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Abstract: 

This work assesses the value of climate forecasts for millet growers in Niger. We quantify the 

potential value of three kinds of categorical forecasts assigning cumulated rainfall during the 

forthcoming rainy season by tercile (dry, normal or humid): (i) a realistic imperfect tercile 

forecast; (ii) a perfect tercile forecast and (iii) a perfect tercile forecast which includes a 

prediction of rainy season onset and offset dates. Eighteen management strategies are 

assessed. Corresponding yields are computed using the SARRA-H crop model then converted 

into utility by taking into account risk-aversion. Simulations over an historical 18-year period 

1990-2007 show that benefit is lowest with imperfect tercile forecasts (+6.9 %), higher 

(+11%) with perfect tercile forecasts, and reaches +31% when enhanced adaptation strategies 

and additional climatic indices are available. These results show that improving existing 

forecast systems by including the prediction of onset and cessation of rainfall is of great 

value. 

 

Keywords: agriculture, Niger, millet, seasonal forecast, Africa, risk aversion 

1. Introduction 

Food security is a serious concern in Sub-Saharan Africa where the rate of 

undernourished population is over 30%, the highest in the world. The future of this region, 

characterized by a fragile balance between limited natural resource availability and the 

pressure of a growing population, depends on the capability of the agricultural sector to 

guarantee food security for the vast majority of people. If the global production of staple food 

in this region has increased in past decades, it is mainly due to field expansion as crop 

productivity has stagnated since the 1980s, and even decreased in some countries, for 

example, Niger (-9% in average for millet between 1961/1970 and 1998/2007, FAOSTAT 

data). In such a situation, there is a real need to increase yields. Among the numerous possible 
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technical options (e.g. water harvesting, intercropping, microfertilization), the use of climate 

forecasts is a promising and costless one that might help African farmers to take crucial 

strategic decisions that would reduce their vulnerability and increase farm profitability. 

Indeed, in regions where rainfed agriculture is the main source of food and income, dealing 

with the uncertainty of climate is a challenge for agriculture as farmers need to make critical 

climate-sensitive decisions months before the rainy season starts. Field studies show 

promising results (Patt et al., 2005; Hellmuth et al., 2007).  

Thanks to improved climate knowledge, it is now possible to produce reliable 

predictions of climate fluctuations in many parts of the world (e.g. the rainy season in Africa) 

at seasonal lead time (Hansen, 2002). These forecasts are made with simple statistical 

methods (Letson et al., 2009; Patt et al., 2005), with more sophisticated tools such as Global 

and/or Regional Climate models (GCMs/ RCMs) (Hansen et al., 2009; Cooper et al., 2008), 

or with both. In West Africa, National Meteorological Agencies have collaborated with 

European and American climate forecasting groups since 1998 through the framework of the 

regional climate outlook forum PRESAO (French acronym for PREvisions Saisonnières en 

Afrique de l‟Ouest; Hamatan et al., 2004). In spring each year, it provides a qualitative 

consensual forecast of the coming rainy season based on a combination of different sources of 

information: GCMs and national models based on a statistical approach (Konte, 2007). 

National meteorological offices then broadcast this seasonal forecast throughout West Africa 

so that end-users, such as farmers, can put it to efficient use. 

However, the evaluation of the potential benefit of seasonal forecasts in Africa is very 

rare (Sultan et al. 2009; Meza et al. 2008), especially for food crops. Indeed, even if seasonal 

forecasts are made routinely in Sub-Saharan Africa, adoption by farmers is too low to provide 

any reliable ex-post evaluation that would assess observed outcomes following the adoption 

of actual forecast schemes (Meza et al., 2008; Roncoli et al., 2000). This paper is, to our 
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knowledge, the first attempt to estimate the value of seasonal forecasts for food crops in West 

Africa. The best way to evaluate the forecasts is an ex-ante approach (Sultan et al., 2009; 

Meza et al., 2008). First, it provides the quantitative arguments that are often necessary to 

mobilize funds and institutional partners and to focus on where the benefits are likely to be 

the greatest (Thornton, 2006; Meza et al., 2008). Second, it allows for possible new climate 

indices to be evaluated. The former is highly relevant because forecasts computed in West 

Africa (e.g PRESAO) focus mainly on seasonal rainfall amount, whereas onset and cessation 

dates influence the implementation of adaptation strategies in response to forecasts (Ingram et 

al., 2002). 

For our purpose, we focus on millet [Pennisetum glaucum (L.) R. Br.] in Niger which 

is the main staple food in the country (75% of the national total production) and is produced 

entirely under rainfed conditions in traditional smallholder farming systems with low off-farm 

input (Amadou et al., 1999, FAOSTAT data; Soler et al., 2008). We develop an integrated 

methodology that (i) defines possible management strategies in response to forecasts, (ii) 

computes yields for each strategy using the SARRA-H crop model, (iii) computes income for 

each strategy and (iv) simulates farmer‟s choice using a Constant Relative Risk Aversion 

(CRRA) utility function. This methodology is then used to assess the potential economic 

value of seasonal forecasts for millet producers in Niger. To be consistent with the existing 

categorical climate prediction systems in West Africa (PRESAO; see http://www.acmad.fr; 

Hamatan et al. 2004), we will focus on forecasts of total rainfall categorized according to the 

terciles of the expected distribution of values: humid (upper tercile), normal (middle tercile) 

and dry (lower tercile). We consider three types of categorical forecasts: (i) a realistic 

imperfect tercile forecast that mimics actual seasonal forecasts using sea-surface-temperature 

indices to predict rainfall; (ii) a perfect tercile forecast and (iii) the same perfect tercile 

http://www.acmad.fr/
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forecast but with the addition of predicted onset and offset dates for the coming rainy season. 

The value of each forecast is examined over an historical 18-year period from 1990 to 2007. 

 

 

2. Materials and Methods 

 

2.1 Area and data 

We focus on SW Niger (Figure 1) located in the Sahelo-Sudanian zone (Abdoulaye 

and Sanders, 2005). This region is characterized by a typical semi-arid climate defined by a 

rainy season lasting approximately from June to September which provides around 500 

mm/year with high spatial variability (Balme et al., 2005), even for neighbouring stations. 

Agriculture is rainfed and characterized by low input use, limited access to credit and low 

yields. Most soils are sandy and deficient in P and N.  

In this area, we use daily data from 30 raingauges and one meteorological station 

(1990/2007) throughout the AMMA-CATCH Niger program (Cappelaere et al., 2009) which 

provides data with a high spatial and temporal density. Another dataset collected by the 

AGRHYMET Regional Centre provides detailed agronomic data (variety, sowing date, 

yields) in 10 villages (Alhassane 2009) for the years 2004/2008. This dataset has been used to 

calibrate the crop model so this study focuses on those 10 villages. 

