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Stochastic orderings with respect to a capacity and anapplication to a �nancial optimization problemMiryana GrigorovaLPMA, Université Paris 7First version: July 4, 2010Present version: April 30, 2011
AbstractIn an analogous way to the classical case of a probability measure, we extend the notionof an increasing convex (concave) stochastic dominance relation to the case of a normalisedmonotone (but not necessarily additive) set function also called a capacity. We give dif-ferent characterizations of this relation establishing a link to the notions of distributionfunction and quantile function with respect to the given capacity. The Choquet integralis extensively used as a tool. We state a new version of the classical upper (resp. lower)Hardy-Littlewood's inequality generalized to the case of a continuous from below concave(resp. convex) capacity. We apply our results to a �nancial optimization problem whoseconstraints are expressed by means of the increasing convex stochastic dominance relationwith respect to a capacity.Keywords: stochastic orderings, increasing convex stochastic dominance, Choquet integral,quantile function with respect to a capacity, stop-loss ordering, Choquet expected utility,distorted capacity, generalized Hardy-Littlewood's inequalities, distortion risk measure, am-biguityThe author is deeply grateful to Marie-Claire Quenez as well as to two anonymous referees and an associateeditor for their helpful suggestions and remarks.
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1 INTRODUCTION 21 IntroductionCapacities and integration with respect to capacities were introduced by Choquet and were af-terwards applied in di�erent areas such as economics and �nance among many others (cf. forinstance Wang and Yan 2007 for an overview of applications). In economics and �nance, ca-pacities and Choquet integrals have been used, in particular, to build alternative theories to the"classical" setting of expected utility maximization of Von Neumann and Morgenstern. Indeed,the classical expected utility paradigm has been challenged by various empirical experiments and"paradoxes" (such as Allais's and Ellsberg's) thus leading to the development of new theories.One of the proposed new paradigms is the Choquet expected utility (abridged as CEU) whereagent's preferences are represented by a capacity µ and a non-decreasing real-valued function u.The agent's "satisfaction" with a claim X is therefore assessed by the Choquet integral of u(X)with respect to the capacity µ. Choquet expected utility intervenes in situations where an ob-jective probability measure is not given and where the agents are not able to derive a subjectiveprobability over the set of di�erent scenarios.On the other hand, stochastic orders have also been extensively used in the decision theory.They represent partial order relations on the space of random variables on some probabilityspace (Ω,F ,P) (more precisely, stochastic orders are partial order relations on the set of thecorresponding distribution functions). Di�erent kinds of orders have been studied and applied(see for instance Müller and Stoyan 2002 and Shaked and Shanthikumar 2006 for a general pre-sentation) and links to the expected utility theory have been exploited. Hereafter, we will call"classical" the results on risk orders in the case of random variables on a probability space. Inthe classical setting of random variables on a probability space, there are two approaches to riskorderings - economic ordering based on classes of utility functions and statistical ordering whichis based on tail distributions (cf. the explanations in Wang and Young 1998). In the "classical"case of a probability space they lead to the same ordering of risks. For the purpose of this paperwe will focus on the increasing convex ordering (or increasing convex stochastic dominance rela-tion). The economic approach to the classical increasing convex stochastic dominance amountsto the following de�nition - X is said to be dominated by Y in the increasing convex stochasticdominance relation (denoted X ≤icx Y ) if E(u(X)) ≤ E(u(Y )) for all u : R → R non-decreasingand convex provided the expectations (taken in the Lebesgue sense) exist in R. The economic



1 INTRODUCTION 3interpretation is then the following: X is dominated by Y in the increasing convex stochasticdominance if Y is preferred to X by all decision makers who prefer more wealth to less and whoare risk-seeking. The statistical approach provides an equivalent characterization: X ≤icx Y ifand only if ∫ +∞

x
P(X > u)du ≤

∫ +∞

x
P(Y > u)du, ∀x ∈ R, provided the integrals exist in R.Moreover, we have another characterization which establishes a link between the icx orderingrelation and stop-loss premia in reinsurance (cf. Dhaene et al. 2006): X ≤icx Y if and only if

E((X − b)+) ≤ E((Y − b)+), ∀b ∈ R, provided the expectations exist in R.The �rst aim of this paper is to generalize the notion of increasing convex stochastic dominanceto the case where the measurable space (Ω,F) is endowed with a given capacity µ which is notnecessarily a probability measure and to investigate generalizations of the previously mentionedresults to this setting. Of course, in our case "ordinary" expectations (in the Lebesgue sense)have to be replaced by Choquet expectations. We obtain that analogous kinds of characteri-zations as the previously mentioned in the case of a probability measure remain valid in ourmore general setting if we assume that the capacity µ has certain continuity properties (namelycontinuity from below and continuity from above). Nevertheless, let us remark that in all proofsbut one the assumption of continuity from below and from above is not needed.The second aim of this paper is to give an application of the results we obtain to a �nancialproblem inspired by Dana (2005) (see also Dana and Meilijson 2003 and the references therein).The authors study the following problem:(D̃) Minimize E(ZC)under the constraints: C ∈ L∞(Ω,F ,P) such that X ≤icv Cwhere the abbreviation icv stands for the increasing concave ordering relation (with respect tothe probability measure P), the symbol E denotes Lebesgue expectation (with respect to theprobability measure P) and where Z and X are given (see below for more details). Let usjust recall that the increasing concave stochastic dominance relation is de�ned similarly to theincreasing convex stochastic dominance, the class of non-decreasing convex real-valued functionsin the de�nition being replaced by the class of non-decreasing concave real-valued functions. Theauthors interpret the value function of the above problem (D̃) as being the minimal expenditureto get a contingent claim among those which dominate the contingent claim X in the increasingconcave ordering. The value function of the problem is linked to the notion of risk measureas well. By analogy with this problem we are interested in the following optimization problem



1 INTRODUCTION 4where we are given a (continuous from below concave) capacity µ and a non-negative numéraire
Z:(D) Maximize

C∈A(X)
Eµ(ZC),the symbol Eµ denoting the Choquet integral with respect to µ and A(X) standing for the setof all non-negative, bounded contingent claims C which precede a given non-negative boundedcontingent claim X in the increasing convex ordering with respect to the capacity µ (cf. hereafterfor a precise formulation of the problem). We can interpret the functional C 7→ Eµ(ZC) as apricing functional, the measurable function Z being interpreted as a discount factor; in fact,the idea of using Choquet integrals as non-linear pricing functionals in insurance and �nance isnot new (cf. for instance the overview in Wang and Yan 2007 and the references therein). Thefunctional Eµ(.) can be seen as a risk measure as well (see below for more details); non-linearpricing functionals and risk measures have already been connected in the work of Bion-Nadal(2009) and Klöppel and Schweizer (2007).We also give an interpretation of the value function of our problem in terms of a class of riskmeasures which we call "generalized" distortion risk measures (as well as in terms of premiumprinciples in insurance). In order to solve problem (D), we state a new version of the classicalHardy-Littlewood's upper (resp. lower) inequality generalized to the case of a continuous frombelow concave (resp. convex) capacity. Then, using this result, we compute the value functionof problem (D).The rest of this paper is organized as follows. In section 2 we �x the terminology and the notationby giving some well-known de�nitions about capacities and Choquet integrals; in particular, thenotions of comonotonic measurable functions and quantile function with respect to a capacity arerecalled. In section 3 we de�ne the notion of increasing convex (concave) stochastic dominancewith respect to a capacity and explore di�erent characterizations analogous to those existingin the classical case of a probability measure. In section 4 we state the "generalized" Hardy-Littlewood's inequalities. In section 5 we formulate and solve our optimization problem (D);in two subsections we provide an interpretation of the value function in terms of risk measuresin �nance and premium principles in insurance. Finally, in section 6 we present directions forour ongoing and future research concerning some related problems. The Appendix containsthree parts: some well-known results about Choquet integration which are used in the paper



