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TOPOLOGY OPTIMIZATION METHODS WITH GRADIENT-FREE

PERIMETER APPROXIMATION

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Abstract. In this paper we introduce a family of smooth perimeter approximating functionals
designed to be incorporated within topology optimization algorithms. The required mathematical
properties, namely the Γ-convergence and the compactness of sequences of minimizers, are first
established. Then we propose several methods for the solution of topology optimization problems
with perimeter penalization showing different features. We conclude by some numerical illustrations
in the contexts of least square problems and compliance minimization.

1. Introduction

In several areas of applied sciences, models where the perimeter of an unknown set plays a crucial
role may be considered. Such problems include multiphase problems where the interface between
two liquid phases is assumed to minimize a free energy while keeping its area bounded [18, 23], or
image segmentation models with Mumford-Shah type functionals [6]. Another important field where
the perimeter comes into play is the optimal design of shapes [5], such as load bearing structures
or electromagnetic devices, where it aims at rendering the problem well-posed in the sense of the
existence of optimal domains. However it is known that the major difficulty of standard perimeter
penalization is that the sensitivity of the perimeter to topology changes is of lower order compared
to usual cost functionals, like the volume (see e.g. [17, 22, 8] for the topological sensitivity of other
functionals) and thus prohibits successful numerical solution. In this paper we propose a regularization
of the perimeter that overcomes this drawback and show simple applications in topology optimization
and source identification. Since we believe that applications of our method could show useful in other
areas of applied sciences, a brief overview of the physical motivation of our approach is first proposed.

The Ericksen-Timoshenko bar [21] was designed as an alternative to strain-gradient models to
simulate microstructures of finite scale ξ, where an energy functional

Gξ(u, v) =

∫ 1

0

(

αξ2

2
(v′)2 +

α

2
(u− v)2

)

dx

depending on two variables u, the longitudinal strain, and v, an internal variable assumed to measure
all deviations from 1D deformations, is minimized in (u, v). Seeking a minumum in the second variable
amounts to finding vξ solution of the Euler-Lagrange equation −ξ2v′′ξ +vξ = u with v′ξ(0) = v′ξ(1) = 0.
Hence the problem can be restated as

uξ ∈ argmin Fξ(u) :=
1

ξ
Gξ(u, vξ) =

α

2ξ
〈u− vξ, u〉, (1.1)

where the brackets denote the L2 scalar product. Moreover, it is observed that vξ also minimizes

G̃ξ(u, v) :=
1
ξGξ(u, v) +

α
2ξ 〈u, 1 − u〉 which, in two papers of Gurtin and Fried [15, 16], is identified

with the free energy of (a particular choice of1) some thermally induced phase transition models where
u stands for the scaled temperature variation and v represents a scalar “order parameter”. In [16],
the authors consider a dimensional analysis where ξ = ε is allowed to tend to 0.

In this paper we show that for any space dimension N ,

F̃ε(u) :=
α

2ε
〈1 − vε, u〉 (1.2)

for u ∈ [0, 1] is the relaxation of Fε(u) for u ∈ {0, 1} in the weak-∗ topology, and converges as ε→ 0 in
a suitable sense and for a particular value of α independent of N to the perimeter Per(A) of A ⊂ Ω as
soon as u is the characteristic function of A. As a consequence we can address topology optimization

1In particular a model with dissipationless kinetics and vanishing specific heat.
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problems where the perimeter is approximated by F̃ε(χA) with A in some admissible class of shapes,
which is thereby continuous for the weak-∗ topology of characteristic functions and obviously free of
any gradient term.

Let us emphasize that while the addition of the perimeter in several shape and topology optimization
problems is by now quite standard, it is usually done in an ad-hoc manner to penalize an optimization
algorithm, see [11] and the references therein. To our knowledge a proper mathematical justification is
still missing and we believe that the contribution of this paper is also to propose a theoretical response
to this important issue.

Here, by observing that F̃ε(u) = Fε(u) as soon as u takes binary values (usually 1 or 0 in topology
optimization), homogenization (i.e., intermediate values of u) can be considered in the converging
optimization process. Moreover, since we intend to analyze the convergence of minimizers as ε → 0,
a more general notion of convergence of functionals, namely the Γ-convergence [14, 13], must be
considered. In this setting, the Modica-Mortola approach to approximate the perimeter is well-
known and widely used. In image segmentation [6] or fracture mechanics [12], the length of the
jump set of the unknown u is added to quadratic terms integrated over the smooth regions, whose
joint regularization is provided by the Ambrosio-Tortorelli functional [7]. Let us emphasize that, as
they involve a gradient term ‖∇u‖2L2, none of these two functionals are well-suited to approximate
optimal solutions in topology optimization. Indeed, they are defined for H1 functions and not for
characteristic functions, hence they would require to extend the cost function to the intermediate
values, typically by a relaxation which is not always doable. In addition, they are not compatible with
a discretization of u by piecewise constant finite elements, which are yet the most frequently used in
topology optimization.

In a previous paper [9] the pointwise convergence of a variant of Fε(χA) to Per(A) for A with
suitable regularity has been studied. Moreover, the topological sensitivity (or derivative) of the ap-

proximating functionals has been explicitly computed. With our approximating functionals F̃ε or Fε

we are able to nucleate holes, in particular, we can compute the corresponding topological derivatives
at the only additional cost of computing an adjoint state solution to a well-posed elliptic PDE sim-
ilar to the aforementioned Euler-Lagrange equation with appropriate right hand-side. Moreover, if
topology optimization is intended without using the concept of topological derivative, our formulation
allows one to relax the cost function, while the perimeter term might be approximated and relaxed
by F̃ε(u), allowing for minimizing sequences showing intermediate ”homogenized“ values, but never-
theless converging to a characteristic function. From a numerical point of view another direct benefit
of our approach, besides the absence of lower order terms in the topological sensitivity which has
been mentioned already, is that the solutions of topology optimization problems is explicitely writ-
ten as a multiple infima problem, which is easy to handle (e.g., by gradient or alternated directions
algorithms), as shown in three basic examples at the end of our paper.

Moreover, it is rather remarkable that F̃ε(u) seems not only to be arbitrarily proposed to get
better numerical algorithms, but also has an intrinsic meaning in terms of physical modelling, i.e., as
a free-energy type functional depending on a small parameter and where v is interpreted as a slow
internal variable which tracks the fast variable u. Our approach can therefore be a tool to study
limit models as ε→ 0. In mechanics one may think for instance of fracture models approximated by
damage models, where the damage variable is the scalar v, ε is the ”thickness” of the crack, and u
the displacement field, while the cost function is a Griffith-type energy [4, 12]. Let us remark that it
is a general limitation of our method that the numerical solutions to optimal structures have at least
a thickness of the order of ε, itself limited by the mesh stepsize. Coming back to our first motivation
example, the Eriksen-Timoshenko bar, there is an interest to replace strain-gradient models by models
with internal variables and free energy functionals reading as our Fε. We believe that several other
problems in physics where the perimeter enters the model could also find appropriate intepretations
and/or extension in the light of our functional.

