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 with the addition of an attraction-repulsion interaction potential. Introducing different scalings than in [10], the non-local effects of the alignment and attraction-repulsion interactions can be kept in the hydrodynamic limit and result in extra pressure, viscosity terms and capillary force. The systems are shown to be symmetrizable hyperbolic systems with viscosity terms. A local-in-time existence result is proved in the 2D case for the viscous model and in the 3D case for the inviscid model. The proof relies on the energy method.

Introduction

The context of this paper is the hydrodynamic limit of a kinetic model for self-propelled particles. The self-propulsion speed is supposed to be constant and identical for all the particles. Therefore, the velocity variable reduces to its orientation. The particle interactions consist in two parts: an alignment rule which tends to relax the particle velocity to the local average orientation and an attraction-repulsion rule which makes the particles move closer or farther away from each other. This model is inspired both by the Vicsek model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] and the Couzin model [START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF][START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF].

The model studied in this paper is a generalization of the model of [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] with the addition of an attraction-repulsion interaction potential. More importantly, a different scaling is investigated. In this scaling, the non-local effects of the alignment and attractionrepulsion interactions are kept in the hydrodynamic limit and result in extra pressure and viscosity terms. Beyond the statement of the model, the main result of the present paper is a local-in-time existence theorem in the 2D case for the viscous model (when the nonlocal effects are retained) and in the 3D case for the inviscid model (when the non-local effects are omitted). Both proofs rely on a suitable symmetrization of the system and on the energy method.

There has been an intense literature about the modeling of interactions between individuals among animal societies such as fish schools, bird flocks, herds of mammalians, etc. We refer e.g. to [START_REF] Aldana | Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach[END_REF][START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF][START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF][START_REF] Grégoire | Onset of collective and cohesive motion[END_REF] but an exhaustive bibliography is out of reach. Among these models, the Vicsek model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] has received particular attention due to its simplicity and the universality of its qualitative features. This model is a discrete particle model (or 'Individual-Based Model' or 'Agent-Based model') which consists of a timediscretized set of Ordinary Differential Equations for the particle positions and velocities. A time-continuous version of this model and its kinetic formulation are available in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. A rigorous derivation of this kinetic model from the time-continuous Vicsek model can be found in [START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF]. In the present paper, we extend this model by adding an attraction-repulsion force.

Hydrodynamic models are attractive over particle ones due to their computational efficiency. For this reason, many such models have been proposed in the literature [START_REF] Carrillo | Double milling in self-propelled swarms from kinetic theory[END_REF][START_REF] Carrillo | Self-propelled interacting particle systems with roosting force[END_REF][START_REF] Chuang | State transitions and the continuum limit for a 2D interacting, self-propelled particle system[END_REF][START_REF] D'orsogna | Self-propelled particles with soft-core interactions: patterns, stability and collapse[END_REF][START_REF] Mogilner | A non-local model for a swarm[END_REF][START_REF] Mogilner | Mutual interactions, potentials, and individual distance in a social aggregation[END_REF][START_REF] Topaz | Swarming patterns in a two-dimensional kinematic model for biological groups[END_REF][START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF]. However, most of them are phenomenological. [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] proposes one of the first rigorous derivations of a hydrodynamic version of the Vicsek model (see also [START_REF] Kulinskii | Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints[END_REF][START_REF] Ratushnaya | Collective behaviour of self propelling particles with kinematic constraints ; the relations between the discrete and the continuous description[END_REF][START_REF] Ratushnaya | Hydrodynamic model for the system of self propelling particles with conservative kinematic constraints; two dimensional stationary solutions[END_REF] for phenomenological derivations). It has been expanded in [START_REF] Degond | A Macroscopic Model for a System of Swarming Agents Using Curvature Control[END_REF] to account for a model of fish behavior where particles interact through curvature control, and in [START_REF] Degond | Diffusion in a continuum model of self-propelled particles with alignment interaction[END_REF] to include diffusive corrections. Other variants have also been investigated. For instance, [START_REF] Frouvelle | A continuous model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF] studies the influence of a vision angle and of the dependency of the alignment frequency upon the local density. [START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF][START_REF] Frouvelle | Dynamics, in a kinetic model of oriented particles with phase transition[END_REF] propose a modification of the model which results in phase transitions from disordered to ordered equilibria as the density increases and reaches a threshold, in a way similar to polymer models [START_REF] Doi | The theory of polymer dynamics[END_REF][START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF].

The organization of the paper is as follows. In section 2, we introduce the model of self-propelled particles and set up the associated kinetic equation. We then discuss various scalings which lead to the derivation of the studied hydrodynamic models. We introduce four dimensionless parameters in the problem: the scaled interaction mean-free path ε, the radius of the interaction region η, the noise intensity δ/ε and the relative strength between the attraction-repulsion and the alignment forces s. The scaling considered in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] ignores the attraction-repulsion force and supposes that ε = η → 0, δ = O(1). Here, we investigate four different scaling relations.

