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Multistep DBT and regular rational extensions of the isotonic oscillator

Yves Grandati
Institut de Physique, Equipe BioPhyStat, ICPMB, IF CNRS 2843,

Université Paul Verlaine-Metz, 1 Bd Arago, 57078 Metz, Cedex 3, France

In some recent articles we developed a new systematic approach to generate solvable rational
extensions of primary translationally shape invariant potentials. In this generalized SUSY QM
partnership, the DBT are built on the excited states Riccati-Schrödinger (RS) functions regularized
via specific discrete symmetries of the considered potential. In the present paper, we prove that this
scheme can be extended in a multistep formulation. Applying this scheme to the isotonic oscillator,
we obtain new towers of regular rational extensions of this potential which are strictly isospectral to
it. We give explicit expressions for their eigenstates which are associated to the recently discovered
exceptional Laguerre polynomials and show explicitely that these extensions inherit of the shape
invariance properties of the original potential.

PACS numbers:

I. INTRODUCTION

Since the pionnering work of Gomez-Ullate et al [4], the exceptional orthogonal polynomials (EOP) and their
connexion with rational extensions of solvable quantum potentials have been an active research subject [5–19, 21–
23]. The EOP appear to be the constitutive elements of the eigenstates of solvable rational extensions of the second
category primary translationally shape-invariant potentials (TSIP) [1–3, 24] In a series of recent papers [21–23] we
have developped a new approach which allows to generate infinite sets of such regular solvable extensions starting
from every TSIP in a very direct and systematic way without taking recourse to any ansatz or ad hoc deforming
functions. This approach is based on a generalization of the usual SUSY partnership built from excited states.
The corresponding Darboux-Bäcklund Transformations (DBT), which are covariance transformations for the class of
Riccati-Schrödinger (RS) equations [24], are based on regularized RS functions corresponding to unphysical (negative
energy) eigenfunctions of the initial hamiltonian. They are obtained by using discrete symmetries acting on the
parameters of the considered family of potentials. If the use of negative energy states has been already proposed
in early years of SUSY MQ development [25], such a systematic scheme has never been envisaged. In the case of
the isotonic oscillator, this gives the three infinite sets L1, L2 and L3 of regular rationally solvable extensions of
this potential, the L1 and L2 series potentials being strictly isospectral to the isotonic one and inherits of its shape-
invariance property. Very recently Gomez-Ullate, Kamran and Milson [43] introduce a new family of EOP built from
the classical Laguerre polynomials via two step Darboux transformations. In the present article we show that the
scheme developed in [21–23] admits a very natural n-step extension which allows to recover and generalize the result
of [43]. We obtain new infinite towers of rational extensions of the isotonic potential strictly isospectral to this last.
Their eigenfunctions are associated to the new EOP families, the one introduced by Gomez-Ullate et al corresponding
to the n = 2 particular case.

The paper is organized as follows. First we recall the basic elements of the method in its one step form and the
results obtained for the isotonic system. The regularity of the RS functions is here obtained in a self consistent way,
using a classical result of Bôcher [46] without recourse of the Kienast-Lawton-Hahn theorem [48, 49]. Then we present
on a formal level the general m−step scheme and in the specific case of the isotonic oscillator, we give a criterion of
concrete application in terms of asymptotic behaviour near the origin. Next we consider in a detailed manner the
particularm = 2 case, initially envisaged by Gomez-Ullate et al [43]. We then prove by induction a sufficient condition
to be able to build a m−step chain of regular and strictly isospectral extended potentials. We finally show that the
shape invariance properties of the isotonic potential are hereditary and reached by all these extended potentials.
During the writing of this article, two papers on the same subject appeared. The first one [44] contains results

parallels to those developed here. The authors adopt a point of view similar to the one initiated in [21–23] and
extended in the present paper. The so-called ”virtual states deletion method” corresponding exactly to the use
of DBT based on unphysical eigenfunctions associated to regularized RS functions. The second one [45] discusses
quite extensively the 2 and 3 steps cases under a slightly different angle and proposes an interesting conjecture on
possible ”degeneracies” in the set of the new generated ELP. The content of the present article has been established
independently of these two works.
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II. DARBOUX-BÄCKLUND TRANSFORMATIONS (DBT) AND REGULAR EXTENSIONS

A. General scheme

Consider a family of one-dimensional hamiltonians indexed by a multiparameter a

Ĥ(a) = −d2/dx2 + V (x; a), a ∈ R
m, x ∈ I ⊂ R, (1)

with zero ground level E0(a) = 0.

If ψλ(x; a) is an eigenstate of Ĥ(a) associated to the eigenvalue Eλ(a), then its logarithmic derivative wλ(x; a) =
−ψ′

λ(x; a)/ψλ(x; a), that we will call a Riccati-Schrödinger (RS) function, satisfies a particular Riccati equation of
the following form

−w′
λ(x; a) + w2

λ(x; a) = V (x; a) − Eλ(a). (2)

Eq(2) is called the Riccati-Schrödinger (RS) equation [24] for the level Eλ(a). The RS function wλ(x; a) presents
a simple pole at each node of the eigenstates ψλ(x; a).
It is a well-known fact that the set of general Riccati equations is invariant under the group G of smooth SL(2,R)-

valued curves Map(R, SL(2,R)) [52, 53]. The particular of Riccati-Schrödinger equations is, as for it, preserved by
a specific subset of G. These transformations, called Darboux-Bäcklund Transformations (DBT), are build from any
solution wν(x; a) of the initial RS equation Eq(2) as [24, 52, 53]

wλ(x; a)
A(wν)→ w

(ν)
λ (x; a) = −wν(x; a) +

Eλ(a)− Eν(a)

wν(x; a)− wλ(x; a)
, (3)

where Eλ(a) > Eν(a). Then w
(ν)
λ is a solution of the RS equation:

−w(ν)′
λ (x; a) +

(
w

(ν)
λ (x; a)

)2
= V (ν)(x; a)− Eλ(a), (4)

with the same energy Eλ(a) as in Eq(2) but with a modified potential

V (ν)(x; a) = V (x; a) + 2w′
ν(x; a). (5)

This can be schematically resumed as




wλ

A(wν)
֌ w

(ν)
λ

V
A(wν)
֌ V (ν)

(6)

The corresponding eigenstate of Ĥ(ν)(a) = −d2/dx2 + V (ν)(x; a) can be written

ψ
(ν)
λ (x; a) = exp

(
−
∫
dxw

(ν)
λ (x; a)

)
∼ 1√

Eλ (a)− Eν(a)
Â (wν)ψλ(x; a), (7)

where Â (a) is a first order operator given by

Â (wν) = d/dx+ wν(x; a). (8)

From V , the DBT generates a new potential V (ν) (quasi) isospectral to the original one and its eigenfunctions
are directly obtained from those of V via Eq(7). If the initial system is exactly solvable, which is the case of the
translationally shape invariant potentials (TSIP), this scheme allows to build new exactly solvable potentials.
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Nevertheless, in general, wν(x; a) and then the transformed potential V (ν)(x; a) are singular at the nodes of ψν(x; a).

For instance, if ψn(x; a) (ν = n) is a bound state of Ĥ(a), V (n) is regular only when n = 0, that is when ψn=0 is

the ground state of Ĥ , and we recover the usual SUSY partnership in quantum mechanics. Starting from an excited
state, that is for n ≥ 1, the transformed potential presents exactly n second order poles and a priori we cannot use
A (wn) to build a regular potential. We can however envisage to use any other regular solution of Eq(2) as long as it
has no zero on the considered real interval I, even if it does not correspond to a physical state. As shown in the case
of the isotonic oscillator, we can obtain such solutions by using specific discrete symmetries Γi which are covariance
transformations for the considered family of potentials

{
a

Γi→ ai

V (x; a)
Γi→ V (x; ai) = V (x; a) + U (a) .

(9)

Γi acts on the parameters of the potential and transforms the RS function of a physical eigenstate wn into a
unphysical RS function vn,i(x; a) = Γi (wn(x; a)) = wn(x; ai) associated to the eigenvalue En,i(a) = Γi (En(a)) =
U (a)− En(ai) < 0.

−v′n,i(x; a) + v2n,i(x; a) = V (x; a) − En,i(a). (10)

We cannot ensure that V (x; a) > En,i(a) on the whole interval I but we can make use of the following theorem of
Bôcher [46]:
Bôcher’s theorem

If there exists a continuously derivable function W (x) such that ∀x ∈ [A,B] ⊂ R

W ′(x) +W 2(x) < G(x), (11)

then every non zero solution of

(K(x)Φ′(x))
′ −G(x)Φ(x) = 0, K(x) > 0 (12)

admits at most one zero on [A,B].

Since ∀x ∈ I

−w′
0(x; a) + w2

0(x; a) < V (x; a) − En,i(a), (13)

we satisfy the condition Eq(11) with W (x) = −w0(x; a) and G(x) = V (x; a)− En,i(a). Consequently

φn,i(x; a) = exp

(
−
∫
dxvn,i(x; a)

)
(14)

being a solution of

φ′′n,i(x; a) − (V (x; a)− En,i(a))φn,i(x; a) = 0 (15)

on I, it admits at most one simple zero on every compact subset of I. In the case where it has no zero, vn(x; a) =
−φ′n(x; a)/φn(x; a) is regular on I. Then the extended potential (see Eq(5) and Eq(7))

V (n,i)(x; a) = V (x; a) + 2v′n,i(x; a) (16)
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is a regular extension of V (x; a) isospectral to this last and the eigenstates of which being given by (see Eq(3))





w
(n,i)
k (x; a) = −vn,i(x; a) + Ek(a)−En,i(a)

vn,i(x;a)−wk(x;a)

ψ
(n,i)
k (x; a) = exp

(
−
∫
dxw

(n,i)
k (x; a)

)
∼ 1√

Ek(a)−En,i(a)
Â (vn,i)ψk(x; a)

, (17)

for the respective energies Ek(a). If we suppose that this isospectrality is strict, by applying the same DBT to an

unphysical eigenstate φk,i we obtain an unphysical eigenstate φ
(n,i)
k,j of V (n,i) with the same negative energy Ek,j





v
(n,i)
k,j (x; a) = −vn,i(x; a) + Ek,j(a)−En,i(a)

vn,i(x;a)−vk,j(x;a)

φ
(n,i)
k,j (x; a) = exp

(
−
∫
dxv

(n,i)
k,j (x; a)

)
∼ 1√

Ek,j(a)−En,i(a)
Â (vn,i)φk,j(x; a).

