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Abstract 

A way of coupling digital image correlation (to measure displacement fields) and boundary 

element method (to compute displacements and tractions along a crack surface) is presented 

herein.  It allows for the identification of Young’s modulus and fracture parameters associated 

with a cohesive model.  This procedure is illustrated to analyze the latter for an ordinary 

concrete in a three-point bend test on a notched beam.  In view of measurement uncertainties, 

the results are deemed trustworthy thanks to the fact that numerous measurement points are 

accessible and used as entries to the identification procedure.   

 

 

Keywords: boundary elements, cohesive crack, digital image correlation, inverse analysis, 

parameter identification.  
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Nomenclature 

Γ  external boundary of domain Ω 

1Γ , e
1Γ  boundary, external boundary of domain 1Ω  

iΓ   interface between domains 1Ω  and 2Ω  

∆u, ∆uc crack opening displacement, critical value 

µ   Lamé’s coefficient  

ν  Poisson’s ratio 

Ω  considered domain 

1Ω , 2Ω  two sub-domains separated by an interface 

jΩ , kΩ  sub-domain 1Ω  or 2Ω , sub-domain 2Ω  or 1Ω  

σu  displacement uncertainty 

A parameter 

][ u
iA  global matrix 

}{ mp
ib

−  global vector 

ik
C  free term of the boundary integral equations 

E Young’s modulus 

tf , c
tf  opening traction on the interface, critical traction 

F function defining the cohesive law 
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Gc toughness 

[ u
iG ], [ u

iG′ ] matrices obtained by carrying out the integrals over boundary and interface 

elements for unknown displacements and tractions on the interface 

[ p
k

G ], [ u
kG ] matrices obtained by carrying out the integrals over boundary and interface 

elements for prescribed, unknown tractions 

[ p
k

G′ ], [ u
kG′ ] matrices obtained by carrying out the integrals over boundary and interface 

elements for prescribed, unknown tractions when considering inner points 

[ kkG ], [
kj

G ] matrices obtained by carrying out integrals over boundary and interface 

elements  

[ kkG′ ], [ kjG′ ]  matrices obtained by carrying out the integrals over boundary and interface 

elements when considering internal points 

[ u
iH ], [ u

iH ′ ]  matrices obtained by carrying out the integrals over boundary and interface 

elements for unknown displacements and tractions on the interface 

[ p
k

H ], [ u
kH ]  matrices obtained by carrying out the integrals over boundary and interface 

elements for prescribed, unknown displacements 

[ u
kH ′ ], [ p

k
H ′ ] matrices obtained by carrying out the integrals over boundary and interface 

elements for prescribed, unknown tractions when considering inner points 

[
kk

H ], [
kj

H ]  matrices obtained by carrying out the integrals over boundary and interface 

elements 

[ kkH ′ ], [ kjH ′ ]  matrices obtained by carrying out the integrals over boundary and interface 

elements when considering internal points 
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Kc critical stress intensity factor 

l element size in the DIC analysis 

M point on the boundary and in the domain 

*
ikp   fundamental Kelvin’s solutions for the tractions induced by a unit point load 

applied to a collocation point S on the external boundary 

k
p  boundary traction 

{
k

p }, {
kj

p }  vectors containing the boundary and interface tractions 

}{ p
k

p , }{ u
kp  prescribed and unknown tractions on the boundary 

}{ u
ip  unknown tractions on the interface 

S collocation point 

{ iu }  vectors containing the nodal displacements of internal points 

*
iku   fundamental Kelvin’s solutions for the displacements induced by a unit point 

load applied to a collocation point S on the external boundary 

u
iu  unknown displacements on the interface 

k
u  boundary displacement 

{
k

u }, {
kj

u } vectors containing the boundary and interface nodal displacements 

}{ p
k

u , }{ u
ku  prescribed and unknown nodal displacements on the boundary 

{ m
ku } measured displacements for internal points in domain  

}{ mp
iv

−  contribution of the known data 
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}{ mp
k

v
−  contribution of the known data 

w width of the sample 

}{ mp
iw

−  contribution of the known data 

}{ mp
k

w
−  contribution of the known data 

}{ u
ix  vector gathering all unknowns (displacements and tractions) 
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1. Introduction 