1. The weakly non-local interaction scaling without noise:

η = √ ε, δ = 0, s = η 2 .
The resulting model is a viscous hydrodynamic model with constrained velocity on the unit sphere. For this case, we assume that the solutions of the kinetic equation are monokinetic. We justify this assumption by studying the space homogeneous kinetic model and prove that the solutions converge on the fast ε time scale to the monokinetic distribution. We also highlight the variational structure of this space homogeneous kinetic model. Note that the scaling assumption η = √ ε is different from the one used in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. It corresponds to increasing the size of the interaction region in the microscopic variables by a factor 1/ √ ε, as ε → 0. Therefore, more and more non-local effects are picked up in the hydrodynamic limit. These non-local effects give rise to the viscosity terms in the macroscopic models which make an original addition from previous work.

2. The local interaction scaling with noise. This is the scaling proposed in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] which is recalled here just for the sake of comparisons. It consists in η ≪ ε, δ = 0(1), s ≤ η 2 . The resulting model is the inviscid hydrodynamic model with constrained velocity on the unit sphere.

However, we make the additional assumption that the zero-th order moment of the potential is zero, which expresses some kind of balance between the attraction and repulsion effects. This results in a model like in the previous scaling, but with the addition of a term analog to the capillary force, induced from the attractive part of the potential.

In section 3, we prove local well-posedness for all the models derived in section 2, except the last one (capillary force scaling). All the remaining systems have the same form of a symmetrizable hyperbolic system with additional viscosity. In section 3.1, we prove the local-in-time existence of solutions for the viscous system in 2D and in section 3.2, we show the same result for the inviscid system in 3D based on the energy method. Finally, a conclusion is drawn in section 4.

Derivation of hydrodynamic models 2.1 Individual-Based Model of self-alignment with attractionrepulsion

The starting point of this study is an Individual-Based Model of particles interacting through self-alignment [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] and attraction-repulsion [START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF][START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF]. Specifically, we consider N particles x k ∈ R d moving at a constant speed v k ∈ S d-1 . Each particle adjusts its velocity to align with its neighbors and to get closer or further away. The evolution of each particle is modeled by the following dynamics:

dx k dt = v k (2.1)
dv k = P v ⊥ k v k dt + √ 2d dB k t . (2.2) 
Here, P v ⊥ k is the projection matrix onto the normal plane to v k :

P v ⊥ = Id -v ⊗ v.
It ensures that v k stays of norm 1. B k t is a Brownian motion and d represents the noise intensity. Both the alignment and attraction-repulsion rules are encoded in the vector v k :

v k = j k + r k |j k + r k | ,
where j k counts for the alignment and r k for the attraction-repulsion:

j k = j K(|x j -x k |)v j , r k = j Φ ′ (|x j -x k |) x j -x k |x j -x k | . (2.3)
The kernel K is a positive function, Φ ′ can be both negative (repulsion) and positive (attraction). In figure 1, we give an example of functions K and Φ ′ modeling the popular "zone-based" model for fish behavior [START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF][START_REF] Couzin | Collective Memory and Spatial Sorting in Animal Groups[END_REF][START_REF] Parrish | Self-organized fish schools: an examination of emergent properties[END_REF]. When the number of particles becomes large (i.e. N → ∞), one can formally derive the equation satisfied by the particle distribution function f (x, v, t) (i.e. the probability distribution of the particles in phase-space (x, v)). Under suitable assumptions [START_REF] Bolley | Mean-field limit for the stochastic Vicsek model[END_REF][START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF][START_REF] Sznitman | Topics in propagation of chaos, École d'été de probabilités de Saint-Flour XIX-1989[END_REF], f satisfies:

f t + v • ∇ x f = -∇ v • [(P v ⊥ v f )f ] + d∆ v f, (2.4) 
where

v f = j f + r f |j f + r f | , j f = x ′ ,v ′ K(|x ′ -x|)v ′ f (x ′ , v ′ , t) dx ′ dv ′ , r f = -∇ x x ′ ,v ′ Φ(|x ′ -x|) f (x ′ , v ′ , t) dx ′ dv ′ .
The function Φ is the antiderivative of Φ ′ which vanishes at infinity (i.e. Φ(r) r→∞ -→ 0). Using the distribution f , we want to identify the asymptotic behavior of the model in different regimes. This is the purpose of the next section.

Scaling parameters

Introducing two dimensionless parameters ε and η, the starting point is the following scaled version of the previous kinetic model for the distribution function f (x, v, t):

f t + v • ∇ x f = - 1 ε ∇ v • (P v ⊥ v η f )f + d∆ v f, (2.5) 
where

v η f = j η f + η 2 r η f |j η f + η 2 r η f | , (2.6) 
j η f = (x ′ ,v ′ )∈R n ×S n-1 K |x ′ -x| η v ′ f (x ′ , v ′ , t) dx ′ dv ′ , (2.7 
)

r η f = -∇ x (x ′ ,v ′ )∈R n ×S n-1 Φ |x ′ -x| η f (x ′ , v ′ , t) dx ′ dv ′ . (2.8)
The first term (given by j η f ) expresses the alignment interaction (like in the Vicsek dynamics [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]) while the second term (given by r η f ) expresses the repulsion interaction (like in e.g. [START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF]). The expression of v η f means that the alignment term will prevail in the limit η → 0. In this paper, we will consider various possible assumptions concerning the relative speeds of convergence of ε and η to 0.