Missing daily rainfall data have been filled through a statistical procedure. Only two 

stations among thirty have more than 10% data missing (10.6% and 16%) which is the 

commonly used acceptability threshold (Romero, 1998). It is possible to supplement such data 

using other methods (see e.g. Coulibaly and Evora (2008), Garcia et al. (2006)). Teegavarapu 

et al. (2005), in a comparative study of such methods, recommend two of them in particular. 
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We chose the simplest one, the Coefficient of Correlation Weighting Method. Missing data θ 

at station m are calculated as shown in equation 1. 

                                      

n

i m,ii=1

m n

m,ii=1

θ R
θ =

R




                                                    (1)  

where R is Pearson‟s correlation coefficient between station m and another station i. n 

is the number of stations considered for correlations. 

Following Teegavarapu et al., we only consider the 4 stations (n=4) with the highest R 

computed for years 1990/2006. Using 2007 to assess this method, we compare simulated data 

θ with real data. For all stations, Rmean (correlation) value is 0.83, Rmin=0.61 and Rmax=0.96. 

Moreover, in Table 1 we assess the “hit rate” of this method. Four intervals are created and a  

diagonal represents the hit rate. This method performs well for low rainfall value but is more 

problematic for rain events >10 mm, especially ]10 mm ; 20 mm]. However, unacceptably 

high errors remain rare. 

 

 

2.2 The SARRA-H software and the simulated yields 

 

The crop model used in this study, SARRA-H version millet V.2, is particularly suited 

to the analysis of climate impacts on cereal growth and yield in dry tropical environments 

(Kouressy et al., 2008; Dingkuhn et al., 2003; Sultan et al., 2005; Baron et al., 2005). 

SARRA-H is a simple, deterministic crop model for cereals operating in daily time steps. It 

was developed from SARRA, the water balance model used by agronomists and agro-

meteorologists in West Africa (Samba, 1998) for sorghum and millet. SARRA-H simulates 

attainable yields according to crop (variety) features, including potential yield, and climate 

conditions. Millet is the only crop we model. Although other crops are cultivated (e.g. 
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cowpea, sorghum) in Niger, millet is by far the main one. Egg and Wade (2006) show also 

that the proportion of millet in Niger is increasing. 

The model has been calibrated on local varieties through agronomical trials at the 

AGRHYMET Regional Centre (Alhassane, 2009) in order to correctly simulate their 

development under good agronomical conditions. Then comparisons were made with data 

coming from farmers‟ fields and the standard parameter sets were slightly modified (basically 

by reducing radiation use efficiency coefficient) in order to obtain smaller biomass 

development and yields similar to those observed on average in farmers‟ fields. 

It is important to notice that SARRA-H simulates potential yields based only on 

meteorological data, but other parameters are very important, e.g., birds, pests and diseases 

due to excess moisture. This damage reduces potential yields and is linked to the adequacy 

between the crop cycle and the timing and length of the rainy season. We thus define two 

criteria, subsequently called degradation criteria: 

(i) a crop (with its sowing date) is considered inadequate if the 1
st
 day of the 

maturation phase happens more than 20 days before the average cessation date of the rains. 

Indeed, Kouressy et al. (2008) note for sorghum as well as for millet (Haussmann, personal 

communication) that, when flowering occurs too early in the rainy season, there are frequently 

losses due to pests, birds and diseases (excess of moisture). 

(ii) a crop (with its sowing date) is considered as inadequate if the sowing date is after 

the onset of the rainy season as this might reduce yields due to N leaching, lower radiation 

and temperatures, aggressive rainfall impact on younger shoots, water-logging, pest pressure, 

but mostly because of competition from weeds (Traore et al., 2007). 

When a couple (crop, sowing date) does not match one criterion or both, we reduce the yield 

simulated by SARRA-H by applying an empirical scale factor described in Fig.2.  

 



 8 

2.3 Farmers’ need for forecast, and management strategies 

To compute the value of seasonal forecasts, it is necessary to define the available farm 

management strategies. Meza et al. (2008) emphasize that studies of seasonal forecasts 

generally underestimate their potential value because they take too few strategies into 

account. Yet, as shown by Luseno et al. (2003), the study of farm management strategies is 

very important: the final value of forecasts depends mainly on farmers‟ response capacity. We 

are not aware of any specific study on this topic in Niger, but other studies in Africa provide 

some information about what farmers would do (Table 2). According to Roncoli et al. (2008), 

farmers from Burkina Faso could use between 0 and 4 strategies, with 38% of them using 

only one and 27% two strategies.  

Some studies (e.g. O‟Brien et al., 2000) show that forecasts would not really change 

farmers‟ practices: this may be due to fatalism, or a lack of trust because of other local 

forecasting systems. However, it does not necessarily mean that seasonal forecasts are useless, 

rather that there is a problem with the information format. It must be easy to understand and, 

especially, must be delivered at the right time, i.e. at least one month before the beginning of 

the season (Ingram et al., 2002) so that farmers have time to buy seeds and fertilizers. 

Although the value of such a forecast depends on users‟ acceptance, this is beyond the scope 

of the present paper, so we assume that farmers use the delivered forecast. 

Farmers generally say that they would change millet variety, sowing date and 

fertilization level if they had information about the onset and offset of the rainy season, and 

the amount and distribution of rains within the season. We therefore consider three types of 

response to forecasts (summarized in Figure 3). 

 

2.3.1 The choice of millet variety 
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Three varieties are used in this study. Two of them (Hainy Kirey and Somno) are 

grown in situ (Bezançon et al., 2008), the second less frequently than the first. They are 

photoperiod sensitive, that is,  they adapt their cycle length in order to flower around the same 

date (Vaksmann et al. 1996, Dingkuhn et al.2006). The third one, Souna III, is an improved 

variety which is not photoperiodic and is supposed to have a higher potential yield. Yet 

farmers tend to avoid it,  maybe because of its high inter-seasonal yield variability, or because 

of losses due to early maturation (de Rouw, 2004). These varieties have different cycle 

durations: about 85 days for Souna, 90 days for HK and 120 days for Somno. Although Souna 

is not used in situ, we selected it because of its potential productivity and short cycle: with 

forecasts, it might be used for late seasons. 

 

 

 

2.3.2  The choice of sowing dates 

Three sowing dates are defined: 

(i) Farmer Sowing Date (FSD) is simulated by the SARRA-H crop model. Farmers usually 

sow when one or more rains have filled the surface reservoir (more than 10 mm of water 

stocked at the end of the day i.e. after daytime evaporation). If the biomass growth is negative 

at least 11 days during the 20 first days, the first sowing fails: the farmer has to re-sow. A first 

validation of this method has been done using 4 years of observed data in the 10 villages 

around Niamey. 