(18)

If 1/φn(x; a) satisfies the appropriate boundary conditions, then it is a physical eigenstate of Ĥ(n,i)(a) = −d2/dx2+
V (n,i)(x; a) for the eigenvalue since the corresponding RS function −vn,i(x; a) is a solution of

−w′(x; a) + (w(x; a))2 = V (n,i)(x; a)− En,i(a). (19)

In this case we only have quasi-isospectrality between V (x; a) and V (n,i)(x; a) and the unphysical eigenstates can
a priori be transformed into physical ones. This construction can be summarized by the following diagram

Ek > 0 : wk
A(vn,i)
֌ w

(n,i)
k }Physical RS functions

Γj ↓
Ek,j < 0 : vk,j

A(vn,i)
֌ v

(n,i)
k,j } Regularized (unphysical) RS functions

︸︷︷︸
V

A(vn,i)
֌

︸︷︷︸
V (n,i) Potentials

(20)

with

{
ψ
(n,i)
k = Â (vn,i)ψk

φ
(n,i)
k,j = Â (vn,i)φk,j .

(21)

The above procedure can be viewed as a ”generalized SUSY QM partnership” where the
DBT can be based on excited states RS functions properly regularized by the symmetry Γj .

B. Isotonic oscillator

Consider the isotonic oscillator potential (ie the radial effective potential for a three dimensional isotropic harmonic
oscillator with zero ground-state energy)

V (x;ω, a) =
ω2

4
x2 +

a(a− 1)

x2
+ V0(ω, a), x > 0, (22)

with a = l + 1 ≥ 1 and V0(ω, a) = −ω
(
a+ 1

2

)
. Its physical spectrum is characterized by the (unnormalized)

eigenfunctions (z = ωx2/2, α = a− 1/2)

En (a) = 2nω, ψn (x;ω, a) = xae−z/2Lαn (z) , (23)

or, equivalently by the associated RS functions [24]
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wn(x;ω, a) = w0(x;ω, a) +Rn(x;ω, a), (24)

with

w0(x;ω, a) =
ω

2
x− a

x
(25)

and

Rn(x;ω, a) =
−2nω

ωx− (2a+ 1) /x− � ... �
2 (n− j + 1)ω

ωx− (2 (a+ j)− 1) /x− � ... �
2ω

ωx− (2 (a+ n)− 1) /x

= −ωx (log (Lαn (z)))′ . (26)

We have three possible discrete symmetries (see Eq(9) ) given by
1)

ω
Γ+→ (−ω) ,

{
V (x;ω, a)

Γ+→ V (x;ω, a) + ω(2a+ 1)

wn(x;ω, a)
Γ+→ vn,1(x;ω, a) = wn(x;−ω, a),

(27)

2)

a
Γ−→ 1− a,

{
V (x;ω, a)

Γ−→ V (x;ω, a) + ω(2a− 1)

wn(x;ω, a)
Γ−→ vn,2(x;ω, a) = wn(x;ω, 1− a),

(28)

3)

(ω, a)
Γ3=Γ+◦Γ−→ (−ω, 1− a)

{
V (x;ω, a)

Γ3→ V (x;ω, a) + 2ω

wn(x;ω, a)
Γ3→ vn,3(x;ω, a) = wn(x;−ω, 1− a).

(29)

In the (ω, α) parameters plane, Γ+ and Γ− correspond respectively to the reflections with respect to the axes ω = 0
and α = 0.
To each of these symmetries is associated family of DBT A (vn,i) which generate the three infinite series L1, L2

and L3 of regular rationally solvable extensions of the isotonic potential, the physical eigenstates of the L1 and L2
series being expressible in terms of exceptional Laguerre polynomials of the L1 and L2 types respectively.

C. L1 series

For the L1 series we have, writing φk,+(x;ω, a) = exp
(
−
∫
dxvk,+(x;ω, a)

)

{
Ĥ(ω, a)φn,+(x;ω, a) = En,+(ω, a)φn,+(x;ω, a)

−v′n,+(x;ω, a) + v2n,+(x;ω, a) = V (x;ω, a)− En,+(ω, a)
; En,+(ω, a) = E−(n+a+1/2)(ω) < 0, (30)

where ( z = ωx2/2, α = a− 1/2)

{
φn,+ (x;ω, a) = xa exp (z/2)Lαn (−z)

vn,+(x;ω, a) = v0,+(x;ω, a) +Qn,+(x;ω, a)
, (31)

with

v0,+(x;ω, a) = −ω
2
x− a

x
(32)
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and

Qn,+(x;ω, a) = − 2nω

ωx+ (2a+ 1) /x+
� ... �

2 (n− j + 1)ω

ωx+ (2 (a+ j)− 1) /x+
� ... �

2ω

ωx+ (2 (a+ n)− 1) /x
(33)

= −ωx (log (Lαn (−z)))′ .

Since the eigenvalue En,+(ω, a) associated to φn,+(x;ω, a) is negative, this last not a physical state and, φn,+ being
non oscillatory, it has at most one node on the positive half line. Since we have





L
α
n (z) →

x→0+

(α+1)...(α+n)
n!

L
α
n (z) ∼

x→+∞

(−1)n

n! zn
, (34)

then

{
φn,+ (x;ω, a) →

x→+∞
±∞

φn,+ (x;ω, a) →
x→0+

0,
(35)

and φn,+ keeps a constant sign on ]0,+∞[ which means that vn,+(x;ω, a) is regular on this interval. Note that this
result implies in particular that Lαn (−z) has no zero on the positive half line which agrees with the Kienast-Lawton-
Hahn theorem [48, 49].

w
(n,+)
k (x;ω, a) and ψ

(n,+)
k (x;ω, a) = exp

(
−
∫
dxw

(n,+)
k (x;ω, a)

)
satisfy then





Ĥ(n,+)(ω, a)ψ
(n,+)
k (x;ω, a) = Ek (ω)ψ

(n,+)
k (x;ω, a)

−w(n,+)′
k (x;ω, a) +

(
w

(n,+)
k (x;ω, a)

)2
= V (n,+)(x;ω, a)− Ek (ω)

, (36)

with

V (n,+)(x;ω, a) = V (x;ω, a) + 2v′n,+(x;ω, a). (37)

For every n ≥ 0, V (n,+)(x;ω, a) is regular on the positive half line and strictly isospectral to V (x;ω, a)

(1/φn,+(x;ω, a) = exp
(∫
dxvk,+(x;ω, a)

)
is not a physical eigenstate although it is an eigenfunction of Ĥ(n,+)(ω, a) =

−d2/dx2 + V (n,1)(x;ω, a) associated to the eigenvalue En,+(ω, a) < 0)

V (n,+)(x;ω, a) = V (x;ω, a−1) + 2Q′
n,+(x;ω, a) ≡

iso
V (x;ω, a). (38)

All the (unnormalized) physical eigenfunctions of Ĥ(n,+) are then of the form

ψ
(n,+)
k (x;ω, a) = Â (vn,+)ψk(x;ω, a), k ≥ 0. (39)

More precisely, using the identity L
α
n (z) + L

α+1
n−1 (z) = L

α+1
n (z)

ψ
(n,+)
k (x;ω, a) = (vn,+(x;ω, a)− wk(x;ω, a))ψk(x;ω, a) (40)

= −ωL+
n,k,α (z)

xa+1 exp(−z/2)
Lαn (−z)

.

where

L+
n,k,α (z) = Lαn (−z)Lα+1

k (z) + Lα+1
n−1 (−z)Lαk (z) , (41)
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which is a polynomial of degree n+ k, namely an exceptional Laguerre polynomial (ELP) of the L1 series. From the
orthogonality conditions on the eigenstates for fixed values of n and a, the L1 ELP L+

n,k,α (z) constitute an orthogonal
family with respect to the weight

W+
n (z) =

zα+1 exp(−z)
(Lαn (−z))2

, (42)

which is complete in L2
W+

n

[0,+∞[.

D. L2 series

For the L2 series we have, writing φk,−(x;ω, a) = exp
(
−
∫
dxvk,−(x;ω, a)

)

{
Ĥ(ω, a)φn,−(x;ω, a) = En,−(ω, a)φn,2(x;ω, a)

−v′n,−(x;ω, a) + v2n,−(x;ω, a) = V (x;ω, a)− En,−(ω, a)
; En,−(ω, a) = En+1/2−a (ω) , (43)

where

{
φn,−(x;ω, a) = x1−a exp (−z/2)L−α

n (z)
vn,−(x;ω, a) = v0,−(x;ω, a) +Qn,−(x;ω, a)

(44)

with

v0,−(x;ω, l) =
ω

2
x+

a− 1

x
(45)

and

Qn,−(x;ω, a) =
−2nω

ωx+ (2a− 3) /x− � ... �
2 (n− j + 1)ω

ωx+ (2 (a− j)− 1) /x− � ... �
2ω

ωx+ (2 (a− n)− 1) /x
(46)

= −ωx
(
log
(
L
−α
n (z)

))′
.

Only for α = a − 1/2 > n, the eigenvalue En,−(ω, a) associated to φn,−(x;ω, a) is negative and this last is not a

physical state of Ĥ(ω, a). Moreover, φn,− is non oscillatory and has at most one node on the positive half line. Since
we have (see Eq(34))

{
φn,− (x;ω, a) →

x→+∞
0∓

φn,− (x;ω, a) →
x→0

±∞,
(47)

where ± = (−1)
n
, φn,− keeps a constant sign on ]0,+∞[ which means that vn,−(x;ω, a) is regular on this interval.