We denote:

ξ∈R n K(|ξ|) dξ = k 0 , 1 2n ξ∈R n K(|ξ|) |ξ| 2 dξ = k, ξ∈R n Φ(|ξ|) dξ = φ.
We can always assume that k 0 = 1. The potential Φ is said to be repulsive if φ ≥ 0. Defining the moments ρ f and ρ f u f of f by

ρ f = v ′ ∈S n-1 f (v ′ ) dv ′ , ρ f u f = v ′ ∈S n-1 f (v ′ ) v ′ dv ′ ,
we have the following Taylor expansion of v η f :

v η f = Ω f + η 2 1 ρ f |u f | ℓ f + o(η 2 ), Ω f = u f |u f | , ℓ f = P Ω ⊥ f (k∆(ρ f u f ) -φ∇ x ρ f ).
Inserting this expression into the kinetic equation (2.5), we get

f t + v • ∇ x f = - 1 ε ∇ v • [(P v ⊥ Ω f )f ] - η 2 ε 1 ρ f |u f | ∇ v • [(P v ⊥ ℓ f )f ] + d∆ v f + o( η 2 ε ).
(2.9)

We now consider three different scaling limits which lead to models for which we will prove local existence of classical solutions.

Weakly non-local interaction scaling without noise

In this scaling limit, we assume no noise d = 0 and the following ordering between the two parameters ε and η:

ε → 0, η → 0, η 2 ε → 1.
f ε satisfies (keeping only the O(1) terms in ε or larger):

f ε t + v • ∇ x f ε = - 1 ε ∇ v • [(P v ⊥ Ω f ε )f ε ] - 1 ρ f ε |u f ε | ∇ v • [(P v ⊥ ℓ f ε )f ε ] . (2.10)
For f ε to converge, we need to assume that the leading order term at the right-hand side of (2.10) vanishes, i.e. that f ε satisfies:

∇ v • [(P v ⊥ Ω f ε )f ε ] = 0, ∀ε > 0.
This is equivalent to assuming that f ε is a monokinetic distribution, i.e.

f ε (x, v, t) = ρ ε (x, t) δ(v, Ω ε (x, t)), (2.11) 
where δ(v, v) is the delta distribution on the sphere at the point v. The assumption of monokinetic distribution requires, in order to be consistent, that there is no noise, which is the reason for assuming d = 0.

Proposition 2.1 For monokinetic solutions (2.11), ρ and Ω are independent of ε and satisfy the following system:

∂ t ρ + ∇ x • (ρΩ) = 0, (2.12) ∂ t (ρΩ) + ∇ x • (ρΩ ⊗ Ω) + φP Ω ⊥ ∇ x ρ = kP u ⊥ ∆(ρu).
(2.13)

Proof. The result follows from multiplying (2.10) by 1 and v and using Green's formula.

Remark 2.1 The repulsive force contributes for a pressure term at the left-hand side of the momentum equation, which otherwise would not be strictly hyperbolic, and would fall in the class of Pressureless Gas Dynamics models [START_REF] Bouchut | On zero pressure gas dynamics[END_REF].

In order to justify the monokinetic assumption, we consider the spatial homogeneous equation:

f t = - 1 ε ∇ v • [(P v ⊥ Ω f )f ] , (2.14) 
and show that its solution relaxes to a monokinetic distribution (2.11) at the fast ε time scale. More precisely, we have Proposition 2.2 We assume that f | t=0 dv = 1 so that we have f (v, t) dv = 1 for all times. Therefore, u = v f (v) dv (we omit the index f when the context is clear). We also assume that u t=0 = 0, otherwise, the dynamics is not defined. Then,

f (t) → f (∞) where f (∞) is of the form f (∞) = δ(v, Ω).
Proof. We introduce the variance:

F (f ) = |v -u| 2 f (v) dv = (1 -(u • v)) f (v) dv.
We have

F (f ) = 1 -|u| 2 .
We note that |u| 2 is the classical order parameter [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. In Lemma 2.3 below, we prove that F (f ) satisfies the following dissipation equation:

F (f ) t + 2 ε |u| 2 -(v • u) 2 |u| f (v) dv = 0. (2.15) Since |u| 2 -(v • u) 2 ≥ 0, we have F (f ) t ≤ 0. Therefore, F (f ) is a decreasing function of time. Furthermore, if f is a distribution such that |u| 2 -(v • u) 2 |u| f (v) dv = 0,
then, either f = δ(v, Ω) or f is of the form:

f = αδ(v, Ω) + (1 -α)δ(v, -Ω),
where α ∈ [0, 1] and Ω ∈ S n-1 . The second form is called a dipole. So, unless f is a delta or a dipole, F (f ) is strictly decaying. Since a dipole is unstable, it is never reached in the course of the dynamics. Therefore, F (f ) → 0 as t → ∞. Since F (f ) = 0 is equivalent to f = δ(v, Ω), this shows that f → δ(v, Ω) as t → ∞ and the typical convergence time is ε.

Lemma 2.3 Any solution f of (2.14) satisfies (2.15).