(ii) ONset based Sowing Date (ONSD): millet is sowed at the onset, as it is defined by 

Sivakumar (1988) and used by several authors (e.g. Balme et al., 2005 which defines it as 

“agricultural onset”). ), This sowing date, rather than the climatologists‟ monsoon onset (see 



 10 

e.g. Sultan et al., 2005) has been created to obtain optimal yields: it is supposed to be 

beneficial for farmers. 

(iii) OFfset based Sowing Date (OFSD) tries to solve the problem of losses when crop 

maturation is too early in the rainy season, as described earlier. The offset is computed 

following Sivakumar‟s criterion (1988): 20 consecutive dry days after September 1
st
.  

Following Kouressy et al., (2008) who consider that a crop (with a sowing date) is not 

adequate if the 1
st
 day of the maturation phase happens more than 20 days before the offset, 

we create a new sowing date by fitting the 1
st
 day of maturation 10 days before the onset. This 

value of 10d is optimal as, for HK and Somno, the cycle duration has a 20d variation. Finally 

the OFSD is calculated by subtracting to offset: 97d for HK, 116d for Somno and 67d for 

Souna. This is particularly relevant for Souna as photoperiod sensitive varieties (HK and 

Somno) modify their cycle to flower at the same date every year. However, their photoperiod 

sensitivity is not very strong and there is a variation of maturation date from year to year. So, 

even if the OFSD is more powerful with Souna (constant cycle), this is suited for HK and 

Somno. Note that ONSD and OFSD require perfect information about the onset and the 

offset. 

 

2.3.3 Choosing the level of fertilization 

Finally, even if fertilizers (at least chemical fertilizers) are not widely used in Niger, 

we introduce this option as a response to forecasts. Indeed, with seasonal forecasts, fertilizers 

might be used when a humid year is anticipated. We suppose that farmers are able to buy a 

common chemical fertilizer, NPK 15-15-15. Following a study of ICRISAT (International 

Crops Research Insitute for the Semi-Arid Tropics) cited by FAO (2002), we suppose that 

farmers use 60 kg/ha of NPK (microfertilization). This is a common practice which provides 

good results. We also need to take into account farmers‟ use of organic fertilizer, such as 



 11 

manure (~30% according to observed data). In the simulation, manure is free and used every 

year at the observed rate (30%). So, in all the following sections, “NFert” means “No 

chemical fertilizers” and “Fert” “with chemical fertilizers”. In both cases, there is free organic 

fertilization. 

 

Based on these 3 degrees of freedom (varieties, sowing dates, fertilizers use), we 

define 18 farm management strategies (Figure 3). We next simulate with SARRA-H the yield 

for each strategy, for each of the 10 stations (Figure 1) and for the years 1990 to 2007. 

 

2.4  Scenarios considered 

Three forecasting scenarios (and one control) are considered in this paper. 

2.4.1 Imperfect categorical forecasts of cumulated summer rainfall 

In order to evaluate plausible seasonal forecasts, such as the ones from PRESAO, we 

build our own simple statistical model to predict Niger summer rainfall. A number of 

empirical studies have been made using pre-rainy season SST to predict the summer Sahelian 

rainfall total (Folland et al. 1991; Ward 1998 ; Ward et al. 2004; Sultan et al. 2009). For these 

studies, we based our rainfall prediction on SST data from the monthly extended 

reconstructed sea surface temperature (ERSST). This is built using the most recently SST data 

available from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and 

improved statistical methods that allow stable reconstruction using sparse data (Smith et al. 

2008). Only the SST data over the 1990-2007 period is used in this study. We first compute 

three lagged correlation maps between the Niger summer rainfall and SST respectively in 

March, April and May. The correlation maps are then used to select a set of predictors that are 

box-averages of SST over specific regions known to be linked with the West African 

monsoon (mainly in the Atlantic Ocean and in the Pacific Ocean; see Ward 1998, Giannini et 
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al, 2003) where the highest significant correlations are found. These predictors are then used 

to build a stepwise multivariate linear regression model in order to predict the Niger summer 

rainfall. The multivariate model is described in equation 2: 

                                                 pp
XXY   

11                                                       (2) 

Y represents the predicted summer Niger rainfall value, α is a constant, and each β term 

denotes a regression coefficient for the corresponding SST predictor X for a given month. 

Once a first model is built with all predictors, we reduce the number of predictors by 

minimizing the variance inflation factor to reduce colinearity among predictors. In the same 

way, we apply ascendant and descendant methods to choose the best set of predictors among 

the initial set. Finally we retain a model based on two SST predictors in April (one in the 

Pacific and the other in the Atlantic Ocean) with a cross-validated coefficient of correlation of 

R=0.70. We then transform the predicted rainfall into binary time series where only three 

outcomes are possible, “humid”, “normal”, or “dry”, where the predicted rainfall of the year is 

above the upper tercile, between the upper and the lower tercile or below the lower tercile of 

the 17 years rainfall distribution, respectively. Since this categorical forecast contains errors 

(a humid year can be predicted as dry for instance), we call it the imperfect tercile forecast 

(“Impft”). 

 

2.4.2 Perfect categorical forecasts of the cumulated summer rainfall 

In order to see if it is worth improving the accuracy of such a forecast, we consider 

another scenario (later called  “Pft”) with a perfect categorical forecast of the rainy season: we 

therefore cluster years 1990-2007 into 3 groups of the same size (6 years in each) according to 

the observed cumulated rainfall. The differences for each year in the clustering between 

scenarios “Impft” and “Pft” are described in Table 3. It is noticeable that both scenarios give 

the same tendency for 9 years (4 dry, 2 normal and 3 humid years). 
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2.4.3 Forecast of the seasonal rainfall with rainy season onset and cessation dates  

Since the onset and cessation dates of the rainy season are very important for farmers 

(Laux et al., 2007) and have been investigated in recent climate observation and modelling 

studies (Sultan and Janicot, 2003 ; Druyan et al., 2009), we consider an enhanced forecast 

system “Pft++” which provides the same perfect tercile forecast as ”Pft” but with the 

prediction of the onset and cessation of the rainy season. This additional climate information 

enables the use of ONSD or OFSD as a response to the forecasts and to assess the additional 

economic value of improving existing forecast systems. 

 

2.4.4 Control scenario 

Finally, we define a control scenario (Ctrl; Table 4) where no forecast is available. It is 

used as a benchmark to quantify the benefits of the use of forecasts. To sum up, 4 scenarios 

are studied (Table 4): Impft, Pft, Pft++ and Ctrl. 

 

2.5 Farmers’ decision rule 

We assume that the farm we are considering has 3 plots of 0.5 ha each. On these 3 plots, it 

is possible to use different farming practices (all combinations are considered): for example, 

the farmer is able to take a risky decision on 0.5 ha (high yield but high inter annual 

variability) and keep the other two plots as a „safety net‟ (normal yield, low variability). 