2. Description of the approximating functionals

Let Ω be a bounded domain of RN with Lipschitz boundary. For all u ∈ L2(Ω) we define

Fε(u) = inf
v∈H1(Ω)

{

ε

2
‖∇v‖2L2(Ω) +

1

2ε
‖v − u‖2L2(Ω)

}

, (2.1)
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i.e., Fε is equal to ε/2 times the Moreau-Yosida regularization with constant 1/ε2 of the function
v ∈ H1(Ω) 7→ ‖∇v‖2L2(Ω). For later purposes we also introduce the relaxation of Fε for the weak-∗
topology of L∞(Ω) (see Proposition 2.3), given by

F̃ε(u) = Fε(u) +
1

2ε
〈u, 1− u〉, (2.2)

or equivalently,

F̃ε(u) = inf
v∈H1(Ω)

{

ε

2
‖∇v‖2L2(Ω) +

1

2ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

}

. (2.3)

Throughout we use the notation 〈u, v〉 :=
∫

Ω
uvdx for every pair of functions u, v having suitable

regularity. Practical expressions of Fε(u) and F̃ε(u) are provided below.

Proposition 2.1. Let u ∈ L2(Ω) be given and vε ∈ H1(Ω) be the (weak) solution of
{

−ε2∆vε + vε = u in Ω
∂nvε = 0 on ∂Ω.

(2.4)

Then we have

Fε(u) =
1

2ε
〈u − vε, u〉, (2.5)

F̃ε(u) =
1

2ε
〈1 − vε, u〉. (2.6)

Moreover, F̃ε(u) is differentiable with respect to ε with derivative

d

dε
F̃ε(u) =

1

2ε2

[

3〈u, vε〉 − 2‖vε‖2L2(Ω) − 〈1, u〉
]

. (2.7)

Proof. The Euler-Lagrange equations of the minimization problems (2.1) and (2.3) are identical and
read for the solution vε

ε2〈∇vε,∇ϕ〉+ 〈vε − u, ϕ〉 = 0 ∀ϕ ∈ H1(Ω), (2.8)

which is the weak formulation of (2.4). It holds in particular

ε2‖∇vε‖2L2(Ω) + ‖vε‖2L2(Ω) = 〈vε, u〉. (2.9)

Plugging (2.9) into (2.1) and (2.3) entails (2.5) and (2.6). Let v̇ε denote the derivative of vε with
respect to ε, whose existence is easily deduced from the implicit function theorem. Differentiating
(2.6) by the chain rule yields

d

dε
F̃ε(u) = − 1

2ε2
〈1− vε, u〉 −

1

2ε
〈v̇ε, u〉.

Using (2.8) we obtain

d

dε
F̃ε(u) = − 1

2ε2
〈1− vε, u〉 −

1

2ε

[

ε2〈∇vε,∇v̇ε〉+ 〈vε, v̇ε〉
]

. (2.10)

Now differentiating (2.8) provides

2ε〈∇vε,∇ϕ〉+ ε2〈∇v̇ε,∇ϕ〉+ 〈v̇ε, ϕ〉 = 0 ∀ϕ ∈ H1(Ω).

Choosing ϕ = vε yields
ε2〈∇v̇ε,∇vε〉+ 〈v̇ε, vε〉 = −2ε‖∇vε‖2L2(Ω).

It follows from (2.10) that

d

dε
F̃ε(u) = − 1

2ε2
〈1− vε, u〉+ ‖∇vε‖2L2(Ω).

Using (2.9) and rearranging yields (2.7). �

We define the sets
E = L∞(Ω, {0, 1}), Ẽ = L∞(Ω, [0, 1]),

remarking that Ẽ is obviously the convex hull of E . Let us now prove that F̃ε is the relaxation, i.e.
the lower semicontinuous envelope, of Fε:

F̃ε(u) = inf{lim inf
n→∞

Fε(un) : (un) s.t. u = lim
n→∞

un}.
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Lemma 2.2. The functional F̃ε is continuous on Ẽ for the weak-∗ topology of L∞(Ω).

Proof. We first note that Ẽ , endowed with the weak-∗ topology of L∞(Ω), is metrizable. Thus conti-

nuity is equivalent to sequential continuity. Assume that un, u ∈ Ẽ satisfy un ⇀ u weakly-∗ in L∞(Ω).
Set vn = (−ε2∆+ I)−1un and v = (−ε2∆+ I)−1u, so that by Proposition 2.1

F̃ε(un) =
1

2ε
〈1 − vn, un〉, F̃ε(u) =

1

2ε
〈1− v, u〉.

For all test function ϕ ∈ L2(Ω) we have

〈vn, ϕ〉 = 〈un, (−ε2∆+ I)−1ϕ〉 → 〈u, (−ε2∆+ I)−1ϕ〉 = 〈v, ϕ〉,
hence vn ⇀ v weakly-∗ in L2(Ω). By standard elliptic operator theory, ‖vn‖H1(Ω) is uniformly
bounded. By the Rellich theorem, one can extract a non-relabeled subsequence such that vn → w
strongly in L2(Ω), for some w ∈ L2(Ω). By uniqueness of the weak limit, we have w = v and conver-
gence of the whole sequence (vn). Finally, as product of strongly and weakly convergent sequences,

we get F̃ε(un) → F̃ε(u). �

Proposition 2.3. The function F̃ε : Ẽ → R is the relaxation of the function

u ∈ Ẽ 7→
{

Fε(u) if u ∈ E
+∞ if u /∈ E (2.11)

for the weak-∗ topology of L∞(Ω).

Proof. Denote by Gε the function defined by (2.11). According to Proposition 11.1.1 of [10], the
problem amounts to establishing the two following assertions:

∀(un) ∈ Ẽ , un ⇀ u⇒ F̃ε(u) ≤ lim inf
n→∞

Gε(un),

∀u ∈ Ẽ ∃(un) ∈ Ẽ s.t. un ⇀ u, F̃ε(u) = lim
n→∞

Gε(un).

Using that Gε(u) ≥ F̃ε(u) for all u ∈ Ẽ , the first assertion is a straightforward consequence of Lemma

2.2. Let now u ∈ Ẽ be arbitrary. A standard construction (see e.g. [19] proposition 7.2.14) enables to
define a sequence (un) ∈ E such that un ⇀ u. By Lemma 2.2 there holds

F̃ε(u) = lim
n→∞

F̃ε(un) = lim
n→∞

Gε(un).

�

3. Γ-convergence of the approximating functionals

This section addresses the Γ-convergence of the sequence of functionals (F̃ε) when ε → 0. Note
that, when a sequence is indexed by the letter ε, we actually mean any sequence of indices (εk) of
positive numbers going to zero.

3.1. Definition and basic properties of Γ-convergence. The notion of Γ-convergence (see, e.g.,
[14, 13, 10]) is a powerful tool of calculus of variations in function spaces. Given a metrizable space

(X, d) (in our case X = Ẽ endowed with distance induced by the L1-norm) one would like the maps

F 7→ inf
X
F and F 7→ argmin

X
F

to be sequentially continuous on the space of extended real-valued functions F : X → R ∪ {+∞}.