Proof. We write

εF (f ) t = (1 -(u • v)) ∂ t f (v) dv -u t • v f (v) dv = (1 -(u • v)) ∂ t f (v) dv -v ∂ t f (v) dv • u = ∂ t ( f (v) dv) -2 (u • v) ∂ t f (v) dv = -2 (u • v) ∂ t f (v) dv.
In the last equality, we have used that f (v, t) dv = 1. Now, multiplying (2.14) by -2(u • v), integrating with respect to v and using Green's formula, we get:

εF (f ) t + 2 (u • P v ⊥ Ω) f (v) dv = 0. But u • P v ⊥ Ω = 1 |u| (|u| 2 -(u • v) 2 ),
which leads to the result.

F (f ) is a free energy for the problem (2.14) and provides a variational structure. First, let us denote by ν = ∇ f F the gradient of F with respect to f . It is defined by

∇ f F , g = δF δf (g)
where g is an increment of f , i.e. a function g(v) satisfying g(v) dv = 0 (so that f + g satisfies the admissibility condition (f + g) dv = 1).

Proposition 2.4 Eq. (2.14) can be recast as

f t - 1 ε|u| ∇ v • {[∇ v (∇ f F )]f } = 0, (2.16) 
which shows that the flow of (2.14) has a gradient flow structure in the Wasserstein metrics [START_REF] Villani | Topics in optimal transportation[END_REF]. We have:

F (f ) t + 1 ε|u| |∇ v (∇ f F )| 2 f dv = 0.
(2.17)

Remark 2.2 Eq. (2.17) provides another proof of the decay of F (f ) with time.

Proof. We compute:

δF δf (g) = -2u • g(v) v dv = -2(u • v), g , which yields ν = ∇ f F = -2u • v.
A simple computation shows that

∇ v ν = -P v ⊥ u = -|u|P v ⊥ Ω.
Therefore, eq. (2.14) can be written as (2.16). Now, multiplying by ∇ f F , integrating over v and using Green's formula, we get (2.17), which ends the proof.

Local interaction scaling with noise

In this scaling we assume that d = O( 1 ε ). More precisely, we let:

d = δ ε ,
with δ a given constant. We also assume that ε and η are such that:

ε → 0, η → 0, η 2 ε → 0.
With this last assumption, the O( η 2 ε ) term in (2.9), which results from the non-locality of the average alignment direction, vanishes. Therefore, this scaling keeps only the local contribution of the alignment interaction. The resulting asymptotic problem, keeping only terms of order O(1) or larger, is written:

f ε t + v • ∇ x f ε = - 1 ε {∇ v • [(P v ⊥ Ωε)f ε ] + δ∆ v f ε } . (2.18)
The limit of (2.18) as ε → 0 has been studied in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] in dimension 3 and in [START_REF] Frouvelle | A continuous model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF] in any dimensions. The result is stated in the following theorem.

Theorem 2.5 We have f ε → ρM Ω where M Ω (v) is the Von Mises-Fischer distribution:

M Ω (v) = exp(β(v • Ω)) dv v∈S n-1 exp(β(v • Ω)) dv , β = 1 δ , (2.19) 
and ρ and Ω satisfy the following system:

∂ t ρ + c 1 ∇ x • (ρΩ) = 0, (2.20) ρ(∂ t Ω + c 2 Ω • ∇ x Ω) + δP Ω ⊥ ∇ x ρ = 0.
(2.21)

The constants c 1 and c 2 are defined by

c 1 = v∈S n-1 M Ω (v) (v • Ω) dv, c 2 = v∈S n-1 M Ω (v) h(v • Ω) (1 -(v • Ω) 2 ) (v • Ω) dv v∈S n-1 M Ω (v) h(v • Ω) (1 -(v • Ω) 2 ) dv ,
where h(v • Ω) is the Generalized Collision Invariants (GCI) [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] and is defined as follows in the n-dimensional case [START_REF] Frouvelle | A continuous model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF]. Set

ψ a (v) = h(Ω • v) (a • v)
where a ∈ R n is any vector such that a • Ω = 0. Then, ψ a is the unique solution in the Sobolev space H 1 (S n-1 ) with zero mean, of the following elliptic problem:

-∆ v ψ -β(Ω • ∇ v )ψ = a • v.
Proof. We refer to [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] in the three dimensional case and [START_REF] Frouvelle | A continuous model for alignment of self-propelled particles with anisotropy and density-dependent parameters[END_REF] in the general n-dimensional case.