We simulate farmers‟ decisions on the best strategy in response to each forecast 

available (Table 4). It is important to note that African farmers are risk averse (Brüntrup, 

2000). They not only maximize their income but also minimize the risk of being in a bad 

situation due to crop failure (de Rouw, 2004). The challenge is then to find safe strategies that 

improve the average income. There are different ways of simulating risk aversion (see 
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Ogurtsov et al., 2008, for a review). We assume here that farmers maximise a CRRA utility 

function (see equation 3) which has been widely used in similar cases (e.g. Holt and Laury 

(2002) or Letson et al., 2009). Chavas and Holt (1996) as well as Pope and Just (1991) 

conclude that the CRRA function is appropriate to describe farmers‟ behaviours.  

                                    

1
x

U (x) , 0, 1
1

x








  


                                                 (3) 

For each station st={1...10}, each scenario sc={Impft, Pft, Pft++, Ctrl} and each 

forecast f, we compute the set of management strategies it which maximises expected utility 

EU, as described in equation 4. Note that we use the function U(x+W)-U(W) in order to have 

a null utility when the farmers‟ income is zero. 
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  

 
     (4)                 

Where Y is the farmer‟s income related to millet production which will be described below in 

more detail,  1...i n  indicates the year (n=18 if sc=Ctrl, otherwise n=6),  1, 2, 3j   

indicates the plot, W is the farmers‟ income independent from millet production and Φ is the 

relative risk aversion parameter. We now detail these three variables and parameters in turn. 

 , , , ,

,

st sc f st sc f

i j j
Y it  is expressed in FCFA, Niger monetary unit (1 € = 655.957 FCFA

 
). It is the 

gross margin, i.e. the value of millet production, net of the cost of fertilizers (for the 

management strategies with fertilizers). The calculation is detailed in equation 5.  

                                      , , , , , , , , , , , ,

, ,

st sc f st sc f st sc f st sc f st sc f st sc f

i j j i i j j i j j
Y it P Q it C F it                           (5) 

Where P is the millet sellers‟ price (in FCFA/kg) from the FAO, Q is the quantity produced 

(in kg), C is the fertilizer cost per plot (in FCFA/kg), provided by Centrale 

d‟approvisionnement de la République du Niger, and F is the quantity of fertilizers for each 
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plot, if any (in kg). Following a study of ICRISAT cited by FAO (2002), we suppose that 

farmers use 60 kg/ha of NPK 15-15-15 (microfertilization) which is a common practice. 

W is the farmers‟ wealth independent of millet production. It includes off-farm income 

and initial wealth. We compute the mean annual gain W on all stations, for the whole period 

and for a management strategy using only traditional sowing date (FSD), variety HK and no 

fertilization. This cropping strategy is by far the most used in situ. This finally means that 

W=60700 FCFA. 

 Φ is the relative risk aversion parameter. The higher Φ, the more risk averse is the 

farmer; Φ=0 means that he is risk-neutral. Various methods have been used to estimate 

parameter Φ and empirical results vary greatly. A recent estimate by Chiappori and Paiella 

(2008, p. 19) concludes that “the median of the distribution of relative risk aversion could be 

slightly smaller than 2”. Schechter (2007), using data from rural Paraguay, concludes that, 

when individuals cannot save, a reasonable assumption for African farmers, the average 

coefficient of relative risk aversion is 1.92. Based on these recent studies, we use Φ=2 in the 

results presented in this paper. Since some other studies, such as Holt and Laury (2002) find 

lower values, we also tested lower Φ values, but results are qualitatively similar, so they are 

not presented here. 

The CRRA function allows the calculation of the Certainty Equivalent Income (CEI), i.e.  the 

certain income that provides the same utility for a farmer as a given probability distribution of 

incomes. Since we assume risk aversion, the CE income is lower than the expected income, 

i.e. the weighted mean of the distribution of incomes. The CEI is computed from the expected 

utility as explained in equation 6: 

                                      
 

  
1

1, , , , 1
1

st sc f st sc f
C EI W EU W

 
 

                                        (6) 

 

3 Results and discussion 
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3.1 Control simulation 

The control simulation (Figure 4) is defined by a strong predominance of HK over 

Somno (~ 18%) and Souna (0%): Bezançon et al. (2008) provide similar results over the same 

area and with field observations. Chemical fertilizers are not used at all; they may be useless 

in some years and are quite expensive, so would be risky to buy. This seems to fit well with 

what is observed in situ, as shown in Figure 4. Charts with dashes represent results from field 

observations for years 2004-2007 over the ten locations. According to this observed dataset, 

HK is also preferred (87%) to the late Somno variety (13%). Moreover, fertilizer use is close 

to simulation even if somewhat more important than in the control (5% vs 0%). 

Figure 5 shows that CE Income depends on the type of year and is 32 % higher in 

humid years than in dry years. This is mainly due to the enhanced productivity of Somno and 

to the positive effect of fertilizers in humid years. Indeed, according to Affholder (1995), with 

fertilization the crop water demand can exceed the soil water supply. Thus, in dry years, 

fertilization can have no (or negative) impacts on yields. This might explain differences 

between humid and dry years. Moreover, Sivakumar (1992) states that with increasing annual 

rainfall the frequencies of long dry spells decreased. As millet yields are known to be strongly 

influenced by long dry spells during critical stages (Winkel et al., 1997), this could explain 

why incomes are weaker in dry years. These arguments also show that predicting the 

cumulated rainfall over the rainy season could be of interest to farmers. Thus we see in the 

next section how they react to such a prediction. 

 

3.2 Adaptation strategies depending on type of forecast 

The chosen cropping strategies presented in Figures 6a and 6b lead to 4 main 

comments. 
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First, cultivar Souna is never used. This is mainly due to the degradation criteria which 

have a strong impact on simulated yields. Indeed, as this cultivar has a short cycle duration, 

the date of maturation frequently occurs too early in the season. This is not much better with 

OFSD: in this case, the sowing date is too late and other cultural strategies are better (HK, 

Somno…). Vaksmann and Traore (1994) came to a similar conclusion regarding the Souna 

variety for the Bankass zone of Mali. This does not mean that this cultivar is useless but rather 

that in this region, and with this kind of forecast, it is not the most powerful. To improve the 

use of Souna, forecasts based on season duration would be useful. Indeed, if farmers knew 

that the forthcoming season was going to be short, they could sow Souna as they would not 

run the risk of yields degraded by pests, moisture problems.  