Note that this result implies in particular that L−α
n (z) has no zero on the positive half line when α > n and again we

recover the content of the Kienast-Lawton-Hahn theorem [48, 49].

w
(n,−)
k (x;ω, a) and ψ

(n,−)
k (x;ω, a) = exp

(
−
∫
dxw

(n,−)
k (x;ω, a)

)
satisfy





Ĥ(n,−)(ω, a)ψ
(n,−)
k (x;ω, a) = Ek (ω)ψ

(n,−)
k (x;ω, a)

−w(n,−)′
k (x;ω, a) +

(
w

(n,−)
k (x;ω, a)

)2
= V (n,−)(x;ω, a)− Ek (ω)

, (48)

with

V (n,−)(x;ω, a) = V (x;ω, a) + 2v′n,−(x;ω, a). (49)
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V (n,−)(x;ω, a) is regular on the positive half line and strictly isospectral to V (x;ω, a) (1/φn,−(x;ω, a) =

exp
(∫
dxvk,−(x;ω, a)

)
is not a physical eigenstate although it is an eigenfunction of Ĥ(n,−)(ω, a) = −d2/dx2 +

V (n,−)(x;ω, a) associated to the eigenvalue En,−(ω, a) < 0)

V (n,−)(x;ω, a) = V (x;ω, a−1) + 2Q′
n,2(x;ω, a) ≡

iso
V (x;ω, a). (50)

All the (unnormalized) physical eigenfunctions of Ĥ(n,−) are then of the form

ψ
(n,−)
k (x;ω, a) = Â (vn,−)ψk(x;ω, a), k ≥ 0. (51)

More precisely, using the identity zLα+1
n−1 (z) = (n+ α)Lαn−1 (z)− nLαn (z)

ψ
(n,−)
k (x;ω, a) = (vn,−(x;ω, a)− wk(x;ω, a))ψk(x;ω, a) (52)

=
1

2
L−
n,k,α (z)

xa−1 exp(−z/2)
L−α
n (z)

,

where

L−
n,k,α (z) = (k + n+ α)Lαk (z)L

−α
n (z)− (−n+ α)Lαk (z)L

−α
n−1 (z)− (k + α)Lαk−1 (z)L

−α
n (z) (53)

is a polynomial of degree n + k, namely an exceptional Laguerre polynomial (ELP) of the L2 series. From the
orthogonality conditions on the eigenstates for fixed values of n and a (with α > n), the L2 ELP L−

n,k,α (z) constitute
an orthogonal family with respect to the weight

W−
n (z) =

zα exp(−z)
(
L−α
n (z)

)2 . (54)

E. L3 series

For the L3 series we have, writing φk,3(x;ω, a) = exp
(
−
∫
dxvk,3(x;ω, a)

)

{
Ĥ(ω, a)φn,3(x;ω, a) = En,3(ω, a)φn,3(x;ω, a)

−v′n,3(x;ω, a) + v2n,3(x;ω, a) = V (x;ω, a)− Ẽn,3(ω)
; En,3(ω, a) = E−(n+1) (ω) < 0. (55)

where

{
φn,3(x;ω, a) = x1−a exp (z/2)L−α

n (−z)
vn,3(x;ω, a) = v0,3(x;ω, a) +Qn,3(x;ω, a)

, (56)

with

v0,3(x;ω, l) = −ω
2
x+

a− 1

x
(57)

and

Qn,3(x;ω, a) =
2nω

ωx− (2a− 3) /x+
� ... �

2 (n− j + 1)ω

ωx− (2 (a− j)− 1) /x+
� ... �

2ω

ωx− (2 (a− n)− 1) /x
(58)

= −
(
log
(
L
−α
n

(
−ωx2/2

)))′
.
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The eigenvalue En,3(ω) associated to φn,3(x;ω, a) is always negative and this last is not a physical state of Ĥ(ω, a)
. Moreover, φn,3 is non oscillatory and has at most one node on the positive half line. Since we have (see Eq(34))

{
φn,3 (x;ω, a) →

x→+∞
+∞

φn,3 (x;ω, a) →
x→0

±∞,
(59)

where ± = (−1)
n
, φn,3 keeps a constant sign on ]0,+∞[ when n is even (in which case vn,3(x;ω, a) is regular on this

interval) and presents one node on ]0,+∞[ when n is odd (in which case vn,3(x;ω, a) has a singularity). Note that

this result implies in particular that L
(−α)
n (−z) has 0 or 1 zero on the positive half line in relation with the parity of

n. This result is again coherent with the Kienast-Lawton-Hahn theorem [48, 49]

w
(n,3)
k (x;ω, a) and ψ

(n,3)
k (x;ω, a) = exp

(
−
∫
dxw

(n,3)
k (x;ω, a)

)
satisfy





Ĥ(n,3)(ω, a)ψ
(n,3)
k (x;ω, a) = Ek (ω)ψ

(n,3)
k (x;ω, a)

−w(n,3)′
k (x;ω, a) +

(
w

(n,3)
k (x;ω, a)

)2
= V (n,3)(x;ω, a)− Ek (ω)

, (60)

with

V (n,3)(x;ω, a) = V (x;ω, a) + 2v′n,3(x;ω, a). (61)

For n even V (n,3)(x;ω, a) is regular on the positive half line and quasi isospectral to V (x;ω, a)

V (n,3)(x;ω, a) = V (x;ω, a−1) + 2Q′
n,3(x;ω, a) ≡

iso
V (x;ω, a). (62)

Indeed, in this case 1/φn,3(x;ω, a) = exp
(∫
dxvk,3(x;ω, a)

)
is normalizable and then admissible as physical eigen-

state of lowest eigenvalue for Ĥ(n,3)(ω, a) = −d2/dx2+V (n,3)(x;ω, a). All the (unnormalized) physical eigenfunctions

of Ĥ(n,3) are then of the form

{
ψ
(n,3)
− (x;ω, a) = 1/φn,3(x;ω, a) = exp

(∫
dxvk,3(x;ω, a)

)

ψ
(n,3)
k (x;ω, a) = Â (vn,3)ψk(x;ω, a), k ≥ 0,

(63)

for the corresponding energies

{
E

(n,3)
− (ω) = E−(n+1) (ω) < 0

E
(n,3)
k (ω) = Ek (ω) , k ≥ 0.

(64)

More precisely, using the identities zLα+1
n−1 (z) = (n+ α)Lαn−1 (z)− nLαn (z)

ψ
(n,3)
k (x;ω, a) = (vn,3(x;ω, a)− wk(x;ω, a))ψk(x;ω, a) (65)

= (−2)L3
n,k,α (z)

xa−1 exp(−z/2)
L−α
n (−z)

,

where

L3
n,k,α (z) = zLαk (z)L

−α+1
n (−z) + zLα+1

k−1 (z)L
−α
n (−z)− αLαk (z)L

−α
n (−z) (66)

is a polynomial of degree n+ k + 1. From the orthogonality conditions on the eigenstates for fixed values of n and a,
the L3

n,k,α (z) constitute an orthogonal family with respect to the weight

W 3
n (z) =

zα exp(−z)
(
L−α
n (−z)

)2 . (67)
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III. MULTI-STEP DBT AND NEW ELP

A. General formulation

The question of successive iterations of DBT is very natural and is at the center of the construction of the hierarchy
of hamiltonians in the usual SUSY QM scheme [30]. Staying at the formal level, it can be simply described by the
following straightforward generalization of Eq(6)




wλ

A(wν1)

֌ w
(ν1)
λ

A(w(ν1)
ν2

)

֌ w
(ν1,ν2)
λ ...

A(w
(ν1,,...,νm−1)
νm )

֌ w
(ν1,...,νm)
λ

V
A(wν1)

֌ V (ν1)
A(w(ν1)

ν2
)

֌ V (ν1,ν2)...
A(w

(ν1,,...,νm−1)
νm )

֌ V (ν1,...,νm),

(68)

where w
(ν1,...,νm)
λ is a RS function associated to the eigenvalue Eλ of the potential

V (ν1,...,νm)(x; a) = V (x; a) + 2
m−1∑

j=1

(
w(ν1,,...,νj−1)
νj (x; a)

)′
. (69)

The corresponding eigenfunction is given by

ψ
(ν1,...,νm)
λ (x; a) = Â

(
w(ν1,...,νm−1)
νm

)
ψ
(ν1,...,νm−1)
λ (x; a) = Â

(
w(ν1,...,νm−1)
νm

)
...Â (wν1)ψλ(x; a), (70)

that is,

ψ
(ν1,...,νm)
λ (x; a) =

(
w(ν1,...,νm−1)
νm (x; a) − w

(ν1,...,νm−1)
λ (x; a)

)
ψ
(ν1,...,νm−1)
λ (x; a) =

W
(
ψ
(ν1,...,νm−1)
νm , ψ

(ν1,...,νm−1)
λ | x

)

ψ
(ν1,...,νm−1)
νm (x; a)

,

(71)
where W (y1, ..., ym | x) is the wronskian of the functions y1, ..., ym

W (y1, ..., ym | x) =

∣∣∣∣∣∣

y1 (x) ... ym (x)
... ...

y
(m−1)
1 (x) ... y

(m−1)
m (x)

∣∣∣∣∣∣
. (72)

Other useful representations for the extended potentials and of their eigenfunctions are possible. From Sylvester’s
theorem we can deduce [47] the following property for the Wronskians

W (y1, ..., ym, y | x) = W (W (y1, ..., ym) ,W (y1, ..., ym−1, y) | x)
W (y1, ..., ym−1 | x)

. (73)

Using the identity [47]

W (uy1, ..., uym | x) = umW (y1, ..., ym | x) , (74)

this gives

W (y1, ..., ym, y | x)
W (y1, ..., ym | x) =

W
(

W (y1,...,ym)
W (y1,...,ym−1)

, W (y1,...,ym−1,y)
W (y1,...,ym−1)

| x
)

W (y1,...,ym|x)
W (y1,...,ym−1|x)

(75)

and comparing to Eq(71), we obtain
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ψ
(ν1,...,νm)
λ (x; a) =

W (ψν1 , ..., ψνm , ψλ | x)
W (ψν1 , ..., ψνm | x) , (76)

which is the well known Crum formula [26, 29] for the eigenfunctions.
Inserting this result in Eq(69), we then deduce the Crum formula for the potential [26, 29]

V (ν1,...,νm)(x; a) = V (x; a) + 2 (logW (ψν1 , ..., ψνm | x))′′ . (77)

Since all the functions ψνj implied in the wronskians in Eq(76) and Eq(77) are eigenfunctions of the same hamil-

tonian Ĥ(a), the properties of the determinants allow us to replace in these wronskians the even derivatives ψ
(2l)
νj by(

−Eνj
)l
ψνj and the odd derivatives ψ

(2l+1)
νj by

(
−Eνj

)l
ψ′
νj .