Weakly non-local interaction scaling with noise

In this section, we propose a scaling which unifies the two previous ones. In this scaling we assume that d = δ ε , with δ is a given O(1) constant and that:

ε → 0, η → 0, η 2 ε → 1.
Here η 2 ε → 1 instead of 0 like in the previous section. Inserting these assumptions into (2.9), and keeping terms of order O(1) or larger, we get

f ε t + v • ∇ x f ε + 1 ρ f ε |u f ε | ∇ v • [(P v ⊥ ℓ f ε )f ε ] = - 1 ε {∇ v • [(P v ⊥ Ω f ε )f ε ] + δ∆ v f ε } . (2.22)
The limit ε → 0 is investigated in the following theorem:

Theorem 2.6 We have f ε → ρM Ω where M Ω (v) is the Von Mises-Fischer distribution (2.19
). ρ and Ω satisfy the following system:

∂ t ρ + c 1 ∇ x • (ρΩ) = 0, (2.23) ρ(∂ t Ω + c 2 Ω • ∇ x Ω) + (δ + c 3 φ)P Ω ⊥ ∇ x ρ = c 3 kc 1 P Ω ⊥ ∆(ρΩ), (2.24) 
where the constants c 1 and c 2 are defined as in Theorem 2.5 and

c 3 = (n -1)δ + c 2 c 1 .
(2.25)

Remark 2.3 We notice that c k → 1 as δ → 0 for k = 1, 2, 3 and we recover the noiseless system (2.12), (2.13) when δ → 0.

Proof. We write (2.22) as

(T 1 + T 2 )f ε = 1 ε Q(f ε ),
where T 1 + T 2 and Q are respectively the operators appearing at the left and right hand sides of (2.22).

T 1 = ∂ t + v • ∇
x and T 2 is the remaining part of the left-hand side.

Integrating over v and letting f ε → ρM Ω leads to the mass conservation equation (2.20) unchanged, since T 2 is in divergence form and vanishes through integration with respect to v. Now, to get the momentum equation, we proceed like in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. From the Generalized Collision Invariant property [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], it follows that

P Ω ⊥ v∈S n-1 T (ρM Ω ) h v dv = 0.
Now, the term

P 1 := P Ω ⊥ v∈S n-1 T 1 (ρM Ω ) h v dv,
gives rise to the same expression as in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. This expression is

P 1 = βαρ∂ t Ω + γΩ • ∇ x Ω + αP Ω ⊥ ∇ x ρ, with α = 1 n -1 v∈S n-1 M Ω (v) h (1 -(v • Ω) 2 ) dv, γ = 1 (n -1)δ v∈S n-1 M Ω (v) h (1 -(v • Ω) 2 ) (v • Ω) dv.
Dividing by αβ, we find the coefficients c 2 and δ of (2.21) (we recall that βδ = 1). We introduce the notation

ℓ := ℓ ρM Ω = P Ω ⊥ (kc 1 ∆(ρΩ) -φ∇ x ρ),
and consider

P 2 := P Ω ⊥ v∈S n-1 T 2 (ρM Ω ) h v dv = 1 c 1 P Ω ⊥ v∈S n-1 ∇ v • [(P v ⊥ ℓ)M Ω ] h v dv.
Using Green's formula, we get

P 2 = - 1 c 1 P Ω ⊥ v∈S n-1 [P v ⊥ ℓ] • ∇ v (h v) M Ω dv.
We note that (P v ⊥ ℓ) • ∇ v φ = ℓ • ∇ v φ, with φ being any component of h v. We deduce that

P 2 = - 1 c 1 P Ω ⊥ v∈S n-1 (ℓ • ∇ v )(h v) M Ω dv = - 1 c 1 P Ω ⊥ v∈S n-1 ∇ v (h v) M Ω dv T ℓ. (2.26)
Now, we use the formulas:

S n-1 ∇ v g dv = (n -1) S 2
vg dv

S n-1 (∇ v g)h dv = (n -1) S 2 vgh dv - S 2 (∇ v h)g dv
for any pair of scalar functions g, h on S n-1 . We recall that ∇ v M Ω = βP v ⊥ ΩM Ω . Since ℓ • Ω = 0, we compute the matrix

D := v∈S n-1 ∇ v (h v) M Ω dv T P Ω ⊥ = (n -1) v∈S n-1 (v ⊗ v)h M Ω dv P Ω ⊥ -β v∈S n-1 (v ⊗ P v ⊥ Ω)h M Ω dv P Ω ⊥ := (n -1)D 1 -D 2 .
We decompose

v = v ⊥ + v , v ⊥ = P Ω ⊥ v, v = (v • Ω)Ω.
Using this decomposition and the fact that integrals of odd degree polynomials of v ⊥ over S n-1 vanish, we have:

D 1 = v∈S n-1 (v ⊥ ⊗ v ⊥ )h M Ω dv P Ω ⊥ = αP Ω ⊥ ,
and

D 2 = β v∈S n-1 ((v + v ⊥ ) ⊗ (Ω -(Ω • v))(v + v ⊥ ))h M Ω dv P Ω ⊥ .
Owing to the fact that any term of the form (A ⊗ v )P Ω ⊥ = 0 for any vector A, we have since v is parallel to Ω:

D 2 = -β v∈S n-1 (v ⊥ ⊗ v ⊥ )(Ω • v) h M Ω dv P Ω ⊥ = -γP Ω ⊥ .
Inserting these results into (2.26), we get

P 2 = - (n -1)α + γ c 1 ℓ.
Collecting all the results and dividing by αβ, we are led to the momentum equation (2.24), which ends the proof.