2 NOTATION AND DEFINITIONS 5are recalled in Appendix A; Appendix B is devoted to the proofs of a lemma and a propositionfrom section 3; the proof of the "generalized" Hardy-Littlewood's inequalities is presented inAppendix C.2 Notation and de�nitionsThe de�nitions and results of this section can be found in the book by Föllmer and Schied (2004)(cf. section 4.7 of this reference) and/or in the one by Denneberg (1994).Let (Ω,F) be a measurable space. We denote by χ the space of measurable, real-valued andbounded functions on (Ω,F).De�nition 2.1 Let (Ω,F) be a measurable space. A set function µ : F −→ [0, 1] is calleda capacity if it satis�es µ(∅) = 0, µ(Ω) = 1 (normalisation) and the following monotonicityproperty: A,B ∈ F , A ⊂ B ⇒ µ(A) ≤ µ(B).We recall the de�nition of the Choquet integral with respect to a capacity µ (cf. Denneberg1994).De�nition 2.2 For a measurable real-valued function X on (Ω,F), the Choquet integral withrespect to a capacity µ is de�ned as follows
Eµ(X) :=

∫ +∞

0

µ(X > x)dx+

∫ 0

−∞

(µ(X > x) − 1)dx.Note that the Choquet integral in the preceding de�nition may not exist (namely if one of thetwo (Riemann) integrals on the right side is equal to +∞ and the other to −∞), may be in R ormay be equal to +∞ or −∞. The Choquet integral always exists if the function X is boundedfrom below or from above. The Choquet integral exists and is �nite if X is in χ.Thus we come to the notion of the (non-decreasing) distribution function of X with respect to acapacity µ.De�nition 2.3 Let X be a measurable function de�ned on (Ω,F). We call a distribution func-tion of X with respect to µ the non-decreasing function GX de�ned by
GX(x) := 1 − µ(X > x), ∀x ∈ R.



2 NOTATION AND DEFINITIONS 6The non-decreasingness of GX in de�nition 2.3 is due to the monotonicity of µ.In the case where µ is a probability measure, the distribution function GX coincides with theusual distribution function FX of X de�ned by FX(x) := µ(X ≤ x), ∀x ∈ R.Let us now de�ne the generalized inverse of the function GX .De�nition 2.4 For a measurable real-valued function X de�ned on (Ω,F) and for a capacity
µ, let GX denote the distribution function of X with respect to µ. We call a quantile function of
X with respect to µ every function rX : (0, 1) −→ R̄ verifying

sup{x ∈ R | GX(x) < t} ≤ rX(t) ≤ sup{x ∈ R | GX(x) ≤ t}, ∀t ∈ (0, 1),where the convention sup{∅} = −∞ is used.The functions rlX and ruX de�ned by
rlX(t) := sup{x ∈ R | GX(x) < t}, ∀t ∈ (0, 1) and ruX(t) := sup{x ∈ R | GX(x) ≤ t}, ∀t ∈ (0, 1)are called the lower and upper quantile functions of X with respect to µ.For notational convenience, we omit the dependence on µ in the notation GX and rX when thereis no ambiguity.Remark 2.1 Let µ be a capacity and let X be a measurable real-valued function such that(2.1) lim

x→−∞
GX(x) = 0 and lim

x→+∞
GX(x) = 1.We denote by GX(x−) and GX(x+) the left-hand and right-hand limits of GX at x. A function

rX is a quantile function of X (with respect to µ) if and only if
(GX(rX(t)−) ≤ t ≤ GX(rX(t)+), ∀t ∈ (0, 1).In this case rX is real-valued. Note that the condition (2.1) is satis�ed if X ∈ χ and µ is arbitrary.The condition (2.1) is satis�ed for an arbitrary X if µ is continuous from below and from above(see de�nition 2.5).We recall some well-known de�nitions about capacities which will be needed later on.De�nition 2.5 A capacity µ is called convex (or equivalently, supermodular) if

A,B ∈ F ⇒ µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B).



2 NOTATION AND DEFINITIONS 7A capacity µ is called concave (or submodular, or 2-alternating) if
A,B ∈ F ⇒ µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B).A capacity µ is called continuous from below if

(An) ⊂ F such that An ⊂ An+1, ∀n ∈ N ⇒ lim
n→∞

µ(An) = µ(∪∞
n=1An).A capacity µ is called continuous from above if

(An) ⊂ F such that An ⊃ An+1, ∀n ∈ N ⇒ lim
n→∞

µ(An) = µ(∩∞
n=1An).We recall the notion of comonotonic functions (cf. Föllmer and Schied 2004).De�nition 2.6 Two measurable functions X and Y on (Ω,F) are called comonotonic if

(X(ω) −X(ω′))(Y (ω) − Y (ω′)) ≥ 0, ∀(ω, ω′) ∈ Ω × Ω.For reader's convenience and in order to �x the terminology, we summarize some of the mainproperties of Choquet integrals in the following propositions (cf. proposition 5.1 in Denneberg1994) and we make the convention that the properties are valid provided the expressions makesense (which is always the case when we restrain ourselves to elements in χ).Proposition 2.1 Let µ be a capacity on (Ω,F) and X and Y be measurable real-valued functionson (Ω,F) , then we have the properties:
• (positive homogeneity) Eµ(λX) = λEµ(X), ∀λ ∈ R+

• (monotonicity) X ≤ Y ⇒ Eµ(X) ≤ Eµ(Y )

• (translation invariance) Eµ(X + b) = Eµ(X) + b, ∀b ∈ R

• (asymmetry) Eµ(−X) = −Eµ̄(X), where µ̄ is the dual capacity of µ(µ̄(A) is de�ned by µ̄(A) = 1 − µ(Ac), ∀A ∈ F)

• (comonotonic additivity) If X and Y are comonotonic, then
Eµ(X + Y ) = Eµ(X) + Eµ(Y ).Finally, we remind the subadditivity property of the Choquet integral with respect to a concavecapacity.



2 NOTATION AND DEFINITIONS 8Proposition 2.2 Let µ be a concave capacity on (Ω,F) and X and Y be measurable real-valuedfunctions on (Ω,F) such that Eµ(X) > −∞ and Eµ(Y ) > −∞, then we have the followingproperty (sub-additivity) Eµ(X + Y ) ≤ Eµ(X) + Eµ(Y ).Remark 2.2 We refer the reader to Denneberg (1994) for a slightly weaker assumption thanthe one given in the previous proposition.Remark 2.3 The reader should not be misled by the vocabulary used in the paper. We empha-size that when the capacity µ is concave in the sense of de�nition 2.5, the functional Eµ(.) is aconvex functional on χ (in the usual sense).Other well-known results about Choquet integrals, quantile functions with respect to a capacityand comonotonic functions which will be used in the sequel can be found in the Appendix A.We end this section by two examples of a capacity. The �rst example is well-known in thedecision theory (think for instance of the rank-dependent expected utility theory - Quiggin 1982or of the Yarii's distorted utility theory in Yaari 1997); the second is a slight generalization ofthe �rst.1. Let µ be a probability measure on (Ω,F) and let ψ : [0, 1] → [0, 1] be a non-decreasingfunction on [0, 1] such that ψ(0) = 0 and ψ(1) = 1. Then the set function ψ ◦ µ de�nedby ψ ◦ µ(A) := ψ(µ(A)), ∀A ∈ F is a capacity in the sense of de�nition 2.1. The function
ψ is called a distortion function and the capacity ψ ◦ µ is called a distorted probability. Ifthe distortion function ψ is concave, the capacity ψ ◦ µ is a concave capacity in the senseof de�nition 2.5.2. Let µ be a capacity on (Ω,F) and let ψ be a distortion function. Then the set function ψ◦µis a capacity which, by analogy to the previous example, will be called a distorted capacity.Moreover, we have the following property : if µ is a concave capacity and ψ is concave,then ψ ◦ µ is concave. The proof uses the same arguments as the proof of proposition 4.69in Föllmer and Schied (2004) and is left to the reader (see also exercice 2.10 in Denneberg1994).