One way of numerically analyzing cracked samples or structures is to resort to cohesive 

models.  Since the pioneering works of Dugdale [1], Barenblatt [2] and Hillerborg et al. [3, 4], 

these models have become very popular [5, 6 , 7, 8 , 9], in particular when dealing with 

concrete materials.  One of the open questions concerns the identification of cohesive laws in 

a robust way since, in many instances, only strain and load data are available [10].  In addition 

to global data, pictures shot at different scales are also used in a qualitative way [11, 12, 13, 

14] or a more quantitative way by measuring deflections [15, 16] and deformed shapes [17].  

Full-field measurements provide very useful data to identify interface behaviors [18, 19].  In 

the present paper, it is proposed to use displacement measurements to calibrate the cohesive 

law.  The calibration is performed by resorting to an inverse analysis using the kinematic data 

as inputs. 

Inverse analyses are nowadays a very important tool in many engineering fields.  In 

solid mechanics, the technique is applied mainly to identify, for instance, material properties, 

boundary conditions, material degradation, crack formation, which are parameters needed to 

check the structural safety.  Identification or inversion procedures are mainly applied by using 

finite-element-based procedures [20] coupled with full-field measurements [21].  Full-field 

measurements [22] are generally performed by analyzing the motion and deformation of 

external surfaces (e.g., by resorting to digital image correlation (DIC) [23]).  This specific 

feature motivates the work presented herein that aims at combining displacement fields 

measured by DIC and simulations with the boundary element method (BEM) to extract the 

parameters of a cohesive law describing cracking in concrete. 

As for many applications in engineering, the boundary element method (BEM) is a 

numerical technique very appropriate to perform inverse analyses.  The method is 

recommended when a fine analysis is required only over a small region of the body.  The 
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method is also very accurate for problems in which high gradients may occur.  These 

situations are often found in inverse problems (e.g., when dealing with damage and cracks).  

There are several works developed so far using boundary element methods for parameter 

identification in structural analyses [24, 25, 26, 27, 28] in the context of deterministic 

approaches.  There are also several other developed works based on stochastic techniques [29, 

30, 31].  In all these works, BEM-based procedures are proposed to deal with material 

property identification in solid mechanics.  However, experimental data were only used in the 

work of Tin-Loi and Que [30] to show the efficiency of the developed method.  

In this work a simple technique based on the BEM singular formulation is used to 

identify cohesive crack parameters of a concrete beam that is tested up to complete failure.  

BEM crack singular formulations [32] may also be considered.  Three-point bend test is 

performed on a notched specimen (Section 3).  To perform the inverse analysis, only singular 

equations (i.e., based upon a kinematic formulation [33, 34]) are used in the region monitored 

during the experiment by a camera (Section 2).  The latter provides pictures that are used to 

measure displacement fields by DIC that are entries to the inverse analysis.  The BEM 

algebraic system of equations enables for the computation of crack openings and tractions for 

which least squares are used to extract Young’s modulus and the parameters of a linear 

cohesive law (Section 4). 

2. Boundary element approach for inverse analyses 

For an elastic multi-region body that, for the sake of simplicity, is assumed to be formed of 

two regions 1Ω  and 2Ω  (Figure 1) separated by an interface (e.g., a crack) the following 

integral boundary equation expresses equilibrium of each region 

 Γ=Γ+ ∫∫
ΓΓ

dMpMSudMuMSpSuSC
kikkikkik

)(),()(),()()( **  (1) 
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where *
ikp  and *

iku  are fundamental Kelvin’s solutions for the tractions and displacements 

induced by a unit point load applied to a collocation point S on the boundary, inside or outside 

the domain, M points on the boundary and in the domain, respectively, and 
ik

C  is the well-

known free term of the boundary integral equations [35].  Boundary 1Γ  of domain 1Ω  is 

given by the union of the external contour e
1Γ  and the interface iΓ  with domain 2Ω , i.e., 

ie Γ∪Γ=Γ 11 .  The cohesive law will be anlyzed along the interface iΓ . 