Attraction-repulsion potential: induced capillary force

In this section, we investigate the case where the attraction-repulsion force term is of the same order as the alignment term in the expression of the alignment direction v η f , i.e. we assume that

v η f = j η f + r η f |j η f + r η f | , (2.27) 
|ξ| ξ * ξ 0 Φ(|ξ|)
Figure 2: The attraction-repulsion potential Φ where j η f and r η f are respectively given by (2.7) and (2.8). Note that, by contrast to (2.6), there is no η 2 in front of r η f in (2.27). The Taylor expansion of v η f is now given by

v η f = Ωf + η 2 1 ρ f |u f | ℓ f + o(η 2 ), Ωf = u f -φ∇ x ρ f |u f -φ∇ x ρ f | , ℓ f = P Ω⊥ f (k∆(ρ f u f ) -φ 2 ∇ x ∆ρ f ),
where

1 2n x ′ ∈R n Φ(|ξ|) |ξ| 2 dξ = φ 2 .
Here, we suppose like in [START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF], that the potential is repulsive at short scales and attractive at large scales (See Fig. 2). Therefore, Φ(|ξ|) is supposed to decrease for |ξ| ∈ [0, ξ * ] and to increase for |ξ| ∈ [ξ * , +∞). Furthermore, since Φ(|ξ|) is supposed integrable on R n , we have Φ(|ξ|) → 0 as |ξ| → ∞. It results that Φ(ξ * ) < 0 and that Φ ≥ 0 for |ξ| ∈ [0, ξ 0 ] and Φ ≤ 0 for |ξ| ∈ [ξ 0 , +∞) where ξ 0 < ξ * . We make the additional assumption that the zero-th order moment vanishes: φ = 0, which expresses the balance between the attractive and repulsive parts of Φ. Given the above assumptions, the second moment is negative:

φ 2 < 0.
With these assumptions, the Taylor expansion of v η f simplifies and becomes:

v η f = Ω f + η 2 1 ρ f |u f | ℓ f + o(η 2 ), Ω f = u f |u f | , ℓ f = P Ω ⊥ f (k∆(ρ f u f ) -φ 2 ∇ x ∆ρ f ). (2.28) 
Now, we can develop the same theory as before, assuming that

ε → 0, η → 0, η 2 ε → 1.
Inserting these assumptions into (2.9), and keeping terms of order O(1) or larger, we get (2.22) but with ℓ given by (2.28). The limit ε → 0 can be performed like in section 2.5 and we obtain the following theorem:

Theorem 2.7 We have f ε → ρM Ω where M Ω (v) is the Von Mises-Fischer distribution (2.19
). ρ and Ω satisfy the following system:

∂ t ρ + c 1 ∇ x • (ρΩ) = 0, (2.29) ρ(∂ t Ω + c 2 Ω • ∇ x Ω) + δP Ω ⊥ ∇ x ρ = c 3 kc 1 P Ω ⊥ ∆(ρΩ) + c 3 |φ 2 |P Ω ⊥ ∇ x ∆ρ, (2.30) 
where the constants c 1 and c 2 are defined as in Theorem 2.5 and c 3 as in Theorem 2.6.

Remark 2.4

The last term at the right-hand side of (2.30) has the same expression as the capillary force in fluid dynamics, except for the projection operator P Ω ⊥ . This capillary force is induced from the attractive part of the potential Φ.

3 Existence theory

Existence in 2D with viscosity

This section is concerned with a local existence result in 2D for a system of the general form

∂ t ρ + ∇ x • (ρΩ) = 0, (3.1) ρ(∂ t Ω + cΩ • ∇ x Ω) + P Ω ⊥ ∇ x (p(ρ)) = µP Ω ⊥ ∆(ρΩ), (3.2) 
where the constants c ∈ R and µ ≥ 0 are given and the pressure relation p(ρ) satisfies p ′ (ρ) > 0. All systems derived in the previous section can by recast in this form, with a particular choice of c, µ and p(ρ), after time rescaling, except for the last one (section 2.6) involving the capillary force. The system is supplemented with initial data ρ 0 > 0 and Ω 0 such that |Ω 0 | = 1. We assume that the domain is the square box Π 2 = [0, 1] 2 with periodic boundary conditions.

Theorem 3.1 We assume that the initial data belong to H m (Π 2 ) with m > 2. Then, there exists a time T > 0 and a unique solution

(ρ, ϕ) in L ∞ ([0, T ], H m (Π 2 )) ∩ H 1 ([0, T ], H m-1 (Π 2 )
) such that ρ remains positive. If, in addition, µ > 0, then, the solution also belongs to L 2 ([0, T ], H m+1 (Π 2 )).

