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Heriberto Cuayáhuitl∗, Steve Renals, Oliver Lemon, Hiroshi Shimodaira

Institute for Communicating and Collaborative Systems, School of Informatics,
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Abstract

We describe an evaluation of spoken dialogue strategies designed using hier-
archical reinforcement learning agents. The dialogue strategies were learnt
in a simulated environment and tested in a laboratory setting with 32 users.
These dialogues were used to evaluate three types of machine dialogue be-
haviour: hand-coded, fully-learnt and semi-learnt. These experiments also
served to evaluate the realism of simulated dialogues using two proposed met-
rics contrasted with ‘precision-recall’. The learnt dialogue behaviours used
the Semi-Markov Decision Process (SMDP) model, and we report the first
evaluation of this model in a realistic conversational environment. Experi-
mental results in the travel planning domain provide evidence to support the
following claims: (a) hierarchical semi-learnt dialogue agents are a better al-
ternative (with higher overall performance) than deterministic or fully-learnt
behaviour; (b) spoken dialogue strategies learnt with highly coherent user be-
haviour and conservative recognition error rates (keyword error rate of 20%)
can outperform a reasonable hand-coded strategy; and (c) hierarchical rein-
forcement learning dialogue agents are feasible and promising for the (semi)
automatic design of optimized dialogue behaviours in larger-scale systems.
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1. Introduction

A spoken dialogue system can be defined as consisting of four interlinked
modules: speech understanding, dialogue management, response generation,
and a knowledge base. In a human-machine dialogue, a user’s spoken utter-
ance is received as a speech waveform, which may have been distorted, by
the speech understanding module which extracts a user dialogue act from
the speech signal. The dialogue act is entered into the machine’s knowledge
base, and the machine then updates its dialogue state using information ex-
tracted from the knowledge base. The machine dialogue state is used by the
dialogue manager to choose a machine dialogue act which is then used by
the response generation module to produce a corresponding machine speech
signal in reply to the user. This is a cyclical process, illustrated in Figure 1,
which continues until one of the participants in the conversation (human or
machine) ends the dialogue.

In this paper we are primarily concerned with the dialogue manager.
Given the current state of the dialogue, the principal role of the dialogue
manager is to choose an action, which will result in a change of dialogue
state. The strategy followed by the dialogue manager, sometimes referred to
as the policy, should be designed to enable successful, efficient and natural
conversations. This is a challenging goal, and in most fielded spoken dialogue
systems the dialogue manager is handcrafted by a human designer. This
hand-crafted approach is limited since it is not always easy to specify the
optimal action at each state of the dialogue, a dialogue behaviour for the
entire user population which is generic and static is usually assumed, and
designing such strategies is labour-intensive, especially for large systems.

Since the mid-1990s a number of researchers have explored the devel-
opment of automatic algorithms that can specify a dialogue strategy. In
particular, reinforcement learning approaches (Sutton and Barto, 1998) have
been used to optimize a machine’s dialogue behaviour (Levin and Pieraccini,
1997; Walker et al., 1998; Levin et al., 2000; Young, 2000). In this scenario,
a conversation is regarded as a sequence of dialogue states, with the machine
receiving a reward for executing an action inducing a state transition in the
conversational environment, as illustrated in figure 2.

A reinforcement learning dialogue agent aims to learn its behaviour from
interaction with an environment, where situations are mapped to actions by
maximizing a long-term reward signal. Briefly, the standard reinforcement
learning paradigm works by using the formalism of Markov Decision Pro-
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Figure 1: A pipeline architecture of speech-based human-machine communication, where
dialogue state sm

t is used by the dialogue manager to choose action am
t . Modelling the

dialogue strategy at the semantic level allows us to omit the speech signal and word levels.

Figure 2: A dialogue of length T described in terms of a state sequence st, with state
transitions induced by actions at.

cesses (MDPs) (Kaelbling et al., 1996; Sutton and Barto, 1998). An MDP
is characterized by a set of states S, a set of actions A, a state transition
function, and a reward or performance function that rewards the agent for
each selected action. Solving the MDP means finding a mapping from the
current state st to an action at corresponding to a dialogue policy π∗(st):

π∗(st) = arg max
at∈A

Q∗(st, at). (1)

The Q function specifies the cumulative rewards for each state-action pair.
An alternative but more computationally intensive model for sequential decision-
making under uncertainty is the partially observed MDP (POMDP). In a
POMDP the dialogue state is not known with certainty (as opposed to an
MDP), and solving it means finding a mapping from belief states to actions
(Williams and Young, 2007).
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Most previous work on dialogue strategy learning has aimed to obtain a
single global solution (Levin et al., 2000; Walker, 2000; Young, 2000; Singh
et al., 2002; Scheffler and Young, 2002; Pietquin, 2004; Williams, 2006; Young
et al., 2007). The optimization of dialogue strategies has been carried out
using two main approaches: corpus-based approaches (Walker, 2000; Litman
et al., 2000) which make use of an experimentally collected set of dialogues
for training the dialogue strategy (or some aspects of it); and simulation-
based approaches (Scheffler and Young, 2002; Frampton, 2008; Rieser, 2008;
Henderson et al., 2008) in which a simulation environment including a user
model is employed to generate simulated dialogues for training.

A dialogue strategy may not require complete world knowledge, nor is
it always necessary for the whole action set to be available at each state.
In this paper we address such issues using a hierarchical sequential decision
making approach, in which dialogue states can be described at different lev-
els of granularity, and an action can execute behaviour using either a single
dialogue act or a composite sub-dialogue. This approach offers several ben-
efits. First, modularity helps to solve sub-problems that may be easier to
solve than the whole problem. Second, sub-problems may include only rel-
evant dialogue knowledge in the states and relevant actions, thus reducing
significantly the size of possible solutions: consequently they can be found
faster. Finally, there is the possibility to reuse sub-solutions when dealing
with new problems. These properties are crucial for learning the behaviour
of large-scale spoken dialogue systems in which there may be a large set of
state variables or a large number of actions. The cost of this approach is
that optimal solutions may not be guaranteed; however, this suboptimality
may be well worth the gains in terms of scalability to large systems.

This paper has two main contributions. First, we have developed and
evaluated a heuristic simulation environment used to learn dialogue strategies
in an automatic way. Second, we have developed and evaluated hierarchi-
cal spoken dialogue behaviours learnt using a Semi-Markov Decision Process
(SMDP) to address the problem of scalable dialogue optimization, described
in more detail in (Cuayáhuitl, 2009). We have compared these hierarchical, or
‘semi-learnt’ behaviours, with both hand-crafted and fully-learnt behaviours
and we have found that the semi-learnt behaviours are more suited to de-
ployment. Our evaluations have been carried out in tests with real users in
the context of a spoken dialogue system in the travel planning domain.

The rest of the paper is organized as follows: Section 2 describes the
dialogue simulation environment. Section 3 briefly describes the hierarchical

4
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reinforcement learning dialogue agents. Section 4 describes the travel plan-
ning spoken dialogue system. Sections 5 reports an evaluation of machine
dialogue behaviours. Section 6 provides a quantitative evaluation of the sim-
ulated environment. Finally, Sections 7 and 8 discuss and summarize our
findings.

2. A heuristic dialogue simulation environment

A simulation environment for human-machine conversations involves mod-
elling the dynamics of everything that is outside the dialogue manager.
This section presents a heuristic simulation approach for generating human-
machine conversations based on dialogue acts. The proposed approach gener-
ates both coherent and distorted conversations, useful for testing and learning
dialogue strategies for information-seeking mixed-initiative spoken dialogue
systems. This approach does not require data for training the models in the
simulation environment (this is useful in scenarios where dialogue data does
not exist), as it uses heuristics to simulate the dynamics of task-oriented con-
versations based on dialogue acts. It employs two main simulation models—
simulated user behaviour and ASR error simulation—which are shown in the
bottom of Figure 3. The first simulation model (on the right of the figure)
generates coherent user responses, i.e. responses that make sense to humans.
Here it was assumed that real users behave in a coherent fashion, based on
user dialogue acts that are consistent according to a user Knowledge Base
(KB) that keeps the history of the conversation. This is a strong assump-
tion and its validity is addressed later. The second model distorts coherent
user dialogue acts due to imperfect speech recognition and understanding.
The distorted user responses and database results update the machine’s KB
so that the dialogue strategy can choose actions accordingly. The proposed
dialogue simulator uses an ontology to represent the conversant’s knowledge
base.

Figure 3 shows the agent-environment interaction for human-machine di-
alogue simulation. The interaction is as follows: the machine is in a given
dialogue state sm

t , and emits dialogue act am
t by following dialogue strategy

π(sm
t ). A distorted machine dialogue act ãm

t (machine response1) is fed into
the user’s KB to observe the user dialogue state su

t , from which an action au
t

1The reason for distorting machine responses was to model user confusions.

5
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Figure 3: The agent-environment interaction for simulating human-machine conversations,
useful for learning or testing dialogue strategies for spoken dialogue systems.

is taken (user response). This user response is distorted with ASR errors into
ãu

t , and is fed into the machine’s KB. The machine action may require inter-
action with simulated database behaviour by sending queries and retrieving
database results dt. Then the next machine state sm

t+1 is observed from the
machine’s current KB. Once the machine is in a new state, it takes another
dialogue act, and so on until the end of the conversation.

2.1. Modelling conversational behaviour

A human-machine dialogue can be modelled by the perceptions and ac-
tions of both conversants. Figure 4 shows the dynamics of communication
at the dialogue act level. The conversants use two sources of knowledge at
different levels of granularity: knowledge-rich states kt (also referred to as
“knowledge base”) to represent all possible perceptions about the conversa-
tion, and knowledge-compact states st to represent a compact version of the
current dialogue state. The latter are used for action selection.

Algorithm 1 specifies the high-level steps for simulating a task-oriented
human-machine dialogue. Briefly, the algorithm starts initializing parame-

6
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Figure 4: Dynamics of human-machine communication at the dialogue act level (this
diagram does not follow the conventions of dynamic Bayesian networks). A conversant
in a knowledge-rich state kt, observes a knowledge-compact state st, and takes dialogue
act at in order to feed it to its knowledge-rich state and convey it to its partner, received
distortedly as ãt. The current knowledge kt, action at and partner response determine the
next knowledge-rich state kt+1, and so on until the end of the dialogue.
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ters for the knowledge bases (ontologies of dialogue entities) of both con-
versants. The algorithm invokes three simulated behaviours: the machine’s
dialogue strategy πm

t , the user’s dialogue strategy πu
t , and the distorter of

machine/user dialogue acts δ. A conversant at a time interacts with its part-
ner as follows: (a) observes the current knowledge-compact state, (b) selects
an appropriate dialogue act type, (c) generates a dialogue act with the cur-
rent dialogue act type in context, (d) distorts such dialogue act to simulate
misrecognitions or misunderstandings, (e) updates its knowledge-rich state
with the undistorted dialogue act, and (f) updates the knowledge-rich state
of its partner with the distorted dialogue act. This process iterates until one
of the conversants terminates the dialogue.

