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ABSTRACT

Shape description is an important step in image analysis.
Skeletonization methods are widely used in image analysis as they are a pow-

erful tool to describe a shape. Indeed, a skeleton is a one point wide line centered
in the shape which keeps the shape’s topology.
Commonly, at least two scans of the image are needed for the skeleton computa-
tion in the state of art methods of skeletonization. In this work, a single scan is used
considering information propagation in order to compute the skeleton. This paper
presents also a new single-scan skeletonization using different distances likes d4,
d8 and dns.

Keywords: Skeleton, single-scan, Neighborhood sequence distance

1.1 INTRODUCTION

The skeletonization is an important method in the image analysis domain. This
method is a powerful tool to extract some pertinent informations about a shape.
The Skeletonization algorithm is the operation that identifies the skeleton of a
shape. The skeleton is a shape subset that has to be one point wide, homotopic
and centered in the shape. Moreover, if the distance information is preserved, the
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skeleton is reversible. Skeletonization methods have been largely studied in the
literature.
We are interested in the discrete domain methods because of the discretization of
our space due to the pixels. In this domain there are some different methods like
thinning [7, 8], distance based methods [1, 5] and other likes distance ordered thin-
ning [12, 16] These skeletonization methods use more than two scans of the image
in order to produce the skeleton.
the goal of this work is to calculate the skeleton with only one scan of the image.

The point of working with a single scan of the image is that the analysis task
can be applied during the acquisition task. This amounts to saving time and stor-
age.
In order to understand how this is possible, let us focus on the information prop-
agation in the other methods. In method like that Thinning, the shape is peeled
layer by layer until to produce the skeleton. Methods using the thinning from dis-
tance transform also peel the shape but they use the distance information like a
layer.
These two methods compute the skeleton with a classical raster scan of the image.
The dependance between two pixels depends of their distance in the raster scan
order. That is to say if the distance map of a pixel is inferior than his neighbor, his
neighbor will be peeled after the first one.

In section 1.2, necessary notions to compute a skeleton will be introduced. Sec-
tion 1.3 explains the main idea of this work in order to compute the distance map
and the medial axis with a single scan of the image. In section 1.4, we describe the
computation of the skeleton through our reference algorithm and the particular
cases are descibed. The results will be presented in section 1.5.

1.2 PRELIMINARIES

1.2.1 Neighborhood

Definition 1.1. We call j-neighborhood in nD, with 1 ≤ j ≤ n, the set of vectors:

Nj =
{−→v : |vi| ≤ 1 and ∑ |vi| ≤ j

}

.

The point q is a j−neighbor of p if the vector from p to q belongs to the j-
neighborhood (−→pq ∈ Nj).

The two neighborhoods of the 2D square grid, often called cityblock or 4-
neighborhood for N1 and chessboard or 8-neighborhood for N2, are depicted on fig.
1.1.

Definition 1.2 (Simple point [13]). Let X be a part of Z2 with a finite number of
α − connected − components and α − connected − components. A point A of X is
α− simple in X if:

• the set X and X \ {A} have the same α− connected− component number;
• the set X and X \ {A} have the same α− connected− component number;
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N1 N2

Figure 1.1. 1-neighborhood, N1, and 2-neighborhood, N2, in the 2D square grid

1.2.2 Discrete distances

Definition 1.3 (Discrete distance and metric). Consider a function d : Zn ×Zn →
N and the following properties ∀x, y, z ∈ Zn:

(1) positive definiteness d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y ,
(2) symmetry d(x, y) = d(y, x) ,
(3) triangle inequality d(x, z) ≤ d(x, y) + d(y, z) ,
(4) translation invariance d(x + z, y + z) = d(x, y) .

d is called a distance if it verifies conditions 1 and 2, a metric with conditions 1 to 3 and
a translation-invariant metric with the all 4 conditions.

Practically, path-based distances are distance functions that associate to each
couple of points (p, q), the minimal cost of a path from p to q. A path P is a sequence
of points (p0 = p, p1, . . . , pn = q) such that two successive points are neighbors:
−−−→pr−1 pr ∈ N . The cost (or length) of a path P = (p0 = p, p1, . . . , pn = q) is the
number of its displacements, n.