Proof. In 2D, we can set Ω = (cos ϕ, sin ϕ). We recall that

∂ t Ω = Ω ⊥ ∂ t ϕ, ∇ x • Ω = (Ω ⊥ • ∇ x )ϕ, P Ω ⊥ = Ω ⊥ ⊗ Ω ⊥ ,
with Ω ⊥ = (-sin ϕ, cos ϕ). Then, we have

∆(ρΩ) = ∆ρ Ω + 2Ω ⊥ (∇ x ρ • ∇ x ϕ) -2ρΩ |∇ x ϕ| 2 + ρΩ ⊥ ∆ϕ, Ω ⊥ • ∆(ρΩ) = ρ∆ϕ + 2 (∇ x ρ • ∇ x ϕ).
Therefore, system (3.1), (3.2) is written:

(∂ t + Ω • ∇ x )ρ + ρ (Ω ⊥ • ∇ x )ϕ = 0, (3.3) 
(∂ t + cΩ • ∇ x )ϕ + p ′ (ρ) ρ (Ω ⊥ • ∇ x )ρ = µ ∆ϕ + 2 ∇ x ρ • ∇ x ϕ ρ . (3.4) 
Introduce ρ = a(ρ) and λ(ρ) such that

a ′ (ρ) = p ′ (ρ) ρ , λ(ρ) = a ′ (ρ)ρ, h(ρ) = 2 lnρ. (3.5) 
Then, system (3.3), (3.4) becomes:

(∂ t + Ω • ∇ x )ρ + λ(ρ) (Ω ⊥ • ∇ x )ϕ = 0, (3.6) (∂ t + cΩ • ∇ x )ϕ + λ(ρ) (Ω ⊥ • ∇ x )ρ = µ (∆ϕ + ∇ x h(ρ) • ∇ x ϕ) .
(3.7)

From (3.6), we have the following a priori estimate (maximum principle):

ρ min exp(- t 0 ∇ x ϕ(•, s) L ∞ (Π 2 ) ds) ≤ ρ ≤ ρ max exp( t 0 ∇ x ϕ(•, s) L ∞ (Π 2 ) ds), (3.8) 
where ρ min = min x∈Π 2 ρ 0 (x), ρ max = max x∈Π 2 ρ 0 (x). We remind the following lemmas [START_REF] Taylor | Partial Differential Equations III[END_REF]:

Lemma 3.2 For any pair of functions f , g in H m (R n ) ∩ L ∞ (R n ), we have: f g H m ≤ C ( f H m g L ∞ + f L ∞ g H m ) . If additionally, we suppose that ∇f ∈ L ∞ (R n ), we have, for any α ∈ N n , with |α| = n i=1 α i = m : D α (f g) -f D α g H m ≤ C ( f H m g L ∞ + ∇ x f L ∞ g H m-1 ) , where D α = ∂ x α 1 1 ...x αn n .
Now, with |α| ≤ m, we take the D α derivative of (3.6) and multiply it by D α ρ and integrate it with respect to x. Similarly, we take the D α derivative of (3.7) and multiply it by D α ϕ and integrate it with respect to x. We sum up the resulting identities. Using the notation f, g = Π 2

f g dx, we find:

0 = D α ρ, D α ρt + D α ϕ, D α ϕ t + D α ρ, D α ((Ω • ∇ x )ρ) + c D α ϕ, D α ((Ω • ∇ x )ϕ) + D α ρ, D α (λ(ρ) (Ω ⊥ • ∇ x )ϕ) + D α ϕ, D α (λ(ρ) (Ω ⊥ • ∇ x )ρ) -µ D α ϕ, D α ∆ϕ -µ D α ϕ, D α (∇ x h(ρ) • ∇ x ϕ) = I 1 + . . . + I 5
Then:

I 1 = 1 2 d dt ( D α ρ 2 + D α ϕ 2 ),
and

I 4 = µ D α ∇ϕ 2 ,
where • just indicates an L 2 norm. Now, for the remaining terms, we have the following lemma Lemma 3.3 We have:

|I k | ≤ C( ρ W 1,∞ + ϕ W 1,∞ ) ( ρ 2 H m + ϕ 2 H m ), k = 2, 3, |I 5 | ≤ µ 2 ∇D α ϕ 2 + C( ρ 2 W 1,∞ + ϕ 2 W 1,∞ ) ( ρ 2 H m + ϕ 2 H m ),
where C denote generic constants depending on the parameters of the problem.

The proof of the lemma is postponed at the end. Adding all these terms together for all possible indices α such that |α| ≤ m, we have,

1 2 d dt ( ρ 2 H m + ϕ 2 H m ) + µ ∇ϕ 2 H m ≤ µ 2 ∇ϕ 2 H m + +C( ρ 2 W 1,∞ + ϕ 2 W 1,∞ + 1) ( ρ 2 H m + ϕ 2 H m ). For m ≥ n 2 + 1, we have ρ W 1,∞ + ϕ W 1,∞ ≤ C( ρ H m + ϕ H m ),
and get 1 2

d dt ( ρ 2 H m + ϕ 2 H m ) + µ 2 ∇ϕ 2 H m ≤ C ( ρ 2 H m + ϕ 2 H m + 1) 2 .
Gronwall's inequality leads to the local existence of a solution (ρ, ϕ) in L ∞ ([0, T ], H m (Π 2 )) which, if µ > 0, also belongs to L 2 ([0, T ], H m+1 (Π 2 )) and which satisfies the a priori bound (3.8). To get time regularity, we directly use eqs. (3.6), (3.7), take the H m-1 norm, apply Lemma 3.2, and find

ρt H m-1 + ϕ t H m-1 ≤ C ϕ H m+1 + C( ρ W 1,∞ + ϕ W 1,∞ ) ( ρ H m + ϕ H m ).
Using the previous estimates, we deduce that (ρ, ϕ) also belongs to

H 1 ([0, T ], H m-1 (Π 2 )).
The estimates on ρ immediately transfer to ρ since a(ρ) is smooth and invertible for ρ > 0.