Algorithm 1 Simulator of Task-Oriented Human-Machine Conversations

1: function HumanMachineDialogueSimulator( )
2: km

0 ← initialize machine knowledge-rich state
3: ku

0 ← initialize user knowledge-rich state
4: t← initialize time-step to 0

5: repeat

6: sm
t ← observe machine dialogue state from km

t

7: am
t ← choose machine dialogue act type following πm(sm

t )
8: Generate machine dialogue act ≡ dialogue act type am

t in context
9: ãm

t ← get distorted dialogue act from δ(am
t , km

t )
10: Update km

t with am
t and update ku

t with ãm
t

11: su
t ← observe user dialogue state from ku

t

12: au
t ← choose user dialogue act type following πu(su

t )
13: Generate user dialogue act ≡ dialogue act type au

t in context
14: ãu

t ← get distorted dialogue act from δ(au
t , k

u
t )

15: Update ku
t with au and update km with ãu

t

16: t← t + 1
17: until one of the conversants terminates the conversation
18: end function

Enumerating all possible machine or user dialogue acts usually results in
large sets. Therefore, our approach assumes that action selection of both
conversants is based on dialogue act types rather than dialogue acts. This
is beneficial because for task-oriented conversations a small set of dialogue
act types can be employed. Table 1 shows the core dialogue act types that
define the behaviour of our human-machine simulated conversations. The

8
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Table 1: Dialogue Act Types (DATs) for task-oriented human-machine spoken dialogues.
Abbreviations: IC=Implicit Confirmation, EC=Explicit Confirmation.

Agent ID DAT Sample Utterance

User

pro provide I want a flight from Edinburgh to London.
rep reprovide I said a flight to London from Edinburgh.
con confirm Yes, please.
sil silence [remain in silence]

Machine

req request And, what is your destination city?
apo apology I am sorry, I didn’t understand that.
sic single IC A flight to London.
mic multiple IC A flight from Edinburgh to London.
sec single EC I think you said London, is that correct?
mec multiple EC I heard from Paris to London, is that right?
acc accept slot [move to next ascending slot with lowest value]
dbq db query [performs a database query]
ofr offer Would you like A, B or C?
sta status Please wait while I query the database.
pre present The cost of this flight is 120 pounds.
rel relax Try again with some different information.
ack acknowledgement All right, this flight has been booked.
ope opening Welcome to the travel planning system.
clo closing Thank you for calling, good bye.

user dialogue act types are a subset of the ones used by Georgila et al. (2005),
and the set of machine dialogue act types are an extension of the ones used by
Walker and Passonneau (2001). Based on this, the agent selects dialogue act
types following dialogue strategy πm, and the user selects dialogue act types
following dialogue strategy πu. Once an action has been chosen, it takes
context into account so that conversations can be generated at the dialogue
act level. Context is given by the dialogue state, which specifies the slot in
focus, slots to fill or confirm, etc. A sample machine action for requesting
the slot date is “am

t = req(date)” and a corresponding sample user response
is “au

t = pro(date = 01dec2007, time = morning)”.
Based on this, the user takes actions following dialogue strategy πu defined

9
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by

πu(su
t ) =























pro if last machine action am is a request or offer
con if last action am is a correct explicit confirmation or incorrect

explicit confirmation (the latter with some probability, e.g. 0.2)
rep if last action am is an apology or incorrect confirmation
sil otherwise,

(2)
and the machine takes actions a following dialogue strategy πm(sm

t ) de-
fined by

a =







































































































ope if first time step
req if unknown slot in focus
sic + req if unknown slot in focus and Single Slot to Confirm (SSC)
mic + req if unknown slot in focus and Multiple Slots to Confirm (MSC)
apo + req if slot in focus with low confidence level
sec if slot in focus with medium confidence level and SSC
mec if slot in focus with medium confidence level and MSC
acc if slot in focus with high confidence level
dbq + sta if null database result and confirmed non-terminal slots
pre + ofr if database result with few uninformed tuples
apo + ofr if terminal slot with low confidence level
ofr if unconfirmed terminal slot and db tuples presented before
ack if unacknowledged dialogue goal and confirmed terminal slot
rel if empty database result and confirmed non-terminal slots
clo otherwise.

(3)
Although the strategy πu may not include all possible realistic behaviours,

it yields coherent behaviour, and its evaluation is addressed later. Finally,
the hand-crafted strategy πm acts as the baseline strategy in our experiments
using reinforcement learning agents as described in the next sections.

2.2. Speech recognition error simulation

Due to the fact that current Automatic Speech Recognition (ASR) tech-
nology is far from perfect, errors have to be modelled in the simulated envi-
ronment. This simulation model operated with a two-stage approach. First,
slot values of user dialogue acts were distorted with probability p(user) = 0.2
in order to model machine confusions; applying equal amounts of insertions,

10
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substitutions and deletions. Second, slot values were assigned with random
confidence levels; they were assigned the well known three-tiered confidence
levels (low, medium, high) to indicate their speech recognition confidence. In
addition, slot values of machine dialogue acts were distorted with probability
p(agent) = 0.1 in order to model user confusions.

2.3. An illustrative decision-making problem

Consider that you have the task of designing a spoken dialogue strategy
for a flight booking system. In such a system the user can say things such
as ‘a flight from London to Prague for the twenty second of October in the
morning travelling with KLM’—alternatively, the user may provide the infor-
mation across several shorter utterances. A dialogue strategy is a mapping
from dialogue states to actions and specifies the system’s way of behaving.
The dialogue state (used to describe the current situation in the conversa-
tion) is defined by a vector of state variables as illustrated in Figure 5. This
decision-making problem has 281 250 states (

∏

Xi∈X |Xi|). A sample dialogue
using this state space is shown in Table 2. Table 3 shows the same sample
dialogue but including dialogue acts generated as described in the previous
two sub-sections. The mapping from states to actions can be done either
manually, or using flat reinforcement learning methods, or using hierarchi-
cal reinforcement learning methods as described in the rest of this paper.
The benefits of reinforcement learning include automatic design and optimal
behaviour according to a performance measure, while hierarchical methods
aim to have a more practical application for systems with large state-action
spaces.

3. Hierarchical reinforcement learning dialogue agents

A critical problem in flat Reinforcement Learning (RL) is scalability since
it operates with a single policy that behaves by executing only primitive ac-
tions. The size of state spaces grows exponentially with the number of state
variables incorporated into the environment state—the ‘curse of dimensional-
ity’. As a result, RL agents find solutions only very slowly. Temporal abstrac-
tion addresses these problems by incorporating hierarchical structures into
RL agents. This is attractive for dialogue systems for several reasons. First,
human decision-making activity occurs in sequential courses of action, where
decisions do not happen at each step, but rather in temporally extended ac-
tivities following their own policies until termination (Barto and Mahadevan,

11
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Table 2: Sample human-machine dialogue in the flight booking domain, where the dialogue
state is formed by the state variables shown in Figure 5, and a set of actions is available
per state. At this point action-selection is arbitrary (before learning).

Agent Dialogue State Action Sample Utterance

SYS 0,0,0,0,0,0,0,1 req Tell me your flight information.
USR A flight from Edinburgh to Paris.
SYS 3,2,0,0,0,0,0,1 acc

3,2,0,0,0,0,2,1 mic+req OK, a flight from Edinburgh to Rome,
when do you want to travel?

USR I said ‘to Paris’.
SYS 4,3,0,0,0,0,2,1 sic+req OK, a flight to Paris,

when do you want to fly?
USR December first, flying with British Airways.
SYS 4,4,1,0,2,0,2,1 apo+req I’m sorry, when do you want to travel?
USR On the first of December.
SYS 4,4,3,0,2,0,2,1 acc

4,4,3,0,2,0,3,1 mic+req Travelling on the first of December with
British Airways, at what time do you prefer
your flight?

USR In the morning.
SYS 4,4,4,1,4,0,3,1 apo+req Sorry, at what time do you prefer to fly?
USR In the morning.
SYS 4,4,4,3,4,0,3,1 sec Did you say in the morning?
USR Yes please.
SYS 4,4,4,4,4,0,5,1 dbq+sta Please wait while I retrieve information ...
USR
SYS 4,4,4,4,4,0,5,2 pre+ofr All right, flights from Edinburgh to Paris on

the first of December...[present information]
Would you like choice 1, choice 2 or choice 3?

USR The second one please.
SYS 4,4,4,4,4,2,5,2 sec Did you say choice two?
USR That’s right.
SYS 4,4,4,4,4,4,5,2 [terminal state]

Notes: This example is used for illustration purposes and shows basic behaviour
of more complex interactions. Abbreviations: req=request, acc=accept w/high
confidence, mic=multiple implicit confirmation, sic=single implicit confirmation,
apo=apology, sec=single explicit confirmation, dbq=database query, sta=status
of dialogue, pre=present information, ofr=offer choices.
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Table 3: Sample dialogue in the flight booking system. Although simulations are only based
on dialogue acts, an equivalent wording is given for a better understanding. This dialogue
shows a sample speech recognition error after the first user utterance.

Agent Dialogue Act Wording

SYS req(dep city) Tell me your flight information.
USR pro(dep city=edinburgh, I would like a flight from Edinburgh to Paris.

des city=paris)
ASR [I would like a flight from Edinburgh to Rome]
SYS mic(dep city=edinburgh, OK, a flight from Edinburgh to Rome,

des city=rome)+req(date) when do you want to travel?
USR rep(des city=paris) I said ‘to Paris.’
SYS sic(des city=paris) OK, a flight to Paris,

+req(date) when do you want to fly?
USR pro(date=01dec, December first, flying with British Airways.

airline=british airways)
SYS apo(date)+req(date) I’m sorry, when do you want to travel?
USR pro(date=01dec) On the first of December.
SYS mic(date=01dec, airline= Travelling on the first of December with

british airways)+req(time) British Airways, at what time do you prefer
your flight?

USR pro(time=morning) In the morning.
SYS apo(time)+req(time) Sorry, at what time do you prefer your flight?
USR rep(time=morning) In the morning.
SYS sec(time=morning) Did you say in the morning?
USR con(time=yes) Yes please.
SYS dbq(db query)+sta(db) Please wait while I retrieve information ...
USR
SYS pre(db result)+ofr(flight) All right, flights from Edinburgh to Paris on

the first of December in the morning travelling
with British Airways: [present information]
Would you like choice 1, choice 2 or choice 3?

USR pro(flight=choice2) The second one please.
SYS sec(flight=choice2) Did you say choice two?
USR con(flight=yes) That’s right.

Note: more complex information presentation is beyond the scope of this work.

13
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Figure 5: Dialogue state for the flight booking spoken dialogue strategy. Each variable Xi

with domain values D0 has five possible values, variable X7 has six possible values, and
variable X8 has 3 possible values, resulting in 56 × 6× 3 = 281250 states.

2003). Second, hierarchical decision makers can solve more complex prob-
lems than flat ones (Dietterich, 2000). Third, task-oriented dialogues have
shown evidence of following hierarchical structures (Grosz and Sidner, 1986;
Litman and Allen, 1987). This section presents two forms of hierarchical
dialogue control and a case study that is evaluated in the rest of the paper.

3.1. Dialogue control using Semi-Markov decision processes

We formulate spoken dialogue control as a discrete Semi-Markov Decision
Process (SMDP), following Dietterich (2000). A discrete-time SMDP M =
<S, A, T, R> is characterized by a set of states S; a set of actions A; a
transition function T that specifies the next state s′ given the current state s
and action a with probability P (s′, τ |s, a); and a reward function R(s′, τ |s, a)
that specifies the reward given to the agent for choosing action a when the
environment makes a transition from state s to state s′. The random variable
τ denotes the number of time-steps taken to execute action a in state s. The
SMDP model allows temporal abstraction, where actions take a variable
amount of time to complete their execution. In this model two types of
actions can be distinguished: (a) single-step actions roughly corresponding
to dialogue acts, and (b) multi-step actions corresponding to sub-dialogues.