Definition 3.1. Let (F̃ε) be a sequence of functions F̃ε : X → R ∪ {+∞} and F̃ : X → R ∪ {+∞}.
We say that F̃ε Γ-converges to F̃ iff for all u ∈ X the two following conditions hold:

(1) for all sequences (uε) ∈ X such that d(uε, u) → 0 it holds F̃ (u) ≤ lim inf
ε→0

F̃ε(uε),

(2) there exists a sequence (ūε) ∈ X such that d(ūε, u) → 0 and F̃ (u) ≥ lim sup
ε→0

F̃ε(ūε).

The key theorem we shall use in this paper reads ([10] Theorem 12.1.1):

Theorem 3.2. Let F̃ε : X → R ∪ {+∞} Γ-converge to F̃ : X → R ∪ {+∞}.
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(1) If uε is an approximate minimizer of F̃ε, i.e.

F̃ε(uε) ≤ inf
u∈X

F̃ε(u) + λε,

with λε → 0, then inf
u∈X

F̃ε(u) → inf
u∈X

F̃ (u) and every cluster point of (uε) is a minimizer of F̃ .

(2) If J̃ : X → R is continuous, then J̃ + F̃ε Γ-converge to J̃ + F̃ .

Let us emphasize that the consideration of approximate minimizers is of major importance as soon
as numerical approximations are made.

3.2. Preliminary results. It turns out that the Γ-convergence can be straightforwardly deduced
from the pointwise convergence if the sequence of functionals under consideration is nondecreasing
and lower semicontinuous (see, e.g., [14] Proposition 5.4). The subsequent Lemma 3.6 as well as

several numerical tests based on the expression (2.7) of the derivative lead us to conjecture that F̃ε is
indeed nondecreasing when ε decreases. In addition, the pointwise convergence can be established, at
least under some regularity assumptions, by harmonic analysis techniques, similarly to [9]. However,
the motonicity being unproven, we will proceed more directly.

We define the potential function W : R → R+ by

W (s) =







s(1 − s) if 0 ≤ s ≤ 1,
−s if s ≤ 0,
s− 1 if s ≥ 1.

We set for all u, v ∈ L1(Ω)× L1(Ω)

G̃ε(u, v) =







ε

2
‖∇v‖2L2(Ω) +

1

2ε
‖v − u‖2L2(Ω) +

1

2ε

∫

Ω

W (u) if (u, v) ∈ L2(Ω)×H1(Ω),

+∞ otherwise.

Note that, if (u, v) ∈ Ẽ ×H1(Ω), then

G̃ε(u, v) =
ε

2
‖∇v‖2L2(Ω) +

1

2ε
‖v − u‖2L2(Ω) +

1

2ε
〈u, 1− u〉

=
ε

2
‖∇v‖2L2(Ω) +

1

2ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

.

Therefore we have for all u ∈ Ẽ
F̃ε(u) = inf

v∈H1(Ω)
G̃ε(u, v).

The following theorem, taken from [23], will play a central role in our proof. We recall (see e.g. [10])
that, when u belongs to the space BV (Ω) of functions of bounded variations on Ω, its distributional
derivative Du is a Borel measure whose total mass is denoted by |Du|(Ω). If u is the characteristic
function of some subsetA of Ω with finite perimeter, then |Du|(Ω) corresponds to the relative perimeter
of A in Ω, namely, the N − 1 dimensional Hausdorff measure of ∂A \ ∂Ω.

Theorem 3.3. When ε→ 0, the functionals G̃ε Γ-converge in L1(Ω)× L1(Ω) to the functional

G̃(u, v) =

{

κ|Du|(Ω) if u = v ∈ BV (Ω, {0, 1}),
+∞ otherwise.

The constant κ is given by

κ =
1

2
inf

{
∫

R

W (ϕ)dx +
1

4

∫

R2

e−|x−y|(ϕ(x) − ϕ(y))2dxdy, ϕ(−∞) = 0, ϕ(+∞) = 1

}

.

Before stating our Γ-convergence result for F̃ε, we shall prove three technical lemmas.

Lemma 3.4. Let Φε be the fundamental solution of the operator −ε2∆ + I on R
N . For all u ∈

L1(RN , [0, 1]) we have

lim
ε→0

‖Φε ∗ u− u‖L1(RN ) = 0.
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Proof. Let λ > 0 be arbitrary. A classical density result gives the existence of v ∈ C(RN , [0, 1]) with
compact support such that ‖u− v‖L1(RN ) ≤ λ. We have

‖Φε ∗ u− u‖L1(RN ) ≤ ‖Φε ∗ v − v‖L1(RN ) + ‖Φε ∗ (u − v)‖L1(RN ) + ‖u− v‖L1(RN ).

Using that Φε ≥ 0 (from the maximum principle) and
∫

RN Φε = 1 (from −ε2∆Φε+Φε = δ), we obtain

‖Φε ∗ u− u‖L1(RN ) ≤ ‖Φε ∗ v − v‖L1(RN ) + 2‖u− v‖L1(RN ). (3.1)

Now let µ > 0. By uniform continuity of v (Heine’s theorem) there exists η > 0 such that

|x− y| ≤ η ⇒ |v(x) − v(y)| ≤ µ.

We have for any x ∈ R
N

|(Φε ∗ v − v)(x)| =

∣

∣

∣

∣

∫

RN

Φε(x− y)(v(y)− v(x))dy

∣

∣

∣

∣

≤
∫

[|y−x|≤η]

Φε(x− y)|v(y)− v(x)|dy +
∫

[|y−x|>η]

Φε(x− y)|v(y)− v(x)|dy

≤ µ+ 2

∫

[|y−x|>η]

Φε(x− y)dy.

By change of variable we have Φε(z) =
1
εN Φ1(

z
ε ). Due to the exponential decay of Φ1 at infinity, we get

for ε small enough
∫

[|y−x|>η]Φε(x− y)dy ≤ µ. This shows that |(Φε ∗ v− v)(x)| → 0 uniformly on R
N .

This entails ‖Φε ∗v−v‖L1(RN ) → 0. Consequently, we have for ε small enough ‖Φε ∗v−v‖L1(RN ) ≤ λ.
Going back to (3.1) we arrive at

‖Φε ∗ u− u‖L1(RN ) ≤ 3λ.

As λ is arbitrary this proves the desired convergence. �

We define the projection (or truncation) operator P[0,1] : R → [0, 1] by

P[0,1](s) = max(0,min(1, s)). (3.2)

Lemma 3.5. Let (u, v) ∈ L2(Ω)×H1(Ω) and set ũ = P[0,1](u), ṽ = P[0,1](v). Then

G̃ε(ũ, ṽ) ≤ G̃ε(u, v).

Proof. We shall show that each term in the definition of G̃ε is decreased by truncation. Suppose that
(u, v) ∈ L2(Ω)×H1(Ω). For the first one we have ∇ṽ = χ[0<v<1]∇v. Hence ‖∇ṽ‖2L2(Ω) ≤ ‖∇v‖2L2(Ω).

For the second term we use that the pojection P[0,1] is 1-Lipschitz, which yields

|ṽ(x) − ũ(x)| ≤ |v(x) − u(x)| ∀x ∈ Ω.

This obviously implies that ‖ṽ − ũ‖2L2(Ω) ≤ ‖v − u‖2L2(Ω). As to the last term we notice that, by

construction of W , we have

0 ≤W (P[0,1](s)) ≤W (s) ∀s ∈ R.

�

Although the third lemma holds only in dimension N = 1, it will have useful consequences in
arbitrary space dimension.