Rosenfeld and Pfaltz proposed the first path-based distances, namely d and
d∗ (often denoted by d4 and d8), that are respectively generated by neighborhoods
of types 1 and 2 [15]. Later, they defined the octagonal distance, a better approxi-
mation of the Euclidean distance, using alternated neighborhoods [14]. By allow-
ing longer periodic sequences of neighborhoods, Das et al. introduced the concept
of neighborhood-sequence (NS) distances that was afterwards extended to non-
periodic sequences [3, 4].

Let B(r), r ∈ N∗ be a sequence of integers; each B(r) represents the type of
neighborhood allowed for the rth displacement. i.e., a path (p0 = p, p1, . . . , pn = q)
is valid if any two successive points pr−1 and pr are B(r)−neighbors: −−−→pr−1 pr ∈
NB(r). In the 2D case, B(r) ∈

{

1, 2
}

, We denote by JB(r), with 1 ≤ J ≤ n, the
number of times the j-neighborhood appears in sequence B till index r:

JB(r) =
∣

∣

{

r : 1 ≤ i ≤ r, B(i) = j
}∣

∣ .

For any real number x, let ⌊x⌋ (resp. ⌈x⌉) denote the largest integer less (resp.
greater) than or equal to x. A Beatty sequence with parameter α where α is a pos-
itive irrational number (α ∈ R+ \ Q), is the sequence of the positive multiples
of α rounded to the largest smaller integers: b(i) = ⌊iα⌋. András and Lajos Ha-
jdu suggested to base the neighborhood sequence on a Beatty sequence, taking
B(r) = ⌊αr⌋ − ⌊α(r− 1)⌋+ 1 [6]. Clearly, if α ∈ [0, 1] then ∀r ∈ N∗, B(r) ∈

{

1, 2
}
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and α represents the asymptotic rate of ‘2s’ in the sequence. Then (even for a ratio-
nal α):

1B(r) = r− ⌊αr⌋ = ⌈(1− α)r⌉ ,

2B(r) = ⌊αr⌋ .

Definition 1.4 (Disk). For a given distance d, the closed disk D≤ and open disk D< of
center c and radius r are the sets of points of Zn:

D<(c, r) = {p : d(c, p) < r} ;

D≤(c, r) = {p : d(c, p) ≤ r} .
(1.1)

Disks of a neighborhood-sequence distance are built by a series of Minkowski
sums:

D<(c, r + 1) = D<(c, r)⊕NB(r) . (1.2)

1.2.3 Distance map and medial axis

Definition 1.5 (Distance transform). The distance transform DTX of the binary image
X is a function that maps each point p to its distance from the closest background point:

DTX : Zn → N

DTX(p) = min
{

d(q, p) : q ∈ Zn \ X
}

.
(1.3)

Alternatively, since all points at a distance less than DTX(p) to p belong to X
(Ď<(p, DTX(p)) ⊂ X) and at least one point at a distance to p equal to DTX(p)
is not in X (Ď<(p, DTX(p) + 1) 6⊂ X) then:

DTX(p) ≥ r ⇐⇒ Ď<(p, r) ⊂ X , (1.4)

where D<(c, r) and Ď<(c, r) are symmetric to each other with regards to their cen-
ter c, Ď<(c, r) = {p : d(p, c) < r}. The DT is usually defined as the distance to
the background which is equivalent to the distance from the background by sym-
metry. The equivalence is lost with asymmetric distances, and this definition better
reflects the fact that DT algorithms always propagate paths from the background
points.

Definition 1.6 (Medial Axis). We call maximal disk of the set X, a disk contained in X
but not contained in any other disk also contained in X. By definition of DTX , if D<(p, r)
is maximal then necessarily r = DTX(p). The medial axis MAX of the set X maps each
point to the radius of the maximal disk centered in that point if it exists, 0 otherwise:

MAX(p) =

{

0 if ∃ q, r s.t. D<(p, DTX(p)) ( D<(q, r) ⊂ X ,

DTX(p) otherwise .
(1.5)
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For NS distances, a simple local criterion is sufficient to extract the medial axis
from the distance map:

MAX(p) =

{

0 if ∃−→v ∈ NB(DTX(p)), DTX(p +−→v ) > DTX(p) ,

DTX(p) otherwise .
(1.6)

Since the null vector is, by definition 1.1, included in neighborhoods of all
types, we can also write:

MAX(p) = r > 0 ⇐⇒

{

DTX(p) ≥ r

∀−→v ∈ NB(r), DTX(p +−→v ) ≤ r
. (1.7)

1.3 DISTANCE MAP AND MEDIAL AXIS COMPUTATION

Distance from the background to each pixel is the primary order criterion in our
skeletonization algorithm. For path-based distances, distance maps are computed
by propagating path costs from the background towards the inside of the shape.
This process is common to all kinds of algorithms, parallel [15], queue-based
[11, 17] or sequential [9, 15]. Classical sequential algorithms require at least two
scans (exactly two for simple and chamfer distances) of the image data in reverse
order [15]. Wang and Bertrand [18] described a generalized distance transform us-
ing one neighborhood or two alternated neighborhoods. When the neighborhoods
satisfy the forward scan condition, path costs are only propagated in directions
compatible with the raster scan thus a single scan is required. A new generalized
distance transform for arbitrary sequences, periodic or not, was presented in [10].
It uses a translated version of neighborhoods N1 and N2 as shown in fig. 1.2.. Fur-
thermore, it was shown that the regular, centered, distance map can be obtained
from the generalized distance map obtained with translated disks. This correcting
step requires a random access to pixels in a limited band of image rows, but it
follows the main raster scan data flow.

1.3.1 Asymmetric Distance Transform

Let d be a 2D NS distance with sequence B(r) = ⌊αr⌋. The main criterion of the
thinning order of a shape X is the distance from the background obtained by the
distance transform with distance d: DTX . Instead of directly computing DTX (this
would require at least three scans of the image), we deduce it from the distance
transform DT′X obtained with another (generalized because asymmetric) distance
d′. d′ is defined with the same sequence B as d but with translated neighborhoods.

For each neighborhood Nj, j ∈
{

1, 2
}

, we apply a translation vector
−→
tj such

that the translated neighborhoodN ′j = Nj ⊕
{−→

tj
}

is in forward scan condition. In

a translation preserved scan order,
−→
tj translates the first visited point of Nj to the
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(a) (b) (c)

Figure 1.2. Neighborhoods used for the translated NS-distance transform. (a) and (b) are
respectively the type 1 and 2 translated neighborhoods, N ′1 and N ′2. (c) is the whole set of
non-null displacements, N ′∗ = (N ′1 ∪N

′
2) \

{

O
}

.

origin. Assuming a 2D standard raster scan order:
−→
t1 = (0, 1)

−→
t2 = (1, 1) . (1.8)

The translated neighborhoods N ′1 and N ′2 obtained with
−→
t1 = (0, 1) and

−→
t2 =

(1, 1) are depicted in fig. 1.2.a and fig. 1.2.b.
DT′X can computed in a single raster scan using [10]:

DT′X(p) =

{

0 if p 6∈ X

min
{

LUT−→v (DT′X(p−−→v )),−→v ∈ N ′∗
}

otherwise
(1.9)

where LUT−→v (r) is the final cost of a path of initial cost r after an extra displacement
−→v :

LUT−→v (r) =



























LUT1(r) =
⌊

⌈(1− α)r⌉
1− α

⌋

+ 1 if −→v ∈ N ′1 and −→v 6∈ N ′2

LUT2(r) =
⌈

⌊αr⌋+ 1
α

⌉

if −→v 6∈ N ′1 and −→v ∈ N ′2

LUT12(r) = r + 1 if −→v ∈ N ′1 and −→v ∈ N ′2

1.3.2 Equivalence with the Centered Distance Transform

Disks generated by neighborhoods N ′1, N ′2 and the sequence B(r) are such that:

D′≤(p, r) = D≤(p +
−→
t (r), r) Ď′≤(p, r) = Ď≤(p−

−→
t (r), r) (1.10)

where the translation vector
−→
t (r) is:

−→
t (r) =

−→
t (r− 1) +

−−→
tB(r)

= 1B(r)
−→
t1 + 2B(r)

−→
t2

= (2B(r), 1B(r) + 2B(r))

= (2B(r), r) .