14
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Figure 6: Conceptual hierarchical dialogue at runtime with states st, actions at (lasting τ

time steps) and rewards rt+τ . Actions at can be either primitive or composite, the former
yield single rewards and the latter yield cumulative discounted rewards.

Figure 6 illustrates a conceptual dialogue at runtime with states st, actions at

and rewards rt. Whilst the full dialogue and child dialogue execute primitive
and composite actions, the grandchildren dialogues execute only primitive
actions. Note that the execution of primitive actions yields single rewards
and the execution of composite actions lasting τ time steps yields cumulative
discounted rewards given at time t + τ .

In this paper we treat each composite dialogue action as a separate SMDP
as described in (Cuayáhuitl et al., 2007; Cuayáhuitl, 2009). In this way
an MDP can be decomposed into multiple SMDPs hierarchically organized
into L levels and N models per level, denoted as M = {M i

j}, where j ∈
{0, ..., N − 1} and i ∈ {0, ..., L− 1}. Thus, any given SMDP in the hierarchy
is denoted as M i

j = <Si
j, A

i
j, T

i
j , R

i
j>, see the environment of Figure 7 for an

illustration.
The goal in an SMDP is to find an optimal policy π∗, that maximizes

the reward of each visited state. The optimal action-value function Q∗(s, a)
specifies the expected cumulative reward for executing action a in s and then
following π∗. The Bellman equation for Q∗ of subtask M i

j can be expressed

15
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Figure 7: Architecture of the agent-environment interaction using multiple SMDPs M i
j ,

circles represent states, squares represent actions, and diamonds represent rewards.

as

Q∗i
j (s, a) =

∑

s′,τ

P i
j (s

′, τ |s, a)
[

Ri
j(s

′, τ |s, a) + γτ max
a′

Q∗i
j (s′, a′)

]

, (4)

where the discount rate 0 ≤ γ ≤ 1 makes future rewards less valuable than
immediate rewards as it approaches 0. Finally, the optimal policy for each
subtask is defined by

π∗i
j (s) = arg max

a∈Ai
j

Q∗i
j (s, a). (5)

These policies can be found by dynamic programming or reinforcement learn-
ing algorithms for SMDPs. For instance, the HSMQ-Learning algorithm of

16
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Dietterich (2000) approximates equation 4 according to

Qi
j(s, a)← (1− α)Qi

j(s, a) +
[

rτ + γτ max
a′

Qi
j(s

′, a′)
]

. (6)

This behaviour (also referred to as fully-learnt) receives rewards in the fol-
lowing form when executing actions a lasting τ time steps:

rτ = r1 + γr2 + γ2r3 + ... + γτ−1rτ . (7)

The HSMQ-Learning algorithm converges to optimal context-independent
policies (Dietterich, 2000). Although this is a weaker form of optimality than
other forms for being only locally optimal, context-independent policies fa-
cilitate state abstraction (useful to compress the state) and policy reuse.

3.2. Dialogue control using constrained hierarchical SMDPs

The behaviour of reinforcement learning dialogue agents can be con-
strained with prior expert knowledge, aiming to combine behaviours specified
by human designers and inferred automatically (Paek and Pieracini, 2008).
In this direction we have reported an approach using reinforcement learn-
ing with Hierarchical Abstract Machines (HAMs) (Cuayáhuitl et al., 2006).
HAMs are used to reduce the available actions per state, similar to non-
deterministic finite state machines whose transitions may invoke lower-level
machines, each machine specifying a sub-dialogue. Because the HAMs ap-
proach does not overcome the curse of dimensionality, we extend the previous
form of dialogue control by constraining each hierarchical SMDP with some
prior expert knowledge. For such a purpose, we associate a HAM denoted as
H i

j to SMDP M i
j in order to specify the prior knowledge (Cuayáhuitl, 2009).

In this way, dialogue control can be seen as executing two decision-making
models in parallel: a HAM, and a hierarchy of SMDPs. Each HAM partially
specifies the behaviour of its corresponding subtask, and therefore constrains
the actions that a reinforcement learning agent can take in each state. For
such a purpose, a cross product of models per subtask is used, referred to as
induced SMDP M

′i
j = H i

j ◦M
i
j . Briefly, the cross product operates as follows:

(1) the induced state space uses joint states (s, s̄), where s is an environment
state in SMDP M i

j and s̄ is a choice state in HAM H i
j; (2) a HAM tells its

corresponding SMDP the available actions at state s; (3) the transition func-
tions of both models are executed in parallel; and (4) the SMDP’s reward
function rewards each chosen primitive action. In this joint model the HAMs

17
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make decisions in states with a single action, and the policies of the SMDPs
make decisions in states with multiple actions.

This form of behaviour (also referred to as semi-learnt) is based on the
SMDP state s and the HAM choice state s̄. Using a more compact notation
for the joint dialogue state w = (s, s̄) (Marthi et al., 2006), the Bellman equa-
tion for the action-value function of induced subtask M

′i
j can be expressed

as

Q∗i
j (w, a) =

∑

w′,τ

P i
j (w

′, τ |w, a)
[

Ri
j(w

′, τ |w, a) + γτ max
a′

Q∗i
j (w′, a′)

]

. (8)

Optimal context-independent policies for the Q-value function above can be
found by combining the algorithms HAMQ-Learning (Parr and Russell, 1997)
and HSMQ-Learning (Dietterich, 2000) using the following update rule

Q′i
j (wt, at)← (1− α)Q′i

j (wt, at) +
[

rt+τ + γτ max
a′

Q′i
j (wt+τ , a

′)
]

. (9)

3.3. Case study: A travel planning dialogue system

This is a multi-goal mixed-initiative spoken dialogue system in the travel
planning domain, allowing users to book single flights, return flights, hotels
and cars. It supports the following features: hand-crafted or learnt dialogue
strategies, multiple goals within a single dialogue, and implicit switching
across flight dialogue goals. For fully-learnt behaviour, the state space is de-
scribed in Table 4 using a hierarchy of 21 dialogue subtasks. This hierarchy
employed 43 non-binary state variables, 15 primitive actions and 20 compos-
ite actions. The latter correspond to the child subtasks. The reward function
focused on efficient conversations (i.e. the shorter the dialogue the better),
and is defined by the following rewards given to the agent for choosing action
a when the environment makes a transition from state s to state s′:

r(s, a, s′) =







































0 for successful (sub)dialogue
-10 for an already collected subtask M i

j

-10 for collecting subtask M i
i before M i

i−1

-10 for presenting many/none items of information
-10 for multiple greetings or closings
-10 for executing action a and remaining in state s′ = s
-1 otherwise.

(10)
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Table 4: State variables and actions of the subtask hierarchy in the travel planning system.
Whilst a flat approach involves a large state-action space in the order of 1023 (Cuayáhuitl,
2009), our hierarchical representation is only using a space of 800K state-actions.

Subtask State Variables Actions (composite actions are M i
j)

M0
0 GIF,SAL,G00,G03,G04,G05 M1

0 ,M2
2 ,M2

3 ,M2
4 ,gre,clo

M1
0 GIF,G01,G02 M2

0 ,M2
1

M2
0 DBT,END,MAN,OPT,TER M3

0 ,M3
1 ,M3

2 ,dbq+sta,rel
M2

1 DBT,END,MAN,TER M3
3 ,M3

4 ,dbq+sta,rel
M2

2 DBT,END,INI,MAN,TER M3
5 ,M3

6 ,M3
7 ,dbq+sta,rel

M2
3 DBT,END,INI,MAN, M3

8 ,M3
9 ,M3

A,M3
B,

OPT,TER dbq+sta,rel
M2

4 DBT,END,MAN,TER M3
C ,M3

D,dbq+sta,rel
M3

0 SIF,C00,C01,C02,C03,C04, req,apo+req,sic+req,mic+req,
C05 sec,mec,acc

M3
1 C6 req,apo+req,sec

M3
2 ACK,END,PRE,C07 apo+ofr,sec,pre+ofr,ofr,ack

M3
3 SIF,C15,C16 req,apo+req,sic+req,mic+req,

sec,mec,acc
M3

4 ACK,END,PRE,C17 apo+ofr,sec,pre+ofr,ofr,ack
M3

5 C18 req,apo+req,sec
M3

6 SIF,C19,C20,C21 req,apo+req,sic+req,mic+req,
sec,mec,acc

M3
7 ACK,END,PRE,C22 apo+ofr,sec,pre+ofr,ofr,ack

M3
8 C23 req,apo+req,sec

M3
9 SIF,C24,C25,C26,C27,C28 req,apo+req,sic+req,mic+req,

sec,mec,acc
M3

A C29 req,apo+req,sec
M3

B ACK,END,PRE,C30 apo+ofr,sec,pre+ofr,ofr,ack
M3

C C31 req,apo+req,sec
M3

D ACK,END,PRE,C32 apo+ofr,sec,pre+ofr,ofr,ack

Values of state variables: Goal In Focus (GIF) ← {0=flight booking, 1=outbound
flight, 2=return flight, 3=hotel booking, 4=car rental, 5=summarize trip}; Saluta-
tion (SAL) ← {0=null, 1=greeting, 2=closing}; {G00, G01, G02, G03, G04, G05,
INI, MAN, OPT, TER} ← {0=unfilled subtask, 1=filled subtasks, 2=confirmed
subtask}; Database Tuples (DBT) ← {0=none, 1=empty, 2=few, 3=many}; Slot
In Focus (SIF) ← {Cij}; Acknowledgment or current dialogue goal (ACK) ←
{0,1}; Cij ← {0=unfilled, 1=low confidence, 2=medium confidence, 3=medium
confidence, 4=confirmed}; Status of information presentation of current dialogue
goal (PRE) ← {0,1}; END ← {0=continue, 1=terminate current subtask}.
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For semi-learnt behaviour, the state-action space was similar to that of
fully-learnt behaviour. The difference here is that the dialogue subtasks M i

j

were extended with Hierarchical Abstract Machines (HAMs) Hk
l , where their

cross product yields the induced subtasks M
′i
j = Hk

l ◦M i
j . The hierarchy of

induced subtasks for the travel planning system is shown in Figure 8, and used
the abstract machines described in Figures 9 and 10 (prohibiting apologies
in medium and high confidence levels). These HAMs control the machine’s
dialogue behaviour in deterministic state transitions, but in stochastic state
transitions the reinforcement learning agents optimized decision-making.

The learning parameters used by the algorithms were the same for both
learning approaches. The learning rate parameter α decays from 1 to 0
according to α = 100/(100+ τ), where τ represents elapsed time-steps in the
current subtask. Each subtask M i

j had its own learning rate. The discount
factor γ = 1 makes future rewards equally as valuable as immediate rewards,
as in (Singh et al., 2002). The action selection strategy used ǫ-Greedy with
ǫ = 0.01, and initial Q-values of 0. This choice of parameters satisfies the
requirements for convergence to optimal context-independent policies.