For instance

W (ψν1 , ..., ψν2l | x) =

∣∣∣∣∣∣∣∣∣∣

ψν1 (x; a) ... ψν2l (x; a)
ψ′
ν1 (x; a) ... ψ′

ν2l
(x; a)

... ...

(−Eν1)l−1
ψν1 (x; a) ... (−Eν2l)

l−1
ψν2l (x; a)

(−Eν1)l−1
ψ′
ν1 (x; a) ... (−Eν2l)

l−1
ψ′
ν2l

(x; a)

∣∣∣∣∣∣∣∣∣∣

= ∆(ν1,...,ν2l) (x; a)
2l∏

j=1

ψνj (x; a) , (78)

where

∆(ν1,...,ν2l) (x; a) = (−1)l
2−1

∣∣∣∣∣∣∣∣∣∣

1 ... 1
wν1 (x; a) ... wν2l (x; a)

... ...

(Eν1)
l−1 ... (Eν2l)

l−1

(Eν1)
l−1

wν1 (x; a) ... (Eν2l)
l−1

wν2l (x; a)

∣∣∣∣∣∣∣∣∣∣

(79)

and

W
(
ψν1 , ..., ψν2l+1

| x
)
=

∣∣∣∣∣∣∣∣∣∣

ψν1 (x; a) ... ψν2l (x; a)
ψ′
ν1 (x; a) ... ψ′

ν2l
(x; a)

... ...

(−Eν1)l−1
ψ′
ν1 (x; a) ...

(
−Eν2l+1

)l−1
ψ′
ν2l+1

(x; a)

(−Eν1)l ψν1 (x; a) ...
(
−Eν2l+1

)l
ψν2l+1

(x; a)

∣∣∣∣∣∣∣∣∣∣

= ∆(ν1,...,ν2l+1) (x; a)
2l+1∏

j=1

ψνj (x; a) ,

(80)
where

∆(ν1,...,ν2l+1) (x; a) = (−1)l
2+l−1

∣∣∣∣∣∣∣∣∣∣

1 ... 1
wν1 (x; a) ... wν2l+1

(x; a)
... ...

(Eν1)
l−1

wν1 (x; a) ... (Eν2l)
l−1

wν2l+1
(x; a)

(Eν1)
l

... (Eν2l+1)
l

∣∣∣∣∣∣∣∣∣∣

. (81)

Then we obtain the representation of the ψ
(ν1,...,νm)
λ in terms the so-called Crum-Krein determinants ∆(ν1,...,νm)

[26, 27, 33]

ψ
(ν1,...,νm)
λ (x; a) = ψλ (x; a)

∆(ν1,...,νm,λ) (x; a)

∆(ν1,...,νm) (x; a)
. (82)

Until now, all these results are purely formal. The central problem is now to choose in an appropriate way the
family of eigenfunctions (ψν1 , ..., ψνm) from which the successive DBT are built (see Eq(76) and Eq(69)) in order to
ensure the regularity of the successive extended potentials V (ν1,...,νm).
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A first answer has been given more than half a century ago by Crum [26]. The Crum proposal [26] is to take the
successive eigenstates of the discrete bound states spectrum starting from the ground state

(ν1, ..., νm) = (0, ...,m− 1) (83)

Krein [27, 33, 34] extended this result showing it is possible to choose sets of unnecessarily successive eigenstates if
they satisfy a given condition, namely

(ν1, ..., νm) = (n1, ..., nm) ∈ N
m, (84)

with

(n− n1)(n− n2)...(n− nm) ≥ 0, ∀n ∈ N. (85)

This last is verified if the set (n1, ..., nm) is constituted by ”aggregates” of an even number of eigenstates. The
possibility to employ sets of two juxtaposed eigenstates has been rediscovered later by Adler [28]. These results have
been used extensively in the context of higher order SUSY (see for instance [25, 30–33, 35–41]). In [37], Samsonov
has still extended the Krein-Adler result. Note finally that Fernandez et al [38] employed the specific ”Wick rotated”
eigenfunctions of negative energies introduced by Shnol’ [21, 35, 42] to build successive extensions of the harmonic
potential.
Our aim is to consider the possibility to generalize our construction in a multi-step version on the basis of the

regularized RS functions (or unphysical eigenfunctions) obtained above. Staying at a formal level, it would correspond
to the following generalization of the diagram Eq(20) (see Eq(68))

Ek > 0 : wk
A(vn1,i1)

֌ w
(n1,i1)
k

A(v
(n1,i1)
n2,i2

)

֌ w
(n1,i1,n2,i2)
k ...

A(v
(n1,i1,,...,nm−1,im−1)
nm,im

)

֌ w
(n1,i1,,...,nm,im)
k

Γi ↓

Ek,i < 0 : vk,i
A(vn1,i1)

֌ v
(n1,i1)
k,i

A(v
(n1,i1)
n2,i2

)

֌ v
(n1,i1,n2,i2)
k,i ...

A(v
(n1,i1,,...,nm−1,im−1)
nm,im

)

֌ v
(n1,i1,,...,nm,im)
k,i

︸︷︷︸
V

A(vn1,i1)

֌

︸ ︷︷ ︸
V (n1,i1)

A(v
(n1,i1)
n2,i2

)

֌

︸ ︷︷ ︸
V (n1,i1,n2,i2) ...

A(v
(n1,i1,,...,nm−1,im−1)
nm,im

)

֌

︸ ︷︷ ︸
V (n1,i1,,...,nm,im)

(86)

with v
(n0)
k = vk. Under this way, at, we generate chains of isospectral extensions V (n1,i1,,...,nm,im) of the potential V ,

the w
(n1,i1,,...,nm,im)
k and the v

(n1,i1,,...,nm,im)
k,i being RS functions of the extended potential (see Eq(69) and Eq(77))

V (n1,i1,...,nm,im)(x; a) = V (x; a) + 2

m−1∑

j=1

(
v
(n1,i1,...,nj−1,ij−1)
nj ,ij

(x; a)
)′

(87)

= V (x; a) + 2 (logW (φn1,i1 , ..., φnm,im | x))′′ (88)

associated respectively to the eigenvalues Ek and Ek,i.
The corresponding eigenfunctions are given by (see Eq(71) and Eq(76))





ψ
(n1,i1,...,nm,im)
k (x; a) =

W

(

φ
(n1,i1,...,nm−1,im−1)
nm,im

,ψ
(n1,i1,...,nm−1,im−1)
k

|x

)

φ
(n1,i1,...,nm−1,im−1)
nm,im

(x;a)
=

W(φn1,i1 ,...,φnm,im ,ψk|x)
W(φn1,i1 ,...,φnm,im |x)

φ
(n1,i1,...,nm,im)
k,i (x; a) =

W

(

φ
(n1,i1,...,nm−1,im−1)
nm,im

,φ
(n1,i1,...,nm−1,im−1)
k,i

|x

)

φ
(n1,i1,...,nm−1,im−1)
nm,im

(x;a)
=

W(φn1,i1 ,...,φnm,im ,φk,i|x)
W(φn1,i1 ,...,φnm,im |x)

.

(89)

Suppose that at the step m − 1 all the extended potentials in the chain are regular and strictly isospectral.
The problem is now to control the regularity of the potential V (n1,i1,...,nm,im) and of its physical eigenstates

ψ
(n1,i1,,...,nm,im)
k as well as its strict isospectrality with V (n1,i1,...,nm−1,im−1). This is achieved if the unphysical eigen-

function φ
(n1,i1,...,nm−1,im−1)
nm,im

is nodeless and if 1/φ
(n1,i1,...,nm−1,im−1)
nm,im

is not in the set of physical eigenstates.
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The Bôcher’s theorem guarantees that the v
(n1,i1,...,nj−1,ij−1)
nj ,ij

is at most singular in one point. The regularity of the

extended potential V (n1,i1,...,nm,im) and its strict isospectrality with the preceding one in the chain are then satisfied as

soon as the unphysical eigenfunction associated to the DBT A(v
(n1,i1,,...,nm−1,im−1)
nm,im

) satisfies the appropriate boundary
conditions, which was laready the argument used above in the one step case. Namely, the strict isospectrality and the

regularity are satisfied when φ
(n1,i1,...,nm−1,im−1)
nm,im

tends to infinity at a limit of the interval and to zero at the other
limit of the definition interval.

B. Application to the isotonic oscillator

In the case of the isotonic oscillator, there are three type of regularization transformations Γi, i = +,−, 3 associated
respectively to the three series of EOP L1, L2 and L3. At each step we can a priori use any of the three type if
regularized RS function. However, since the use of DBT associated to RS functions of the L3 series leads only to quasi
isospectrality, the argument above is no more valid. Consequently, in the following we exclude this case and consider
only DBT built from the RS functions of the L1 or L2 series. Note that for j = +,−, we can write synthetically (see
Eq(31) and Eq(44))

{
En,j (ω, a) = −2ω (a+ j (n+ 1/2))
φn,j(x;ω, a) = φ0,j(x;ω, a)L

jα
n (−jz) , (90)

with

φ0,j(x;ω, a) ∼ xjα+1/2 exp (jz/2) , (91)

where α is supposed to statisfy the constraint α > −jn.
As for the corresponding RS functions, they are

vn,j(x;ω, a) = v0,j(x;ω, a)− j
L
jα+1
n−1 (−jz)
L
jα
n (−jz)

, j = ±, (92)

with

v0,j(x;ω, a) = − 1

x
(j (z + α) + 1/2) . (93)

We have then to ensure the regularity and the strict isospectrality of the potentials V (n1,i1,...,nm,im)(x;ω, a) on the

positive half line. As mentioned above, this is achieved if each φ
(n1,i1,...,nj−1,ij−1)
nj ,ij

(x;ω, a) satisfies the appropriate

boundary conditions on ]0,+∞[, that is, if it tends to zero at one end and ±∞ at the other end of this interval.
Indeed, in this case its inverse cannot be a physical eigenstate and, from Bôcher’s theorem it cannot have any zero
on ]0,+∞[. From Eq(82), we see that in the present case

φ
(n1,i1,...,nm−1,im−1)
nm,im

(x; a) = φ0,im (x; a)R(n1,i1,,...,nm,im) (x; a) , (94)

where

R(n1,i1,,...,nm,im) (x; a) = L
imα
nm

(−imz)
∆(n1,i1,,...,nm,im) (x; a)

∆(n1,i1,,...,nm−1,im−1) (x; a)
(95)

is a rational function. Due to the presence of the exponential in φ0,im , the behaviour at infinity of φ
(n1,i1,...,nm−1,im−1)
nm,im

is the same as for φ0,im , namely
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


φ
(n1,i1,...,nm−1,im−1)
nm,+ (x;ω, a) →

x→+∞
±∞

φ
(n1,i1,...,nm−1,im−1)
nm,− (x;ω, a) →

x→+∞
0.