DT′X has equivalence with values of DTX :

DTX(p) ≥ r ⇐⇒ Ď≤(p, r− 1) ⊆ X

⇐⇒ Ď′(p +
−→
t (r− 1), r− 1) ⊆ X

⇐⇒ DT′X(p +
−→
t (r− 1)) ≥ r . (1.11)
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Consequently:

DTX(p′ −
−→
t (r− 1)) = r ⇐⇒ DTX(p′ −

−→
t (r− 1)) ≥ r and DTX(p′ −

−→
t (r− 1)) < r + 1

⇐⇒ DT′X(p′ +
−−→
tB(r)) ≤ r ≤ DT′X(p′) . (1.12)

Knowing DT′X(p′) and DT′X(p′ +
−→
t ) for a given vector

−→
t , we can deduce

DTX(p′ −
−→
t (r − 1)) for all values of r between DT′X(p′ +

−→
t ) and DT′X(p′) for

which
−→
t =

−−→
tB(r).

In [10], an algorithm is given to fully recover the centered distance transform
from the asymmetric one. However, for the distance ordered skeletonization pro-
cess, values of the centered distance map DT are not required to be stored as an
image. Instead, we compute these values from DT′, on the fly.

1.3.3 Medial Axis

Let MA′X be the medial axis of X with distance d′. Similarly to (1.7):

MA′X(p) = r > 0 ⇐⇒

{

DT′X(p) ≥ r

∀−→v ∈ N ′B(r), DT′X(p +−→v ) ≤ r

using (1.11) and by definition of N ′j :

MA′X(p) = r > 0 ⇐⇒

{

DTX(p−
−→
t (r− 1)) ≥ r

∀−→v ∈ NB(r), DTX(p +−→v −
−→
t (r− 1)) ≤ r

⇐⇒ MAX(p−
−→
t (r− 1)) = r > 0

Like all Minkowski-based distances, the medial axis of the generalized distance d′,
MA′X , can be computed by a local maximum criterion. MA′X is equivalent, up to a
translation of each maximal disk, to the medial axis of the regular distance d, MAX .

1.4 ONE PASS SKELETON COMPUTATION

This section presents a single-scan skeletonization algorithm. We start from a
multi-scan reversible distance-ordered algorithm where the thinning order is
guided by the distance to the background. From this "reference" algorithm, we de-
rive a single-scan skeletonization algorithm that, despite the fact that the thinning
order is modified, preserves the dependencies of pixel removals.

1.4.1 Reference algorithm (rlk)

Like DOHT [12] or Svensson’s work [16], we use a distance-controlled thinning
method. The reference algorithm proceeds by thinning pixels, layer by layer, ac-
cording to their distance to the background. Medial axis points are not deleted
because it allows the reconstruction of a shape from its skeleton.



February 28, 2011 10:19 Research Publishing : IWCIA11 - 6.5in x 9.75in ArlicotIWCIA2011

8 A. Arlicot, P. Évenou and N. Normand

Let p and q be two points, rp and rq be the distance map value to the point p
and q respectively (DTx(p) and DTx(q)). A lexicographic order (here called rlk) is
defined such that :

p ≺rlk q ⇐⇒
{

rp < rq

rp = rq and p ≺ q
(1.13)

Algorithm 1: The rlk algorithm
Data: A binary image X, DTX , MAX

Result: The skeleton SkX

for r ← 1 to maxp∈X {DTX(p)} do

for l ← 0 to L do
p: point (k, l)
for k← 0 to K do

if DTX(p) = r and MAX(p) 6= r and p is simple then

SkX(p)← 0;
end

end

end

end

1.4.2 Single-scan algorithm (l′k′r)

Now the goal is to switch the order of the loops to produce a skeletonization al-
gorithm in one scan. The order of the loops for the reference algorithm was radii,
lines and columns (rlk order scan).

Thanks to the translation of the center of the disks, it is possible to change the
order of the loops. Now the order is translated lines (l′), translated columns (k′)
and raddi (l′k′r order).

The following equivalences appear :
Let l′p = lp + rp − 1, l′q = lq + rq − 1 and k′p = kp, k′q = kq for the distance d4

and k′p = kp + rp − 1, k′q = kq + rq − 1 for the distance d8.

p ≺l′k′r q ⇐⇒











l′p < l′q ⇐⇒ p ≺rlk q

l′p = l′q and

{

k′p < k′q
k′p = k′q and rp < rq ⇐⇒ p ≺rlk q

(1.14)
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Algorithm 2: The l′k′r algorithm