3.4. Qualitative description of hand-crafted and learnt dialogue strategies

The hand-crafted baseline strategy operated as follows: (a) if slot in focus
is unknown then request information, with implicit confirmation if there were
any filled slots; (b) if slot in focus is known with low confidence then do an
apology; (c) if slot in focus is known with medium confidence then do an
explicit confirmation; and (d) if slot in focus is known with high confidence
then move the slot in focus to the next ascending one with lower value (this
is also referred to as ‘slot acceptance’). This behaviour is specified more
concretely in equation 3, and its evaluation is reported in section 6.3.

The fully-learnt behaviour was inferred by the approach described in sec-
tion 3.1. This strategy used all actions in every state and differs from the
hand-crafted one by allowing acceptance, confirmation and rejection in any
filled slot regardless of confidence level. For instance, action ‘mic’ can be cho-
sen with low/medium/high confidence levels. Briefly, the learnt behaviour
differed from the hand-crafted one in the use of more acceptances (action
‘acc’), more multiple implicit confirmations (action ‘mic’), fewer apologies
(actions ‘apo+req’ and ‘apo+ofr’), and fewer multiple explicit confirmations
(action ‘mec’). In addition, although the fully-learnt policy inferred the se-
quence of sub-dialogues, it used the same sequence as the other behaviours.
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Figure 8: A hierarchy of induced subtasks for the travel planning system. The abstract
machines Hk

l are specified in Figures 9 and 10, and the state variables for each dialogue
subtask M i

j are specified in Table 4. 21



ACCEPTED MANUSCRIPT 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 9: Abstract machines for the travel planning spoken dialogue system (Part 1).
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Figure 10: Abstract machines for the travel planning spoken dialogue system (Part 2).
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Thus, the dialogue strategies of this paper differ in the selection of primitive
(low level) actions rather than composite (high level) actions2.

The semi-learnt behaviour was inferred by the approach described in sec-
tion 3.2. Similarly to the fully-learnt behaviour, this strategy differs from
the hand-crafted one by allowing acceptance, confirmation and rejection in
any filled slot regardless of confidence level. The semi-learnt behaviour dif-
fered from the hand-crafted one in the use of more acceptances (action ‘acc’),
more multiple implicit confirmations (action ‘mic’), fewer apologies (actions
‘apo+req’ and ‘apo+ofr’), and fewer multiple explicit confirmations (action
‘mec’). However, it differs from the fully-learnt behaviour by constraining
the actions available per state as shown in Figures 9 and 10, where the semi-
learnt policy prohibited apologies in slots with medium or high confidence
levels. See Cuayáhuitl (2009) for a detailed quantitative comparison of dia-
logue strategies using simulated conversations.

4. Spoken dialogue system architecture

Our experiments were based on a travel planning spoken dialogue system
supported hand-crafted or learnt dialogue behaviour. The latter uses dia-
logue strategies designed by hierarchical reinforcement learning agents on a
simulated environment. This system is based on the Open Agent Architec-
ture (OAA) (Cheyer and Martin, 2001). Alternatively, other architectures
can be used such as Galaxy-II (Seneff et al., 1998). Figure 11 shows a high-
level architecture using eight OAA-based agents in order to support speech-
based task-oriented human-machine communication. The communication
flows between facilitator (parent) and the other agents (children). Briefly,
the user gives speech signals xu

t corresponding to words wu
t , concepts or slots

cu
t , and dialogue acts au

t . However, the machine understands them with dis-
tortions (w̃u

t , c̃u
t , ãu

t ), and answers back to the user with speech signals xm
t

corresponding to words wm
t , slots cm

t , and dialogue acts am
t . The user may

also misunderstand the machine, and so on until one of the conversants ter-
minates the conversation. The rest of this section describes each agent in the
system.

2The benefit of learning the sequence of sub-dialogues is relevant for adaptive behaviour
at different levels of granularity, and further experimentation using different sequences of
sub-dialogues is left as future work.
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Figure 11: Architecture of the CSTR travel planning spoken dialogue system supporting
deterministic or learnt dialogue behaviour. Human-machine communication is carried out
with speech signals xt, words wt, concepts or slots ct, and dialogue acts at.

4.1. Facilitator agent

OAA is an agent-based framework to build autonomous, flexible, fault-
tolerant, distributed and reusable software systems (Cheyer and Martin,
2001). OAA agents can be written in multiple programming languages and
run on a computer network with different operating systems. They have
a parent facilitator agent, which coordinates the communication of child
agents by keeping a knowledge base of their services. Child agents are service
providers and service requesters. Service providers let the facilitator know of
their own capabilities, and service requesters request capabilities from other
agents. They communicate by passing string messages between child agents
and facilitator.

4.2. Speech recognition agent

The task of the speech recognition agent was to receive user speech signals
after each machine prompt wm

t and to generate a word sequence including
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confidence levels w̃u
t , derived from the recognition hypothesis incorporating

confidence scores w̄u
t . This agent used the multithreaded ATK API, which is

a layer on top of the HTK speech recognition libraries (Young, 2006, 2007).
This agent used the acoustic models (trained with data from British speakers)
generated from the TALK project3, and customized-based language models
with a lexicon of 263 words. The confidence levels were assigned by dividing
the confidence score range [0...1] into three equal areas, equivalent to l =low,
m =medium, and h =high confidence. The following table illustrates this
process.

ID Event Outcome

wm
t Machine prompt Welcome to the CSTR travel planning system.

Tell me your flight information.
wu

t User response I would like a single flight from Edinburgh to Paris.
w̄u

t ASR hypothesis how(0.27) about(0.31) a(0.15) single(0.60)
with confidence flight(0.56) with(0.32) b. m. i.(0.47) from(0.70)
scores edinburgh(0.59) to(0.40) paris(0.56)

w̃u
t ASR hypothesis how(l) about(l) a(l) single(m) flight(m) with(l)

w/conf. levels b. m. i.(m) from(h) edinburgh(m) to(m) paris(m)
wm

t+1 Machine prompt A single flight from Edinburgh to Paris. travelling
with BMI. When do you want to travel?

wu
t+1 User response I would like to travel with Air France. ...

4.3. Semantic parsing agent

The semantic parsing agent generated concept or keyword sequences c̃u
t

from a (distortedly) recognised word sequence w̄u
t . This agent used the

Phoenix spontaneous speech parser (Ward, 1994) that maps a word string
into a semantic frame. A semantic frame is a set of slots of information, each
slot with an associated context-free grammar. Such grammars are compiled
into recursive transition networks, which are matched with the given word
sequence by a top-down chart parsing algorithm. This agent used 3 frames
(corresponding to flights, hotels and cars) including 18 semantic networks.
See the table below for a sample parsed word sequence.

3Our speech recognition and speech synthesis OAA agents used wrappers generated
from the TALK project (Lemon et al., 2006).
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ID Event Outcome

wm
t Machine prompt Welcome to the CSTR travel planning system.

Tell me your flight information.
wu

t User response I would like a single flight from Edinburgh to Paris.
w̄u

t ASR hypothesis how about a single flight with b. m. i. from
wo/conf. scores edinburgh to paris

c̃u
t Semantic parse Flight:[FlightType].SINGLE

Flight:[DepCity].[City].EDINBURGH
Flight:[DesCity].[City].PARIS
Flight:[Airline].BMI

ãu
t User dialogue pro(FlightType=single.m,DepCity=edinburgh.m,

act DesCity=paris.m,Airline=bmi.m)
wm

t+1 Machine prompt A single flight from Edinburgh to Paris travelling
with BMI. When do you want to travel?

wu
t+1 User response I would like to travel with Air France. ...

4.4. Dialogue act recognition agent

This agent generated user dialogue acts ãu
t using a two-stage approach.

First, a user dialogue act type was selected taking into account the cur-
rent concept sequence c̃u

t and last machine dialogue act corresponding to the
machine prompt wm

t . Once a dialogue act type had been selected, it took
context into account to become a user dialogue act ãu

t . Although it is pos-
sible to generate more than one dialogue act per user utterance, this agent
generated a single user dialogue act (see the table above for an example).

4.5. Database system agent

This agent returned database tuples based on SQL queries from the dia-
logue manager. It used a web scraper to populate a local database, retrieving
travel data from a commercial web site (www.opodo.co.uk). This strategy
was selected for avoiding long time responses from direct queries to the web.

4.6. Dialogue management agent

The dialogue management agent is the key component to evaluate. It
generated machine dialogue acts am

t from the hierarchy of policies πi
j based

on three different types of dialogue behaviours: deterministic (described in
section 2), fully-learnt and semi-learnt (described in section 3, more details
in (Cuayáhuitl, 2009)). Since these dialogue behaviours only differ in their
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action-selection mechanism, and the rest of the OAA-based agents (see Fig-
ure 11) did not change regardless of the behaviour of choice, it is fair to say
that these behaviours were evaluated under similar conditions.

4.7. Language generation agent

The task of the language generation agent was to generate a machine
prompt wm

t in natural language based on a template-based approach. A
prompt template has a word sequence embedding variables, and was selected
given the current machine dialogue act am

t , dialogue state sm
t or joint state

wm
t , and a simple help mechanism4. Once a prompt template had been

selected, it took context into account by replacing variables with values in
the machine’s knowledge base in order to generate the word sequence wm

t+1.
This agent included 463 prompt templates. The next table shows a sample
prompt template cm

t and its corresponding machine prompt wm
t+1.

ID Event Outcome

wm
t Machine prompt Welcome to the CSTR travel planning system.

Tell me your flight information.
ãu

t User dialogue pro(FlightType=single.m,DepCity=edinburgh.m,
act DesCity=paris.m,Airline=bmi.m)

am
t Machine mic(FlightType=single,DepCity=edinburgh,

Dialogue act DesCity=paris,Airline=bmi)+req(DepDate)
cm
t Prompt for action ‘mic’ A $FlightType flight from $DepCity to $DesCity

travelling with $Airline.
Prompt for action ‘req’ When do you want to travel?

wm
t+1 Machine prompt A single flight from Edinburgh to Paris travelling

with BMI. When do you want to travel?
wu

t+1 User response I would like to travel with Air France. ...

4.8. Speech synthesis agent

The speech synthesis agent generated speech signals xm
t from a given word

sequence wm
t . This agent is based on the Festival text-to-speech system5 with

4Simple automatic help: a) 1st slot collection=no help, b) 2nd collection=help prompt
suggesting to fill multiple slots, c) 3rd collection: help prompt suggesting a shorter sen-
tence, d) 4rd collection=help prompt suggesting to fill a single slot, e) others=help prompt
suggesting to rephrase the sentence.

5http://www.cstr.ed.ac.uk/projects/festival
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an HTS voice generated from eight hours of recorded speech (Yamagishi et al.,
2007). The speech signals were generated online, using a pre-processing stage
to split word sequences at punctuation symbols in order to avoid long silences
in the machine’s utterance.

5. Spoken dialogue system evaluation

The aim of our experiments was to investigate if the learnt dialogue agents
can outperform deterministic behaviour in a realistic environment. For such
a purpose the spoken dialogue system described in the previous section was
implemented and tested with a set of users, in laboratory conditions. Table 7
shows a sample dialogue.

5.1. Evaluation methodology

The CSTR travel planning spoken dialogue system was evaluated using a
number of metrics, mostly derived from the PARADISE framework (Walker
et al., 2000), which has been widely accepted for evaluating the performance
of spoken dialogue systems.