Proof of Lemma 3.3. Estimate of I 5 : Using Green's formula and Cauchy-Schwartz inequality, we have:

|I 5 | ≤ µ ∇D α ϕ ∇ x h(ρ) • ∇ x ϕ H m-1 ≤ C ∇D α ϕ ( ρ H m ∇ϕ L ∞ + ∇ρ L ∞ ϕ H m ) ≤ µ 2 ∇D α ϕ 2 + C ( ρ H m ∇ϕ L ∞ + ∇ρ L ∞ ϕ H m ) 2 ≤ µ 2 ∇D α ϕ 2 + C( ρ 2 W 1,∞ + ϕ 2 W 1,∞ ) ( ρ 2 H m + ϕ 2 H m ).
The second inequality uses Lemma 3.2 and the third one uses Young's inequality.

Estimate of I 3 : We write

I 3 = D α ρ, λ(ρ) (Ω ⊥ • ∇ x )D α ϕ + D α ϕ, (λ(ρ) (Ω ⊥ • ∇ x )D α ρ) + D α ρ, D α (λ(ρ) (Ω ⊥ • ∇ x )ϕ) -λ(ρ) (Ω ⊥ • ∇ x )D α ϕ + D α ϕ, D α (λ(ρ) (Ω ⊥ • ∇ x )ρ) -λ(ρ) (Ω ⊥ • ∇ x )D α ρ = J 1 + J 2 + J 3 .
Using Green's formula, we find

|J 1 | = | ∇ • (λ(ρ) Ω ⊥ ) D α ρ, D α ϕ | ≤ C( ρ W 1,∞ + ϕ W 1,∞ ) ( ρ 2 H m + ϕ 2 H m ).
Now, using Cauchy-Schwartz inequality and applying Lemma 3.2, we find that J 2 and J 3 satisfy the same inequality.

Estimate of I 2 : The proof is similar as for I 3 and is omitted. If sin θ > 0, then this system is a symmetrizable hyperbolic system. We can apply proposition 2.1 p. 425 of [START_REF] Taylor | Partial Differential Equations III[END_REF] and the following theorem follows immediately: Theorem 3. [START_REF] Bouchut | On zero pressure gas dynamics[END_REF] We assume that the initial data (ρ 0 , θ 0 , ϕ 0 ) belong to H m (Π 3 ) with m > 5/2 with ρ 0 > 0, sin θ 0 > 0. Then, there exists a time T > 0 and a unique solution (ρ, θ, ϕ) in L ∞ ([0, T ], H m (Π 3 )) ∩ H 1 ([0, T ], H m-1 (Π 3 )) such that ρ remains positive.

Conclusion

In this paper, we have derived hydrodynamic systems from kinetic models of self-propelled particles with alignment interaction and attraction-repulsion force. We have particularly focused on the inclusion of diffusion terms under the assumption of weakly non-local interactions. Then, we have proved the local-in-time existence of solutions for the viscous system in 2D and a similar result for the inviscid system in 3D. The methods rely on a suitable symmetrization and on the energy method. Future works in this direction will consist in continuing the exploration of the mathematical structure of the system and particularly, trying to prove local existence of the viscous system in 3D and the treatment of the geometric singularity near sin θ = 0. Another direction of work will consist of the numerical quantification of the viscosity as a consequence of the non-locality of the interaction.
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 1 Figure 1: An example of functions K and Φ ′ modeling the "zone-based" model: repulsionalignment-attraction.
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  Cartesian coordinates x = (x, y, z), where A k (U), k = 0, . . . , 4 are all symmetric matrices and

The weakly non-local interaction scaling with noise. This scaling unifies the two previous scalings. It consists in η = √ ε, δ = 0(1), s = η 2 . Again, the resulting model is a viscous hydrodynamic model with constrained velocity on the unit sphere, but with modified coefficients as compared to the first scaling. We note however, that in the zero noise limit δ → 0, we recover the system obtained with the first scaling, which provides another justification of the monokinetic assumption in the derivation of the model.

Capillary force scaling. This corresponds to η = √ ε, δ = 0(1), s = 1. Therefore, here, the attraction repulsion force is of the same order as the alignment force.
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Existence in 3D without viscosity

In this section, we investigate the local existence for the inviscid problem in 3 dimensions:

where the parameters and data have the same meaning as in section 3.1. We consider the system in the domain Π 3 = [0, 1] 3 with periodic boundary conditions. For this purpose, we use the spherical coordinates associated to a fixed Cartesian basis. In this basis, denoting by θ ∈ [0, π] the latitude and ϕ ∈ [0, 2π] the longitude, we have Ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ) T , and we let Ω θ and Ω ϕ be the derivatives of Ω with respect to θ and ϕ. We note that

We will use the formulas

where a is an arbitrary vector. Introduce ρ and λ(ρ) as in (3.5). Then, system (3.9), (3.10) becomes:

this system is written