3 STOCHASTIC ORDERINGS WITH RESPECT TO A CAPACITY 93 Stochastic orderings with respect to a capacityThe concept of stochastic dominance is a well-known and useful concept in decision theory. Itconsists of introducing a partial order in the space of random variables on some probability space
(Ω,F ,P) (more precisely, stochastic dominance relations are partial order relations on the set ofthe corresponding distribution functions). The aim of this section is to "extend" the concept ofstochastic orderings to the case where the probability P is replaced by the more general notionof capacity; for the purposes of this article, the stress is placed on the generalizations of theresults on the increasing convex and the increasing concave stochastic dominance relations tothe case of a capacity. As usually done in the classical case, we emphasize the links between aneconomic approach to stochastic orderings based on numerical representations of the economicagents' preferences and a statistical approach based on a pointwise comparison of the distributionfunctions or of some other performance functions constructed from the distribution functions.Our de�nitions are analogous to the "classical" case of a probability measure.3.1 The increasing convex stochastic dominance with respect to a ca-pacity µAnalogously to the "classical" de�nition of an increasing convex stochastic dominance (withrespect to a probability measure), we de�ne the notion of an increasing convex stochastic dom-inance relation (or equivalently an increasing convex ordering) with respect to a capacity µ asfollows:De�nition 3.1 Let X and Y be two measurable functions on (Ω,F) and let µ be a capacity on
(Ω,F). We say that X is smaller than Y in the increasing convex ordering (with respect to thecapacity µ) denoted by X ≤icx Y if

Eµ(u(X)) ≤ Eµ(u(Y ))for all functions u : R → R which are non-decreasing and convex,provided the Choquet integrals exist in R.This de�nition coincides with the usual de�nition of the increasing convex order when the ca-pacity µ is a probability measure on (Ω,F). (cf. Shaked and Shanthikumar 2006 for details inthe classical case)



3 STOCHASTIC ORDERINGS WITH RESPECT TO A CAPACITY 10Remark 3.1 The economic interpretation of the icx ordering with respect to a capacity µ isthe following: X ≤icx Y if all the agents whose preferences are described by the (common)capacity µ and a non-decreasing convex utility function prefer the claim Y to the claim X . Asexplained in Kaas et al. (2001), the "classical" stochastic orderings allow to compare risks (or�nancial positions) according to the expected utility (EU) paradigm. The stochastic orderingswith respect to a capacity studied here allow to compare �nancial positions according to theChoquet expected utility (CEU) theory. The ≤icx,µ relation and the ≤icv,µ relation (de�nedbelow) derive from the CEU theory as the corresponding "classical" stochastic orderings derivefrom the EU model.Let us mention that an economic setting where all the agents are CEU-maximizers characterizedby a common capacity µ and a non-decreasing convex (resp. concave) utility function has alreadybeen considered in the literature in the study of Pareto-optima (cf. Chateauneuf et al. 2000).For the sake of completeness, we de�ne the notion of an increasing concave stochastic domi-nance (or equivalently an increasing concave ordering) with respect to a capacity µ.De�nition 3.2 Let X and Y be two measurable functions on (Ω,F) and let µ be a capacity on
(Ω,F). We say that X is smaller than Y in the increasing concave ordering (with respect to thecapacity µ) denoted by X ≤icv Y if

Eµ(u(X)) ≤ Eµ(u(Y ))for all functions u : R → R which are non-decreasing and concave,provided the Choquet integrals exist in R.Remark 3.2 As in the previous section, the dependence on the capacity µ in the notation forthe stochastic dominance relations ≤icx and ≤icv is intentionally omitted. Nevertheless, we shallnote ≤icx,µ and ≤icx,µ when an explicit mention of the capacity to which we refer is needed.As in the classical case where the capacity µ is a probability measure, the ordering relations ≤icxand ≤icv are linked to each other in the following manner:Proposition 3.1 Let X and Y be two measurable functions. Then
X ≤icx,µ Y ⇔ −Y ≤icv,µ̄ −X



3 STOCHASTIC ORDERINGS WITH RESPECT TO A CAPACITY 11where µ̄ denotes the dual capacity of the capacity µ(the dual capacity µ̄ being de�ned by µ̄(A) = 1 − µ(Ac), ∀A ∈ F).Proof: The proof is based on the fact that a function x 7→ u(x) is non-decreasing and convex in
x if and only if the function x 7→ −u(−x) is non-decreasing and concave in x and on the propertyof asymmetry of the Choquet integral; the details are straightforward.

�Notice that in the classical case where the capacity µ is a probability measure, the dual capacityis the probability itself and so proposition 3.1 reduces to a well-known result from the stochasticorder literature.The aim of the following propositions is to obtain characterizations of the stochastic dominancerelations ≤icx and ≤icv. Due to proposition 3.1, we need to consider the case of ≤icx only.Proposition 3.2 Let µ be a capacity. Then we have the following statements:(i) If X ≤icx,µ Y , then Eµ((X − b)+) ≤ Eµ((Y − b)+), ∀b ∈ R,provided the Choquet integrals exist in R.(ii) If the capacity µ has the additional properties of continuity from below and continuity fromabove, then the converse implication holds true, namely,if Eµ((X − b)+) ≤ Eµ((Y − b)+), ∀b ∈ R, provided the Choquet integrals exist in R, then
X ≤icx,µ Y .Proof: The proof adapts the proof of theorem 1.5.7. in Müller and Stoyan (2002) to our case.The proof of assertion (i) is trivial, the function x 7→ (x − b)+ being non-decreasing and convexfor all b ∈ R.Let us now prove the assertion (ii). Let u be a non-decreasing and convex function (such that

Eµ(u(X)) exists in R and Eµ(u(Y )) exists in R). We consider three cases:1. limx→−∞ u(x) = 0. Then it is well-known that u can be approximated from below by asequence (un) of functions of the following form (cf. Müller and Stoyan 2002):
un(x) =

n
∑

i=1

ain(x− bin)
+



3 STOCHASTIC ORDERINGS WITH RESPECT TO A CAPACITY 12where ain ≥ 0 and bin ∈ R. Let us now remark that all the functions in the family
(ain(X − bin)+)i∈{1,··· ,n} are pairwise comonotonic (thanks to proposition A.2) and so forall i ∈ {2, · · · , n}, ain(X−bin)

+ is comonotonic with ∑i−1
j=1 ajn(X−bjn)+. Hence, using theadditivity of the Choquet integral with respect to comonotonic functions and the positivehomogeneity of the Choquet integral, we obtain

Eµ(un(X)) =

n
∑

i=1

ainEµ[(X − bin)
+] ≤

n
∑

i=1

ainEµ[(Y − bin)+] = Eµ(un(Y )).The capacity µ being continuous from below, we apply the monotone convergence theoremas stated in theorem A.1 in order to pass to the limit in the previous inequality and toobtain
Eµ(u(X)) ≤ Eµ(u(Y )).2. The case when limx→−∞ u(x) = a ∈ R can be reduced to the previous one by consideringthe function x 7→ u(x) − a. Thus, we obtain that Eµ(u(X) − a) ≤ Eµ(u(Y ) − a) andconclude thanks to the translation invariance of the Choquet integral.3. If limx→−∞ u(x) = −∞, then the function un(x) := max(u(x),−n) ful�ls the conditionsof the second case for any n ∈ N (indeed, un is non-decreasing, convex and bounded frombelow), so

