5 mm. The vertical and horizontal

components of the displacement field obtained by using 12 × 12-pixel Q4

elements are shown in Figure 1. The conversion factor p is 2.08 µm/pixel.

In this example, a process zone is expected. The exact position of the

crack tip along the crack mouth is searched for. This location is critical

if a stress intensity factor is to be evaluated [28]. Thus the supersingular

component K−1
I has to be extracted. It allows for an estimate of the crack
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tip location [9, 25, 10]. Further, a mask is adopted to account for linear

elastic displacement fields, i.e. a 20-pixel wide band and a core 20 pixels in

radius are omitted for the extraction. In the sequel, the domain size is the

diameter of the disk that defines the outer boundary of the mask.

4.1.1. Crack tip location

In Figure 2(a), the estimation of the shift xI with respect to the prescribed

position of the crack tip along the crack faces is plotted. A linear dependence

is obtained with a −1 slope. From Equation (12), the ratio between the

shift of the crack tip xI and the crack tip position used to compute K &

M potentials is theoretically equal to −1. This is confirmed by Figure 2(a) for

both optimal and least squares extraction techniques, the latter being 1 pixel

or about 2 µm higher. The variation of the crack tip shift (and thus of K−1
I )

is evaluated by using the results of Figure 2(b). A typical variation of 5 µm is

obtained for both extraction techniques. The range within which K−1
I is less

dependent on the domain size appears lower than the independence range of

the stress intensity factors (see Figure 3(a)), which could have been expected

considering the higher variation of the first supersingular field compared with

the usual
√
r-dependence of the near crack tip field.

Figure 2(c) shows the noise sensitivity of the extraction of K−1
I . As

observed for the stress intensity factor, the optimal extraction allows for a

reduction of this noise sensitivity compared with the results obtained with

the least squares approach. Considering that the noise sensitivity of KI
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has only a small contribution to the noise sensitivity of the identification of

the crack tip position, the uncertainty level of the shift estimation is about

0.03 µm/gray level for the optimal extraction.

4.1.2. SIF extraction

The results on the stress intensity factor extraction and their noise sensi-

tivity are presented in Figure 3. In the present case, the signal-to-noise ratio

is high. Consequently, least squares and optimal extractions give very similar

results for KI and KII , namely, a value of 20.7 MPa
√
m is obtained for KI ,

and 0.05 MPa
√
m for KII . Because of the high signal-to-noise ratio, a very

low dependence to the size of the integration domain is observed as well as

very low noise sensitivity. A 0.0011 MPa
√
m/gray level standard uncertainty

is obtained for the least squares extraction, and 0.0009 MPa
√
m/gray level

for the optimal approach.

4.1.3. Extracting fields

Figures 4-5 show the components of the extracting fields for K1
I and K−1

I

using least squares and optimal extractions. As for KI , the optimal fields

spread the weight allowed to each displacement degree of freedom depending

on its associated level of confidence. First, due to the divergence of super-

singular fields, n = −1, in the vicinity of the crack tip, their associated

extracting fields weight more intensively the displacement data around the

core of the mask. Second, the angular dependence, bipolar for n = −1, could

have been derived from the expression of the supersingular fields. Compared
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with extracting fields of stress intensity factors, the latter ones are more con-

centrated in the vicinity of the crack leading to an expected and observed

higher sensitivity to noise.

4.2. Sandwiched beam experiment on a SiC specimen

This second example is dedicated to the extraction of mode I stress in-

tensity factors in a sandwiched beam experiment [6] on a silicon carbide

sample. The linear elastic behavior of SiC is characterized by Young’s mod-

ulus E = 410 GPa and Poisson’s ratio ν = 0.15. The crack tip positioning is

crucial since the values of stress intensity factors are significantly dependent

on the former [28]. First, the analysis is carried out in order to extract the

supersingular contribution in the displacement field. Then, we focus on the

extraction of KI and we compare different techniques including the interac-

tion integral method.

The region of interest covers an area of 706 × 646 pixels approximately

centered about the crack tip. The displacement field is measured by using

16 × 16-pixel Q4 elements with a discontinuous enrichment of the kinematic

basis [23]. Figure 6 shows the two components of the measured displacement

field. Due to the poor quality of the image (the rough surface of the mate-

rial is used as a random texture for image correlation), and also the small

magnitude of the displacement fluctuations, a low signal-to-noise ratio is ob-

served. A normal displacement discontinuity of about 0.5 pixel (at most) is

captured at the bottom of the region of interest (i.e. the crack is invisible).
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The conversion factor p is 1.85 µm/pixel.

4.2.1. Extraction analysis and 3D effects

In this study, only the optimal extractor with an L2 projection is used.