Second, perfect forecasts (Pft) are used to select a main cultural strategy for each type 

of year: (HK; FSD; NFert) in dry years, (HK; FSD) in normal years, and (Somno, FSD) in 

humid years. Somno is not used in dry years because the rainy season is, on average, 10 days 

shorter than in humid years. Thus, during dry years and with FSD, Somno‟s harvest date is 

frequently too late and yields are weak because of dry spells during sensitive stages. The 

impact of fertilizer use in humid years has already been explained. Note that fertilizer use-rate 

is the same in normal and humid years (30%) due to fertilizer prices that are 44% higher. 

Third, the selected strategies of the imperfect forecast (Impft) are less risky than with 

the perfect one (Pft). For example, in the years forecasted as humid there are only 3 years 

which are effectively dry: the group is more heterogeneous than with the perfect forecast. This 

explains why the farmers with Impft use much less fertilizer (a risky option) than with  Pft, 

and much more with HK+FSD. 

Fourth, when (Pft++) is possible, sowing date based on offset (OFSD) is widely used 

in all types of years. During dry and normal years, this sowing date is combined mainly with 

HK (no fertilization), and during humid years with Somno. As with PRE.det, Somno is used 
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only in humid years for the same reason as before. ONSD is only used in normal years 

(~10%), and could have been replaced by OFSD without much loss. This sowing date is not 

used because OFSD performs better: it avoids crop failure. It does not mean that it is useless, 

rather that in this simulation, OFSD is preferable. 

 

 

3.3 Income depending on type of forecast 

 

As with the control simulation, we translated each cropping strategy into terms of 

income. All forecasts improve mean income (Figure 7) but not with the same amplitude: 

Pft++ is the best with +34% (all years). This is logical as with this forecast farmers have more 

adaptation strategies. Pft++ gives particularly good results in humid years (+53.5 %, vs. 

+27.5% in dry years and +18.5% in normal years). This tendency is even greater for Pft and 

Impft: the rise in income is much better in humid years (and even dry years) than in normal 

years. This describes what Figure 6a shows: in normal years, adaptation strategies are not 

much different from the control scenario (and are exactly the same for Impft). 

The gain for Impft (+6.9 %), which is close to the current state of the art, indicates that 

such a forecast could have a positive impact for millet growers, especially in humid years. It 

also provides a noticeable increase in bad years (+ 7.1 %), which is very remarkable, as 

improving lowest incomes is a great challenge. These results are consistent with Patt et al.‟s 

(2005) 2-year Zimbabwe study which used an ex-post approach. These authors found that the 

use of forecasts was associated with an increase in harvests of 9.4% across the two years. 

They also emphasize that this increase is better during the wettest year (+18.7%). 

Predictability, these values are somewhat higher than ours due to a strong correlation between 

ENSO and Zimbabwean rainfall. 
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Such improvements were verified for all low income years (Figure 8) except for the 

worst one, 1997, where PRE.det gives somewhat lower income. Pft++  generally increased 

low gains, except in 2004, as Pft. For 3 other years with higher income (2003, 2004, 2007), 

Pft gives worse results than Ctrl. Each year, this is mainly due to 1 or 2 stations. Details of 

these years are available in Table 5. Note that all stations concerned are located in the 

southern part of the study area. 

Year 2002 is also interesting to examine, as Pft++ performed much better than for the 

other years. This very high rise in income compared to the other scenarios is mainly due to 

stations where Somno was used on all plots (with Pft++). Indeed, the 2002 rainy season is, on 

average, 7 days longer than the other years of the “humid” group (Figure 9). For some stations 

sowing only Somno, the rainy season is more than 20 days longer. This provides optimal 

conditions for this cultivar: gains with Pft++ are therefore better than with “Pft” which uses 

less Somno. 

 

 

4 Conclusion 

Under the assumptions described in this paper, we quantified the economic value for 

millet growers of different seasonal forecasts in SW Niger for the years 1990-2007. We 

evaluated 3 different types of forecast of seasonal rainfall: an imperfect tercile forecast of the 

seasonal rainfall, a perfect tercile forecast and an enhanced forecast system that also predicts 

the onset and the cessation of the rainy season. 

 In response to the forecast, farmers are able to choose between 3 millet cultivars, 2 

levels of fertilization and (with some types of forecasts only) and 3 sowing dates. The optimal 

cultural strategy was then chosen, taking into account farmers‟ risk aversion with a CRRA 

utility function.  
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Results show that even with an imperfect forecast based on a simple relationship between 

cumulated rainfall and climatic predictors, there is a benefit from using forecasts 

characterized by an increase of the CE income (+6.9 %). When the forecast is more accurate, 

the CE income increases more (+11%) and the best CE income value is logically found when 

more adaptation strategies are available (+31%). These adaptation strategies presuppose 

perfect rainy season onset and offset predictions. We also showed that the benefit from the 

forecast depends on the type of year: the drier the season, the lower the CE income. Indeed, 

the effects of fertilization are limited in dry years and the likelihood of dry spells is higher. 

However, the value of forecasts in „normal‟ years, relative to the Control scenario, is the 

lowest. Indeed, as the group „normal years‟ is quite heterogeneous (more heterogeneous than 

dry and humid years) it is more difficult to find a powerful strategy: thus, the chosen 

management strategies are close to the situation without forecast. Moreover, it is very 

interesting to emphasize that, in dry years, the value of an imperfect forecast is quite high 

relative to the Control (+.7.1%). This shows that seasonal forecasting is able to improve the 

farmers‟ situation in bad years. 

This benefit results from an adaptation of the agricultural strategy to the coming rainy season. 

Short (long) cycle cultivars such as HK (Somno) without (with) fertilization appeared to be 

better adapted to dry (humid) years. Indeed the use of fertilizers in dry years lead to a very 

low increase in yield, while long cycle cultivars performed better in humid years when the 

rainy season was longer. Finally we found that, even with forecasts, the improved short cycle 

cultivar Souna does not seem to be adapted to the Niger region. Its cycle is generally too short 

in comparison with the length of the rainy season and this inadequacy leads to yield losses. 

It is necessary to emphasize that these results apply only to a dry region, i.e. the region 

around Niamey. In a wetter environment, with more adaptation strategies, the value of 

seasonal forecasts would probably be higher, since more farmers could choose between more 
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crops, including potentially more productive but risky crops such as maize (Sultan et al. 

2009). Moreover, the role of livestock (buffer stock…) has to be studied in the future in order 

to have a more global assessment. 

Finally, a seasonal forecast system has a non-negligible impact on farmers‟ income, 

even when taking the imprecision of the forecast into account. The three scenarios studied 

(Pft, Impft, Pft++) show, however, that the added value could be much more important if 

forecast accuracy was improved and/or if other information such as the onset or offset of the 

rainy season were available.  