Eµ(un(X)) ≤ Eµ(un(Y )), ∀n ∈ N.Moreover, un decreases to u, or equivalently, −un increases to −u. A natural idea is thento apply the monotone convergence theorem in order to pass to the limit in the previousinequality by using the asymmetry of the Choquet integral and by observing that the con-tinuity from above of µ is equivalent to the continuity from below of µ̄.Note that the previous reasoning is rigourous in the case where we restrain ourselves tofunctions in χ. Indeed, if X is a function in χ (hence X is bounded), then (un(X)) is abounded sequence (in fact, it is easily seen that max
(

u(supX), 0
)

≥ un(X) ≥ u(inf X)for all n where infX and supX denote the lower and upper bound of X respectively).Therefore, the monotone convergence theorem as stated in theorem A.1 combined with thetranslation invariance of the Choquet integral allows us to conclude.In the general case, the sequence of functions (−un(X)) is not necessarily bounded from be-low and we cannot apply the monotone convergence theorem (theorem A.1). Nevertheless,



3 STOCHASTIC ORDERINGS WITH RESPECT TO A CAPACITY 13by the same arguments as in the proof of theorem 8.1 in Denneberg (1994) (see also theproof of lemma C.1 in the appendix), we see that if a sequence of real-valued measurablefunctions (Zn) converges from below to a real-valued function Z (denoted by Zn ↑ Z) and ifa capacity ν is continuous from below, then the sequence of distribution functions (GZn,ν)(with respect to ν) converges monotonely to the distribution function GZ,ν of Z. So, thecorresponding sequence of quantile functions (rZn,ν) converges from below to (the) quantilefunction rZ,ν of Z almost everywhere (see the proof of lemma C.2 in the appendix for thesame argument). Therefore, we can use proposition A.1 and the dominated convergencetheorem for Lebesgue integrals (with respect to the Lebesgue measure on [0,1]) in order toconclude. Indeed, it su�ces to set Zn := −un(X), Z := −u(X) and ν := µ̄ and to observethat rZ0,ν ≤ rZn,ν ≤ rZ,ν almost everywhere and that the functions rZ,ν and rZ0,ν areintegrable with respect to the Lebesgue measure by assumption.We give some details concerning the integrability of rZ,ν and rZ0,ν for reader's convenience.Being a non-decreasing function on (0, 1), the function rZ,ν is integrable in the Lebesguesense if and only if its generalized Riemann integral exists and is �nite. Thus, the integra-bility of rZ,ν is due to the equation
∫ 1

0

rZ,νdt =

∫ 1

0

rZ,µ̄dt = Eµ̄(Z) = Eµ̄(−u(X)) = −Eµ(u(X)),where the term Eµ(u(X)) belongs to R by assumption. The integrability of rZ0,ν is aconsequence of that of rZ,ν and can be proved by means of similar calculations.
�Observe that in the classical case where µ is a probability measure the previous propositionreduces to a well-known characterization of the increasing convex order; it allows to link theincreasing convex order to the notion of a stop-loss premium in reinsurance. Accordingly, in theclassical case, the increasing convex order is sometimes called stop-loss order.Let us now establish a link between the increasing convex stochastic dominance with respect toa capacity µ and the distribution function with respect to the capacity µ.Proposition 3.3 Let µ be a capacity and let X and Y be two measurable functions. The fol-lowing two statements are equivalent:



3 STOCHASTIC ORDERINGS WITH RESPECT TO A CAPACITY 14(i) Eµ((X − b)+) ≤ Eµ((Y − b)+), ∀b ∈ R,provided the Choquet integrals exist in R.(ii) ∫ +∞

x
µ(X > u)du ≤

∫ +∞

x
µ(Y > u)du, ∀x ∈ R,provided the integrals exist in R.Proof: Using the de�nition of the Choquet integral and a change of variables, we have for all

b ∈ R,
Eµ((X − b)+) =

∫ +∞

0

µ((X − b)+ > u)du =

∫ +∞

0

µ(X > u+ b)du =

∫ +∞

b

µ(X > u)duwhich proves the desired result.
�Now, we are ready to relate the previous results to the notion of a quantile function with respectto µ. We refer the reader to Shaked and Shanthikumar (2006) for a proof of the following resultin the classical case of a probability measure and to Ogryczak and Ruszczynski (2001) for adi�erent proof of the same result based on convex duality; see also lemma A.22 in Föllmer andSchied (2004). Our proof is inspired by the last two references.Proposition 3.4 Let µ be a capacity and let X and Y be two real-valued measurable functionssuch that ∫ 1

0
|rX(t)|dt < +∞ and ∫ 1

0
|rY (t)|dt < +∞ where rX and rY denote (the) quantilefunctions of X and Y with respect to µ. The following two statements are equivalent:(i) G(2)

X (x) :=
∫ +∞

x
µ(X > u)du ≤

∫ +∞

x
µ(Y > u)du =: G

(2)
Y (x), ∀x ∈ R.(ii) ∫ 1

y
rX(t)dt ≤

∫ 1

y
rY (t)dt, ∀y ∈ [0, 1].In order to prove the proposition we need the following lemma which corresponds to lemmaA.22 in Föllmer and Schied (2004) in the classical case.Lemma 3.1 Let µ be a capacity on (Ω,F) and let X be a measurable function on (Ω,F) suchthat the quantile function rX of X with respect to µ is integrable (with respect to the Lebesguemeasure on [0, 1]). De�ne the function G(2)

X by
G

(2)
X (x) :=

∫ +∞

x

µ(X > u)du =

∫ +∞

x

(1 −GX(u))du, x ∈ R.



3 STOCHASTIC ORDERINGS WITH RESPECT TO A CAPACITY 15Then the conjugate function of G(2)
X is given by

r
(2)
X (y) := sup

x∈R

(xy −G
(2)
X (x)) =











−
∫ 1

y+1
rX(t)dt, if y ∈ [−1, 0]

+∞, otherwise.Proof of the lemma: The arguments of the proof being almost the same as those of Föllmerand Schied (2004), the proof is placed in the Appendix B.We are ready to prove proposition 3.4.Proof of proposition 3.4:The proof is based on lemma 3.1.Suppose that (i) holds true i.e. G(2)
X (x) ≤ G

(2)
Y (x), ∀x ∈ R. Then for all y ∈ R,

r
(2)
X (y) := sup

x∈R

(xy −G
(2)
X (x)) ≥ sup

x∈R

(xy −G
(2)
Y (x)) =: r

(2)
Y (y),which implies, in particular, that − ∫ 1

y+1 rX(t)dt ≥ −
∫ 1

y+1 rY (t)dt, for all y ∈ [−1, 0], or equiva-lently,
∫ 1

y

rX(t)dt ≤

∫ 1

y

rY (t)dt, for all y ∈ [0, 1].The converse implication can be obtained by means of a similar argument after observing thatthe function G
(2)
X is the conjugate function of r(2)X . Indeed, this follows from the fact that thefunction G(2)

X is convex, proper and lower-semicontinuous (cf. theorem 24.2 in Rockafellar 1972)and from the biduality theorem (cf. theorem 12.2 in Rockafellar 1972).
�We conclude this section by establishing another useful characterization of the relation ≤icxwhich will be needed in the sequel. Its analogue in the classical case of a probability measure isdue to Dana (2005) (see also thm. 5.2.1 in Dhaene et al. 2006 for a related result). Our prooffollows the proof of the former.Proposition 3.5 Let X ∈ χ and Y ∈ χ be given. Then the following statements are equivalent:(i) ∫ 1

y
rX(t)dt ≥

∫ 1

y
rY (t)dt, ∀y ∈ [0, 1](ii) ∫ 1

0 g(t)rX(t)dt ≥
∫ 1

0 g(t)rY (t)dt, ∀g : [0, 1] → R+, integrable, non-decreasing.Proof: Being quite similar to the proof of Dana (2005), the proof is given in the Appendix B.