A mask with a disk of radius r0 = 20 pixels, in addition to a 20 pixel wide

masked zone around the crack surface is adopted. Crack tip shift and process

zone width are shown in Figure 7. Compared to the results of the previous

section, the extracted quantities suffer from fluctuations of higher magnitude

when the domain size is increasing. A value of the crack tip shift with respect

to its initial position of about −67 µm is obtained. When the change of the

crack tip shift with respect to the assumed crack tip position is observed, the

expected linear dependence is rather well retrieved.

Different arguments can be invoked in order to explain these unexpected

results. The first point is that the displacement field is measured on a free

surface, and hence the analytic 2D plane stress displacement field that is

used is not the actual one. A second point is that a post-mortem observation

of the specimen and the crack surface (Figure 8) shows that the crack front

is not perfectly orthogonal to the free surfaces on which the displacement

was measured in the correlation analysis. Thus, an additional 3D effect is

expected. To evaluate its influence, a 3D elastic analysis is carried out on the

entire specimen with idealized crack geometry and boundary conditions. A

planar crack is considered and the front is modeled as a parabola such that

the crack length on the free surface is half of the specimen width and 180 µm
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longer in the middle section, consistent with post-mortem observations (Fig-

ure 8). A straight front (normal to the observation face) is also considered

as a reference case.

The results are shown in Figures 9 and 10. In Figure 9, the displacement

field on the free surface for a straight crack front is depicted. For this analysis,

the element size in the region of interest is equal to 16 × 16 pixels (for a

pixel size of 2.11 µm). In Figure 10(b), the same quantities as for Figure 7(b)

are given as functions of the domain size. Three cases are considered. First,

a straight crack front is used and the extraction analysis is carried out on the

free surface and also on the mid-plane of the specimen (under plane strain

conditions). Second, the displacement field on the free surface is analyzed for

the parabolic crack front that fits the actual geometry observed on the post-

mortem photograph. In Figure 10(a), stress intensity factors are normalized

by the value for the mid-plane and the straight front. It is observed that the

crack front geometry has a strong influence not only on the mean value of

KI but also on its dependence with the domain size.

Further, opposite tendencies are obtained for the three different cases,

namely, for the analysis on the mid-plane of a crack with a straight front,

KI is almost constant and is chosen as a reference value KIo, on the free

surface the value of KI increases from 0.95 to 0.97 the reference value KIo

whereas for the curved front KI decreases from 1.11 to 1.09. The same trend

is obtained for the shift and the process zone width. A 0 shift is obtained

for the straight front for the examined section but a shift of about −20 µm
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is obtained for the parabolic crack front (Figure 10(c)), meaning that the

depth of influence of the front geometry is about 350 µm (or 165 pixels),

which is about 0.12 times the specimen thickness, and 0.07 times its width

for an apparent crack length of 0.5 times its width.

Even though the previous analysis may only be qualitative, it is proven

that 3D effects may exhibit supersingular contributions. Compared with the

results obtained in the previous paragraph for the experimental specimen,

the same trends are obtained, namely, the crack tip position is estimated

in front of its emergence on the free surface due to curvature effects and a

process zone size of about 40 to 50 µm is estimated.

A mask is used to select the domain over which displacements are used

in the analysis. The outer boundary of the mask is now chosen to be the

largest disk included inside the region of interest. In addition, the immediate

vicinity of the crack faces is excluded from the analysis as well as a small

disk of radius r0 centered on a rough prior determination of the crack tip.

Figure 11 shows the influence of this inner radius r0. It is observed that

this excluded crack tip region has a significant influence as could have been

anticipated by the singular nature of the fields at the crack tip. However,

remarkably, for r0 less than about 175 µm, no systematic trend is observed

(although fluctuations are present).
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4.2.2. SIF extraction

In this last paragraph, the gain brought by an estimation not only of

the displacement field but also of its discontinuity is evaluated. The anal-

ysis is carried out using the crack tip position determined in the previous

paragraph. First, orthogonality conditions with K & M “harmonics” in the

interval [−3; 5] are prescribed. The mode I stress intensity factors measured

using least squares technique and the proposed optimal extraction are shown

in Figure 12. KI is plotted as a function of the diameter of the circular in-

tegration domain around the crack tip. A value of 3.1 MPa
√
m is obtained.

The RMS error for an image noise of 2 gray levels is displayed with error bars

in Figure 12. For the largest integration domain, the uncertainty reduces to

0.02 MPa
√
m for the optimal extraction whereas it is equal to 0.05 MPa

√
m

when the least squares technique is applied.