(i) Dialogue Efficiency: This group of quantitative metrics includes sys-
tem turns, user turns, and elapsed time (in seconds). All of them report
averages per dialogue goal (a conversation may have several dialogue
goals). Elapsed time includes the time used by both conversants.

(ii) Dialogue Quality: These metrics consists of Word Error Rate (WER),
Keyword Error Rate (KER), and Event Error Rate (EvER). The lat-
ter metric is useful because dialogue systems have to handle trade-offs
among acceptance, confirmation and rejection events. The EvER met-
ric is decomposed into the following metrics reported as percentages:
correct acceptances, correct confirmations, correct rejections, false ac-
ceptances, false confirmations and false rejections. Other commonly
reported metrics include percentages of commands and barge-in, but
the CSTR system did not support them.

(iii) Task Success: This group of quantitative metrics includes task success
and dialogue reward. Task success uses a binary approach, where each
dialogue task is classified as successful if the user achieved the goal
(e.g. booking a flight, hotel or car) as in (Bohus and Rudnicky, 2005).
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Dialogue reward combines task success and dialogue length in terms of
system turns as in (Lemon et al., 2006):

DialogueReward =

{

100 - |SystemTurns| for successful dialogue
0 - |SystemTurns| for failed dialogue

(11)

(iv) User Satisfaction: These qualitative metrics include easy to under-
stand, system understood, task easy, interaction pace, what to say, sys-
tem response, expected behaviour, and future use. The sum of these
metrics represents the overall user satisfaction score.

5.2. Experimental setup

Our experiments evaluated the three machine dialogue behaviours de-
scribed in sections 2 and 3—deterministic (‘D’), fully-learnt (‘F’), and semi-
learnt (‘S’)—and were carried out with a user population of native speakers
of English. Each user was presented with six dialogue tasks (travel book-
ings), with the system using each of the three behaviours twice, so that each
user experienced all behaviours. The first three dialogues concerned single
bookings and the last three dialogues concerned composite bookings. Ta-
ble 5 shows examples of single and composite travel booking tasks. The six
dialogues per user were collected using one of the following two sequences:
DSFFSD and SDFFDS; i.e. half of the users interacted first with a de-
terministic behaviour, and the other half interacted first with a learnt be-
haviour. Whilst deterministic and semi-learnt behaviours started the dia-
logues interchangeably, fully-learnt behaviour always started the composite
travel bookings. This sequence of dialogues was used because other alterna-
tive sequences such as {DSFFSD, DFSSFD, SDFFDS, SFDFDS, FSDDSF,
FDSSDF} require larger data collections (the more data the more expensive
and time-consuming). Each dialogue was logged using an extended version
of the DATE dialogue annotation scheme (Walker and Passonneau, 2001).
These log files were used to compute quantitative results. In addition, at
the end of each dialogue, participants were asked to fill in a questionnaire
(Table 6) in order to compute qualitative results, evaluated with a 5-point
Likert scale, where 5 represents the highest score.

The set of 32 users voluntarily agreed to participate in the experimental
evaluation. They had an average age of 36 with a gender distribution of 22
male (69%) versus 10 female (31%). The participants’ country of origin were
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as follows: 17 from the UK (53%), 12 from USA (38%), and 3 from Canada
(9%). From this user population, 9 (28%) had no experience with spoken
dialogue systems, 18 (56%) had some experience interacting with a spoken
dialogue system at least once, and 5 (16%) were expert users. The latter
were researchers in spoken dialogue processing (excluding the authors of this
paper).

Table 5: Sample travel booking tasks.

Booking Task

Single
Try to book a single flight from London to Paris leaving
on December 6th in the afternoon, and travelling with
any airline.
What is the cost of the most expensive flight?

Composite

(a) Try to book a return flight from Edinburgh to
Amsterdam leaving on January 22nd in the morning, and
returning on the 1st of February in the evening.
What is the cost of the cheapest flight with British Airways?

(b) Try to book a cheap hotel in downtown with any hotel

brand . What is the cost of the cheapest hotel in downtown?

(c) Try to rent a compact car near the airport for three

days on January 22nd with pick-up time at 7PM.
You don’t have preference in rental company.
What is the rental cost of the most expensive car?

5.3. Experimental results

This subsection describes an analysis of results obtained from automatic
and manual transcriptions at the syntactic and semantic level. Table 8 sum-
marises the results obtained using the three behaviours, using statistical sig-
nificance tests to compare the semi-learnt behaviour against the determinis-
tic and fully-learnt behaviours. For such a purpose data vectors (averaged
per speaker) were verified through Lilliefors tests which indicated that they
do not come from normal distributions. This suggests that non-parametric
tests should be used. Thus, significance tests are reported with the Wilcoxon
signed-rank test as suggested by (Demsar, 2006).
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Table 6: Subjective measures for qualitative evaluation of human-machine task-oriented
spoken dialogues, adapted from (Walker et al., 2000).

Measure Question

Easy to Understand Was the system easy to understand?
System Understood Did the system understand what you said?
Task Easy Was it easy to find the flight/hotel/car you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
What to Say Did you know what you could say at each point?
System Response Was the system fast and quick to reply to you?
Expected Behaviour Did the system work the way you expected it to?
Future Use Do you think you would use the system in the future?

Dialogue efficiency: The fully-learnt behaviour seems to outperform sig-
nificantly the other behaviours by obtaining fewer system turns, fewer user
turns and less time. The result is something of an artifact, since the fully-
learnt policy could induce infinite loops in some dialogue states. In this case
the dialogues were manually stopped after three repetitive actions (consid-
ered as evidence of an infinite loop), leading to shorter dialogues but a lower
task success. The purpose of testing this dialogue policy was three-fold: (1)
to evaluate how users perceive a dialogue policy with infinite loops; (2) to
raise the issue of (in)coherent behaviour inferred by reinforcement learning
agents, which has been ignored in previous related work; and (3) to compare
its performance against a similar dialogue policy, but constrained with prior
expert knowledge.

This phenomenon did not happen with deterministic or semi-learnt be-
haviours because their prior knowledge constrained more tightly the available
actions per dialogue state. From these two dialogue strategies, it can be ob-
served that semi-learnt behaviour outperformed deterministic, with signifi-
cant differences in system and user turns. These results suggest that although
learnt behaviours were optimized for dialogue efficiency, they cannot be eval-
uated in the same way. Therefore, a wider repertoire of evaluation metrics
is preferable for a deeper analysis of dialogue behaviours.

Dialogue quality: Fully-learnt behaviour obtained the lowest word and
keyword error rates. These results are not statistically significant, which sug-
gests that behaviours were compared under similar recognition error rates.
Deterministic and semi-learnt behaviours exhibited similar word and keyword
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Table 7: Fragment of a real dialogue in the CSTR travel planning spoken dialogue system using fully-learnt action-selection
following policies π∗i

j . The dialogue states are formed by the state variables shown in Table 4.

Agent Policy State Action Dialogue Act Utterance

SYS π∗0
0 0,0,0,0,0,0 gre gre() Welcome to the CSTR travel planning

system.
0,1,0,0,0,0 M1

0

π∗1
0 1,0,0 M2

0

π∗2
0 0,0,0,0,0 M3

0

π∗3
0 0,0,0,0,0,0,0 req req(DepCity) Tell me your flight information.

USR pro(FlightType=single,DepCity=edinburgh, I would like a single flight from
DesCity=paris) Edinburgh to Paris.

SYS π∗3
0 0,2,2,0,0,2,2 acc

π∗3
0 2,2,2,0,0,2,2 mic mic(FlightType=single,DepCity=edinburgh, A single flight from Edinburgh to Paris

DesCity=paris,Airline=bmi)+req(DepDate) travelling with BMI.
When do you want to travel?

USR pro(Airline=air france) I would like to travel with Air France.
SYS π∗3

0 2,4,4,0,0,2,4 sic sic(Airline=air france)+req(DepDate) A flight travelling with air france.
When do you want to travel?

USR pro(DepDate=december sixth) December the sixth
SYS π∗3

0 2,4,4,2,0,4,4 acc
SYS π∗3

0 3,4,4,2,0,4,4 sic sic(DepDate=may sixth)+req(DepTime) A flight leaving on May sixth.
At what time do you prefer to travel?

USR rep(DepDate=december sixth, Ehh I would like to travel on December
DepTime=morning) the sixth in the morning.

...
SYS π∗3

0 3,4,4,4,4,4,4 [terminal state]
π∗2

0 0,0,2,2,0 dbq+sta dbq(db)+sta(db) Please wait while I retrieve information.

33



ACCEPTED MANUSCRIPT 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 8: Results of the CSTR travel planning spoken dialogue system comparing three
different dialogue behaviours, organized according to the following groups of metrics: di-
alogue efficiency, dialogue quality, task success and user satisfaction.

Measure Behaviour p-values
Deter- Fully- Semi- (1,2) (1,3) (2,3)

ministic(1) Learnt(2) Learnt(3)

Avg. System Turns 16.63 12.24 15.09 ≤ .05 ≤ .05 ≤ .05
Avg. User Turns 14.38 9.69 12.63 ≤ .05 ≤ .05 ≤ .05
Avg. Time (secs) 177.23 139.59 165.11 ≤ .05
Word Error Rate 0.429 0.410 0.428
Keyword Error Rate 0.300 0.278 0.301
Event Error Rate 0.409 0.351 0.372
Correct Acceptance 5.51 26.34 20.95 ≤ .05 ≤ .05
Correct Confirmation 48.51 36.17 39.86 ≤ .05 ≤ .05 ≤ .05
Correct Rejection 5.18 2.37 1.92 ≤ .05 ≤ .05
False Acceptance 3.25 12.27 9.30 ≤ .05 ≤ .05 ≤ .05
False Confirmation 32.64 20.11 26.60 ≤ .05 ≤ .05 ≤ .1
False Rejection 4.91 2.55 1.36 ≤ .05 ≤ .05
Avg. Task Success 0.94 0.62 0.95 ≤ .05 ≤ .05
Avg. Dialogue Reward 79.46 54.68 82.56 ≤ .05 ≤ .05 ≤ .05
Easy to Understand 4.34 4.31 4.44
System Understood 3.09 2.72 3.28 ≤ .05 ≤ .05
Task Easy 3.50 3.00 3.45 ≤ .1 ≤ .05
Interaction Pace 3.52 3.55 3.50
What to Say 3.45 3.47 3.58
System Response 3.67 3.64 3.63
Expected Behaviour 3.42 3.08 3.52 ≤ .05 ≤ .05
Future Use 3.14 2.83 3.28 ≤ .05 ≤ .05
User Satisfaction 28.14 26.59 28.67 ≤ .1 ≤ .05

(1) Note on statisfical significance: typically, p-values p ≤ 0.05 are considered to
be statistically significant, and p-values p ≤ 0.1 are indicative of a statistical trend.
(2) Note on task success: the drop of performance in fully-learnt behaviour was
mainly caused by infinite loops, where the execution of action a in state s did not
change the state s′ = s.
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error rates, but different event error rates. Typically, spoken dialogue strate-
gies have to handle trade-offs between acceptance, confirmation and rejec-
tion of recognition hypotheses, which can be classified as correct or incorrect.
Ideally, dialogue behaviours should choose actions maximizing correct accep-
tance/confirmation/rejection events, whilst minimizing the incorrect ones.
From these results it can be inferred that semi-learnt behaviour handled
such trade-offs better than deterministic behaviour by issuing more accep-
tances and fewer confirmations. This implies the use of more implicit confir-
mations and fewer explicit confirmations, which helps to explain why semi-
learnt behaviour was more efficient than the deterministic one. Although
dialogue policies were not optimized for ‘event error rate’ (see equation 12,
p 40), these results suggest that optimizing for dialogue efficiency produced
an indirect optimization for such trade-offs. In addition, it can be observed
that deterministic and semi-learnt behaviours are significantly different in
all recognition events (correct/false acceptance/confirmation/rejection). In
contrast, both learnt behaviours are significantly different in only half of the
recognition events, suggesting that learnt behaviours act in a more similar
way than deterministic behaviour.