4 THE GENERALIZED HARDY-LITTLEWOOD'S INEQUALITIES 16Remark 3.3 An economic interpretation of the ≤icx,µ −relation in terms of "uniform" prefer-ences is given in remark 3.1; the interpretation is based on the initial de�nition of the ≤icx,µ-relation (de�nition 3.1).An interpretation of the ≤icx,µ −relation in terms of ambiguity is suggested by the equivalenceestablished in proposition 3.3. Indeed, let us �rst consider the inequality µ(X > t) ≥ µ(Y > t)where t ∈ R is �xed. Bearing in mind that the capacity µ models the agent's perception of"uncertain" (or "ambiguous") events, the reader may interpret the previous inequality as havingthe following meaning: the event {X > t} is perceived by the agent as being less uncertain thanor equally uncertain to the event {Y > t}. Then, part (ii) in proposition 3.3 may be loosely readas follows: the agent "feels less or equally uncertain about the �nancial position X 's taking greatvalues on average than the �nancial position Y 's".4 A useful tool: the generalized Hardy-Littlewood's inequal-itiesIn this section we state a useful result which can be seen as a "generalization" of the well-knownHardy-Littlewood's inequalities to the present setting.For the statement and the proof of this result in the classical case of a probability measure werefer to theorem A. 24 in Föllmer and Schied (2004); some applications of the "classical" Hardy-Littlewood's inequalities to �nance can be found in the same reference. Other applications ofthe "classical" version to economics and �nance can be found in Carlier and Dana (2006); seealso Carlier and Dana (2005) (and references therein) where a supermodular extension of the"classical" inequalities is used in insurance.The generalization that we state in this section will be needed while dealing with the optimizationproblem of the following section. This generalized version proves to be useful in our ongoing workconcerning some static optimization problems related to the CEU theory (cf. Grigorova 2010).Proposition 4.1 (Hardy-Littlewood's inequalities) Let µ be a capacity on (Ω,F). Let Xand Y be two non-negative measurable functions with quantile functions (with respect to thecapacity µ) denoted by rX and rY .



5 APPLICATION TO A FINANCIAL OPTIMIZATION PROBLEM 171. If µ is concave and continuous from below, then
Eµ(XY ) ≤

∫ 1

0

rX(t)rY (t)dt.2. If µ is convex and continuous from below, then
Eµ(XY ) ≥

∫ 1

0

rX(1 − t)rY (t)dt.Proof: As the proof of this result is relatively long, it is placed in the Appendix C.5 Application to a �nancial optimization problemThis section is devoted to the following optimization problem:(D) Maximize Eµ(ZC)under the constraints C ∈ χ+ s.t. C ≤icx,µ Xwhere χ+ denotes the set of non-negative bounded measurable functions, µ is a given capacity,
Z is a given function in χ+ and X is a given function in χ+.The study of this problem has been inspired by the work of Dana (2005) in the classical case ofa probability measure (see Dana 2005 and references therein; see also Dana and Meilijson 2003,Jouini and Kallal 2001 and Dybvig 1987). Dana (2005) considers a similar problem to the statedabove, namely,(D̃) Minimize E(ZC)under the constraints C ∈ L∞(P) s.t. X ≤icv Cwhere E denotes expectation with respect to P and ≤icv denotes the increasing concave orderrelation in the classical sense. The problem (D̃) has the following economic interpretation: themeasurable function Z being interpreted as a pricing kernel (in the case where E(Z) = 1), theproblem is to �nd the contingent claim C with minimal price among all contingent claims whichdominate the claim X in the increasing concave order, or equivalently, among all the claims Cwhich are preferred to X by all the investors whose preferences are described by a non-decreasingand concave utility function.An analogous interpretation may be given in the setting of problem (D). Indeed, let us placeourselves in a world where the agents are facing "ambiguous events" and let us assume that all



5 APPLICATION TO A FINANCIAL OPTIMIZATION PROBLEM 18the agents perceive ambiguity in the same manner i.e. through the same capacity µ. In thecase where the capacity µ is concave (which will be the case later on), the objective functional
C 7→ Eµ(ZC) can be interpreted as a non-additive pricing functional which has the propertiesof monotonicity and convexity and the non-negative measurable function Z can be seen as adiscount factor or, more generally, a "change of numéraire". A pricing rule of this form (inthe case Z ≡ 1) is used in Chateauneuf et al. (2000) in order to model the selling price of aclaim (its buying price being modelled by Eµ̄(.)). Thus, the problem (D) consists in �ndinga contingent claim C having the maximal price among all the non-negative contingent claimswhich are dominated by X in the increasing convex stochastic dominance (with respect to thecapacity µ).Adopting the terminology introduced by Jouini and Kallal (2001), we may call the value function
e(X,Z) of problem (D) (when Z is �xed) the "utility price" of X in the context of ambiguity. Itwill be shown in subsection 5.2 that, for a �xed Z, the utility price in the context of ambiguity
e( . , Z) is the smallest functional on χ+ among those which are consistent with respect to the
≤icx,µ −relation and which are greater than or equal to the "market price" Eµ(Z . ).We have the following theorem which is the analogue of theorem 2.1 in Dana (2005).Theorem 5.1 Let µ be a concave and continuous from below capacity. For every function X ∈

χ+ and for every function Z ∈ χ+ such that the distribution function GZ of Z with respect to µis continuous, the problem(D) Maximize Eµ(ZC)under the constraints C ∈ χ+ s.t. C ≤icx,µ Xhas a solution and its value function e(X,Z) is given by:
e(X,Z) =

∫ 1

0

rZ(t)rX(t)dt.Proof: We have
e(X,Z) = sup

0≤C,C≤icx,µX

Eµ(ZC) ≤ sup
0≤C,C≤icx,µX

∫ 1

0

rZ(t)rC(t)dt

≤

∫ 1

0

rZ(t)rX (t)dtwhere the �rst inequality is due to the upper bound in Hardy-Littlewood's inequalities (propo-sition 4.1), the second inequality is a consequence of proposition 3.5 (applied with g = rZ).



5 APPLICATION TO A FINANCIAL OPTIMIZATION PROBLEM 19Thus we obtain that e(X,Z) ≤
∫ 1

0 rZ(t)rX (t)dt. To conclude we need to �nd C ∈ χ+ such that
C ≤icx,µ X and such that Eµ(ZC) =

∫ 1

0
rZ(t)rX(t)dt.Set f(x) := rX(GZ(x)), then C := f(Z) is as wanted. Indeed, C ≥ 0. Moreover,

Eµ(ZC) = Eµ(Zf(Z)) = Eµ(h(Z)) =

∫ 1

0

rh(Z)(t)dtwhere we have used proposition A.1 in the last equality and where h : R+ → R+ is de�nedby h(z) := zf(z), ∀z ≥ 0. The function h being non-decreasing and the function GZ beingcontinuous by assumption, we can apply lemma A.1 to obtain(5.1) Eµ(ZC) =

∫ 1

0

h(rZ(t))dt =

∫ 1

0

rZ(t)f(rZ (t))dt

=

∫ 1

0

rZ(t)rX(GZ(rZ(t)))dt =

∫ 1

0

rZ(t)rX(t)dt.where we have used the continuity of GZ in the last step.We are left with establishing that f(Z) ≤icx,µ X . We will check this property using the de�nitionof ≤icx,µ. Let u be a non-decreasing, convex function. We have(5.2) Eµ(u(f(Z))) =

∫ 1

0

ru(f(Z))(t)dt =

∫ 1

0

u(f(rZ(t)))dtwhere the second equality follows from lemma A.1 (the function u ◦ f being non-decreasing andthe function GZ being continuous by assumption). This gives(5.3) Eµ(u(f(Z))) =

∫ 1

0

u(rX(GZ(rZ (t))))dt =

∫ 1

0

u(rX(t))dt

=

∫ 1

0

ru(X)(t)dt = Eµ(u(X))where the last but one equality is obtained thanks to lemma A.1 after observing that u is acontinuous function as a real-valued convex function on R.This concludes the proof.
�Remark 5.1 The previous proof can be extended to the case where the assumption of theboundedness from above of Z is replaced by the weaker assumption that ∫ 1

0 |rZ(t)|dt < +∞.This is due mainly to proposition 3.5 where only the non-negativity and the integrability of rZare required. We have nevertheless chosen to present the previous result in the case where allthe functions are in χ.