Lemma 3.6. Let a < 0 < b, Ω =]a, b[ and u = χ]0,b[. We have

lim
ε→0

Fε(u) =
1

4
,

d

dε
Fε(u) ≤ 0 ∀ε > 0.

Proof. We make the splitting uε = vε + wε with
{

−ε2v′′ε + vε = χR+
on R,

v′ε(−∞) = v′ε(+∞) = 0,
{

−ε2w′′
ε + wε = 0 on [a, b],

w′
ε(a) = −v′ε(a), w′

ε(b) = −v′ε(b),
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and we find the solutions

vε(x) =

{

1
2e

x/ε if x ≤ 0,

1− 1
2e

−x/ε if x ≥ 0,

wε(x) = −1

2

e−2a/ε − 1

e2(b−a)/ε − 1
ex/ε +

1

2

e2b/ε − 1

e2(b−a)/ε − 1
e−x/ε ∀x ∈ R.

After some algebra we arrive at

Fε(u) =
1

4

(e−2a/ε − 1)(e2b/ε − 1)

e2(b−a)/ε − 1
.

Setting t = 2/ε, we obtain

Fε(u) =
1

4

(e−ta − 1)(etb − 1)

et(b−a) − 1
=

1

4

(1− eta)(1 − e−tb)

1− e−t(b−a)
.

Clearly, Fε(u) → 1/4 as t → +∞. Set now h = b − a > 0, r = −a/(b − a) ∈ [0, 1], so that a = −rh,
b = (1 − r)h, and

Fε(u) =
1

4

(1− e−trh)(1 − e−t(1−r)h)

1− e−th
.

The change of variable s = e−th leads to

Fε(u) =
1

4

(1− sr)(1 − s1−r)

1− s
.

Now differentiating with respect to s yields

d

ds
Fε(u) =

1

4(1− s)2
[

2− r(sr−1 + s1−r)− (1− r)(s−r + sr)
]

.

Set

f(s, r) =
1

2

[

r(sr−1 + s1−r) + (1− r)(s−r + sr)
]

.

We have

f(eτ , r) = r cosh((1− r)τ) + (1− r) cosh(rτ) =: gr(τ).

For fixed r ∈ [0, 1], the function gr is clearly even and nondecreasing on R+. Hence gr(τ) ≥ gr(0) = 1
for all τ ∈ R. This implies that f(s, r) ≥ 1 for all (s, r) ∈ R

∗
+ × [0, 1], therefore

d

ds
Fε(u) ≤ 0 ∀(s, r) ∈ R

∗
+ × [0, 1].

Recalling that s = e−2h/ε, we derive

d

dε
Fε(u) ≤ 0 ∀ε > 0.

�

3.3. Main result. With Theorem 3.3 and the three above lemmas at hand we are now able to state
and prove our Γ-convergence result.

Theorem 3.7. When ε→ 0, the functionals F̃ε Γ-converge in Ẽ endowed with the strong topology of
L1(Ω) to the functional

F̃ (u) =

{

1
4 |Du|(Ω) if u ∈ BV (Ω, {0, 1})
+∞ otherwise.

Proof. (1) Let (uε), u ∈ Ẽ be such that uε → u in L1(Ω). For each ε > 0 there exists a (unique)

function vε ∈ H1(Ω) such that F̃ε(uε) = G̃ε(uε, vε). This is the solution of
{

−ε2∆vε + vε = uε in Ω,
∂nvε = 0 on ∂Ω.

Set wε = Φε ∗ uε, where uε is here extended by zero outside Ω. By the Lax-Milgram theorem
we have

1

2

(

ε2‖∇vε‖2L2(Ω) + ‖vε‖2L2(Ω)

)

− 〈uε, vε〉 ≤
1

2

(

ε2‖∇wε‖2L2(Ω) + ‖wε‖2L2(Ω)

)

− 〈uε, wε〉.
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Adding to both sides 1
2‖uε‖2L2(Ω) results in

ε2‖∇vε‖2L2(Ω) + ‖vε − uε‖2L2(Ω) ≤ ε2‖∇wε‖2L2(Ω) + ‖wε − uε‖2L2(Ω).

Yet the right hand side is bounded from above by

ε2‖∇wε‖2L2(RN ) + ‖wε − uε‖2L2(RN ) =

∫

RN

(

−ε2∆wε + wε

)

wε − 2uεwε + u2ε

=

∫

RN

uεwε − 2uεwε + u2ε

=

∫

RN

(uε − wε)uε.

We obtain

‖vε − uε‖2L2(Ω) ≤ ‖uε − wε‖L1(Ω)

≤ ‖u− Φε ∗ u‖L1(Ω) + ‖u− uε‖L1(Ω) + ‖Φε ∗ (uε − u)‖L1(Ω).

By virtue of Lemma 3.4 and the Young inequality for convolutions the right hand side goes
to zero, hence ‖vε − uε‖L2(Ω) → 0. Next we have

‖vε − u‖L1(Ω) ≤ ‖vε − uε‖L1(Ω) + ‖uε − u‖L1(Ω) ≤ |Ω|1/2‖vε − uε‖L2(Ω) + ‖uε − u‖L1(Ω).

It follows that ‖vε − u‖L1(Ω) → 0. We infer using Theorem 3.3:

lim inf
ε→0

F̃ε(uε) = lim inf
ε→0

G̃ε(uε, vε)

≥ G̃(u, u) = 4κF̃ (u).

(2) Suppose that u ∈ Ẽ . By Theorem 3.3 there exists (uε, vε) ∈ L2(Ω)×H1(Ω) such that uε → u,
vε → u in L1(Ω), and

lim sup
ε→0

G̃ε(uε, vε) ≤ G̃(u, u).

By truncation (see Lemma 3.5), one may assume that uε, vε ∈ Ẽ . Yet F̃ε(uε) ≤ G̃ε(uε, vε),
which entails

lim sup
ε→0

F̃ε(uε) ≤ 4κF̃ (u).

(3) Finally, observing that κ is independent of Ω and the dimension N , we deduce by identification
from Lemma 3.6 that κ = 1/4.

�

4. Solution of topology optimization problems with perimeter penalization

In this section we propose solution methods for the optimization of shape functionals involving the
perimeter. The functionals under consideration will be of the form jα(A) = Jα(χA), with Jα(u) =
J(u) + 4α|Du|(Ω). Through a continuation procedure, Jα will be approximated by a sequence of

auxiliary functionals of the form J̃α,ε(u) = J̃(u)+4αF̃ε(u). The issue is then to study the convergence

(up to a subsequence) of sequences of minimizers of J̃α,ε(u). As is well-known, the Γ-convergence of
the functionals is not sufficient to guarantee this property, which is yet essential.

4.1. Preliminary results.

Lemma 4.1. Let (uε) be a sequence of Ẽ such that (F̃ε(uε)) is bounded. For each ε > 0 let vε ∈ H1(Ω)
be the solution of (2.4) with right hand side uε. Then (vε) admits a subsequence which converges
strongly in L1(Ω).

Proof. We have by definition

F̃ε(uε) =
ε

2
‖∇vε‖2L2(Ω) +

1

2ε

(

‖vε‖2L2(Ω) + 〈uε, 1− 2vε〉
)

,

and, as 0 ≤ uε ≤ 1,

〈uε, 1− 2vε〉 ≥
∫

Ω

min(0, 1− 2vε)dx.