These results are compared to those obtained in Ref. [24] when using a

standard or optimized interaction integral. Figure 13(a) shows the change of

KI for four extraction techniques, namely, least squares and optimal tech-

niques, interaction integral with a conical virtual crack extension field (VCE)

and interaction integral with an optimal VCE. Although the interaction in-

tegral is theoretically domain independent [17], larger variations with the

domain size are observed due to a higher sensitivity to noise. Yet, the val-

ues obtained with the four techniques are consistent for large integration

domains, namely, 2.9 ± 0.09 MPa
√
m and 3.0 ± 0.06 MPa

√
m for the inter-

action integral with conical and optimal VCEs.
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Figure 13(b) shows the standard uncertainty for KI with respect to the

domain size. Power law decreases are obtained for the four techniques. The

least squares and the optimal extractions vary as D−2 (D being the diameter

of the integration domain) but they differ from the optimal interaction inte-

gral D−1.5 and the standard interaction integral D−1. In Ref. [24], the D−1.5

decrease is shown to be the optimal rate for the interaction integral. Let us

note that the formalism proposed herein allows for higher reduction rates of

noise sensitivity (i.e. D−2). This is due to the fact that differential operators

are involved in the interaction integral and reduce the noise reduction rate

of any derived extractor. The difference between least squares and optimal

extraction appears to be a multiplicative constant only.

Figures 14 and 15 show the extracting fields of mode I stress intensity

factors for the four above mentioned techniques. The least squares extracting

field (Figure 14(b)) gives a considerable weight to the displacement values

very close to the crack tip. The optimal version spreads the weight over

a larger neighborhood, and accounts also for the non-homogeneous noise

sensitivity of the displacement field measurement (Figure 14(a)). This effect

allows for a lower noise sensitivity of the extracted stress intensity factor

KI . By looking at the extracting fields related to the interaction integrals,

a considerable weight is carried by the displacement values not only close to

the crack tip but also along the crack faces (Figure 15(b)). Further, a flower

shape around the crack tip is observed. Because of the presence of differential

operators in the integration integral, the shape of the extracting field is more
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tortuous and concentrated around the crack tip. Again, the optimal version

spreads the weight over a larger neighborhood (Figure 15(a)).

Due to the very brittle nature of the ceramic, one may think of relaxing

the orthogonality conditions with respect to supersingular modes. As a conse-

quence, the optimal field becomes more uniform allowing all displacement de-

grees of freedom to contribute to the determination of the displacement field.

Figure 16(a) shows the corresponding extracting field. Concerning the least

squares extracting field, Figure 16(b) also shows less concentrated weighting

but its noise sensitivity increases significantly (Figure 17(b)). Consequently,

KI values are not consistent with previous determinations (Figure 17(a)),

whereas the optimal extraction with reduced orthogonality constrains gives

consistent KI values of 3.1 MPa
√
m with a very low uncertainty level, namely

0.01 MPa
√
m. This is presumably another illustration of the above discussed

3D effects.

5. Conclusions

A method devoted to the extraction of Fracture Mechanics parameters

from a displacement field is derived in a general formalism. It is shown

that the proposed framework encompasses least squares techniques as well

as domain (interaction) integrals for stress intensity factor extraction. Ap-

plied to experimental (i.e. noisy) displacement data, the present formalism

includes noise sensitivity reduction and extraction conditions. The resolution

is achieved by minimizing the effect of noise under orthogonality constrains
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to a family of crack tip fields, including supersingular fields. Despite their en-

ergy diverging behavior, the latter ones are useful in an experimental context.

They are used to obtain the crack tip position.

Two experimental applications have been proposed. In the first one, the

small thickness of the specimen legitimates the use of a two-dimensional de-

scription, and the results are shown to improve the robustness and accuracy

of the measurements of fracture properties. In the second example, although

the large scale results seem consistent, a more pronounced domain depen-

dence still remains, which is attributed to three dimensional effects. In fact,

this difficulty is a major one, as far as the measurement itself relies on a

description that is not exact. The 2D analysis is however used here in order

to conform with the standard practice, yet a better suited field (as well as

an amplitude equivalent to a SIF that can be quantitatively used) should be

more thoroughly investigated.

The performances of the proposed optimal extraction are illustrated and

compared to existing techniques through two examples. A significant im-

provement of the noise sensitivity is obtained by reaching a global minimizer

of the effect of noise instead of a local one (for least squares or interaction

integral techniques). Domain independence is obtained for stress intensity

factors in spite of the mechanically non-admissible nature of measured dis-

placement fields i.e. they do not satisfy the balance of momentum equation.

Domain independence is also obtained for supersingular components but over

a reduced domain size range.
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Examining domain integral approaches for stress intensity factor extrac-

tion within the framework proposed herein, unexpected results are obtained.