5 APPLICATION TO A FINANCIAL OPTIMIZATION PROBLEM 20In the classical case where µ is a probability measure the result of theorem 5.1 still holds evenwhen the continuity assumption on the distribution function GZ of Z is relaxed. More precisely,we have the following result:Proposition 5.1 Let µ be a probability measure on (Ω,F). For every function X ∈ χ+ and forevery function Z ∈ χ+, the problem Maximize E(ZC)under the constraints C ∈ χ+ s.t. C ≤icx Xhas a solution and its value function is given by ∫ 1

0 rZ(t)rX(t)dt.The symbol E denotes the (classical) expectation with respect to µ and ≤icx denotes the (classical)increasing convex stochastic dominance relation with respect to µ.Proof: We sketch the proof following the proof of theorem 5.1 and stressing only on the changesto be made in the proof of theorem 5.1. Note that applying lemma A.1 is still possible wheneverneeded in this case (even without the continuity assumption on GZ) thanks to remark A.1.Nevertheless, the continuity of GZ being used to obtain the last equality in equation (5.1), thefunction f in the proof of theorem 5.1 is now replaced by the function f̃ de�ned by f̃(x) :=

rX(GZ(x)) if x is a continuity point of GZ and by f̃(x) := 1
GZ(x)−GZ(x−)

∫ GZ(x)

GZ(x−)
rX(t)dt if xis not a continuity point of GZ . The function f̃ is non-decreasing and satis�es the property

f̃(rZ) = Eλ(rX |rZ) where the symbol Eλ(.|.) denotes the conditional expectation with respectto the Lebesgue measure λ.We set h̃(x) := xf̃(x) and we replace equation (5.1) by the following
E(ZC) =

∫ 1

0

h̃(rZ(t))dt =

∫ 1

0

rZ(t)f̃(rZ (t))dt

=

∫ 1

0

rZ(t)rX (t)dt.where lemma A.1 and remark A.1 are used to obtain the �rst equality and the characterizationof the conditional expectation is used to obtain the last.Equation (5.2) remains unchanged, the function f being replaced by the function f̃ ; we haveagain applied lemma A.1 and remark A.1 to obtain it.



5 APPLICATION TO A FINANCIAL OPTIMIZATION PROBLEM 21Equation (5.3) has to be replaced by
E(u(f(Z))) =

∫ 1

0

u(f̃(rZ (t)))dt ≤

∫ 1

0

u(rX(t))dt

=

∫ 1

0

ru(X)(t)dt = E(u(X))where we have applied Jensen's inequality.
�Remark 5.2 Note that in the case where the underlying probability space (Ω,F , µ) is atomlessthe use of lemma A.1 (and remark A.1) in the previous proof can be replaced by the use of thefollowing two usual arguments: the law invariance of the functional E(l(.)) : χ+ → R+ where

l : R+ → R+ is a measurable function and the fact that the law of Z is the same as the law of
rZ(U) where U denotes a uniform random variable on (0, 1). Then, the above proof is almost thesame as the proof of theorem 2.1 in Dana (2005) (see also Dana and Meilijson 2003 and Föllmerand Schied 2004). We note that the use of lemma A.1 in the proof of proposition 5.1 providesan alternative argument to the "law-invariance argument" even beyond the nonatomic case.Remark 5.3 Let us mention that, thanks to remark A.1, the continuity assumption on GZ intheorem 5.1 may be relaxed in the case of a capacity µ which, apart from the properties requiredin theorem 5.1, has the additional property of continuity from above.Let us further note that for a concave capacity µ (which is the case in theorem 5.1) the propertyof continuity from above of µ implies the property of continuity from below.5.1 The value function of problem (D) as a risk measureWhile studying the problem (D̃) in the classical setting, Dana (2004) gives an interpretationof its value function in terms of risk measures. An analogous commentary can be made in thepresent setting.Consider the value function e(., Z) of problem (D) for a �xed Z as a functional of the �rstargument and extend it to the whole set χ. More precisely, let us consider the functional ρ : χ →

R de�ned by ρ(X) := e(X,Z) :=
∫ 1

0
rZ(t)rX(t)dt where Z is a �xed non-negative measurablefunction in χ. For the easing of the presentation, we will assume in the rest of this section that

Z is such that ∫ 1

0 rZ,µ(t)dt = 1. This assumption is not a serious restriction because, due to the



5 APPLICATION TO A FINANCIAL OPTIMIZATION PROBLEM 22positive homogeneity of the objective functional of problem (D), we may as well replace Z by
Z

∫

1

0
rZ,µ(t)dt

(in the case where ∫ 1

0
rZ,µ(t)dt 6= 0) in the formulation of problem (D).The functional ρ is monotone (X ≤ Y implies ρ(X) ≤ ρ(Y )) and translation invariant (ρ(X+b) =

ρ(X) + b, ∀b ∈ R). Therefore, according to the de�nition given in Artzner et al. (1999), up toa minus sign ρ is a monetary measure of risk on χ (see also Wang and Yan (2007) or Ekelandet al. (2009) for the same "sign convention" as the one used in the present paper). Moreover, ρis additive with respect to comonotonic elements of χ; this property is due to the comonotonicadditivity of the quantile function with respect to a capacity. Monetary risk measures havingthe property of comonotonic additivity have already been studied in the literature (cf. Föllmerand Schied 2004), the idea being that when X and Y are comonotonic, X cannot act as ahedge against Y . The risk measure ρ has the additional property of being consistent with theincreasing convex ordering relation ≤icx,µ which means that if X ≤icx,µ Y then ρ(X) ≤ ρ(Y ).This consistency property is easily obtained thanks to proposition 3.5 when observing that thefunction rZ which stands in the place of the function g of proposition 3.5 is non-negative andintegrable.Furthermore, the risk measure ρ can be represented as a Choquet integral with respect to acertain capacity. Indeed, according to a well-known representation result for monotone andcomonotonicly additive functionals on χ (cf. thm. 4.82. in Föllmer and Schied 2004 or Denneberg1994) we know that there exists a capacity ν on (Ω,F) such that
ρ(X) = Eν(X), for all X ∈ χ.The capacity ν is related to the initial capacity µ in the following manner

ν(A) = ρ(IA) = e(IA, Z) =

∫ 1

0

rZ,µ(t)rIA,µ(t)dt =

∫ 1

1−µ(A)

rZ,µ(t)dt, ∀A ∈ F .Therefore, the capacity ν is of the form: ν(A) = ψ(µ(A)), ∀A ∈ F where ψ(x) :=
∫ 1

1−x rZ,µ(t)dt, ∀x ∈

[0, 1]. We verify that the function ψ is a distortion function in the sense of the de�nition givenin section 2; hence, the capacity ν = ψ ◦ µ is a distorted capacity. Moreover, the distortionfunction ψ being concave, ν is a concave capacity. Thus, the functional ρ can be represented asa Choquet integral with respect to the concave distorted capacity ψ ◦ µ; hence, ρ is a positivelyhomogeneous, convex monetary measure of risk (or equivalently, a coherent monetary measureof risk in the terminology of Artzner et al. 1999).