Setting
W(s) = s2 +min(0, 1− 2s)
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we obtain

F̃ε(uε) ≥
∫

Ω

(

ε

2
|∇vε|2 +

1

2ε
W(vε)

)

dx. (4.1)

Straightforward calculations show that the function W is nonnegative, symmetric with respect to 1/2,
and vanishes only in 0 and 1 (see Figure 1). We now use a classical argument due to Modica [20],
which consists in applying successively to the right hand side of (4.1) the elementary Young inequality
and the chain rule. This entails

F̃ε(uε) ≥
∫

Ω

|∇vε|
√

W(vε)dx =

∫

Ω

|∇wε|dx,

where ψ is an arbitrary primitive of
√
W and wε = ψ ◦ vε. The weak maximum principle implies that

0 ≤ vε ≤ 1, hence ψ(0) ≤ wε ≤ ψ(1). It follows that (wε) is bounded in L1(Ω). By the compact
embedding of BV (Ω) into L1(Ω), (wε) admits a subsequence which converges strongly in L1(Ω) to
some function w. By construction, ψ is an increasing homeomorphism of R into itself. Denoting by
ψ−1 the inverse function, we have vε = ψ−1 ◦ wε. Up to a subsequence, we have wε → w almost
everywhere, thus vε → ψ−1 ◦ w =: v almost everywhere. The Lebesgue dominated convergence
theorem yields that vε → v in L1(Ω). �

−1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2
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Figure 1. Plot of the function W .

Lemma 4.2. Let (uε) be a sequence of Ẽ which converges weakly-∗ in L∞(Ω) to u ∈ Ẽ. For each
ε > 0 let vε ∈ H1(Ω) be the solution of (2.4) with right hand side uε. Then vε ⇀ u weakly in L2(Ω).

Proof. The variational formulation for vε reads
∫

Ω

(

ε2∇vε.∇ϕ+ vεϕ
)

dx =

∫

Ω

uεϕdx ∀ϕ ∈ H1(Ω). (4.2)

Choosing ϕ = vε and using the Cauchy-Schwarz inequality yields

ε2‖∇vε‖2L2(Ω) + ‖vε‖2L2(Ω) ≤ ‖uε‖L2(Ω)‖vε‖L2(Ω)

≤ ‖uε‖L2(Ω)

√

ε2‖∇vε‖2L2(Ω) + ‖vε‖2L2(Ω),

which results in

ε2‖∇vε‖2L2(Ω) + ‖vε‖2L2(Ω) ≤ ‖uε‖2L2(Ω) ≤ |Ω|.
In particular we infer that

‖vε‖L2(Ω) ≤
√

|Ω|, ‖∇vε‖L2(Ω) ≤
√

|Ω|
ε

. (4.3)

Coming back to (4.2) we derive that, for every ϕ ∈ H1(Ω),
∫

Ω

vεϕdx =

∫

Ω

uεϕdx− ε2
∫

Ω

∇vε.∇ϕdx.

Passing to the limit, we get with the help of (4.3)
∫

Ω

vεϕdx→
∫

Ω

uϕdx. (4.4)
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Choose now an arbitrary test function ψ ∈ L2(Ω), and fix ρ > 0. By density of H1(Ω) in L2(Ω), there
exists ϕ ∈ H1(Ω) such that ‖ϕ− ψ‖L2(Ω) ≤ ρ. From (4.4), there exists η > 0 such that

∣

∣

∣

∣

∫

Ω

(vε − u)ϕdx

∣

∣

∣

∣

≤ ρ ∀ε < η.

We obtain for any ε < η
∣

∣

∣

∣

∫

Ω

(vε − u)ψdx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

(vε − u)ϕdx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

vε(ψ − ϕ)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

u(ψ − ϕ)dx

∣

∣

∣

∣

≤ ρ(1 + 2
√

|Ω|).
Hence vε ⇀ u weakly in L2(Ω). �

Lemma 4.3. Let (uε) ∈ Ẽ be a sequence such that uε ⇀ u weakly-∗ in L∞(Ω). If u ∈ E, then uε → u
strongly in L1(Ω).

Proof. We have by definition
∫

Ω

(uε − u)ϕdx→ 0 ∀ϕ ∈ L1(Ω). (4.5)

Since u ∈ E and uε ∈ Ẽ , we have
∫

Ω

|uε − u|dx =

∫

[u=0]

uεdx+

∫

[u=1]

(1− uε)dx.

From (4.5) with ϕ = χ[u=0] we get
∫

[u=0]

uεdx→ 0.

Choosing now ϕ = χ[u=1] results in
∫

[u=1]

(1− uε)dx→ 0,

which completes the proof. �

The three above lemmas can be summarized in the following Proposition.

Proposition 4.4. Let (uε) be a sequence of Ẽ such that (F̃ε(uε)) is bounded. For each ε > 0 let
vε ∈ H1(Ω) be the solution of (2.4) with right hand side uε. If uε ⇀ u weakly-∗ in L∞(Ω) then, for
some subsequence, there holds:

(1) vε → u strongly in L1(Ω),
(2) u ∈ E,
(3) uε → u strongly in L1(Ω).

Proof. By Lemma 4.2, we have vε ⇀ u weakly in L2(Ω), thus also weakly in L1(Ω) since Ω is

bounded. By Lemma 4.1, we have for a subsequence vε → v ∈ Ẽ strongly in L1(Ω), and subsequently
by uniqueness of the weak limit we have v = u.

Next, we have in view of (2.6)

F̃ε(uε) =
1

2ε

∫

Ω

(1− vε)uεdx ≥ 0.

Therefore, the boundedness of (F̃ε(uε)) entails
∫

Ω

(1− vε)uεdx→ 0.

Yet, there holds
∫

Ω

(1− vε)uεdx−
∫

Ω

(1− u)udx =

∫

Ω

(uε − u)(1− u)dx−
∫

Ω

uε(vε − u)dx.

Since, on one hand, uε ⇀ u weakly-∗ in L∞(Ω) and, on the other hand, vε → u strongly in L1(Ω) and

uε ∈ Ẽ , both integrals at the right hand side of the above equality tend to zero. We arrive at
∫

Ω

(1− u)udx = 0.
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In addition, due to the closedness of Ẽ in the weak-∗ topology of L∞(Ω), we have u ∈ Ẽ . We infer
that u(x) ∈ {0, 1} for almost every x ∈ Ω.

Finally, Lemma 4.3 implies that uε → u strongly in L1(Ω). �

4.2. Existence and convergence of minimizers. Let a functional J : E → R+ and a parameter
α > 0 be given. We want to solve the minimization problem

I := inf
u∈BV (Ω,{0,1})

{J(u) + 4α|Du|(Ω)} . (4.6)

Proposition 4.5. Assume that J is lower semi-continuous on E for the strong topology of L1(Ω).
Then the infimum in (4.6) is attained.