Task success: Fully-learnt behaviour was significantly outperformed by
the other behaviours that generated more successful conversations. This
is where fully-learnt behaviour paid the price for generating some infinite
dialogues that had to be artificially terminated before successful completion.
In addition, whilst deterministic and semi-learnt behaviours were very similar
in terms of task success, semi-learnt behaviour significantly outperformed its
deterministic counterpart in terms of dialogue reward. This suggests that the
dialogue reward metric is reflecting well the combined results from dialogue
efficiency and dialogue accuracy.

User satisfaction: Users evaluated the semi-learnt behaviour as the best.
Although, semi-learnt behaviour was significantly different to fully-learnt be-
haviour, it was not significantly different to its deterministic counterpart. A
similar user satisfaction result was found by Singh et al. (2002) and Lemon
et al. (2006). The performance of optimized confirmation strategies may be
obscured by high recognition error rates. Future experiments could investi-
gate optimized confirmation strategies under lower recognition error rates.
In addition, the differences between learnt behaviours were statistically sig-
nificant in the following qualitative metrics: system understood, task easy,
expected behaviour, and future use. Similar differences were observed when
comparing statistical significance between deterministic and fully learnt be-
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haviour. These results suggest that those are the metrics with more impact
on perceived system performance in the presence of unexpected dialogue be-
haviour such as infinite loops.

These results can be summarized as follows. First, dialogues by deter-
ministic and semi-learnt behaviour were significantly more successful than
dialogues by fully-learnt behaviour. These unsuccessful dialogues were re-
flected in the efficiency metrics, where fully-learnt behaviour falsely seems
to be most efficient. Second, deterministic and semi-learnt behaviours are
equally successful but the latter is more efficient (at p ≤ 0.05 in system/user
turns). Third, real users perceived fully-learnt behaviour as the worst (with
statistical trend for deterministic vs fully-learnt, and significant at p ≤ 0.05
for fully-learnt vs semi-learnt). Finally, the problem of infinite loops could
have been avoided (e.g. by backing off from learnt behaviour to a determinis-
tic one in dialogue states with potential infinite loops); however, if a dialogue
policy uses fully-learnt behaviour without a good reward function or without
constraints to generate dialogues that make sense to humans, then it may
not learn successful and coherent behaviours. According to the quantitative
and qualitative results above, it can be concluded that semi-learnt behaviour
was better than the other behaviours.

5.4. Analysis of results based on users with only successful dialogues

A further (and possibly more fair) comparison of spoken dialogue be-
haviours was based on users with only successful dialogues (9 users out of
32, where each user did six dialogue tasks)—shown in Table 9. It shows
a summary of results comparing deterministic, fully-learnt and semi-learnt
behaviour; including statistical significance. Firstly, it can be observed that
both learnt behaviours were more efficient (in system/user turns, at p ≤ 0.05)
than their deterministic counterpart, and the differences between learnt be-
haviours were not statistically significant. Secondly, no significant differences
were observed in dialogue quality. However, the statistical trend in event er-
ror rate suggests that the semi-learnt behaviour handled the trade-offs of
acceptance/confirmation/rejection events more effectively. Thirdly, it can be
noted that both learnt behaviours obtained more reward than their determin-
istic counterpart, and that therefore this metric is reflecting the significant
differences observed from efficiency metrics. Last, similar to the results for
all dialogues, the semi-learnt behaviour obtained the highest score in user
satisfaction, but the differences were not statistically significant.
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These results lead us to conclude that semi-learnt dialogue behaviour is
a better alternative than deterministic, and indicate that its performance is
comparable to that of fully-learnt behaviour when they are evaluated on only
successful dialogues.

Table 9: Results of the CSTR travel planning spoken dialogue system using data from
users—with only successful dialogues. They are organized in the following groups of
metrics: dialogue efficiency, dialogue quality, task success and user satisfaction.

Measure Behaviour p-values
Deter- Fully- Semi- (1,2) (1,3) (2,3)

ministic(1) Learnt(2) Learnt(3)

Avg. System Turns 14.58 11.94 12.58 ≤ .05 ≤ .05
Avg. User Turns 12.50 9.75 10.23 ≤ .05 ≤ .05
Avg. Time (secs) 159.74 142.69 132.48 ≤ .05
Word Error Rate 0.343 0.265 0.276
Keyword Error Rate 0.209 0.137 0.167 ≤ .1
Event Error Rate 0.365 0.233 0.175 ≤ .1 ≤ .1
Avg. Task Success 1.00 1.00 1.00
Avg. Dialogue Reward 85.42 88.06 87.42 ≤ .05 ≤ .05
User Satisfaction 31.28 31.78 32.39

5.5. Do people want to talk to spoken dialogue systems?

At the end of each experimental session, participants were asked the fol-
lowing question: ‘Would you use spoken dialogue systems for other tasks
based on this experience?’ Participants ranked their preference using a 5-
point Likert scale, where the higher the score, the better the satisfaction. We
observed that only 12%(4) percent of participants were pessimistic in their
future use, 56%(18) of participants preferred to stay neutral, and 31%(10)
were optimistic in its future use. The scores in preference of future use per
user type were 3.0 for novice users, 3.28 for experienced users, and 3.2 for
expert users (see p. 32 for proportions of user types). To further analyze this,
consider splitting the group of participants: the first group with dialogue re-
ward smaller than 80 and the rest in the second group. There was a 2.8 score
in preference of future use for the first group of participants against a 3.7
score for the second group. Based on this result (significant at p = 0.006) it
can be inferred that the higher the dialogue reward the higher the preference
for future use of dialogue systems.
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6. Evaluation of simulated behaviours

The evaluation of simulated behaviours described in this section have
three purposes: (1) to investigate the differences between real and simulated
speech recognition, (2) to investigate if simulated user behaviour generates
user responses that resemble human responses, and (3) to investigate if the
hand-crafted dialogue strategy is a reasonable baseline to compare against
other competing dialogue strategies.

6.1. Real versus simulated speech recognition

The real conversational environment used the ATK/HTK speech recog-
nizer, and the simulated one used a simulated speech recognition error model
(see section 2.2). Recognition results in terms of Keyword Error Rate (KER)
for both environments were as follows: 20% in the simulated environment and
29% in the real one. For confidence scoring, the real environment showed con-
fidence scores based on the probability density functions shown in Figure 12
(estimated from real data based on a normal density function), and the simu-
lated environment generated uniformly distributed random confidence scores
resulting in equal numbers of confidence levels. It can be observed that simu-
lation used a more conservative KER and different distributions of confidence
levels. This is because no training data was assumed, where the realistic
probability distributions for recognition errors and confidence scoring were
unknown.

Previous work in Automatic Speech Recognition (ASR) simulation has
assumed that exponential probability distributions can model the behaviour
of ASR confidence scorers (Pietquin, 2004; Williams, 2006). This research
found that this assumption does not hold for the ASR system used here.
Instead, the gamma probability distributions are suggested to simulate ASR
confidence scores, which are more flexible and include the exponential dis-
tribution. Thus, learnt dialogue policies in a second stage can be retrained
with more realistic ASR behaviour in order to generate potentially even bet-
ter policies. Nevertheless, it was found that even conservative ASR error
modelling was sufficient to find better policies than deterministic behaviour.

6.2. Real versus simulated user behaviour

Simulated user behaviour was compared against real user behaviour and
against random user behaviour (see section 2 for details on dialogue sim-
ulation). Because there is a variety of proposals on how to evaluate user
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Figure 12: Probability density functions estimated from observed speech recognition con-
fidence scores of keywords in data collected by the CSTR travel planning system.

simulations, we proposed two metrics to evaluate user behaviour based on
dialogue similarity (using the Kulback-Leibler divergence) and dialogue co-
herence (using coherence error rate), and also validated their results with
the more established Precision-Recall metric based on the F-Measure score
(Schatzmann et al., 2005). These metrics were applied as described in ap-
pendix A. The objectives of this evaluation were: (a) to observe if the simu-
lated user model used to learn the dialogue strategies was a reasonable thing
to use, and (b) to validate that dialogue realism could be distinguished by
the proposed metrics (KL-divergence and CER).

This evaluation used three sets of user responses: (1) real user responses
were extracted from annotated data from the realistic environment, consist-
ing in 192 dialogues including 4623 user utterances; (2) simulated coherent
responses using algorithm 1 described in section 2; and (3) simulated random
responses using the same algorithm, but with a random choice of user dia-
logue acts (at line 12) and with a random sequence of slots. All user responses
(real, simulated coherent or simulated random) were derived from machine
dialogue acts in the real logged data, which enabled a fairer comparison. In
addition, the user responses were not distorted because they were compared
before speech recognition occurred.
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Table 10 shows an evaluation of simulated user behaviour using Precision-
Recall and KL-divergence. It can be seen that both metrics agreed in the
ranking of dialogue realism, including the proposed KL-divergence metric.
These results show that simulated coherent behaviour is more similar to real
user behaviour than simulated random behaviour. It can be observed that
the Precision-Recall of simulated coherent behaviour obtained higher scores
than those reported before (Schatzmann et al., 2005; Georgila et al., 2006),
approaching the upper-bound scores from real user behaviour.

Table 10: Evaluation of real and simulated user behaviour with Precision-Recall in terms
of F-Measure (the higher the better) and KL-divergence (the lower the better).

Compared Dialogues
F-Measure

KL-divergence
less strict more strict

Real1 vs Real2 0.915 0.749 1.386
Real vs Simulated Coherent 0.708 0.612 4.281
Real vs Simulated Random 0.633 0.360 5.025
Simulated Coherent vs Simulated Random 0.417 0.247 6.532

Notes: (1) The less strict F-Measure score considers a user response as a sequence
of actions, and the more strict score considers a user response as a single action, (2)
the real dialogues were divided into two subsets (’Real1’ and ’Real2’) to provide
an upper-bound score, (3) KL-divergence used Witten-Bell discounting to smooth
the probability distributions.

In addition, the results in terms of Coherence Error Rate (CER) for real,
simulated and random responses were 8.23%, 2.99%, 30.10%, respectively. It
can be observed that simulated coherent behaviour behaved very optimisti-
cally, that is not very different from real user behaviour, and it is significantly
different from the coherence of random behaviour. This metric is interesting
because it evaluates a different perspective from the existing metrics, it may
be used as a complementary evaluation.

6.3. Evaluating the baseline of machine dialogue behaviour

The use of speech recognition confidence scores forces spoken dialogue
strategies to handle tradeoffs among acceptance, confirmation and rejection
events ei, which can be classified as correct Ec = {ca, cc, cr} or incorrect
Ef = {fa, fc, fr}. Table 11 shows the categories of recognition events. A
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reasonable dialogue strategy would choose actions maximizing correct accep-
tance/confirmation/rejection events, whilst minimizing the incorrect ones. A
simple metric to quantify these events is referred to as an Event Error Rate
(EvER):

EvER =
count(ei ∈ Ef )

count(ej ∈ {Ec, Ef})
× 100. (12)

Table 11: Speech recognition events in spoken dialogue systems.