Moreover, our results are for strongly risk averse farmers: they tend to avoid strategies 

with high year-to-year variability even if the overall mean income is better. Coupling 

forecasts with safety nets such as crop insurances could, therefore change significantly the 

value of forecasts, as explained by Meza et al. (2008). Such insurances have already provided 

promising results in various regions of the world, e.g., in India (Giné et al., 2007), Malawi 

(Hellmuth et al., 2007) or West Africa, for maize and peanuts (Berg et al., 2009). So, 

considering a combination of seasonal forecasts and crop insurance seems to be a promising 

research direction. 

 

Acknowledgements: the authors would like to thank all the contributors to this work, 

especially Romain Marteau from CRC Dijon for map designing, John H. Sanders for 

providing prices of fertilizers and Eric Strobl for his advices to improve the final version.  

 

Bibliography 

 

 

Abdoulaye T, Sanders JH. 2005. Stages and determinants of fertilizer use in semiarid African 



 22 

agriculture: the Niger experience. Agricultural Economics 32: 167-179 

 

Affholder F. 1995. Effect of organic matter input on the water balance and yield of millet under 

tropical dryland condition. Field Crops Research 41: 109-121 

 

 

 

Alhassane A. 2009. Effet du climat et des pratiques culturales sur la croissance et le développement 

du mil (Pennisetum Glaucum [L.] R.BR.) au Sahel : Contribution à l’amélioration du modèle SARRA-

H de prévision des rendements. PhD thesis of University of Cocody: Abidjan, Côte d‟Ivoire. Crops 

Physiology: 235 p. 

 

Amadou M, Gandah M, Bielders CL, Van Duivenbooden N. 1999. Optimizing soil water use in Niger: 

research, development, and perspectives. In Efficient Soil Water Use – The Key to Sustainable Crop 

Production in Dry-Area Agriculture in West Asia, and North and Sub-Saharan Africa. Proceedings of 

the Workshops Organized by the Optimizing Soil Water Use (OSWU) Consortium, Niamey, Niger, 26-

30 April 1998 and Amman, Jordan, 9-13 May 1998 (Eds N. Van Duivenbooden, M. Pala, C. Studer & 

C.L. Bielders), pp.143-164. Aleppo, Syria: ICARDA and ICRISAT. 

 

Balme M, Galle S, Lebel T. 2005. Démarrage de la saison des pluies au Sahel : variabilité aux échelles 

hydrologique et agronomique, analysée à partir des données EPSAT-Niger. Sécheresse 16: 15-22 

 

Baron C, Sultan B, Balme M, Sarr B, Traore S, Lebel T, Janicot S, Dingkuhn M. 2005. From GCM 

grid cell to agricultural plot: scale issues affecting modelling of climate impact. Phil. Trans. R. Soc. B 

360: 2095–2108 

 

Berg A, Quirion P, Sultan B. 2009. Weather-index drought insurance in Burkina-Faso: assessment of 

its potential interest to farmers. Weather, Climate and Society 1: 71-84 



 23 

 

Bezançon G, Pham J-L, Deu M, Vigouroux Y, Sagnard F, Mariac C, Kapran I, Mamadou A, Gérard B, 

Ndjeunga J, Chantereau J. 2009. Changes in the diversity and geographic distribution of cultivated 

millet ( Pennisetum glaucum (L.) R. Br.) and sorghum ( Sorghum bicolor (L.) Moench) varieties in 

Niger between 1976 and 2003. Genetic Resources and Crop Evolution 56: 223-236 

 

Brüntrup M. 2000. The level of risk aversion among African farmers – results of a gambling approach. 

Deutscher Tropentag 2000 in Hohenheim:1-10  

 

Cappelaere B, Descroix L, Lebel T, Boulain N, Ramier D, Laurent JP, Le Breton E, Mamadou I, 

Boubkraoui S, Bouzou Moussa I, . FG, Issoufou HBA, Nazoumou Y, Quantin G, Chaffard V, Ottlé C. 

2009. The AMMA-CATCH experiment in the cultivated Sahelian area of south-west Niger -- 

Investigating water cycle response to a fluctuating climate and changing environment. J. Hydrol. 375: 

34-51 

 

Chiappori P-A, Paiella M. 2008. Relative Risk Aversion Is Constant: Evidence from Panel Data 

Department of economic studies, Discussion paper 5  

 

Cooper PJM, Dimes J, Rao KPC, Shapiro B, Shiferaw B, Twomlow S. 2008. Coping better with 

current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first 

step in adapting to future climate change? Agriculture, Ecosystems & Environment 126: 24-35 

 

Coulibaly P, Evora ND. 2007. Comparison of neural network methods for infilling missing daily 

weather records. Journal of Hydrology 341: 27-41 

 

de Rouw A. 2004. Improving yields and reducing risks in pearl millet farming in the African Sahel. 

Agricultural Systems 81: 73-93 

 



 24 

Dingkuhn M, Baron C, Bonnal V, Maraux F, Sarr B, Sultan B, Clopes A, Forest F. 2003. Decision 

support tools for rainfed crops in the Sahel at the plot and regional. In: Struif Bontkes TE, Wopereis 

MCS (eds), Decision support tools for smallholder agriculture in sub-Saharan Africa: a practical 

guide. IFDC: Muscle Shoals, USA.  

 

Dingkuhn M, Singh BB, Clerget B, Chantereau J, Sultan B. 2006. Past, present and future criteria to 

breed crops for water-limited environments in West Africa. Agricultural Water Management 80: 241-

261 

 

Druyan LM, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos SM, Konare A, Moufouma-Okia W, 

Rowell DP, Vizy EK, Ibrah SS. 2009. The WAMME regional model intercomparison study. Climate 

Dynamics (published online)  

 

Egg J, Wade I. 2006. Bilan et perspectives des cultures vivrières dans les pays du Sahel Santé 16: 271-

278  

 

FAO. 2002. Niger. Résultats des démonstrations d‟engrais au poquet sur mil. Années 1999, 2000 et 

2001: 7 p. 

 

FAO. 2008. Recensement général de l'agriculture et du cheptel (RGAC), Niger. Conclusions et 

recommandations du projet. Programme de coopération FAO/gouvernement 

 

Folland, C.K., Owen, J.A., Ward, M.N., and A.W. Colman, 1991. Prediction of seasonal rainfall in the 

Sahel region of Africa using empirical and dynamical methods. J. Forecasting. 10: 21-56. 