Proof. Let (un) ∈ BV (Ω, {0, 1}) be a minimizing sequence. By boundedness of Ω and definition of
the objective functional, ‖un‖L1(Ω) + |Dun|(Ω) is uniformly bounded. Therefore, due to the compact

embedding of BV (Ω) into L1(Ω), one can extract a subsequence (not relabeled) such that un → u in
L1(Ω), for some u ∈ L1(Ω). In addition, for a further subsequence, un → u almost everywhere in Ω,
thus u ∈ E . Using the sequential lower semi-continuity of J and u 7→ |Du|(Ω), we obtain

J(u) + 4α|Du|(Ω) ≤ lim inf
n→∞

J(un) + 4α|Dun|(Ω) = I.

It follows that u is a minimizer. �

Let J̃ : Ẽ → R+ be an extension of J , i.e., a function such that J̃(u) = J(u) for all u ∈ E . By
Theorem 3.7 we have

I = inf
u∈Ẽ

{

J̃(u) + αF̃ (u)
}

. (4.7)

Given ε > 0 we introduce the approximate problem:

Iε := inf
u∈Ẽ

{

J̃(u) + αF̃ε(u)
}

. (4.8)

It turns out (cf. Proposition 4.8), that the approximate subproblem (4.8) needs to be solved only
approximately. However, the existence of exact minimizers is an information of interest regarding the
design and analysis of a solution method.

Proposition 4.6. Assume that J̃ : Ẽ → R+ is lower semi-continuous for the weak-∗ topology of
L∞(Ω). Then the infimum in (4.8) is attained.

Proof. By Lemma 2.2, the functional u ∈ Ẽ → J̃(u) +αF̃ε(u) is lower semi-continuous for the weak-∗
topology of L∞(Ω). In addition, the set Ẽ is compact for the same topology. The claim results from
standard arguments. �

Thanks to Proposition 4.4 the so-called equicoercivity property might be formulated as follows.

Proposition 4.7. Let J̃ : Ẽ → B be a given cost function, where B is a bounded subset of R. Consider
a sequence (uε) ∈ Ẽ such that

J̃(uε) + αF̃ε(uε) ≤ Iε + λε,

with (λε) bounded. There exists u ∈ E and a subsequence of indices such that uε → u strongly in
L1(Ω).

Proof. By the limsup inequality of the Γ-convergence, there exists a sequence (zε) ∈ Ẽ such that

zε → 0 in L1(Ω) and F̃ε(zε) → F̃ (0) = 0. For this particular sequence we have

J̃(uε) + αF̃ε(uε) ≤ J̃(zε) + αF̃ε(zε) + λε,

which entails that (F̃ε(uε)) is bounded.

Now, since Ẽ is weakly-∗ compact in L∞(Ω), there exists u ∈ Ẽ and a non-relabeled subsequence
such that uε ⇀ u weakly-∗ in L∞(Ω). Using Proposition 4.4, we infer that u ∈ E as well as uε → u
strongly in L1(Ω). �

Combining Theorem 3.2, Theorem 3.7 and Proposition 4.7 leads to the following result.
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Theorem 4.8. Let uε be an approximate minimizer of (4.8), i.e.

J̃(uε) + αF̃ε(uε) ≤ Iε + λε,

with limε→0 λε = 0. Assume that J̃ is continuous on Ẽ for the strong topology of L1(Ω). Then we

have J̃(uε) + αF̃ε(uε) → I. Moreover, (uε) admits cluster points, and each of these cluster points is
a minimizer of (4.7).

Theorem 4.8 shows in particular that, when (4.7) admits a unique minimizer u∗, then the whole
sequence (uε) converges in L

1(Ω) to u∗. We have now a solid background to address the algorithmic
issue.

4.3. Algorithms for topology optimization with perimeter penalization. As already said, we
propose to use a continuation method with respect to ε. Namely, we construct a sequence (εk) going
to zero and solve at each iteration k the minimization problem (4.8) using the previous solution as
initial guess.

Several methods may be used to solve (4.8). The specific features of the functional J̃ may guide
the choice.

(1) The most direct approach consists in using methods dedicated to the solution of optimization
problem with box constraints, for instance the projected gradient method.

(2) When J̃ is continuous for the weak-∗ topology of L∞(Ω) one can restrict the feasible set to E
and use topology optimization methods to find an approximate minimizer.

(3) Another alternative is to come back to the definition of F̃ε by (2.3), and write

Iε = inf
u∈Ẽ

inf
v∈H1(Ω)

{

J̃(u) + α

[

ε

2
‖∇v‖2L2(Ω) +

1

2ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

]}

.

Then one can use an alternating minimization algorithm with respect to the pair of variables
(u, v).

In the subsequent sections we present three examples of application. The first one illustrates the
method (1) in the context of least square problems. The last two ones deal with self-adjoint problems
for which, as we shall see, the method (3) is particularly relevant. We refer to [9] for some examples
of application of the approach (2).

For the discretization of all the PDEs involved, we use piecewise linear finite elements on a struc-
tured triangular mesh. For each example different values of the penalization parameter α are consid-
ered. Note that choosing α too small requires, in order to eventually obtain a binary solution (i.e.
u ∈ E), to drive ε towards very small values, which in turn necessitates the use of a very fine mesh
to solve (2.4) with a good accuracy. This is why, to enable comparisons of solutions obtained with
identical meshes and a wide range of values of α, we always use relatively fine meshes.

5. First application: source identification for the Poisson equation

5.1. Problem formulation. For all u ∈ L2(Ω) we denote by yu ∈ H1
0 (Ω) the solution of

{

−∆yu = u in Ω,
yu = 0 on ∂Ω,

and we set

J̃(u) =
1

2
‖yu − y†‖2L2(Ω).

Proposition 5.1. The functional J̃ is continuous on Ẽ strongly in L1(Ω) and also weakly-∗ in L∞(Ω).

Proof. First we remark that if (un) is a sequence of Ẽ such that un → u strongly in L1(Ω), then
un → u almost everywhere (for a subsequence), which implies that un ⇀ u weakly-∗ in L∞(Ω) by
dominated convergence.

Thus, let us assume that un ⇀ u weakly-∗ in L∞(Ω). As (‖yun
‖H1(Ω)) is bounded, we can extract

a subsequence such that yun
⇀ y ∈ H1

0 (Ω) weakly in H1
0 (Ω) and strongly in L2(Ω). This implies, on

one hand, that y = yu, thus by uniqueness of this cluster point the whole sequence (yun
) converges to

y for the aforementioned topologies, and, on the other hand, that J̃(un) → J̃(u). �
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5.2. Algorithm and examples. In our simulations y† is defined by

y† = y♯ + n,

where y♯ solves
{

−∆y♯ = u♯ in Ω,
y♯ = 0 on ∂Ω,

for some given u♯ ∈ L2(D) and n ∈ L2(D). More precisely, n is of the form βn̄, with β > 0 and n̄ a
random Gaussian noise with zero mean. The function u♯ is chosen as the characteristic function of a
subdomain Ω♯ ⊂⊂ Ω.

The domain Ω is the unit square ]0, 1[×]0, 1[. We initialize ε to 1 and divide it by 2 until it becomes
less that 10−6. The initial guess is u ≡ 1. In order to solve the approximate problems we use a
projected gradient method with line search. Here the mesh contains 80401 nodes. The results of
computations performed with different values of the coefficients α and β are depicted on Figure 2.
Rather than β, we indicate the noise to signal ratio, viz.,

R =
‖n‖L2(D)

‖y†‖L2(D)
.