Recognition Event Correct False (or incorrect)

Acceptance ca fa
Confirmation cc fc

Rejection cr fr

For such a purpose, consider that speech recognition hypotheses fall
within three equally distributed regions of confidence scores (assuming no
training data): low confidence, medium confidence, and high confidence. In
addition, consider the confirmation strategies Π of Table 12 for the three con-
fidence regions. Which confirmation strategy is a better baseline of machine
behaviour? For perfect speech recognizers it has to be ‘Strategy1’, because
it leads to more efficient conversations in terms of number of system turns;
but this is unrealistic. Thus, a more reasonable choice of dialogue strategy
is the one obtaining the lowest EvER score, and can be expressed as

Baseline Strategy = arg min
πi∈Π

EvER(πi). (13)

Table 12: Confirmation strategies for different recognition confidence score regions. No-
tation: IC=implicit confirmations, EC=explicit confirmations, and AP=apologies.

Strategy Low Confidence Medium Confidence High Confidence

Strategy1 IC IC IC
Strategy2 EC IC IC
Strategy3 AP EC IC
Strategy4 AP EC EC
Strategy5 EC EC EC

This metric was used to evaluate—with real data—the deterministic (hand-
crafted) machine dialogue behaviour of the system, in order to to find a rea-
sonable baseline of machine dialogue behaviour. From the data collected by
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the system, we used all keywords (with automatic and manual transcriptions)
including their corresponding speech recognition confidence scores, and com-
puted the EvER for such confirmation strategies (Table 13). It can be seen
that the deterministic behaviour of choice in this research (Strategy3) in-
deed obtained the lowest EvER, together with ‘Strategy4’. Although they
obtained the same result, the former is more attractive, due to its use of
implicit confirmations because it leads towards more efficient conversations.
Therefore, it can be concluded that the learnt dialogue strategies were com-
pared against a reasonable baseline of deterministic machine dialogue be-
haviour.

Table 13: Event Error Rate (EvER) results of real dialogues for confirmation strategies
of Table 12. Abbreviations: ca=correct acceptance, cc=correct confirmation, cr=correct
rejection, fa=false acceptance, fc=false confirmation, fr=false rejection.

Strategy ca(%) cc(%) cr(%) fa(%) fc(%) fr(%) EvER(%)

Strategy1 73.6 0 0 26.3 0 0 26.3
Strategy2 71.9 2.2 0 17.0 9.3 0 26.3
Strategy3 26.7 44.6 9.3 2.5 14.4 2.2 19.2
Strategy4 0 71.4 9.3 0 17.0 2.2 19.2
Strategy5 0 73.6 0 0 26.3 0 26.3

7. Related work

7.1. Dialogue strategy learning

Walker (1993, 1996) developed the notion of a simulation environment to
test dialogue strategies and Walker (1993) and Biermann and Long (1996)
proposed the notion of automatically optimizing a dialogue strategy. Rein-
forcement learning approaches based on the Markov Decision Process (MDP)
model were first applied to dialogue strategy learning by Levin and Pieraccini
(1997) in a simulation-based approach and by Walker et al. (1998) in a corpus-
based approach. Since then there have been several developments in the field
(Levin et al., 2000; Walker, 2000; Young, 2000; Singh et al., 2002; Scheffler,
2002; Pietquin, 2004; Williams, 2006; Young et al., 2007; Frampton, 2008),
largely adopting flat tabular reinforcement learning approaches. The scala-
bility of such approaches is limited because of the curse of dimensionality:
the exponential growth of the search space according to the number of state
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variables taken into account. Even a system with a simple state representa-
tions may have a large search space which can quickly become intractable.
This problem has led to the use of function approximation (Denecke et al.,
2004; Henderson et al., 2008) in order to find solutions on reduced state-
action spaces. These investigations have been applied to small-scale dialogue
systems aiming for a single global solution. However, less attention has been
paid to finding solutions using a divide-and-conquer approach: hierarchical
POMDPs with a bottom-up approach have been applied to small state-action
spaces (Pineau, 2004), and hierarchical reactive planning and learning has
been used for dialogue systems with few slots of information (Lemon et al.,
2006; Rieser and Lemon, 2008). Our spoken dialogue system in the travel
planning domain was implemented with five dialogue goals and 26 slots of
information. This is the largest scale spoken dialogue system so far (in terms
of dialogue goals and slots) tested using the reinforcement learning paradigm.

Our approach for incorporating prior expert knowledge into reinforcement
learning agents is based on the Hierarchical Abstract Machines (HAMs) of
Parr and Russell (1997). In this approach the system designer specifies a
partial program (HAM) and leaves the unspecified part to the hierarchical
reinforcement learning agent. This is an important extension to the fully-
learnt approach by constraining each hierarchical SMDP with some prior
expert knowledge, in order to combine dialogue behaviour specified by human
designers with behaviour automatically inferred by reinforcement learning
agents.

Litman et al. (2000), Walker (2000), and Singh et al. (2002) incorporated
prior knowledge into MDP-based spoken dialogue systems (NJFun, ELVIS)
by means of hand-crafted rules used to compress the state-action space. This
approach allowed them to perform very efficient dialogue strategy learning.
However, NJFun and ELVIS do not provide a formal framework to incorpo-
rate prior knowledge and apply flat dialogue optimization. This is in contrast
to our approach which is based on deterministic-stochastic finite state ma-
chines and adopts a hierarchical structure for optimization.

Heeman (2007) proposed combining the information-state update ap-
proach with reinforcement learning agents. In this approach the information-
state (dialogue state) is hand-crafted by update rules based on preconditions
and effects. A subset of preconditions that are easy to specify are hand-
crafted, and those less easy to specify are left to the reinforcement learning
agent. Again this uses flat reinforcement learning.

Williams (2008) proposed executing a POMDP and a hand-crafted dia-
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logue controller in parallel. At each time step, the hand-crafted controller is
in state s (e.g. semantic frame) and the POMDP is in belief state b (probabil-
ity distribution over POMDP states), the hand-crafted controller nominates
a subset of actions, and the POMDP updates a value function only for that
particular subset of actions. Thus, a POMDP solution is found on a more
compact space of policies. Our approach and Williams’ approach share the
idea of executing a partial program in parallel with an optimized decision-
making model, but we use a decomposed MDP and optimize a hierarchy of
partial programs, which is more scalable and suitable for reusability.

7.2. Evaluation of simulated user behaviour

Researchers in spoken dialogue tend to agree that realistic simulated
user behaviour must exhibit ‘human-like behaviour’ (Georgila et al., 2006).
Schatzmann et al. (2005) found that the quality of the learnt dialogue strate-
gies is strongly dependent on the simulated user model, where good (realistic)
user models help to find better policies than poor user models. Ai and Litman
(2008) evaluated real and simulated dialogues using human judges and found
that no strong agreement can be reached by humans on the quality of the
dialogues, but humans consistently rank models of simulated user behaviour.

Previous work has proposed several evaluation metrics for assessing the
realism of user simulations and can be grouped into two broad approaches:
dialogue similarity and system performance. The former approach assumes
that given a set of metrics, a set of simulated dialogues, and a set of real dia-
logues, the realism of simulated dialogues increases as their scores approach
those obtained by real ones. Most previously proposed evaluation metrics fall
within this approach (Eckert et al., 1997; Scheffler and Young, 2000, 2002;
Schatzmann et al., 2005; Filisko, 2006; Georgila et al., 2005; Cuayáhuitl et al.,
2005; Rieser and Lemon, 2006; Ai and Litman, 2007). This approach is use-
ful for giving a rough indication of the similarity between simulated and real
dialogues, but it penalizes unseen behaviour (even when it may be realistic).
The latter approach ranks simulated user models in terms of their prediction
of the performance of a dialogue system. This is motivated by the fact that
simulated user models should improve machine dialogue behaviours rather
than generating human-like conversations (Williams, 2007). Both approaches
are limited by the fact that they require real dialogue data, which may not
exist at early stages of system development, and that they cannot distinguish
if a given sequence of machine-user dialogue acts is realistic or not.
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Our proposed KL-divergence metric complements the previous dialogue
similarity metrics by comparing probability distributions of user dialogue
acts, and showed agreement with the Precision-Recall metric. In contrast
with previously proposed metrics, our proposed coherence error rate metric
can distinguish if a given sequence of machine-user dialogue acts is realistic or
not. Because this latter metric uses hand-crafted coherence rules, a potential
future work is to induce such rules automatically from data.

8. Conclusions and future work

In this paper we have developed a hierarchical reinforcement learning
spoken dialogue system, based on an SMDP, and evaluated it with real users
in a laboratory setting. Both fully-learnt and semi-learnt machine dialogue
behaviours were used and compared with a baseline hand-crafted dialogue
strategy. To the best of our knowledge, this is the first evaluation of SMDP-
based reinforcement learning dialogue agents in a realistic environment.

Semi-learnt behaviour was quantitatively better than the other dialogue
behaviours. It achieved similar task success to deterministic behaviour (95%)
and more efficient conversations by using 9% fewer system turns, 12% fewer
user turns, and 7% less time (at p < 0.05). It also outperformed fully-learnt
behaviour by 35% in terms of higher task success (at p < 0.05); an evaluation
based on users with only successful dialogues did not report significant differ-
ences. However, although fully-learnt behaviour resulted in inferior overall
performance, it cannot be discarded as a better alternative to hand-crafted
behaviour. But it is less flexible and less coherent than semi-learnt behaviour
because it does not include a mechanism to guarantee coherent actions, which
is essential for successful dialogues. On the other hand, while users did per-
ceive significant qualitative differences between fully-learnt behaviour and the
semi-learn behaviour and statistical trend between fully-learnt and determin-
istic, users did not observe significant differences between deterministic and
semi-learnt behaviours. Our key findings may be summarized as follows:

1. hierarchical semi-learnt dialogue agents are a better alternative (with
higher overall performance) than deterministic or fully-learnt behaviour;

2. the proposed simulated environment with coherent user behaviour, and
distorted with conservative speech recognition error rates (keyword er-
ror rate of 20%) were sufficient for learning dialogue policies with su-
perior performance than a reasonable hand-crafted behaviour;
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3. the evaluation metrics Precision-Recall and KL-divergence agreed in
the ranking of dialogue realism;

4. real users act with highly coherent behaviour at the dialogue act level
(real users behaved coherently 92% of the time according to the metric
‘coherence error rate’);

5. hierarchical reinforcement learning dialogue agents are feasible and
promising for the (semi)automatic design of optimized behaviours in
larger-scale spoken dialogue systems.

We suggest the following research avenues for endowing conversational
agents with optimized, adaptive, robust, scalable and effective spoken dia-
logue behaviours.

First, one of the most important limitations of this work was the lack of a
robust approach for updating slot values. Due to the fact that speech recog-
nition hypotheses may include errors, it is not trivial to know when to update
the recognized slot values and when to reject them. The effect of non-robust
keyword updating is that the system eventually gives the impression of for-
getting what has been said before. This highlights the importance of effective
and efficient mechanisms for dialogue history tracking. Future research can
incorporate beliefs into the knowledge rich-states of the proposed framework
with ideas from approaches such as regression methods (Bohus and Rud-
nicky, 2005), POMDPs (Williams, 2006), or Bayesian updates (Thomson
et al., 2008).