5 APPLICATION TO A FINANCIAL OPTIMIZATION PROBLEM 23In fact, risk measures of the form Eψ◦µ(.) where µ is a probability measure and ψ is a (concave)distortion function have been studied by Wang et al. (1997) and Denneberg (1990) and are nowknown under the name of distortion risk measures or distortion premium principles (see, forinstance, Dhaene et al. 2006 for a survey and examples). At the end of his article, Denneberg(1990) suggests possible generalizations to the case where the probability measure is replaced bya more general set function - the functional ρ that we obtain could be seen as such a generaliza-tion. Adopting this point of view, we could call ρ a "generalized" distortion risk measure.Let us �nally remark that the value function of problem (D) can be seen also as an analogue inthe setting of ambiguity of the notion of maximal correlation risk measure (cf. Ekeland et al.2009 and the references therein).5.2 The value function of problem (D) as a premium principleWe give another interpretation of the value function of our problem (D) in terms of premiumprinciples in insurance.Consider an insurance company which uses a given premium principle as a reference but whichis now willing to take into account other criteria of "riskiness" modelled through the stochasticdominance relation≤icx,µ. In insurance, elements of χ+ are usually considered as payments whichthe company has to make (or losses it has to face) and premium principles are functionals on χ+taking values in R; these functionals are usually non-decreasing. In this framework, the objectivefunctional of problem (D), namely the functional ρ0 : χ+ 7→ R+ de�ned by ρ0(X) := Eµ(ZX),can be seen as the reference premium principle used by the company. We remark that thepremium principle ρ0 may be perceived as a kind of a generalization of the Esscher premiumprinciple which is well-known in insurance (see for instance Young 2004 for a de�nition and otherexamples). In this context, the value function e(., Z) of problem (D) is interpreted as a newpremium principle which has (among other "desirable" properties) the property of consistencywith respect to the relation ≤icx,µ and which is greater than or equal to the reference premiumprinciple ρ0 (i.e. e(X,Z) ≥ Eµ(ZX), ∀X ∈ χ+). The latter property is due to the fact that
e(., Z) is the value function of problem (D) and to the re�exivity of the relation ≤icx,µ.Moreover, we have the following property:Proposition 5.2 The value function e(., Z) of problem (D) is the smallest functional on χ+



6 FUTURE PERSPECTIVES 24which satis�es the property of consistency with respect to the relation ≤icx,µ and which is greaterthan or equal to ρ0 where ρ0 is given by ρ0(X) := Eµ(ZX), ∀X ∈ χ+.Proof: Let F : χ+ 7→ R be a functional which is consistent with ≤icx,µ and which is greaterthan or equal to ρ0. For all X ∈ χ+ and for all C ∈ χ+ such that C ≤icx,µ X , the property ofconsistency with respect to the relation ≤icx,µ implies that F (X) ≥ F (C). Moreover, F (C) ≥

Eµ(ZC). So, by taking the supremum over the set {C ∈ χ+ s.t. C ≤icx,µ X}, we have F (X) ≥

e(X,Z).
�We conclude that the value function e(., Z) of problem (D) is the smallest premium principleamong those which are consistent with respect to the increasing convex dominance relation ≤icx,µand which are greater than or equal to the initial premium principle ρ0.Thanks to the above considerations the insurance company may use problem (D) as a way ofde�ning a new premium principle e(., Z) on χ+ (which premium principle induces a total pre-order on χ+ unlike the stochastic dominance relation ≤icx,µ which is only a partial pre-order).Loosely speaking, the newly obtained premium principle is "richer" than the initial premiumprinciple ρ0 because other criteria of "riskiness" and the "change of numéraire" Z have beentaken into account through problem (D).6 Future perspectivesAs seen in the previous section, a closely related question to the concepts studied in this articleis the problem of risk measures respecting stochastic dominance relations. We are studying,in particular, the question of quantile-based risk measures with respect to a given capacity i.e.risk measures based on the quantile function rX,µ where µ is a given capacity and where themeasurable function X models a �nancial position, and we are exploring their consistency withrespect to the stochastic dominance relations de�ned above (cf. Grigorova 2010).



A APPENDIX 25A Appendix: Some basic results about capacities and Cho-quet integralsThe results of this appendix A can be found in the book by Föllmer and Schied (2004) (cf.section 4.7 of this reference) and/or in the one by Denneberg (1994) and are recalled here forreader's convenience.A.1 Choquet integrals and quantile functionsWe have the following well-known result where we make the convention that the assertion is validprovided the expressions make sense. The result can be found in Föllmer and Schied (2004) forthe bounded case or deduced from Denneberg (1994) (cf. pages 61-62 in chapter 5 of the latterreference).Proposition A.1 Let X be a real-valued measurable function and let rX be a quantile functionof X with respect to a capacity µ, then
Eµ(X) =

∫ 1

0

rX(t)dt.The following lemma is the analogue of lemma A.23. in Föllmer and Schied (2004) and canbe found in Denneberg (1994).Lemma A.1 Let X = f(Y ) where f is a non-decreasing function and let rY be a quantile func-tion of Y with respect to a capacity µ. Suppose that f and GY have no common discontinuities,then f ◦ rY is a quantile function of X with respect to µ. In particular,
rX(t) = rf(Y )(t) = f(rY (t)) for almost every t ∈ (0, 1),where rX denotes a quantile function of X with respect to µ.Remark A.1 If the capacity µ satis�es the additional properties of continuity from below andfrom above, the assumption of no common discontinuities of the functions f and GY can bedropped in the previous lemma. The proof is then analogous to the proof in the classical case ofa probability measure (cf. lemma A.23. in Föllmer and Schied 2004 for a proof in the classicalcase) and is left to the reader.



B APPENDIX 26A.2 A monotone convergence theorem for Choquet integralsWe recall a monotone convergence theorem for Choquet integrals with respect to a capacitywhich is continuous from below; we refer the reader to Denneberg (1994) for a proof of thisresult.Theorem A.1 (monotone convergence) Let µ be a capacity on (Ω,F) which is continuousfrom below. For a non-decreasing sequence (Xn) of non-negative measurable functions, the limitfunction X := limn→∞Xn is measurable and limn→∞ Eµ(Xn) = Eµ(X).A.3 Comonotonic functionsWe have the following characterization of comonotonic functions which corresponds to proposi-tion 4.5 in Denneberg (1994) (see also Föllmer and Schied 2004)Proposition A.2 For two real-valued measurable functions X, Y on (Ω,F) the following con-ditions are equivalent:(i) X and Y are comonotonic.(ii) There exists a measurable function Z on (Ω,F) and two non-decreasing functions f and gon R such that X = f(Z) and Y = g(Z).The notion of comonotonic functions proves to be very useful while dealing with Choquetintegrals thanks to the following result (cf. lemma 4.84 in Föllmer and Schied 2004, as well ascorollary 4.6 in Denneberg 1994).Lemma A.2 If X,Y : Ω → R is a pair of comonotonic functions and if rX , rY , rX+Y arequantile functions (with respect to a capacity µ) of X,Y,X + Y respectively, then
rX+Y = rX + rY , for almost every t.B Appendix: The proofs of Lemma 3.1 and Proposition 3.5Proof of lemma 3.1:Throughout this proof we set φ(x) := G