We observe, as expected, that the higher the noise level is, the larger the penalization parameter α
must be chosen in order to achieve a proper reconstruction. The price to pay, of course, is that the
reconstructed shapes are smoothed.

6. Second application: conductivity optimization

6.1. Problem formulation. We consider a two-phase conductor Ω with source term f ∈ L2(Ω). For

all u ∈ Ẽ we define the conductivity

γu := γ0(1 − u) + γ1u,

where γ1 > γ0 > 0 are given constants. Our objective functional is the power dissipated by the
conductor augmented by a volume term, i.e.,

J̃(u) =

∫

Ω

fydx+ ℓ

∫

Ω

udx, (6.1)

where ℓ is a fixed positive multiplier and y solves
{

− div(γu∇y) = f in Ω,
y = 0 on ∂Ω.

(6.2)

Note that the Dirichlet boundary condition has been chosen merely for simplicity of the presentation.
Alternatively, this functional can be expressed in terms of the complementary energy (see, e.g., [2])

J̃(u) = inf
τ∈Σ

{
∫

Ω

γ−1
u |τ |2dx

}

+ ℓ

∫

Ω

udx, (6.3)

with

Σ = {τ ∈ L2(Ω)N ,− div τ = f in Ω}.
When it occurs that u ∈ E we set J(u) := J̃(u). Given α > 0, we want to solve

inf
u∈E

{J(u) + 4α|Du|(Ω)} , (6.4)

which amounts to solving

inf
u∈Ẽ

{

J̃(u) + αF̃ (u)
}

.

Proposition 6.1. The functional J̃ defined by (6.1) is continuous on Ẽ strongly in L1(Ω).

Proof. Assume that un → u strongly in L1(Ω), and denote by yn, y the corresponding states. Ob-
viously, γun

→ γu strongly in L1(Ω). Then yn ⇀ y weakly in H1
0 (Ω), see [10] Theorem 16.4.1 or [1]

Lemma 1.2.22. It follows straightforwardly that J̃(un) → J̃(u). �
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Figure 2. Source identification. Top: true sources. Then reconstructed sources for
α = 10−8 (first line), α = 10−7 (second line) and α = 10−6 (third line), with R = 0
(first column), R = 33% (second column) and R = 58% (third column).

For ε > 0 fixed we solve the approximate problem

inf
u∈Ẽ

{

J̃(u) + αF̃ε(u)
}

. (6.5)

Using (2.3) and (6.3), this can be rewritten as

inf
(u,v,τ)∈Ẽ×H1(Ω)×Σ

{
∫

Ω

γ−1
u |τ |2dx+ ℓ

∫

Ω

udx+ α

[

ε

2
‖∇v‖2L2(Ω) +

1

2ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

]}

.

(6.6)

Proposition 6.2. The infima (6.5) and (6.6) are attained.

Proof. Since the infima (2.3) and (6.3) are both attained, it suffices to consider (6.5). Let therefore
(un) be a minimizing sequence for (6.5), whose corresponding solutions of (6.2) are denoted by (yn).

We extract a subsequence, still denoted (un), such that un ⇀ u ∈ Ẽ weakly-∗ in L∞(Ω). By the
so-called compactness property of the G-convergence (see, e.g., [1] Theorem 1.2.16), we can extract a
further subsequence such that the matrix-valued conductivity γun

I, where I is the identity matrix of
order N , G-converges to some A, where, at each x ∈ Ω, A(x) is a symmetric positive definite N ×N
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matrix. This means that yn ⇀ y weakly in H1
0 (Ω), where y solves

{

− div(A∇y) = f in Ω,
y = 0 on ∂Ω.

By virtue of [1] Theorem 3.2.6, we have at each point x ∈ Ω A∇y = γu∇y. Therefore, by uniqueness, y

is the state associated to u. By (6.1), J̃(un) → J̃(u) while we know by Lemma 2.2 that F̃ε(un) → F̃ε(u),
which completes the proof. �

6.2. Description of the algorithm. In the spirit of [3], we use an alternating minimization algo-
rithm, by performing successively a full minimization of (6.6) with respect to each of the variables
u, v, τ . The minimization with respect to τ is equivalent to solving (6.2) and setting τ = γu∇y. The
minimization with respect to v is done by solving (2.4). Let us focus on the minimization with respect
to u. We have to solve

inf
u∈Ẽ

{
∫

Ω

Φε,v,τ (u(x))dx

}

, with Φε,v,τ (u) = γ−1
u |τ |2 + ℓu+

α

2ε
u(1− 2v).

This means that, at every point x ∈ Ω, we have to minimize the function s ∈ [0, 1] 7→ Φε,v,τ (s). From

Φε,v,τ (s) =
|τ |2

γ0 + (γ1 − γ0)s
+
[

ℓ+
α

2ε
(1− 2v)

]

s

we readily find the minimizer

u =















1 if ℓ+
α

2ε
(1− 2v) ≤ 0,

P[0,1]

(√

|τ |2
(γ1 − γ0)

(

ℓ+ α
2ε (1− 2v)

) − γ0
γ1 − γ0

)

if ℓ+
α

2ε
(1− 2v) > 0.

where we recall that P[0,1] is the projection operator defined by (3.2).

6.3. Numerical examples. Our example is a conductor with one inlet and two outlets, see Figure
3. The domain Ω is the square ]0, 1.5[×]0, 1.5[. The conductivities of the two phases are γ0 = 10−3

and γ1 = 1. The Lagrange multiplier is ℓ = 2. We initialize ε to 1 and divide it by two each time a
(local) minimizer of (6.6) has been found. The procedure is stopped when ε becomes less that h/10,
with h the mesh stepsize. We use a mesh with 65161 nodes. The results of computations performed
with different values of α are shown on Figure 4.

y = 0

γu∇y.n = −1

Figure 3. Boundary conditions for the V-shaped conductor. An homogeneous Neu-
mann condition is prescribed on the non-specified boundaries.

7. Third application: compliance minimization in linear elasticity

7.1. Problem formulation. We assume now that Ω is occupied by a linear elastic material subject
to a volume force f ∈ L2(Ω)N . We denote by A(x) the Hooke tensor at point x. We assume for
simplicity, bu without loss of generality, that the medium is clamped on ∂Ω. The compliance can be
defined either by

C(A) =

∫

Ω

f.ydx,
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Figure 4. Optimized V-shaped conductor for α = 0.1, 0.5, 1, 3, respectively.

where y solves
{

− div(A∇sy) = 0 in Ω,
y = 0 on ∂Ω,

(7.1)

with ∇s the symmetrized gradient, or with the help of the complementary energy [2],

C(A) = inf
σ∈Σ

{
∫

Ω

A−1σ : σdx

}

, (7.2)

with

Σ = {σ ∈ L2(Ω)N×N ,− div σ = f in Ω}.
Given ℓ, α > 0, we want to solve

inf
u∈E

{J(u) + 4α|Du|(Ω)} , (7.3)

with

J(u) = C(A(u)) + ℓ

∫

Ω

udx, A(u)(x) =

{

A0 if u(x) = 0,
A1 if u(x) = 1.