(96)

The absence of node for φ
(n1,i1,...,nm−1,im−1)
nm,im

and the strict isospectrality between V (n1,i1,...,nm−1,im−1) and

V (n1,i1,...,nm,im), are simultaneously ensured if and only if we have





φ
(n1,i1,...,nm−1,im−1)
nm,+ (x;ω, a) →

x→0
0

φ
(n1,i1,...,nm−1,im−1)
nm,− (x;ω, a) →

x→0
±∞.

(97)

C. Two-step DBT

Before to consider the general case, we first consider the two-step case. We then have to check that the unphysical

eigenstates φ
(n1,i1)
n2,i2

satisfy the appropriate boundary conditions. Using Eq(78), we have

W (φn1,i1 , φn2,i2 | x) = φn1,i1 (x; a)φn2,i2 (x; a)∆
(n1,i1,n2,i2) (x; a) (98)

with α > −ijnj , j = 1, 2 and where

∆(n1,i1,n2,i2) (x; a) = (vn2,i2 (x; a)− vn1,i1 (x; a)) (99)

=
2

xLi1αn1 (−i1z)Li2αn2 (−i2z)

(
εi1,i2 (z + α)Li1αn1

(−i1z)Li2αn2
(−i2z) + z

∣∣∣∣
L
i1α
n1

(−i1z) L
i2α
n2

(−i2z)
i1L

i1α+1
n1−1 (−i1z) i2L

i2α+1
n2−1 (−i2z)

∣∣∣∣

∼
x→0

2

x
(
n1+i1α
n1

)(
n2+i2α
n2

)
(
αεi1,i2

(
n1 + i1α

n1

)(
n2 + i2α

n2

)
+ z

∣∣∣∣∣

(
n1+i1α
n1

) (
n2+i2α
n2

)

i1
(
n1+i1α
n1−1

)
i2
(
n2+i2α
n2−1

)
∣∣∣∣∣+O(z2)

)
,

since

Lαk (0) =

(
k + α

k

)
=

(k + α) ... (1 + α)

k!
. (100)

If i1 = i2 = i, then

∆(n1,i,n2,i) (x; a) ∼
x→0

ix

∣∣∣∣∣

(
n1+iα
n1

) (
n2+iα
n2

)
(
n1+iα
n1−1

) (
n2+iα
n2−1

)
∣∣∣∣∣ ∼
x→0

x (101)

and (see Eq(82))

φ
(n1,i)
n2,i

(x;ω, a) = φn2,i (x; a)∆
(n1,i,n2,i) (x; a) ∼

x→0
xiα+3/2, (102)

that is,





φ
(n1,+)
n2,+ (x;ω, a) ∼

x→0
xa+1 → 0, if a > 1

φ
(n1,−)
n2,− (x;ω, a) ∼

x→0
x2−a → ∞, if a > 2

. (103)

If i1 = −i2 = −i, then

∆(n1,−i,n2,i) (x; a) ∼
x→0

2

x
α (104)
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and

φ
(n1,−i)
n2,i

(x;ω, a) = φn2,i (x;ω, a)∆
(n1,−i,n2,i) (x; a) ∼

x→0
xiα−1/2, (105)

that is,





φ
(n1,−)
n2,+ (x;ω, a) ∼

x→0
xα−1/2 = xa → 0

φ
(n1,+)
n2,− (x;ω, a) ∼

x→0
x−α−1/2 = x−a → ∞

, if a > 1. (106)

When a > sup(2,−i1n1) , we have the correct asymptotic behaviour which ensures the regularity of
V (n1,i1,n2,i2)(x;ω, a) and V (n1,i1)(x;ω, a) as their strict isospectrality with V (x;ω, a) for every choice of (n1, i1, n2, i2)
with n1 6= n2.
We then obtain a chain with two strictly isospectral regular successive extensions of V

V
A(vn1,i1 )

֌ V (n1,i1)
A(v

(n1,i1)
n2,i2

)

֌ V (n1,i1,n2,i2). (107)

Under the above condition, the eigenstates of V (n1,i1,n2,i2) are given by

ψ
(n1,i1,n2,i2)
k (x; a) =

W (φn1,i1 , φn2,i2 , ψk | x)
W (φn1,i1 , φn2,i2 | x) , (108)

where, using Eq(74)

W (φn1,i1 , φn2,i2 , ψk | x) = W
(
φ0,i1(x;ω, a)L

i1α
n1

(−i1z) , φ0,i2(x;ω, a)Li2αn2
(−i2z) , ψ0(x;ω, a)L

α
k (z) | x

)
(109)

= (ψ0(x;ω, a))
3
W
(
δ0,i1(x)L

i1α
n1

(−i1z) , δ0,i2(x)Li2αn2
(−i2z) ,Lαk (z) | x

)
,

with

δ0,j(z) =
φ0,j(x;ω, a)

ψ0(x;ω, a)
=

{
ez, if j = +(

2
ω

)−α
z−α, if j = −. (110)

Using [47]

W (y1, ..., ym | x) =
(
dz

dx

)m(m−1)/2

W (y1, ..., ym | z) , (111)

this gives

W (φn1,i1 , φn2,i2 , ψk | x) = (ωxψ0(x;ω, a))
3W

(
δ0,i1(x)L

i1α
n1

(−i1z) , δ0,i2(x)Li2αn2
(−i2z) ,Lαk (z) | z

)
. (112)

In the same manner

W (φn1,i1 , φn2,i2 | x) = W
(
φ0,i1(x;ω, a)L

i1α
n1

(−i1z) , φ0,i2(x;ω, a)Li2αn2
(−i2z) | x

)
(113)

= ωx (φ0,i(x;ω, a))
2W

(
δi,i1(x)L

i1α
n1

(−i1z) , δi,i2(x)Li2αn2
(−i2z) | z

)
,

i = ±, with
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δi,j(z) =
φ0,j(x;ω, a)

φ0,i(x;ω, a)
=

{
1, if j = i(

2
ω

)−iα
z−iαe−iz, if j = −i. (114)

We can make use of the following identities [50]





(Lαn (z))
′
= −L

α+1
n−1 (z)

(zαLαn (z))
′
= (n+ α) zα−1

L
α−1
n (z)

(e−zLαn (z))
′
= −e−zLα+1

n (z)

(zαe−zLαn (z))
′
= (n+ 1) zα−1e−zLα−1

n+1 (z)

(115)

to obtain

W (φn1,+, φn2,+, ψk | x) = ω3x3(a+1)e−3z/2W
(
ezLαn1

(−z) , ezLαn2
(−z) ,Lαk (z) | z

)
(116)

= ω3x3(a+1)ez/2

∣∣∣∣∣∣

L
α
n1

(−z) L
α
n2

(−z) L
α
k (z)

L
α+1
n1

(−z) L
α+1
n2

(−z) −L
α+1
k−1 (z)

L
α+2
n1

(−z) L
α+2
n2

(−z) L
α+2
k−2 (z)

∣∣∣∣∣∣

and

W (φn1,+, φn2,+ | x) = ωx2a+1ez
∣∣∣∣

L
α
n1

(−z) L
α
n2

(−z)
L
α+1
n1−1 (−z) L

α+1
n2−1 (−z)

∣∣∣∣ , (117)

that is,

ψ
(n1,+,n2,+)
k (x; a) ∼ xa+2e−z/2

∣∣∣∣∣∣

L
α
n1

(−z) L
α
n2

(−z) L
α
k (z)

L
α+1
n1

(−z) L
α+1
n2

(−z) −L
α+1
k−1 (z)

L
α+2
n1

(−z) L
α+2
n2

(−z) L
α+2
k−2 (z)

∣∣∣∣∣∣
∣∣∣∣

L
α
n1

(−z) L
α
n2

(−z)
L
α+1
n1−1 (−z) L

α+1
n2−1 (−z)

∣∣∣∣
. (118)

Proceeding in a similar way we find

W (φn1,−, φn2,−, ψk | x) (119)

= ω3

(
2

ω

)−2α

x3(a+1)e−3z/2z−3αW
(
L
−α
n1

(z) ,L−α
n2

(z) , zαLαk (z) | z
)

∼ x3(a+1)e−3z/2z−3α

∣∣∣∣∣∣

L
−α
n1

(z) L
−α
n2

(−z) zαLαk (z)
−L

−α+1
n1−1 (z) −L

−α+1
n2−1

(−z) (k + α)zα−1
L
α−1
k (z)

L
−α+2
n1−2 (z) L

−α+2
n2−2 (z) (k + α)(k + α− 1)zα−2

L
α−2
k (z)

∣∣∣∣∣∣

∼ x−a+1e−3z/2

∣∣∣∣∣∣

L
−α
n1

(z) L
−α
n2

(−z) z2Lαk (z)
−L

−α+1
n1−1 (z) −L

−α+1
n2−1

(−z) (k + α)zLα−1
k (z)

L
−α+2
n1−2 (z) L

−α+2
n2−2 (z) (k + α)(k + α− 1)Lα−2

k (z)

∣∣∣∣∣∣

and

W (φn1,−, φn2,− | x) ∼ x3−2ae−z
∣∣∣∣

L
−α
n1

(z) L
−α
n2

(z)
L
−α+1
n1−1 (z) L

−α+1
n2−1 (z)