 

Garcia BIL, Sentelhas PC, Tapia L, Sparovek G. 2006. Filling in missing rainfall data in the Andes 

region of Venezuela, based on a cluster analysis approach. Rev. Bras. Agrometeorologia 14: 225-233 

 



 25 

Giannini, A., Saravanan, R., and Chang, P. 2003. Oceanic forcing of Sahel rainfall on interannual to 

interdecadal time scales. Science 302: 1027–1030 

 

Giné X, Townsend R, Vickery J. 2007. Statistical Analysis of Rainfall Insurance Payouts in Southern 

India. American Journal of Agricultural Economics 89: 1248-1254 

 

Hamatan M, Mahe G, Servat É, Paturel J-E, Amani A. 2004. Synthèse et évaluation des prévisions 

saisonnières en Afrique de l‟Ouest. Sécheresse 15: 279-286 

 

Hansen JW. 2002. Realizing the potential benefits of climate prediction to agriculture: issues, 

approaches, challenges. Agricultural Systems 74: 309-330 

 

Hansen JW, Mishra A, Rao KPC, Indeje M, Ngugi RK. 2009. Potential value of GCM-based seasonal 

rainfall forecasts for maize management in semi-arid Kenya. Agricultural Systems 101: 80-90 

 

Hassan R, Nhemachena C. 2008. Determinants of african farmers' strategies for adapting to climate 

change: Multinomial choice analysis. AfJARE 2: 83-104 

 

Hellmuth M, Moorhead A, Thomson M, Williams J. 2007. Gestion du risque climatique en Afrique : 

ce que la pratique nous enseigne. Institut National de Recherche pour le climat et la société (IRI): 

New York, USA. 

 

Holt CA, Laury SK. 2002. Risk Aversion and Incentive Effects American Economic Review 92: 1644–

1655 

 

Ingram KT, Roncoli MC, Kirshen PH. 2002. Opportunities and constraints for farmers of West Africa 

to use seasonal precipitation forecasts with Burkina Faso as a case study. Agricultural Systems 74: 

331-349 



 26 

 

Konte O. 2007. Méthodologie d'analyse de la performance et d'interprétation des prévisions 

saisonnières des précipitations (PRESAO): application à la culture du mil au Sénégal. Master  thesis 

of Centre Régional Aghrymet: Niamey, Niger: 49 p. 

 

Kouressy M, Dingkuhn M, Vaksmann M, Heinemann AB. 2008. Adaptation to diverse semi-arid 

environments of sorghum genotypes having different plant type and sensitivity to photoperiod. 

Agricultural and Forest Meteorology 148: 357-371 

 

Laux P, Kunstmann H, Bardossy A. 2008. Predicting the regional onset of the rainy season in West 

Africa. International Journal of Climatology 28: 329-342 

 

Letson D, Laciana CE, Bert FE, Weber EU, Katz RW, Gonzalez XI, Podestá GP. 2009. Value of 

perfect ENSO phase predictions for agriculture: evaluating the impact of land tenure and decision 

objectives. Climatic Change 97: 145–170 

 

Luseno WK, McPeak JG, Barrett CB, Little PD, Gebru G. 2003. Assessing the Value of Climate 

Forecast Information for Pastoralists: Evidence from Southern Ethiopia and Northern Kenya. World 

Development 31: 1477-1494 

 

Marteau R, Sultan B, Baron C, Traoré S, Alhassane A, Moron V. forthcoming. The onset of the rainy 

season and the farmers‟ sowing strategy for pearl millet in Southwest Niger. Submitted to 

International Journal of Climatology  

 

Meza FJ, Hansen JW, Osgood D. 2008. Economic value of seasonal climate forecasts for agriculture: 

Review of ex-ante assessments and recommendations for future research. Journal of Applied 

Meteorology and Climatology 47: 1269-1286 

 



 27 

O'Brien K, Sygna L, Næss LO, Kingamkono R, Hochobeb B. 2000. Is Information Enough? User 

Responses to Seasonal Climate Forecasts in Southern Africa. Report to the World Bank, AFTE1-

ENVGC. Adaptation to Climate Change and Variability in Sub-Saharan Africa, Phase II 1-72 

 

Ogurtsov VA, Van Asseldonk MPAM, Huirne RBM. 2008. Assessing and modelling catastrophic risk 

perceptions and attitudes in agriculture: a review. NJAS - Wageningen Journal of Life Sciences 56: 39-

58 

 

Patt A, Suarez P, Gwata C. 2005. Effects of seasonal climate forecasts and participatory workshops 

among subsistence farmers in Zimbabwe. PNAS 102: 12623-12628 

 

Romero R, Guijarro J, Alonso S. 1998. A 30 year (1964-1993) daily rainfall data base for the Spanish 

Mediterranean regions: first exploratory study. International Journal of Climatology 18: 541-560 

 

Roncoli C, Ingram K, Kirshen P. 2001. The costs and risks of coping with drought: livelihood impacts 

and farmers' responses in Burkina Faso. Climate Research 19: 119-132 

 

Roncoli C, Ingram K, Kirshen P. 2002. Reading the rains: Local knowledge and rainfall forecasting in 

Burkina Faso. Society & Natural Resources 15: 409-427 

 

Roncoli C, Jost C, Kirshen P, Sanon M, Ingram KT, Woodin M, Somé L, Ouattara F, Sanfo BJ, Sia C, 

Yaka P, Hoogenboom G. 2009. From accessing to assessing forecasts: an end-to-end study of 

participatory climate forecast dissemination in Burkina Faso (West Africa). Climatic change 92: 433–

460 

 

Rubas D, Harvey S, Hill J, Mjelde JW. 2006. Economics and climate applications: exploring the 

frontier. Climate Research 33: 43-54 

 



 28 

Schechter L. 2007. Risk aversion and expected-utility theory: A calibration exercise Journal of Risk 

and Uncertainty 35: 67-76 

 

Sivakumar MVK. 1988. Predicting rainy season potential from the onset of rains in Southern Sahelian 

and Sudanian climatic zones of West Africa. Agricultural and Forest Meteorology 42: 295-305 

 

Sivakumar MVK. 1992. Empirical-Analysis of Dry Spells for Agricultural Applications in West 

Africa. Journal of Climate 5: 532-539 

 

Smith, T.M., Reynolds, R.W., Peterson, T.C., and J. Lawrimore, 2008. Improvements to NOAA‟s 

historical merged land-ocean surface temperature analysis (1880–2006). J. Climate 21: 2283–2296 

 

Soler CMT, Maman N, Zhang X, Mason SC, Hoogenboom G. 2008. Determining optimum planting 

dates for pearl millet for two contrasting environments using a modelling approach. J. Agricultural 

Science 146: 445-459 

 

Sultan B, Barbier B, Fortilus J, Mbaye S, Leclerc G. 2009. Estimating the potential economic value of 

the seasonal forecasts in West Africa: a long-term ex-ante assessment in Senegal. Weather, Climate 

and Society: in press. 