Second, we focused on optimizing confirmation strategies to keep their
assessment simple rather than evaluating multiple dimensions. But there
is a wide range of optimized behaviours that can be incorporated into this
kind of system. For example: learning initiative strategies, learning to give
help, learning to ground, learning to present information, learning to clarify,
learning to negotiate, learning to recover from errors, learning multimodal
strategies, and learning to collaborate. The thorough integration of all these
behaviours into a single framework remains to be investigated.

Third, our optimization approaches include support for tabular hierarchi-
cal reinforcement learning. However, if a given subtask is intractable (i.e. the
state-action space becomes too large and indecomposable) then alternative
methods should be adopted to make such subtasks feasible. One of the most
promising approaches reported in the literature of reinforcement learning is
that of function approximation. The optimization approaches employed in
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this paper could be combined with function approximators such as neural
networks or linear function approximation (Henderson et al., 2008).

Fourth, the current practice of reinforcement learning for spoken dialogue
uses a single reward function. Although the proposed approaches in this pa-
per allowed the use of a different reward function per subtask, the experimen-
tal setting used the same performance function across the entire hierarchy.
Intuitively, hierarchical dialogue optimizations may require different types of
reward function at different levels of granularity. Moreover, as the dialogue
complexity increases, it becomes more difficult to specify such performance
functions. It remains to be investigated how to specify or infer such hierar-
chical reward functions since the learnt behaviour strongly depends on the
reward function (Walker, 1993, 2000; Rieser and Lemon, 2008).

In the proposed approaches the system designer has manually to remove
irrelevant state variables and actions for each subtask. Although this is useful
because it allows the system designer to specify what to remove, it may be-
come problematic if relevant information is removed, leading to unsafe state
abstraction. Therefore, it would be useful to have a method for performing
state abstraction of dialogue information in a safer way (Dietterich, 2000).

Finally, the simulated conversational environment that we used did not
model errors as in a real environment, which was expected due to the lack
of training data. Nonetheless, the experimental results provided evidence
to conclude that this heuristic-based dialogue simulation approach was use-
ful to learn dialogue strategies with superior performance compared with a
reasonable baseline of deterministic behaviour. This result is relevant for
spoken dialogue systems in new domains, where annotated dialogue data is
not available. Our simulated environment could be enhanced with probabil-
ity distributions estimated from real annotated data as in Schatzmann et al.
(2007). However, due to the fact that collecting training data is costly and
time consuming, a potential future work is to investigate methods to gener-
alize simulated behaviours for dialogue systems across different domains.
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A. Evaluation metrics for user behaviour

The evaluation of real and simulated user behaviour was carried out with
three evaluation metrics from two different perspectives. The first perspective
evaluates ‘dialogue similarity’, where precision-recall quantifies the predicted
user responses from a user simulation model (strongly penalizes unseen re-
sponses (Schatzmann et al., 2005)), and probabilistic dialogue similarity com-
plements the previous metric by comparing probability distributions of user
dialogue acts based on the Kulback-Leibler divergence (Cuayáhuitl et al.,
2005). The second perspective evaluates ‘dialogue coherence’, where coher-
ence error rate ignores the seen or unseen user responses, instead, it classifies
them into coherent or incoherent responses.

To illustrate the evaluation metrics consider the sub-dialogues below with
common system responses assumed from logged real data, but user responses
may be real (as in Table 14) or simulated (as in Tables 15 and 16). The
acronyms of dialogue act types are described in Table 1.

Table 14: Sample sub-dialogue with user responses assumed from logged real data.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system.
req(dep city) Tell me your flight information.

USR pro(dep city=amsterdam, I would like a return flight leaving from
flight type=return) Amsterdam.

SYS sic(flight type=return), A return flight, where are you leaving from?
req(dep city)

USR pro(dep city=amsterdam) Amsterdam

A.1. Precision-Recall

This measure is commonly used in the information retrieval field, and was
suggested by (Schatzmann et al., 2005) to evaluate how well a user simulation
model can predict real user dialogue behaviour. Precision specifies the frac-
tion of correctly predicted real user responses from all simulated responses.
Recall specifies the fraction of correctly predicted real user responses from all
real responses. They are expressed as

Precision =
Number of correctly predicted user responses

Total number of simulated user responses
, (14)
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Table 15: Sample sub-dialogue with simulated coherent user responses.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system.
req(dep city) Tell me your flight information.

USR pro(dep city=amsterdam, A return flight from Amsterdam travelling
dep time=morning, in the morning with Air France
airline=air france,
flight type=return)

SYS sic(flight type=return), A return flight, where are you leaving from?
req(dep city)

USR pro(dep city=amsterdam) Amsterdam

Table 16: Sample sub-dialogue with simulated random user responses.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system.
req(dep city) Tell me your flight information.

USR con(dest city=yes) Yes
SYS sic(flight type=return), A return flight, where are you leaving from?

req(dep city)
USR pro(des city=amsterdam) To Amsterdam

and

Recall =
Number of correctly predicted user responses

Total number of real user responses
. (15)

These scores are interpreted as the higher the more realistic the user re-
sponses. An average score of recall (R) and precision (P) called F-measure
is defined by

F =
2PR

(P + R)
. (16)

If we want to compute the F-measure score in dialogue data, the slot
values can be ignored to reduce data sparsity while preserving the conveyed
information. (Schatzmann et al., 2005) suggested to compute precision-recall
by considering a user dialogue act as a sequence of actions, e.g. the dialogue
act ‘pro(dep city,flight type)’ is equivalent to {pro(dep city), pro(flight type)}.
Considering the given sample sub-dialogues, the F-measure score for real vs
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simulated coherent responses is F = 0.75, and the score for real vs simulated
random responses is F = 0. Alternatively, the scores can be computed in
a more strict way by considering each user response as a single user action
instead of multiple ones. Precision-recall can be recomputed as follows: the
scores for real vs simulated coherent responses are F = 0.5; and the score for
real vs simulated random responses is F = 0.

A.2. Probabilistic Dialogue Similarity

The purpose of this measure is to evaluate the probabilistic similarity
between two sets of dialogues. The similarity between real and simulated di-
alogues has been analyzed using the Kulback-Leibler divergence (Cuayáhuitl
et al., 2005), and here we propose to apply it in a simpler way. First, com-
pute two smoothed probability distributions of machine-user dialogue acts,
without slot values for reduced combinations: P for one data set and Q for
the other. For example: P represents a distribution of the set of real dia-
logues and Q a distribution of the set of simulated ones. Then compute the
symmetric distance according to

D(P, Q) =
DKL(P ‖ Q) + DKL(Q ‖ P )

2
, (17)

where DKL is the Kulback-Leibler divergence (distance) between P and Q:

DKL(P ‖ Q) =
∑

i

pi log2 (
pi

qi

). (18)

Tables 17 and 18 use the sample sub-dialogues of this subsection in order
to show the divergence between real and simulated coherent user responses,
and between real and simulated random user responses. The probability dis-
tributions of occurrence P and Q were smoothed by assigning a probability
mass of 0.1 to unseen events, and the method of preference can be used to
address the issue of data sparsity. It can be observed that the symmetric di-
vergence between real and simulated random user responses (2.536) is greater
than between real and simulated coherent ones (0.759). This reflects the in-
tuitive perception that the more realistic the user responses, the shorter the
divergence.

It can be observed that this metric gives the same ordering on user sim-
ulations than the precision-recall metric. A validation of this ordering based
on a corpus of real human-machine dialogues is reported on section 6.
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Table 17: Dialogue similarity results for real vs simulated coherent sub-dialogues.

Dialogue Act Pairs (SYS:USR) P Q DKL(P ||Q) DKL(Q||P )

gre(),req(dep city):pro(dep city,flight type) 0.45 0.45 0.000 0.000
sic(flight type)+req(dep city):pro(dep city) 0.45 0.10 0.976 -0.217
sic(flight type)+req(dep city):pro(dep city,

des city,dep time,airline) 0.10 0.45 -0.217 0.976
Divergence 0.759 0.759

Table 18: Dialogue similarity results for real vs simulated random sub-dialogues.

Dialogue Act Pairs (SYS:USR) P Q DKL(P ||Q) DKL(Q||P )

gre(),req(dep city):pro(dep city,flight type) 0.45 0.05 1.426 -0.158
sic(flight type)+req(dep city):pro(dep city) 0.45 0.05 1.426 -0.158
gre(),req(dep city):con(des city) 0.05 0.45 -0.158 1.426
sic(flight type)+req(dep city):pro(des city) 0.05 0.45 -0.158 1.426
Divergence 2.536 2.536

A.3. Coherence Error Rate

An evaluation metric called Coherence Error Rate (CER) is proposed due
to the fact that most previously used metrics penalize unseen user responses
even when they may be realistic. The key assumption in this metric is that
given a user knowledge-base ku

t and a set of dialogue coherence rules encoded
into a function, we can evaluate—in an approximated form—whether a user
action au

t is coherent or not. This metric rates errors (in this context, inco-
herent dialogue acts) from a set of observed events (user dialogue acts in the
data), in terms of dialogue act types (see Table 1):

CER =

∑

incoherent(au
t , k

u
t )

count(au
t )

× 100, (19)

where the coherence of user dialogue acts is evaluated according to

incoherent(au
t , k

u
t ) =















0 if au
t ∈ {pro, rep} and unconfirmed slot in focus in ku

t

0 if au
t ∈ {con} and am

t ∈ {sec, mec}
0 if au

t ∈ {pro, rep} and am
t ∈ {rel}

1 otherwise.
(20)
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Equation 20 is suited for simple slot-filling applications, but for more com-
plex dialogues more rules have to be added. This metric takes into account
user dialogue acts and decomposes them into dialogue acts with a single slot
and without slot value, e.g. pro(des city). This procedure incorporates the
conveyed information, and assumes that the slot values are always consistent
given a user goal at the beginning of the conversation. In addition, this eval-
uation metric considers user responses with silences or incomplete dialogue
acts as incoherent, the explanation for this consideration is because whatever
the user said (e.g. mumbles or out-of-vocabulary words), it was not possible
to extract a user dialogue act contributing to the conversation.

Given the sample sub-dialogues of this subsection, Table 19 shows the
results of coherence for real, simulated coherent and simulated random user
responses: 0%, 0%, 50%, respectively. Note that although simulated coherent
user responses do not match the real ones, they are not being penalized
because they are responses that make sense according to the dialogue history.

Table 19: Results of coherence for real and simulated user responses.

Data Set Dialogue Act Pairs (SYS:USR) incoherent(au
t , k

u
t )

Real
gre(),req(dep city):pro(dep city) 0
gre(),req(dep city):pro(flight type) 0
sic(flight type),req(dep city):pro(dep city) 0

Simulated

gre(),req(dep city):pro(dep city) 0
gre(),req(dep city):pro(dep time) 0
gre(),req(dep city):pro(airline) 0

coherent gre(),req(dep city):pro(flight type) 0
sic(flight type),req(dep city):pro(dep city) 0

Simulated
gre(),req(dep city):con(dest city) 1

random sic(flight type),req(dep city):pro(des city) 0
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