∣∣∣∣ , (120)

that is,

ψ
(n1,−,n2,−)
k (x; a) ∼ xa−2e−z/2

∣∣∣∣∣∣

L
−α
n1

(z) L
−α
n2

(−z) z2Lαk (z)
−L

−α+1
n1−1 (z) −L

−α+1
n2−1

(−z) (k + α)zLα−1
k (z)

L
−α+2
n1−2 (z) L

−α+2
n2−2 (z) (k + α)(k + α− 1)Lα−2

k (z)

∣∣∣∣∣∣
∣∣∣∣

L
−α
n1

(z) L
−α
n2

(z)
L
−α+1
n1−1 (z) L

−α+1
n2−1 (z)

∣∣∣∣
. (121)
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Also

W (φn1,+, φn2,−, ψk | x) (122)

= ω3

(
2

ω

)−α

x3(a+1)e−3z/2W
(
ezLαn1

(−z) , z−αL−α
n2

(z) ,Lαk (z) | z
)

∼ xae−z/2

∣∣∣∣∣∣

L
−α
n1

(−z) z2L−α
n2

(z) L
α
k (z)

L
α+1
n1

(−z) (n2 − α)zL−α+1
n2

(z) −L
α+1
k−1 (z)

L
α+2
n1

(−z) (n2 − α)(n2 − α− 1)L−α+2
n2

(z) L
α+2
k−2 (z)

∣∣∣∣∣∣

and

W (φn1,+, φn2,− | x) = ω

(
2

ω

)−α

x2a+1ezW
(
L
α
n1

(−z) , z−αe−zL−α
n2

(z) | z
)

(123)

∼
∣∣∣∣

L
α
n1

(−z) zL−α
n2

(z)
L
α+1
n1−1 (−z) (n2 + 1)Lα+1

n2−1 (z)

∣∣∣∣ ,

that is,

ψ
(n1,+,n2,−)
k (x; a) ∼ xae−z/2

∣∣∣∣∣∣

L
−α
n1

(−z) z2L−α
n2

(z) L
α
k (z)

L
α+1
n1

(−z) (n2 − α)zL−α+1
n2

(z) −L
α+1
k−1 (z)

L
α+2
n1

(−z) (n2 − α)(n2 − α− 1)L−α+2
n2

(z) L
α+2
k−2 (z)

∣∣∣∣∣∣
∣∣∣∣

L
α
n1

(−z) zL−α
n2

(z)
L
α+1
n1−1 (−z) (n2 + 1)Lα+1

n2−1 (z)

∣∣∣∣
. (124)

If a > 2, all these states satisfy the physical boundary conditions ψ
(n1,i1,n2,i2)
k (0; a) = ψ

(n1,i1,n2,i2)
k (+∞; a) = 0.

They are of the following form

ψ
(n1,i1,n2,i2)
k (x; a) = ψ0(x; a+ i1 + i2)

P
(n1,i1,n2,i2)
k (x; a)

Q(n1,i1,n2,i2)(x; a)
, (125)

the Q(n1,i1,n2,i2) and P
(n1,i1,n2,i2)
k being polynomials given by





Q(n1,+,n2,+)(x; a) =

∣∣∣∣
L
α
n1

(−z) L
α
n2

(−z)
L
α+1
n1−1 (−z) L

α+1
n2−1 (−z)

∣∣∣∣

Q(n1,−,n2,−)(x; a) =

∣∣∣∣
L
−α
n1

(z) L
−α
n2

(z)
L
−α+1
n1−1 (z) L

−α+1
n2−1 (z)

∣∣∣∣

Q(n1,+,n2,−)(x; a) =

∣∣∣∣
L
α
n1

(−z) zL−α
n2

(z)
L
α+1
n1−1 (−z) (n2 + 1)Lα+1

n2−1 (z)

∣∣∣∣

(126)

and





P
(n1,+,n2,+)
k (x; a) =

∣∣∣∣∣∣

L
α
n1

(−z) L
α
n2

(−z) L
α
k (z)

L
α+1
n1

(−z) L
α+1
n2

(−z) −L
α+1
k−1 (z)

L
α+2
n1

(−z) L
α+2
n2

(−z) L
α+2
k−2 (z)

∣∣∣∣∣∣

P
(n1,−,n2,−)
k (x; a) =

∣∣∣∣∣∣

L
−α
n1

(z) L
−α
n2

(−z) z2Lαk (z)
−L

−α+1
n1−1 (z) −L

−α+1
n2−1

(−z) (k + α)zLα−1
k (z)

L
−α+2
n1−2 (z) L

−α+2
n2−2 (z) (k + α)(k + α− 1)Lα−2

k (z)

∣∣∣∣∣∣

P
(n1,+,n2,−)
k (x; a) =

∣∣∣∣∣∣

L
−α
n1

(−z) z2L−α
n2

(z) L
α
k (z)

L
α+1
n1

(−z) (n2 − α)zL−α+1
n2

(z) −L
α+1
k−1 (z)

L
α+2
n1

(−z) (n2 − α)(n2 − α− 1)L−α+2
n2

(z) L
α+2
k−2 (z)

∣∣∣∣∣∣
.

(127)
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IV. GENERAL CASE

Consider now the general case of a m-step DBT. We suppose that we have built a chain of m− 1 regular strictly
isospectral potentials

V
A(vn1,i1 )

֌ V (n1,i1)
A(v

(n1,i1)
n2,i2

)

֌ ...
A(v

(n1,i1,,...,nm−2,im−2)
nm−1,im−1

)

֌ V (n1,i1,...,nm−1,im−1). (128)

We have to determine what is the constraint to implement for the unphysical eigenfunction φ
(n1,i1,...,nm−1,im−1)
nm,im

in order that it satisfies the good boundary conditions Eq(97) necessary to build a regular and strictly isospectral
extension V (n1,i1,...,nm,im) at the next step.
We prove by induction the following result for the unphysical eigenfunctions of the potential obtained at the

(m− 1)
th

step

φ
(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a) ∼
x→0

xim(α+q(i1,...,im))−1/2 (129)

or





φ
(n1,i1,...,nm−1,im−1)
nm,+ (x;ω, a) ∼

x→0
x(α+q(i1,...,im))−1/2

(
φ̃
(n1,i1,...,nm−1,im−1)
nm,+ (0) +O(z)

)
, im = +

φ
(n1,i1,...,nm−1,im−1)
nm,− (x;ω, a) ∼

x→0
x−(α+q(i1,...,im))−1/2

(
φ̃
(n1,i1,...,nm−1,im−1)
nm,− (0) +O(z)

)
, im = −

, (130)

with φ̃
(n1,i1,...,nm−1,im−1)
nm,± (0) 6= 0 and where q (i1, ..., im) = q+ (i1, ..., im)−q− (i1, ..., im), q± (i1, ..., im) being the number

of ij equal to ± in the set (i1, ..., im). q± (i1, ..., im) can be viewed as the number of state of ”± charge” used in the
chain of DBT at the mth step and the difference q (i1, ..., im) as the total charge in this chain. We then have




φ
(n1,i1,...,nm−1,im−1)
nm,+ (x;ω, a) →

x→0
0, if a > −q (i1, ..., im−1,+) + 1 = −q (i1, ..., im−1)

φ
(n1,i1,...,nm−1,im−1)
nm,− (x;ω, a) →

x→0
∞, if a > −q (i1, ..., im−1,−) = 1− q (i1, ..., im−1) ,

(131)

which are necessary conditions in order that the potentials V (n1,i1,...,nm,+) and V (n1,i1,...,nm,−) respectively are regular
and strictly isospectral to V (n1,i1,,...,nm−1,im−1). Note that these constraints are independent of the nj but depend
only on the type of the states used to build the chain.
Refering to the results obtained in the 2-step case, we can verify this property is verified for m = 2 since

{
q (+,+) = −q (−,−) = 2
q (+,−) = q (−,+) = 0

. (132)

Suppose that Eq(129) is verified till the (m− 1)
th

step, that is,

φ
(n1,i1,...,nm−2,im−2)
n,j (x;ω, a) ∼

x→0
xj(α+q(i1,...,im−2,j))−1/2. (133)

Since V (n1,i1,...,nm−1,im−1) is supposed regular, φ
(n1,i1,...,nm−2,im−2)
nm−1,im−1

must satisfy the good boundary conditions Eq(97)

φ
(n1,i1,...,nm−2,im−2)
nm−1,+ (x;ω, a) ∼

x→0
x(α+q(i1,...,im−2)+1)−1/2 →

x→0
0, (134)

if im−1 = +, which implies a > −q (i1, ..., im−2,+) and

φ
(n1,i1,...,nm−2,im−2)
nm−1,+ (x;ω, a) ∼

x→0
x(α+q(i1,...,im−2)+1)−1/2 →

x→0
∞, (135)

if im−1 = −, which implies a > 1− q (i1, ..., im−2,−).
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Since φ
(n1,i1,...,nm−2,im−2)
nm−1,im−1

and φ
(n1,i1,...,nm−2,im−2)
k,i are both eigenfunctions of Ĥ(n1,i1,...,nm−2,im−2), using the wron-

skian theorem [51] in Eq(89) we can write the unphysical eigenfunctions at the (m− 1)
th

step as

φ
(n1,i1,...,nm−1,im−1)
k,i (x;ω, a) =

(
Enm−1,im−1 − Ek,i

) ∫ x
x0
dξφ

(n1,i1,...,nm−2,im−2)
nm−1,im−1

(ξ;ω, a)φ
(n1,i1,...,nm−2,im−2)
k,i (ξ;ω, a)

φ
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a)
(136)

+
W
(
φ
(n1,i1,...,nm−2,im−2)
nm−1,im−1

, φ
(n1,i1,...,nm−2,im−2)
k,i | x0

)

φ
(n1,i1,...,nm−1,im−1)
nm−1,im−1

(x;ω, a)
.