Here, A0, A1 are given Hooke tensors. Typically, A1 corresponds to a physical material, while A0 rep-
resents a weak phase of small Young modulus meant to mimick void. The problem can be reformulated
as

inf
u∈Ẽ

{

J̃(u) + αF̃ (u)
}

,

where

J̃(u) = inf
A∈Gu

C(A) + ℓ

∫

Ω

udx, (7.4)

the convention A ∈ Gu ⇐⇒ A(x) ∈ Gu(x) for almost every x ∈ Ω is used, and, for each x ∈ Ω, Gu(x)

is a set of fourth order tensors such that

Gu(x) =

{

{A0} if u(x) = 0,
{A1} if u(x) = 1.

Henceforth we choose, for all x ∈ Ω, Gu(x) as the set of all Hooke tensors obtained by homogeniza-
tion of tensors A0 and A1 in proportion 1 − u(x) and u(x), respectively (see e.g. [1] for details on
homogenization).

Proposition 7.1. The functional J̃ is continuous on Ẽ strongly in L1(Ω).
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Proof. Suppose that (un) ∈ Ẽ converges to u ∈ Ẽ strongly in L1(Ω). Thus un → u almost everywhere

for a non-relabeled subsequence. Thanks to the density of E in Ẽ for the weak-∗ topology of L∞(Ω),
we may assume that (un) ∈ E . By compactness of the G-convergence and stability of Gun

with respect
to this convergence (see [1] Lemma 2.1.5), there exists A∗

n ∈ Gun
such that

C(A∗
n) = inf

A∈Gun

C(A).

Using again the compactness of the G-convergence, there exists a subsequence such that A∗
n G-

converges to some A∗, thus C(A∗
n) → C(A∗). By [1] Lemma 2.1.7, there exists c, δ > 0 such that

d(Gun(x), Gu(x)) ≤ c|un(x)− u(x)|δ (7.5)

for every x ∈ Ω, where d denotes the Hausdorff distance between sets. Hence there exists A♯
n ∈ Gu

such that |A∗
n − A♯

n| ≤ c|un − u|δ almost everywhere. By the dominated convergence theorem we
get ‖A∗

n −A♯
n‖L1(Ω) → 0. Once more by compactness of the G-convergence, A♯

n G-converges to some

A♯ ∈ Gu, up to a subsequence. It follows from [1] Proposition 1.3.44 that A∗ = A♯ ∈ Gu.
Let now A ∈ Gu be arbitrary, and denote by An(x) the projection of A(x) onto Gun(x). Using again

(7.5), we get An(x) → A(x) almost everywhere, therefore, by [1] Lemma 1.2.22, C(An) → C(A). By
definition we have C(An) ≥ C(A∗

n) for all n. Passing to the limit yields C(A) ≥ C(A∗). This means
that

C(A∗) = inf
A∈Gu

C(A).

Eventually we have obtained

J̃(un) = C(A∗
n) + ℓ

∫

Ω

undx→ C(A∗) + ℓ

∫

Ω

udx = J̃(u).

�

For ε > 0 fixed we solve the approximate problem

inf
u∈Ẽ

{

J̃(u) + αF̃ε(u)
}

. (7.6)

Using (2.3), (7.4) and (7.2), this can be rewritten as

inf
u ∈ Ẽ , A ∈ Gu,
(v, σ) ∈ H1(Ω)× Σ

{
∫

Ω

A−1σ : σdx + ℓ

∫

Ω

udx

+ α

[

ε

2
‖∇v‖2L2(Ω) +

1

2ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

]}

. (7.7)

Proposition 7.2. The infima (7.6) and (7.7) are attained.

Proof. First, we remark that both problems (7.6) and (7.7) amount to solving

inf
u∈Ẽ,A∈Gu

{

Eε(u,A) := C(A) + ℓ

∫

Ω

udx+ αF̃ε(u)

}

.

Let (un, An) be a minimizing sequence. Thanks to the density of E in Ẽ for the weak-∗ topology
of L∞(Ω) and the continuity of Eε(., A) for the same topology (see Lemma 2.2), we may assume

that (un) ∈ E . We extract a subsequence, still denoted (un), such that un ⇀ u ∈ Ẽ weakly-∗ in
L∞(Ω). Further, by compactness of the G convergence, we can extract a subsequence such that
(An) G-converges to some tensor field A. By construction, we have A ∈ Gu. By definition of the
G-convergence, the sequence of the states (yn), solutions of (7.1) with Hooke’s tensor (An), converges
weakly in H1

0 (Ω) to the state y associated to A. This implies that C(An) → C(A), and subsequently,
using again Lemma 2.2, that Eε(un, An) → Eε(u,A). �
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7.2. Description of the algorithm. We use again an alternating minimization algorithm, by per-
forming successively a full minimization with respect to each of the variables (u,A), v, σ. The min-
imization with respect to σ is equivalent to solving the linear elasticity problem (7.1) and setting
σ = A∇sy. The minimization with respect to v is again done by solving (2.4). The minimization with
respect to A for a given u reduces to the standard problem

inf
A∈Gu

{
∫

Ω

A−1σ : σdx

}

=: f(u, σ).

When A1 and A0 are isotropic and A0 → 0, the minimization is achieved by using well-known lami-
nation formulas, see [1]. We have

f(u, σ) = A−1
1 σ : σ +

1− u

u
f∗(σ),

with, in dimension N = 2,

f∗(σ) =
2µ+ λ

4µ(µ+ λ)
(|σ1|+ |σ2|)2.

Above, λ, µ are the Lamé coefficients of the phase A1, and σ1, σ2 are the principal stresses. Let us
finally focus on the minimization with respect to u. We have to solve

inf
u∈Ẽ

{
∫

Ω

Φε,v,σ(u(x))dx

}

, with Φε,v,σ(u) = f(u, σ) + ℓu+
α

2ε
u(1− 2v).

This means that, at every point x ∈ Ω, we have to minimize the function s ∈ [0, 1] 7→ Φε,v,σ(s). From

Φε,v,σ(s) = A−1
1 σ : σ +

1− s

s
f∗(σ) +

[

ℓ+
α

2ε
(1− 2v)

]

s

we obtain the minimizer

u =















1 if ℓ+
α

2ε
(1 − 2v) ≤ 0,

min

(

1,

√

f∗(σ)

ℓ+ α
2ε (1− 2v)

)

if ℓ+
α

2ε
(1 − 2v) > 0.

7.3. Numerical examples. We first consider the classical cantilever problem, where Ω is a rectangle
of size 2× 1. The left edge is clamped, and a unitary pointwise vertical force is applied at the middle
of the right edge. We choose the Lagrange multiplier ℓ = 100, and use a mesh containing 160601
nodes. Our findings are displayed on Figure 5.

Figure 5. Cantilever for α = 0.1, 2, 20, 50, respectively.

Next we address the bridge problem, where Ω is a rectangle of size 2×1.2. The structure is clamped
on two segments of lengths 0.1 located at the tips of the bottom edge, and submitted to a unitary
pointwise vertical force exerted at the middle of the bottom edge. The chosen Lagrange multiplier is
ℓ = 30, and the mesh contains 123393 nodes. Our results are depicted on Figure 6.
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Figure 6. Bridge for α = 0.2, 1, 3, 10, respectively.
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