For direct analyses, Equation (1) is transformed into an algebraic system of equations 

that is solved directly after taking into account the boundary conditions.  To obtain the 

algebraic representations the boundary and the interface of sub-domains 1Ω  and 2Ω  are 

discretized by using elements and approximate displacements and tractions along them.  For a 

given sub-region kΩ  the following algebraic representations are obtained 

 








=








kj

k
kjkk

kj

k
kjkk p

p
GG

u

u
HH ][][  (2) 

where jΩ is the other sub-domain, matrices ][ kkH , ][ kkG , ][ kjH  and ][ kjG  are obtained by 

carrying out the integrals over boundary and interface elements, respectively, vectors }{ ku , 

}{ kju  contain the boundary and interface nodal displacements, while }{ kp  and }{ kjp  contain 

the boundary and interface tractions. 

Similarly, the algebraic relationships written conveniently only for internal points are 

given by 

 








′′+








′′−=
kj

k
kjkk

kj

k
kjkki p

p
GG

u

u
HHu ][][}{  (3) 
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Equations (2) and (3), the equilibrium and displacement compatibility at all interface nodes 

are needed to solve the problem and to obtain the displacement field inside the solid where 

required. 

In the sequel, the inverse procedure based on a BEM formulation is applied to identify 

cohesive law parameters.  Thus, the sub-region equations given above for the two sub-regions 

are further simplified.  Both sub-regions are assumed to be made of the same (elastic) material 

described by Lamé’s coefficient µ  and Poisson’s ratio ν .  They can be easily found either by 

using appropriate tests with the uncracked material or by applying, say, the least squares 

method to load vs. displacement curves during the initial loading process where an elastic 

phase is assumed.  This point is solved differently herein by considering an internal point.  

Therefore, to derive the algebraic system of equations for the crack cohesive parameter 

identification, the elastic parameters of both sub-regions are assumed to be known. 

For inverse problems, Equations (2) and (3) have to be properly modified.  Let us 

consider that the boundary value vector for the sub-region kΩ  contains the following 

prescribed values }{ p
k

u  and }{ p
k

p .  The remaining boundary values and the interface 

displacement and traction values are unknown and stored in }{ u
ku  and }{ u

kp , respectively.  All 

combinations between prescribed and unknown values at boundary nodes are allowed.  Thus, 

a single node may have all boundary values either completely known, or totally unknown, or 

any other possible combination thereof.  Subdividing the matrices in Equations (2) and (3) 

yields 
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where }{ m
ku  are the displacements measured during the experiment at a certain number of 

internal points.  It is important to stress that there is no relationship between the numbers 

of columns defined by the prescribed (p) and unknown (u) boundary values.  The size of 

the boundary displacement unknown vector }{ u
ku  is independent of that of the prescribed 

traction vector }{ u
kp .  The minimum number of known boundary values is zero.  

Therefore, Equation (5) is written only for points where the displacements are known.  

Depending on the process used to measure these displacements, the number of 

relationships in Equations (4) and (5) is very large, leading to a large number of redundant 

equations that is very important for the minimization process to be applied. 

Equations (4) and (5) are joined together to define a system in which the unknowns are 

moved to the left hand side 
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k

u
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u
k

u
k

u
k

u
k

u
k

w

v

p

u

GH

GH
 (6) 

where }{ mp
kv

−  and }{ mp
k

w
−  contain the contribution of the known values including the 

measured displacements at internal points. 