Data: A K× L binary image X, DT′X , MA′X
Result: The skeleton SkX

for l’← 0 to L do

for k’← 0 to K do
p′: point (k′, l′)
for r← max

{

1, min
{

DT′X(p′ +
−→
t1 ), DT′X(p′ +

−→
t2 )

}}

to DT′X(p′) do

p← p′ −
−→
t (r− 1)

if r ≥ DT′X(p′ +
−−→
tB(r)) then

if MA′X(p′) 6= r and p is simple then
SkX(p)← 0
if Next open disk built with N8 and k′ ≥ 0 and

MAX [l][k− 1] = d and MA′X 6= r and simple then
SkX(k− 1, l)← 0

end

end

end

end

end

end

1.4.3 Particular cases

We note two particulars cases in our algorithm. The first one is a simplicity partic-
ular case, due to our special order scan. Figure 1.3. shows this particular case.

In this example the deletion causes a change in the topology of the shape if
you remove the point p (creating a hole). In an other algorithm, the point p was
removed after his right neighbor. Due to our special order scan, p is seen before its
right neighbor and is not (for the moment) simple.

The solution is to re-evaluate the simplicity of the previous point when the
current point is deleted. That is to say, in the example figure 1.3., the deletion of
the point q lead the simplicity evaluation of the point p.

3 2 2 2 2 2

3 2 1 1 1

3 2 1

3 2 1

3 2 1

p q

1

Figure 1.3. Special case in one scan algorithms
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The second particular case is due to the translation of the center of the disk d4.
Figure 1.4. shows the particular case.

r

r-1

p q

(a) DTX

q

(b) DT′Xr− 1

p

(c) DT′Xr

Figure 1.4. p ≺l′k′r q ⇐⇒ l′p = l′q et k′p < k′q.

In this special case, the point p is computed before the point q (because l′p = l′q
et k′p < k′q) whereas it is not the case in the reference algorithm because p ≺rlk

q ⇐⇒ DTX(p) < DTX(q).
So if distance in top-left corner and left neighbor (untranslated) is bigger than r
behave like this point hasn’t been thinned yet.

The simplicity function determines if a point is simple or not. In order to com-
pute the simplicity of a point, we subtract from the count of 1-connected back-
ground pixels, the number of corners ofN2. The point is simple if the result equals
1. Figure 1.5. shows the patterns used for the simplicity function.

0

(a)

0

(b)

0

(c)

0

(d)

0 0
0

(e)

0 0
0

(f)

0
0 0

(g)

0
0 0

(h)

Figure 1.5. (a)+(b)+(c)+(d)-(e)-(f)-(g)-(h) = 1 if the point is simple.

1.5 RESULTS

Table 1.1 presents the execution time of the six algorithms. The reference algo-
rithms has been evaluated with three different distances, along with their single-
scan versions. Note that, for all three distances, the single-scan algorithm is faster
than the reference algorithm.

In figure 1.6. is shown an example of an original shape. The figure 1.7. shows
the images resulting from the algorithms. For each one, the one scan algorithm
produced the same, pixel per pixel, skeleton as the reference algorithm.

Figure 1.6. Original shape.
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Table 1.1 Execution time results
Image number of pixel distance used time in second

main 287523 pixels

ref one scan
d4 0.204439 0.024109
d8 0.407720 0.022979
dns 0.168092 0.030744

Bone 93632 pixels d4 0.021276 0.007416
d8 0.040200 0.007630
dns 0.018037 0.009585

Corail 3027888 pixels d4 0.499546 0.149939
d8 0.903974 0.146726
dns 0.386084 0.207187

anguille 5018112 pixels d4 1.996670 0.129146
d8 5.095797 0.135774
dns 1.735280 0.211365

(a) with distance d4 (b) with distance d8 (c) with distance dns

Figure 1.7. Image results

Applications that continuously acquire an image could definitely take advan-
tage of the proposed approach while they typically produce unbounded images.
In previous works [2], this method extracted the skeleton from a radiography of
trabecular bone.

1.6 CONCLUSION

This paper presented an algorithm which computes a distance map, a medial axis
and a skeleton with one scan of the image. The algorithm is able to compute a
skeleton using any neighborhood-sequence distance. Examples were shown for d4
(cityblock), d8 (chessboard) and the octagonal distance doct.

The proposed algorithm is up to 10-15 times faster than the reference algo-
rithm. Remark that best performance improvements are obtained with large im-
ages.
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