We have to consider four cases corresponding to the four possible couples (im−1, i).
Consider first the case i = im−1 = + in which we take x0 = 0. Using Eq(134), Eq(136) gives

φ
(n1,i1,...,nm−2,im−2,nm−1,+)
k,+ (x;ω, a) =

(
Enm−1,+ − Ek,+

)
∫ x
0 dξφ

(n1,i1,...,nm−2,im−2)
nm−1,+ (ξ;ω, a)φ

(n1,i1,...,nm−2,im−2)
k,+ (ξ;ω, a)

φ
(n1,i1,...,nm−2,im−2)
nm−1,+ (x;ω, a)

(137)

=
(
Enm−1,+ − Ek,+

)
x(α+q(i1,...,im−2)+1/2)+1 (const+O(z))

∼
x→0

x(α+q(i1,...,im−2,+,+))−1/2,

In the case i = im−1 = − in which we take x0 = +∞, we have similarly with Eq(135) and Eq(136)

φ
(n1,i1,...,nm−2,im−2,nm−1,−)
k,− (x;ω, a) =

(
Enm−1,− − Ek,−

) −
∫ +∞

x
dξφ

(n1,i1,...,nm−2,im−2)
nm−1,− (ξ;ω, a)φ

(n1,i1,...,nm−2,im−2)
k,− (ξ;ω, a)

φ
(n1,i1,...,nm−2,im−2)
nm−1,− (x;ω, a)

(138)

=
(
Enm−1,− − Ek,−

)
x−(α+q(i1,...,im−2)−1)−1/2+1 (const+O(z))

∼
x→0

x−(α+q(i1,...,im−2,−,−))−1/2,

It remains to consider the cases i = + = −im−1 and i = − = −im−1. Since φ
(n1,i1,...,nm−2,im−2)
n,+ and

φ
(n1,i1,...,nm−2,im−2)
n,− have not the same behavior nor at 0 nor at ∞, formula Eq(136) is not adapted and we pro-

ceed by a direct calculation of the wronskian W
(
φ
(n1,i1,...,nm−2,im−2)
nm−1,− , φ

(n1,i1,...,nm−2,im−2)
k,+ | x

)
. Using (see Eq(130))





φ
(n1,i1,...,nm−2,im−2)
k,+ (x;ω, a) ∼

x→0
x(α+q(i1,...,im−2))+1/2

(
φ̃
(n1,i1,...,nm−2,im−2)
k,+ (0) +O(z)

)

φ
(n1,i1,...,nm−2,im−2)
nm−1,− (x;ω, a) ∼

x→0
x−(α+q(i1,...,im−2))+1/2

(
φ̃
(n1,i1,...,nm−2,im−2)
nm−1,− (0) +O(z)

)
,

(139)

we obtain

W
(
φ
(n1,i1,...,nm−2,im−2)
nm−1,− , φ

(n1,i1,...,nm−2,im−2)
k,+ | x

)

∼
x→0

((α+ q (i1, ..., im−2)) + 1/2) φ̃
(n1,i1,...,nm−2,im−2)
k,+ (0)φ̃

(n1,i1,...,nm−2,im−2)
nm−1,− (0) + O(z) (140)

− (− (α+ q (i1, ..., im−2)) + 1/2) φ̃
(n1,i1,...,nm−2,im−2)
k,+ (0)φ̃

(n1,i1,...,nm−2,im−2)
nm−1,− (0) +O(z),

that is,

W
(
φ
(n1,i1,...,nm−2,im−2)
nm−1,− , φ

(n1,i1,...,nm−2,im−2)
k,+ | x

)

∼
x→0

2 (α+ q (i1, ..., im−2)) φ̃
(n1,i1,...,nm−2,im−2)
k,+ (0)φ̃

(n1,i1,...,nm−2,im−2)
nm,− (0) +O(z). (141)

Consequently
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φ
(n1,i1,...,nm−2,im−2,nm−1,−)
k,+ (x;ω, a)

∼
x→0

2 (α+ q (i1, ..., im−2)) φ̃
(n1,i1,...,nm−2,im−2)
k,+ (0)x(α+q(i1,...,im−2))−1/2 (1 +O(z)) (142)

∼
x→0

x(α+q(i1,...,im−2,−,+))−1/2

and

φ
(n1,i1,...,nm−2,im−2,nm−1,+)
k,− (x;ω, a) =

W
(
φ
(n1,i1,...,nm−2,im−2)
nm−1,+ , φ

(n1,i1,...,nm−2,im−2)
k,− | x

)

φ
(n1,i1,...,nm−2,im−2)
nm,+ (x;ω, a)

(143)

∼
x→0

−2 (α+ q (i1, ..., im−2)) φ̃
(n1,i1,...,nm−2,im−2)
k,− (0)x−(α+q(i1,...,im−2))−1/2 (1 +O(z))

∼
x→0

x−(α+q(i1,...,im−2,+,−))−1/2.

The result Eq(129) is then still valid at the mth step.
We still have to verify that this condition is compatible with the regularity of the preceding potentials in the chain.

For that, note that at themth step the explicit expression of the resulting potential and its associated eigenfunctions are
a priori independent of the ordering chosen for the sequence . This means that we can consider several chains leading to
the same extended potential. Consider the case where in the set (n1, i1, ..., nm−2, im−2, nm−1, im−1) we group first all

the nj associated to a positive ij, namely we arrange the chain as
(
n′
1, i

′
1, ..., n

′
q+ , i

′
q+ , n

′
q++1, i

′
q++1, ..., n

′
m−1, i

′
m−1

)
=

(
n′
1,+, ..., n

′
q+ ,+, n

′
q++1,−, ..., n′

m−1,−
)
, where

(
n′
1, ..., n

′
m−1

)
is a permutation of (n1, ..., nm−1) and where q+ =

q+ (i1, ..., im−1).
Suppose first that q+ = m−1, that is, i′j = +, ∀j ∈ {1, ...,m− 1}. ∀j ∈ {1, ...,m− 1} we have 1−q+

(
i′1, ..., i

′
j

)
≤ 0

and since a > 1, the φ
(n′

1,i
′

1,...,n
′

j,i
′

j)
n′

j+1,i
′

j+1
are all nodeless implying the regularity of all the potentials V (n′

1,i
′

1,...,n
′

j,i
′

j) in the

chain.
Suppose now that q+ < m − 1, that is, i′m−1 = −. The condition a > 1 − q

(
i′1, ..., i

′
m−1

)
= 2 −

q
(
i′1, ..., i

′
m−2

)
> 1−q

(
i′1, ..., i

′
m−2

)
implies the absence of node for φ

(n′

1,i
′

1,...,n
′

m−2,i
′

m−2)
n′

m−1,−
and consequently the regularity

of V (n′

1,i
′

1,...,n
′

m−1,i
′

m−1).
We can iterate this reasoning to go backward along the chain and we see clearly that at each step, the opposite of

the ”total charge” decreases, ensuring the regularity of the associated potential. In this procedure, once we attain the
level q+, we have eliminated all the negative i′j and retrieve then the first case.
Consequently, if we satisfy the condition a > 1 − q (i1, ..., im−1) at the step m, we are not only ensured of the

regularity of the correspondingmth extension V (n1,i1,...,nm,im) but also of the existence of a chain of regular extensions
which leads to V (n1,i1,,...,nm,im).

V. EIGENSTATES

We can generalize the calculations made in the two-step case to determine explicit expressions for the eigenstates of
the successive extensions. For that we adopt the ordering mentioned above and consider the spectrum of the potential

V (n1,+,...,nq+
,+,nq++1,−,....,nm,−) where q+ = q+ (i1, ..., im). Using Eq(74) and Eq(111), we have

W
(
φn1,+, ..., φnq+

,+, ..., φnq++1,−, ..., φnm,−, ψk | x
)

(144)

= (ωx)m(m+1)/2 (ψ0(x;ω, a))
m+1W

(
δ0,+L

α
n1

(−z) , ..., δ0,+Lαnq+
(−z) , δ0,−L−α

nq++1
(z) , ..., δ0,−L

−α
nm

(z), Lαk (z) | x
)

∼ x(m+1)(m/2+a)e−(m+1)z/2W
(
ezLαn1

(−z) , ..., ezLαnq+
(−z) , z−αL−α

nq++1
(z) , ..., z−αL−α

nm
(z), Lαk (z) | x

)
,

that is, with Eq(115)
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W
(
φn1,+, ..., φnq+

,+, ..., φnq++1,−, ..., φnm,−, ψk | x
)

(145)

∼ x(m+1)(m/2+a)e(q+−(m+1)/2)zz−(m−q+)(α+m)

.

∣∣∣∣∣∣∣

Lαn1
(−z) ... Lαnq+

(−z) zmL−α
nq++1

(z) ... zmL−α
nm

(z) Lαk (z)

... ... ... ... ...
Lα+mn1

(−z) ... Lα+mnq+
(−z)

(
nq++1 − α−m+ 1

)
m−1

L−α−m
nq++1

(z) ... (nm − α−m+ 1)m−1 L
−α−m
nm

(z) (−1)
m
Lα+mk−m (z

where (x)n = x(x + 1)...(x+ n− 1) is the usual Pochhammer symbol.
In the same manner

W
(
φn1,+, ..., φnq+

,+, ..., φnq++1,−, ..., φnm,− | x
)

(146)

= (ωx)
m(m−1)/2

(φ0,+(x;ω, a))
m
W
(
Lαn1

(−z) , ..., Lαnq+
(−z) , δ+,−L−α

nq++1
(z) , ..., δ+,−L

−α
nm

(z) | x
)

∼ xm((m−1)/2+a)emz/2W
(
Lαn1

(−z) , ..., Lαnq+
(−z) , z−αe−zL−α

nq++1
(z) , ..., z−αe−zL−α

nm
(z) | x

)
,

that is,

W
(
φn1,+, ..., φnq+

,+, ..., φnq++1,−, ..., φnm,− | x
)

(147)

∼ xm((m−1)/2+a)z(m−q+)(−α−m+1))e−(m/2−q+)z

.

∣∣∣∣∣∣∣

Lαn1
(−z) ... Lαnq+

(−z) zm−1L−α
nq++1

(z) ... zm−1L−α
nm

(z)

... ... ... ...
Lα+m−1
n1−m+1 (−z) ... Lα+m−1

nq+
−m+1 (−z)

(
nq++1 + 1

)
m−1

L−α−m+1
nq++1+m−1 (z) ... (nm + 1)m−1 L

−α−m+1
nm+m−1(z)

∣∣∣∣∣∣∣
.