A similar system of algebraic equations is written for sub-region 
j

Ω .  They are joined 

together after assuming the displacement compatibility and equilibrium conditions along the 

interface (i.e., given by the chosen cohesive law).  The same format as Equation (6) is 

obtained but the displacement and traction vectors are modified accordingly to extract the 

boundary displacements and tractions of the two regions in addition to the interface values 

}{ u
iu  and }{ u

ip .  The contribution of the prescribed boundary values and the measured 

displacements are now stored in }{ mp
iv

−  and }{ mp
iw

− .  Thus, the final system reads 
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or equivalently  

 }{}{][ mp
i

u
i

u
i bxA

−
=  (8) 

Equation (8) is a redundant system with a very large number of algebraic relationships usually 

written for the region of interest where the displacement field is measured.  In that case all 

boundary values are unknown and the redundancy is guaranteed by the large number of 

internal points where the displacements are known.  It is solved using any identification 

technique to obtain the unknown vector }{ u
ix .  The least squares technique [36] is the 

simplest tool to determine the solution to Equations (8) 

 }{][}{][][ mp
i

tu
i

u
i

u
i

tu
i bAxAA

−
=  (9) 

Alternative approaches are given by Tikhonov’s regularization technique [37] or the singular 

value decomposition (SVD) approach [38].  They are not reported herein, even though they 

were already used to analyze artificial test cases [39].  Kalman filters can also be used [40].   

After obtaining the profiles of tractions }{ u
ip  and crack opening displacements (based 

upon the interfacial displacements }{ u
iu ), the parameters of the cohesive model are to be 

determined.  As for any non-linear model, the yield surface F of the cohesive model reads 

 
t

F(f ,∆u)= 0  (10) 

where 
t

f  is tensile (opening) traction in the direction perpendicular to the crack surface, and 

∆u  the corresponding crack opening displacement. 

To identify the cohesive parameters, a “regularized” system of Equations (9) for which 

interpenetration is avoided, i.e. the crack opening displacement is set to zero if a negative 
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value were obtained in the previous iteration.  The system given in Equation (9) is then 

reordered accordingly.  After obtaining the displacement jump and tractions along the crack 

line, a regression is used to identify the limit surface using a chosen number of parameters.  

Assuming a linear limit surface to describe the cohesive model 

 ( / )c

t t t c
F(f ,∆u)= f - f 1 ∆u u 0− ∆ =  (11) 

the unknown parameters are c

t
f  and 

c
u∆ .  They correspond to the maximum values of the 

traction and crack opening displacement allowing for load transfer, respectively. 

3. Experimental analysis 

A three-point flexural test was performed on a regular concrete specimen.  The sample size is 

ca. 150 × 150 × 500 mm3, the notch depth is 25 mm and its width 3 mm.  The outer span is of 

the order of 450 mm (Figure 2).  The experiment is controlled by using the signal delivered by 

a clip gauge installed on the lower face of the sample (i.e., the notch opening displacement is 

regulated).  Furthermore, DIC is used to evaluate the displacement fields on one lateral 

surface of the sample.  DIC is an optical technique to measure displacement fields of a surface 

[23] by registering pictures of the surface for different states, one before loading being the 

reference state, and the other one when load is applied.  In the present case, only one camera 

is used since the out-of-plane displacements are vanishingly small.  By implementing the 

brightness conservation equation, different displacement kinematics are measurable in a 

global setting [41].  In the present case, a so-called Q4-DIC algorithm is used [42].  It consists 

in decomposing the displacement field into components associated with shape functions 

identical to those used, for instance, in finite element approaches.  The location of the region 

of interest (ROI) is depicted in Figure 2.  A semi-professional camera is used to acquire 

pictures (Canon EOS 30D, 12-bit RGB CMOS sensor delivering 3,504 × 2,336-pixel images).  
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The sample surface was prepared by using black and white paint.  The texture is obtained by 

using a mask with an array of holes (Figure 2). 

3.1. Displacement resolution 

For measurement and identification purposes, it is important to assess the accuracy of the 

experimental results obtained by using a correlation algorithm.  The displacement resolution 

is estimated by considering consecutive pictures when no load is applied, and running 

correlation analyses. The displacement resolution is estimated when the correlation 

parameters are modified.  In particular, the effect of the element size l  expressed in pixels on 

the displacement resolution is investigated. The quality of the estimate is therefore 

characterized by the standard displacement resolution, uσ , which is defined as the mean of all 

the standard displacement resolutions.  Figure 3 shows the standard displacement resolution 

uσ  as a function of the element size l .  The larger the element size, the smaller the 

resolution.  For the analyzed element sizes, a power law with an exponent α  of the order 1 is 

found 

 
α

α

σ
l

1+

=
A

u  (12) 

with A = 0.7 pixel, thereby indicating that the displacement resolution and the corresponding 

spatial resolution (or element size l ) are the result of a compromise.  In the following, 16-

pixel elements are considered. 