 

Sultan B, Baron C, Dingkuhn M, Sarr B, Janicot S. 2005. Agricultural impacts of large-scale 

variability of the West African monsoon. Agricultural and Forest Meteorology 128: 93-110 

 

Sultan B, Janicot S. 2003. The West African monsoon dynamics. Part II : The "pre-onset" and the 

"onset" of the summer monsoon. Journal of Climate 16: 3407-3427 

 

Tarhule A, Lamb PJ. 2003. Climate research and seasonal forecasting for West Africans - Perceptions, 

dissemination, and use? Bulletin of the American Meteorological Society 84: 1741-1759 



 29 

 

Teegavarapu RSV, Chandramouli V. 2005. Improved weighting methods, deterministic and stochastic 

data-driven models for estimation of missing precipitation records. Journal of Hydrology 312: 191-

206 

 

Traore PCS, Kouressy M, Vaksmann M, Tabo R, Maikano I, Traore SB, Cooper R. 2007. Climate 

prediction and agriculture: What is different about Sudano-Sahelian West Africa? In: Sivakumar 

MVK, Hansen JW (eds), Climate Prediction and Agriculture: Advances and Challenges. Springer 

Berlin Heidelberg 

 

Vaksmann M, Traoré SB. 1994. Adéquation entre risque climatique et choix variétal du mil. Cas de la 

zone de Bankass au Mali. In: John Libbey Eurotext (eds),  Bilan hydrique agricole et sécheresse en 

Afrique tropicale, Paris. 

 

Vaksmann M, Traoré SB,  Niangado O. 1996. Le photopériodisme des sorghos africains. Agriculture 

et Développement 9: 13-18 

 

Wakker PP. 2008. Explaining the characteristics of the power (CRRA) utility family. Health 

Economics 17: 1329–1344 

 

Ward, M.N., 1998. Diagnosis and short-lead time prediction of summer rainfall in tropical north 

Africa at interannual and multidecadal timescales. J. Climate 11: 3167-3191. 

 

Ward N, Cook K, Diedhiou A, Fontaine B, Giannini A, Kamga A, Lamb P, Ben Mohamed A, Nassor 

A, Thorncroft C. 2004. Seasonal-to-decadal predictability and prediction of West African climate. 

CLIVAR Exchanges 9: 14-20 

 

Winkel T, Renno J-F, Payne WA. 1997. Effect of the timing of water deficit on growth, phenology 



 30 

and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. Journal of 

Experimental Botany 48: 1001-1009 

 

Ziervogel G, Bithell M, Washington R, Downing T. 2005. Agent-based social simulation: a method 

for assessing the impact of seasonal climate forecast applications among smallholder farmers. 

Agricultural Systems 83: 1-26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

TABLES 

 

 

 

  Simulated data 

 Interval (mm) [0 ; 1]   ]1 ; 10] ]10 ; 20] >20 

Observed 

data 

[0 ; 1] 91.0 8.0 0.9 0.1 

]1 ; 10] 17.4 65.2 14.0 3.4 

]10 ; 20] 5.3 43.5 35.3 15.9 

>20 1.5 16.1 31.4 51.0 

Table 1: assessment of the data filling method. 1990/2006 are used for calibration, 2007 for validation. 
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Study Country Adaptation Strategies Comments 

O‟Brien et al., 

2000 

Tanzania, 

Namibia, 

South Africa 

Change planting date 

Change crop locations 

Change crop types 

Inter-crop 

Use fertilizer 

Store more food 

Reduce amount planted 

Stop farm activities 

 

A lot of farmers did not do 

anything in the pilot study 

Tarhule and 

Lamb, 2003 

West Africa 

Change crop types 

Reduce herd sizes 

Change grazing methods 

Change planting time 

Relocate  

 

Heterogeneity in West Africa: 

Malians are less sceptical. 

Results are presented here for 

Niger. 

Ingram et al.* 

(2002) 

Burkina Faso 

Plant shorter duration crops/varieties 

Plant drought tolerant crops/varieties 

+or- manure and fertilizer 

Store/sell grain stocks. 

Orient furrows across slope 

Acquire capital to purchase inputs 

Ration food 

Classification depending on 

the kind of year („good‟ or 

„bad‟). Only some strategies 

are shown here. 

Ziervogel et 

al., 2005 

Lesotho 

Adjustment of cropping density 

Ratio maize to sorghum planted 

Both parameters used in a 

model. Other strategies are 

described briefly. 

Luseno et al., Ethiopia and „Adjust cultivation choices‟ “Less than 10% of those who 
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2003 Kenya received external forecasts of 

rainfall volumes in their own 

locations adjusted behaviour 

in response” 

Hassan and 

Nhemachena 

(2008) 

African arid 

areas 

Crop diversification 

Use different crop varieties 

Vary the planting and harvesting dates 

Increase the use of irrigation 

Increase the use of water and 

Soil conservation techniques 

Shading and shelter 

Shorten the length of the growing season 

Diversify from farming to non–farming 

activities 

37 % do not use any 

adaptation strategies 

Table 2 : review of possible adaptation strategies to seasonal forecast (cited by farmers).  

*Other strategies are described p.343 of this paper depending on the kind of forecast 

 

 

 

  Imperfect Forecast « Impft » 

 Category Dry Normal Humid 

Perfect Forecast « Pft » 

 (observations) 

Dry 4 2 0 

Normal 1 2 3 

Humid 1 2 3 

Table 3 : differences between both forecast. 
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Scenario Type of forecast 

Sowing 

dates 

allowed 

Cultivars 

possible 

Fertilization Comments 

“Ctrl” None Only FSD 

HK/Somno 

/Souna  

Yes/No Same strategy each year 

“Impft” 

Imperfect deterministic 

forecast of seasonal 

rainfall 

Only FSD 

HK/Somno 

/Souna 

Yes/No 

Choose cultivar and 

level of fertilization for 

each type of rainy 

season 

“Pft” 

Perfect deterministic 

forecast of seasonal 

rainfall 

Only FSD 

HK/Somno 

/Souna 

Yes/No 

Choose cultivar and 

level of fertilization for 

each type of rainy 

season 

“Pft++” 

Perfect deterministic 

forecast of seasonal 

rainfall + onset and 

cessation of the rainy 

season 

FSD/ONSD 

/OFSD 

HK/Somno 

/Souna 

Yes/No 

- Choose cultivar and 

level of fertilization, for 

each type of rainy 

season. 

-Adapt sowing date 

based on onset/offset. 

Table 4 :  Main assumptions in each scenario 
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Year (type) Stations Explanation 

1997 (dry) Tanaberi Fertilizers used with information Pft are useless 

2003 (normal) Karé 

2003 is especially wet in Karé, thus sowing Somno as in Ctrl 

provides better results than sowing only HK (Pft) 

2004 (dry) Karé and Tanaberi 

For Karé: same reasons as in 2003 

For Tanaberi: same reasons as in 1997+ Karé in 2003 

2007 (normal) 

Tanaberi and 

Torodi 

Same reasons as for Karé in 2003 

Table 5:  why years 1997, 2003, 2004 and 2007 have lower gains with Pft than with Ctrl 
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