Eq(89) gives then

ψ
(n1,+,...,nq+

,+,nq++1,−,....,nm,−)
k (x;ω, a) ∼ ψ0(x;ω, a+ q (i1, ..., im))

P
(n1,+,...,nq+

,+,nq++1,−,....,nm,−)
k (z)

Q(n1,+,...,nq+
,+,nq++1,−,....,nm,−)(z)

, (148)

where the two polynomials Q(n1,+,...,nq+
,+,nq++1,−,....,nm,−) and P

(n1,+,...,nq+
,+,nq++1,−,....,nm,−)

k are given by

P
(n1,+,...,nq+

,+,nq++1,−,....,nm,−)
k (z) (149)

=

∣∣∣∣∣∣∣

Lαn1
(−z) ... Lαnq+

(−z) zmL−α
nq++1

(z) ... zmL−α
nm

(z) Lαk (z)

... ... ... ... ...
Lα+mn1

(−z) ... Lα+mnq+
(−z)

(
nq++1 − α−m+ 1

)
m−1

L−α−m
nq++1

(z) ... (nm − α−m+ 1)m−1 L
−α−m
nm

(z) (−1)
m
Lα+mk−m (z)

and

Q(n1,+,...,nq+
,+,nq++1,−,....,nm,−)(z) (150)

=

∣∣∣∣∣∣∣

Lαn1
(−z) ... Lαnq+

(−z) zm−1L−α
nq++1

(z) ... zm−1L−α
nm

(z)

... ... ... ...
Lα+m−1
n1−m+1 (−z) ... Lα+m−1

nq+
−m+1 (−z)

(
nq++1 + 1

)
m−1

L−α−m+1
nq++1+m−1 (z) ... (nm + 1)m−1 L

−α−m+1
nm+m−1(z)

∣∣∣∣∣∣∣
.

The ψ
(n1,i1,...,nm,im)
k are then obtained as the product of the modified ”gauge factor” (ie fundamental state of the

initial potential) ψ0(x;ω, a + q (i1, ..., im), multiplied by the ratio of two polynomials, the polynomial denominator
Q(n1,i1,...,nm,im) being common to all the eigenstates of the considered extension. The orthogonality condition on the

ψ
(n1,i1,...,nm,im)
k ensure that the P

(n1,i1,...,nm,im)
k (z) constitute an orthogonal family with respect to the weight

W (n1,i1,...,nm,im)(z) =
zα+q(i1,...,im)e−z

(
Q(n1,i1,...,nm,im)(z)

)2 .
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VI. SHAPE INVARIANCE

Consider a chain of regular strictly isospectral extensions

V
A(vn1,i1)

֌ V (n1,i1)
A(v

(n1,i1)
n2,i2

)

֌ ...
A(v

(n1,i1,,...,nm−1,im−1)
nm,im

)

֌ V (n1,i1,,...,nm,im), (151)

The superpartner of a potential V (n1,i1,...,nm,im)(x;ω, a) = V (n1,i1,...,nm−1,im−1)(x;ω, a) +

2
(
v
(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a)
)′

is defined as

Ṽ (n1,i1,...,nm,im)(x;ω, a) = V (n1,i1,...,nm,im)(x;ω, a) + 2
(
w

(n1,i1,...,nm,im)
0 (x;ω, a)

)′
, (152)

w
(n1,i1,...,nm,im)
0 (x;ω, a) being the RS function associated to the ground level of V (n1,i1,...,nm,im) (E0 (ω) = 0).
Since (see Eq(3))

w
(n1,i1,...,nm,im)
0 (x;ω, a) = −v(n1,i1,...,nm−1,im−1)

nm,im
(x;ω, a)− Enm,im(ω, a)

v
(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a)− w
(n1,i1,...,nm−1,im−1)
0 (x;ω, a)

,

(153)
we have

Ṽ (n1,i1,...,nm,im)(x;ω, a) = V (n1,i1,...,nm−1,im−1)(x;ω, a) (154)

−2

(
Enm,im(ω, a)

v
(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a)− w
(n1,i1,...,nm−1,im−1)
0 (x;ω, a)

)′

. (155)

Suppose that the potential V (n1,i1,...,nm−1,im−1) has the same shape invariance properties than V

Ṽ (n1,i1,...,nm−1,im−1)(x;ω, a) = V (n1,i1,...,nm−1,im−1)(x;ω, a) + 2
(
w

(n1,i1,...,nm−1,im−1)
0 (x;ω, a)

)′
(156)

= V (n1,i1,...,nm−1,im−1)(x;ω, a+ 1) + 2ω.

As shown in [22], this is effectively the case for m = 2. It results

Ṽ (n1,i1,...,nm,im)(x;ω, a) = V (n1,i1,...,nm−1,im−1)(x;ω, a+ 1) (157)

−2

(
Enm,im(ω, a)

v
(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a)− w
(n1,i1,...,nm−1,im−1)
0 (x;ω, a)

+ w
(n1,i1,...,nm−1,im−1)
0 (x;ω, a)

)′

+

= Ṽ (n1,i1,...,nm,im)(x;ω, a+ 1) + 2ω − 2
(
∆(n1,i1,...,nm,im)(x;ω, a)

)′
,

where

∆(n1,i1,...,nm,im)(x;ω, a) =
Enm,im(ω, a)

v
(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a)− w
(n1,i1,...,nm−1,im−1)
0 (x;ω, a)

(158)

+w
(n1,i1,...,nm−1,im−1)
0 (x;ω, a) + v

(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a+ 1).

Suppose also that

∆(n1,i1,...,nm−1,im−1)(x;ω, a) = 0, (159)

which again is verified for m = 2 [22]. We can then write



23

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a+1) = −w(n1,i1,...,nm−2,im−2)
0 (x;ω, a)− Enm−1,im−1 (ω, a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a)− w
(n1,i1,...,nm−2,im−2)
0 (x;ω, a)

.

(160)
Moreover





w
(n1,i1,...,nm−1,im−1)
0 (x;ω, a) = −v(n1,i1,...,nm−2,im−2)

nm−1,im−1
(x;ω, a)− Enm−1,im−1

(ω,a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω,a)−w
(n1,i1,...,nm−2,im−2)
0 (x;ω,a)

v
(n1,i1,...,nm−1,im−1)
nm,im

(x;ω, a) = −v(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a) +
Enm,im (ω,a)−Enm−1,im−1

(ω,a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω,a)−v
(n1,i1,...,nm−2,im−2)
nm,im

(x;ω,a)

(161)
and inserting Eq(161) and Eq(160) into Eq(158), we obtain

∆(n1,i1,...,nm,im)(x;ω, a) (162)

=
Enm,im(ω, a)

Enm,im (ω,a)−Enm−1,im−1
(ω,a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω,a)−v
(n1,i1,...,nm−2,im−2)
nm,im

(x;ω,a)
+

Enm−1,im−1
(ω,a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω,a)−w
(n1,i1,...,nm−2,im−2)
0 (x;ω,a)

−v(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a)− Enm−1,im−1 (ω, a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a)− w
(n1,i1,...,nm−2,im−2)
0 (x;ω, a)

−v(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a+ 1)− Enm,im (ω, a+ 1)− Enm−1,im−1 (ω, a+ 1)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a+ 1)− v
(n1,i1,...,nm−2,im−2)
nm,im

(x;ω, a+ 1)

=
Enm,im(ω, a)

Enm,im (ω,a)−Enm−1,im−1
(ω,a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω,a)−v
(n1,i1,...,nm−2,im−2)
nm,im

(x;ω,a)
+

Enm−1,im−1
(ω,a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω,a)−w
(n1,i1,...,nm−2,im−2)
0 (x;ω,a)

−v(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a)− Enm−1,im−1 (ω, a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a)− w
(n1,i1,...,nm−2,im−2)
0 (x;ω, a)

+w
(n1,i1,...,nm−2,im−2)
0 (x;ω, a) +

Enm−1,im−1 (ω, a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω, a)− w
(n1,i1,...,nm−2,im−2)
0 (x;ω, a)

− Enm,im (ω, a+ 1)− Enm−1,im−1 (ω, a+ 1)

Enm,im (ω,a)

v
(n1,i1,...,nm−2,im−2)
nm,im

(x;ω,a)−w
(n1,i1,...,nm−2,im−2)
0 (x;ω,a)

− Enm−1,im−1
(ω,a)

v
(n1,i1,...,nm−2,im−2)
nm−1,im−1

(x;ω,a)−w
(n1,i1,...,nm−2,im−2)
0 (x;ω,a)

.

But using Eq(90) we deduce

Enm,im (ω, a+ 1)− Enm−1,im−1 (ω, a+ 1) = Enm,im (ω, a)− Enm−1,im−1 (ω, a) , (163)

which after insertion in Eq(162) and a little elementary algebra gives

∆(n1,i1,...,nm,im)(x;ω, a) = 0. (164)

By induction, this property is verified for every m. Then Eq(157) becomes

Ṽ (n1,i1,...,nm,im)(x;ω, a) = Ṽ (n1,i1,...,nm,im)(x;ω, a+ 1) + 2ω, (165)

that is, the potential has also the same shape invariance properties than the isotonic potential. The translational
shape invariance of the isotonic potential is then hereditary in such chain of extensions.
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VII. CONCLUSION

We have shown that the ”generalized SUSY QM partnership” that we have previously elaborated in a one-step
scheme can be extended in a multi-step formulation. We have proven the necessary conditions to obtain chains of
regular extensions of the isotonic potential of arbitrary length and have given explicit expressions for their eigenstates.
We also established explicitely the hereditary character of the shape invariance properties of the isotonic potential
which are common to all the potentials in a given chain.
The case of the generic potentials of the second category of primary TSIP [24], namely Pöschl-Teller or Scarf

potentials, can be considered in the same way. This work is in progress and a forthcoming paper is in preparation.
For the first category exceptional TSIP, due to the strict isospectrality constraint, the only interesting case in which
we can envisage such chain of extensions is the ERKC potential [23]. This is the object of further investigations.
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