A first analysis using displacement measurements consists in comparing the output of 

the clip gauge to an average displacement jump computed as the horizontal displacement 

difference between two zones chosen around the notch (Figure 4).  The element size is equal 

to 16 pixels on quarter resolution pictures to perform the analysis on a conventional PC.  The 

analysis is performed for a sequence of 60 pictures.  Figure 5a shows the load / notch opening 
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measured by the clip gauge.  The points when the pictures were shot are also depicted.  With 

the used concrete sample, a gradual softening occurs.   

Figure 5b shows a comparison of the clip gauge data and those obtained by post-

processing the displacement field.  Even though the measurement locations are different 

(Figure 2), a quasi linear trend is observed when the two outputs are compared.  In terms of 

identification residuals, a root mean square value of 2.4 µm (or 0.04 pixel) is found.  This 

result shows that the DIC technique yields results consistent with those obtained by the clip 

gauge, and constitutes a first validation of DIC to analyze the present test.  From the previous 

resolution analysis, the standard displacement resolution is of the order of 0.03 pixel (or 

1.5 µm).  The value of the displacement jump remains in the subpixel range (i.e., less than 

54 µm) during a significant part of the load history (Figure 5b), yet significantly larger than 

the measurement resolution.  By visual inspection of the picture it is impossible to detect the 

presence of the crack.  Consequently, the present analysis is only made possible by using 

DIC. 

The next step is to analyze the displacement field over the whole ROI (more than 8,900 

nodes are used when an element size of 16 pixels is chosen).  Figure 6 shows five 

displacement maps in the softening part of the load vs. notch opening curve.  As the notch 

opening increases the crack propagates.  From the displacement contours, it is possible to 

locate the crack surface.   

Last, the crack surface and the corresponding displacement jump are sought.  To 

determine the crack surface, the contour of 0-horizontal displacement is determined (Figure 

7b) when the rigid body motion was subtracted from the measured displacement field (Figure 

7a).  This procedure is applied to a picture after failure for which the horizontal displacement 

map is shown in Figure 8. To check this evaluation, the actual surface in the deformed picture 

is compared with the profile obtained when the surface of Figure 7b is translated with the 
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measured displacement field evaluated along the latter.  A good agreement is obtained (Figure 

8) and gives confidence in the following results.  The crack surface is depicted in Figure 6 and 

the 0-contours.  These two quantities allow one to compare the current crack surface and that 

determined at the very end of the experiment.  A good match is observed except for a vertical 

interval ranging from 1300 to 1500 pixels, and from 200 to 400 pixels.  A closer look at 

Figure 8 in this area shows that there is not a unique crack but two branches that are very 

close to each other.   

The crack opening displacements are obtained when considering the displacement jump 

of two points located symmetrically from the crack surface. A distance of two element sizes 

(i.e., 32 pixels) is chosen (see dashed lines of Figure 7b).  Figure 9 shows the change of the 

crack opening displacement for the five pictures analyzed in Figure 6.  This plot shows the 

difficulty of the identification because data are noisy (i.e., the displacement levels are very 

small), and therefore calls for robust procedures and a large amount of data (here provided by 

DIC results). 

4. Identification 

For the experiment described in the previous section an inverse analysis is carried out to 

identify the parameters of the cohesive law.  First, the elastic properties of the concrete beam 

are identified.  Then, using the model presented in Section 2 the sought parameters are 

identified. 