Re-read as an extracting field, the interaction integral extracts stress inten-

sity factors predominantly using displacement data at the nodes located close

to the crack faces. In the present examples, it is emphasized by the use of

a conical virtual crack extension fields. More regular virtual crack extension

fields could be used [19] to enlarge the useful data area around the crack tip,

yet concentrated weights still remain along the crack faces.

Last, it is to be emphasized that the general procedure presented herein to

compute optimal extractors is also suited to dealing not only with uncertain

data, but also with kinematic fields being defined on arbitrary shape and

topology domains, a property that is not found for, say, interaction integrals.
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335 (2007) 131-137.
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Figure 1: Vertical (a) and horizontal (b) components of measured displacement field by

Q4-DIC for the CCT specimen, expressed in pixels (1 pixel ↔ 2.08 µm).
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Figure 2: (a): Crack tip shift as a function of the crack tip position for the CCT specimen

obtained with a least squares and optimal extraction performed with an L2 projection

and orthogonality conditions with K & M harmonics in [−3; 5] (a dotted line of slope -1

is shown as a guide to the eye). (b): Crack tip shift as a function of the domain size. (c):

noise sensitivity of the first supersingular coefficient.
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Figure 3: Stress intensity factors (a) and their noise sensitivity (b) for the CCT specimen

obtained with a least squares and optimal extraction performed with an L2 projection and

orthogonality conditions with K & M harmonics in [−3; 5].
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Figure 4: Vertical (top) and horizontal (bottom) components of the extracting field nor-

malized by 2µ
√
pπ obtained for an optimal extraction (left) a least squares extraction

(right) of KI performed with an L2 projection and orthogonality conditions with K &

M harmonics in [−3; 5].
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√

p3π obtained for an optimal extraction (left) a least squares extraction

(right) of K−1

I
performed with an L2 projection and orthogonality conditions with K &

M harmonics in [−3; 5].
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Figure 6: Vertical (a) and horizontal (b) components of the displacement field expressed

in pixels measured by XQ4-DIC (1 pixel ↔ 1.85 µm).
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Figure 7: Crack tip shift as a fonction of the crack tip position (a) (a dotted line of slope

-1 is shown as a guide to the eye) and as a function of the domain size (b) for the SiC

specimen using the optimal extraction performed with an L2 projection and orthogonality

conditions with K & M harmonics in [−3; 5] (1 pixel ↔ 1.85 µm).
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Figure 8: (left) Reference picture of the analyzed region of interest in the SiC sample (the

fine notch can be seen on the bottom side). (right) post-mortem view of the crack surface.

The pre-notch, the fine notch, and the precrack surfaces are clearly observable. Note the

curvature of the precrack front.
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Figure 9: Vertical (a) and horizontal (b) components of the displacement field on the free

surface of a three-dimensional elastic solid expressed in pixels obtained with a straight

crack (1 pixel ↔ 2.11 µm).
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Figure 10: Normalized stress intensity factors (a) and shift (b) of the 3D elastic solid for

a parabolic crack front, a straight front on the free surface and in the center section of

the specimen (1 pixel ↔ 2.11 µm). The crack tip shift is also plotted as a fonction of the

crack tip position (c) (a dotted line of slope -1 is shown as a guide to the eye).
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Figure 11: Influence of the mask inner diameter 2r0 on the crack tip shift for the SiC

specimen using the optimal extraction performed with an L2 projection and orthogonality

conditions with K & M harmonics in [−3; 5] (1 pixel ↔ 1.85 µm).
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Figure 12: Comparison of mode I stress intensity factors for the SiC specimen obtained

with different extraction techniques.
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Figure 13: Comparison of mode I stress intensity factors and noise sensitivities for the SiC

specimen obtained with different extraction techniques including previous results with the

interaction integral [24].
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Figure 14: Vertical (top) and horizontal (bottom) components of the extracting field

normalized by 2µ
√
pπ obtained for an optimal (actual noise) (left) and a least squares

(right) extraction of KI performed with an L2 projection and orthogonality conditions

with K & M harmonics in [−3; 5].
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Figure 15: Vertical (top) and horizontal (bottom) components of the extracting field of

KI normalized by 2µ
√
pπ obtained for the interaction integral with an optimal VCE (left)

and a conical VCE (right).
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Figure 16: Vertical (top) and horizontal (bottom) components of the extracting field of KI

normalized by 2µ
√
pπ obtained for an optimal (actual noise) extraction performed with

an L2 projection and orthogonality conditions with K & M harmonics in [0; 5].
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Figure 17: Comparison mode I stress intensity factors (a) and noise sensitivities (b) for

the SiC specimen obtained for orthogonality conditions prescribed for two different sets of

K & M harmonics.
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