4.1. Elastic properties 

Although inserting the elastic modulus as an unknown in Equation (7) is very simple, the 

BEM-based inverse analysis is not used to find the elastic parameters.  Instead, the measured 

displacement at an internal point is used to estimate the elastic modulus.  The fine boundary 

element discretization adopted to construct the applied force vs. displacement curve of the 
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beam is shown in Figure 10.  The measured displacements at the chosen internal point are 

given in Figure 11, where a clear linear relationship is observed after the second load 

increment.  Thus, to evaluate Young’s modulus E, the initial part of the curve is discarded and 

the non-linear part where the crack propagation effects are observed.  Comparing this 

measured slope with the one obtained numerically, an average Young’s modulus for this 

concrete beam is found to be E = 18 GPa.  This value is significantly smaller than the 

Young’s modulus measured directly by carrying out standard compression tests on cylindrical 

specimens cast with this concrete, E = 30 GPa.  This may be due to the coarseness of the 

microstructure of the material studied herein.  Poisson’s ratio cannot be measured by this 

procedure because the displacement level is too small in comparison to the displacement 

resolution.  A value of ν = 0.2, obtained using cylindrical specimens is considered in the 

present analysis.  It is important to stress that although the elastic parameters were identified 

in this part, their influence on the final analysis to identify the cohesive crack parameters is 

very small.  

4.2. Cohesive model 

Having identified the elastic parameters, the inverse analysis is now carried out for the sub-

domain of interest indicated in Figure 2.  Only a small region around the crack line is 

considered where the pictures shot during the experiment brought important information 

regarding displacement fields.  This region of interest is discretized by using 81 boundary 

elements, while the crack line was also approximated by using 104 elements, as shown in 

Figure 12.  The crack surface has been approximated by several straight paths.  Therefore, 

small boundary fluctuations are “ironed out” and only the main corners are conserved to carry 

out this analysis.  

The analyzed region contains the crack line shown in Figure 12 and is analyzed by using 

the proposed BEM-based inverse procedure.  The displacement values read at ca. 1200 
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internal points and boundary points are prescribed to obtain the crack opening displacements 

and the corresponding traction distribution along the crack line as shown in Figures 13 and 

14.  After plotting the computed crack opening displacements vs. tractions along the crack 

surface, several points corresponding exactly at assumed kinks were completely out of the 

expected distribution showing the local effects that are presumably due to aggregate 

interlocking.  Consequently, it was decided to use only the points related to the smooth parts 

of the crack surface also including some corners that did not show strong effects.   

Figures 15 and 16 show the crack opening displacements as a function of tractions along 

the two most important parts of the crack surface.  These parts are defined between nodes 09 

and 23 (Figure 15) and nodes 25 and 35 (Figure 16).  It is worth noting that when analyzing 

the data with the error bars (a displacement uncertainty equal to 3σu = 4.5 µm is considered), 

all the computed displacement data fall within that zone.  When considering these two 

separate groups of points, the corresponding regressions lead to different cohesive parameters.  

Next, the results obtained for all the points are put together.  Figure 17 shows the final results 

and the approximated curve obtained by regression.  The gray zone accounts for a 

measurement uncertainty of ± 3σu.  There is only one point that lies outside this confidence 

domain.  Consequently, it is assumed that the chosen cohesive law describes reasonably the 

behavior of cracks in that type of concrete.  From this approximation, the following cohesive 

law parameters are found c

t
f = 860 kN / mm and ∆uc = 0.023 mm.  With these values, the 

toughness becomes Gc = c

t
f

c
u∆ / 2 w = 66 J/m2, and the corresponding critical stress intensity 

factor mMPa1.1=≈ cc EGK .  This level lies in the range of values for ordinary concrete 

( mMPa4.12.0 ≤≤ cK ).  The fact that the identified value is close to the upper bound 

indicates that the aggregates played a role in crack propagation that is not straight (Figure 8). 
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5. Summary and perspectives 

In this paper it was proposed to couple DIC and BEM to identify mechanical properties.  An 

experimental test on ordinary concrete was performed.  In the present case, displacement 

fields measured with Q4-DIC were used.  It is worth noting that this test is very difficult to 

analyze since the displacement levels are very small.  However it was shown that even with 

noisy input data, the fact that they were numerous made possible the identification of Young’s 

modulus and the two parameters of a linear cohesive law. 

 By using the displacement resolution evaluated directly during the experiment, it was 

shown that the identification results are obtained with a good confidence interval.  The fact 

that parameters identified in the present case lead to a fracture toughness that lies within the 

bounds associated with ordinary concrete is an additional proof.  These two features show that 

coupling DIC and BEM is a viable route to identify elastic and fracture properties of concrete.  

This type of procedure may be applied to other quasi-brittle materials such as composites or 

other geomaterials.    

Last, it is worth remembering that the numerical analyses performed herein were two-

dimensional.  In view of the crack surface, it is likely that 3D analyses are more than desirable 

for more accurate estimates of the parameters of the cohesive law.  However, there is then a 

need for the identification of the crack surface in addition to the information given by pictures 

of only one surface of the sample.  Two routes can be followed.  First, by using two cameras 

the shape of the crack surface would be known on both sides of the sample.  The way they 

connect would either be assumed or left as an additional unknown to be identified.  Second, 

digital volume correlation [43] could be used as the sample would be imaged in a tomograph.  

This technique was shown to be able to extract, for instance, the crack surface and profiles of 

stress intensity factors [44], and to compare them with numerical simulations with, say, X-

FEM [44, 45].  Analyses with BEM could also be considered.    
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Figure captions 

 

Figure 1: Sub-domain discretization and internal points. 

Figure 2: Schematic view of the test and corresponding reference picture.  Lengths are 

expressed in mm. 

Figure 3: Standard displacement uncertainty vs. element size.  The symbols are data 

obtained with the a priori analysis, and the dashed line is a power law fit using 

Equation (12). 

Figure 4: Location of the two zones (dashed boxes) in the picture used to measure the 

displacement jump close to the notch. 

Figure 5: -a-Load versus notch opening.  The squares depict when the pictures were shot.   

-b-Notch opening versus crack opening displacement measured by DIC.  The 

straight line is a linear interpolation. 

Figure 6: Five horizontal displacement maps corresponding to crack propagation.  The 

analyzed pictures are shown in the load versus notch opening plot.  The physical 

size of one pixel is 54 µm.  The picture number is defined in the load vs. notch 

opening plot. 

Figure 7: -a-Horizontal displacement of a picture after sample failure.  The physical size of 

one pixel is 54 µm. 

-b-Crack surface determined from the 0-contour of the horizontal displacement 

(solid line).  The dashed lines show the locations for which the displacement 

jumps are evaluated. 

Figure 8: Crack surface superimposed on the deformed picture used to determine the 

displacement map of Figure 7a.  A good match is observed. 
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Figure 9: Displacement jump along the crack surface as a function of picture number (Figure 

6).  This type of information will be used to identify the cohesive model. 

Figure 10: Beam discretization and internal point used to evaluate Young’s modulus. 

Figure 11: Load displacement curve for the considered point (Figure 10) and the linear part 

used for the identification of Young’s modulus. 

Figure 12: Region of interest.  Boundary and crack surface discretizations, and inner nodes. 

Figure 13: Computed crack opening displacements for a given load level when the nodes are 

not allowed to interpenetrate. 

Figure 14: Computed tractions along the crack surface.  

Figure 15: Identified (solid symbols) and interpolated (solid line) crack opening 

displacements as a function of the corresponding tractions for the first cracked part 

(nodes 9 to 23).  The confidence interval (dashed lines) is defined by ± 3σu. 

Figure 16: Identified (solid symbols) and interpolated (solid line) crack opening 

displacements as a function of the corresponding tractions for the second cracked 

part (nodes 25 to 35).  The confidence interval (dashed lines) is defined by ± 3σu. 

Figure 17: Identified (solid symbols) and interpolated (solid line) crack opening 

displacements as a function of the corresponding tractions for both cracked parts.  

The confidence interval (dashed lines) is defined by ± 3σu. 
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36 

 

 

Figure 10. 
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42 

 

 

Figure 16. 

 

 

 

 

 



43 

 

 

Figure 17. 

 

 
 
 
 
 