(2)
X (x) to alleviate the notations. Correspondingly, we



B APPENDIX 27denote by φ∗ the conjugate function of φ i.e. φ∗(y) := supx∈R
(xy − φ(x)).Let us �rst remark that

φ(x) =

∫ +∞

x

µ(X > u)du = Eµ((X − x)+) =

∫ 1

0

(rX(t) − x)+dt,the second equality is the straightforward transformation used in the proof of proposition 3.3and the third is due to proposition A.1 and to lemma A.1.Therefore, for y = 0, we have
φ∗(0) = − inf

x∈R

∫ 1

0

(rX(t) − x)+dt = − lim
x→+∞

∫ 1

0

(rX(t) − x)+dt = 0,where we have used the non-increasingness of the function x 7→
∫ 1

0 (rX(t)−x)+dt and the Lebesgueconvergence theorem. For y = −1, we have
φ∗(−1) = sup

x∈R

(

−x−

∫ 1

0

(rX(t) − x)+dt

)

= − lim
x→−∞

∫ 1

0

max(rX(t), x)dt = −

∫ 1

0

rX(t)dt.By analogous computations, we obtain that φ∗(y) = +∞ for y > 0, as well as φ∗(y) = +∞ for
y < −1.Finally, let us consider the case where y ∈ (−1, 0).The function f de�ned by f(x) := xy− φ(x) is concave (the function φ being convex). Noticingthat f(x) = xy −

∫ +∞

x
(1 −GX(u))du, we see that the right-hand and left-hand derivatives of fat x are given by f ′

+(x) = y + (1 − GX(x+)) and f ′
−(x) = y + (1 − GX(x−)). A point x is amaximum point for the function f if 









f ′
+(x) ≤ 0

f ′
−(x) ≥ 0

which is equivalent to 









GX(x+) ≥ y + 1

GX(x−) ≤ y + 1which, in turn, is equivalent to x being a (y+ 1)-quantile of X . So, by taking x = rX(y+ 1), wehave
φ∗(y) = yrX(y + 1) −

∫ 1

0

(rX(t) − rX(y + 1))+dt = −

∫ 1

y+1

rX(t)dtwhich concludes the proof.
�Proof of Proposition 3.5 The implication (ii)⇒(i) is obvious by taking g(t) := I[y,1](t) whichis non-negative, non-decreasing and integrable.Let us now turn to the converse implication. Suppose that (i) holds true. The assertion (ii) istrue for any function g of the form g(t) := I[y,1](t).



C APPENDIX 28Let now g be a non-negative, non-decreasing step function. Then g can be written as follows:
g(t) =

∑k
i=1 aiI[bi,1] where ai ≥ 0 and 0 = b1 < b2 · · · < bk < 1. Thus, we have

∫ 1

0

g(t)rX(t)dt =

k
∑

i=1

ai

∫ 1

bi

rX(t)dt ≥

k
∑

i=1

ai

∫ 1

bi

rY (t)dt =

∫ 1

0

g(t)rY (t)dt.Let now g be a non-negative, non-decreasing function. Then g can be approximated from belowby a sequence (gn) of non-negative, non-decreasing step functions. Due to the previous obser-vation, we then have ∫ 1

0
gn(t)rX(t)dt ≥

∫ 1

0
gn(t)rY (t)dt. The function g being integrable andthe functions rX and rY being bounded (since X and Y are in χ), we can apply the Lebesgueconvergence theorem to pass to the limit in the previous inequality which concludes the proof.

�C Appendix: The generalized Hardy-Littlewood's inequal-itiesWe give the proof of proposition 4.1.Let us �rst prove the upper bound part in proposition 4.1. Before we proceed, we need thefollowing two lemmas:Lemma C.1 Let µ be a capacity on (Ω,F) which is continuous from below. Let (Xn) be a non-decreasing sequence of non-negative measurable functions and let X denote the limit function.Then the sequence of distribution functions (with respect to µ) of Xn converges to the distributionfunction (with respect to µ) of X i.e.
lim
n→∞

GXn
(x) = GX(x), ∀x ∈ R̄+.Proof: The proof of this lemma is contained in the proof of theorem 8.1 in Denneberg (1994)and is omitted.Remark C.1 We note that lemma C.1 remains valid even when the non-negativity assumptionon the functions of the sequence (Xn) is relaxed.



C APPENDIX 29Lemma C.2 Let µ be a capacity on (Ω,F) which is continuous from below. Let (Xn) be a non-decreasing sequence of non-negative measurable functions and let X be a non-negative measurablefunction such that Xn ↑ X. Then we have the following convergence:
rXn

(t) ↑ rX(t) for almost every twhere rXn
and rX stand for (versions of) the quantile functions (with respect to µ) of Xn and

X respectively.Proof: To prove the result we will use the lower quantile function rlXn
of Xn de�ned by:

rlXn
(t) := sup{x ∈ R : GXn

(x) < t}, for t ∈ (0, 1).The sequence (Xn) being non-negative, non-decreasing, we have that the sequence (rlXn
) isnon-negative, non-decreasing and we denote by r its limit function i.e. r(t) := limn r

l
Xn

(t) =

supn r
l
Xn

(t), ∀t ∈ (0, 1). We will show that ∀t ∈ (0, 1), r(t) = rlX(t) where rlX(t) := sup{x ∈ R :

GX(x) < t} is the lower quantile function of X (with respect to µ). The conclusion of the lemmawill follow as rlX = rX almost everywhere and rlXn
= rXn

almost everywhere.Now, GXn
≥ GX ∀n, which implies that rlXn

(t) ≤ rlX(t), ∀t ∈ (0, 1), ∀n. By passing to the limit,we obtain r(t) ≤ rlX(t), ∀t ∈ (0, 1).We turn to the proof of the converse inequality, namely r(t) ≥ rlX(t), ∀t ∈ (0, 1). Fix t ∈ (0, 1)and let x ∈ R be such that GX(x) < t. By lemma C.1, we know that GXn
(x) ↓ GX(x). Hence,there exists n0 = n0(t, x) such that for all n ≥ n0, GXn

(x) < t. Therefore, for all n ≥ n0, x ∈

{y ∈ R : GXn
(y) < t} which implies that rlXn

(t) := sup{y ∈ R : GXn
(y) < t} ≥ x, ∀n ≥ n0. Bypassing to the limit, we obtain that r(t) ≥ x which gives the desired inequality and concludesthe proof.

�Now, we are ready to prove proposition 4.1.Proof of proposition 4.1: We will prove the �rst part of the proposition which concerns theupper bound. The lower bound is proved similarly.Let µ be a continuous from below, concave capacity. The inequality is satis�ed by X and Y ofthe form X = IA, Y = IB , where A,B ∈ F (even without the assumption of continuity frombelow and concavity of µ). Indeed,(C.1) Eµ(IAIB) = µ(A ∩B) ≤ µ(A) ∧ µ(B) =

∫ 1

0

rIA
(t)rIB

(t)dt.



C APPENDIX 30Similarly to the classical case we have that rIA
= I(1−µ(A),1] a.e.; thus, the last equality in (C.1)is due to the following computation:

∫ 1

0

rIA
(t)rIB

(t)dt =

∫ 1

0

I(1−µ(A),1](t)I(1−µ(B),1](t)dt = 1−max{1−µ(A), 1−µ(B)} = µ(A)∧µ(B).We next prove the desired inequality for non-negative step functions. Let X and Y be two non-negative step functions. Then the function X has the following representation X =
∑n
i=1 xiIAi

,with xi ≥ 0 and Ai ∈ F . Without loss of generality, we can suppose that the numbers xiare ranged in a descending order (i.e. x1 ≥ x2 ≥ · · · ≥ xn ≥ 0) and that the sets Ai aredisjoint. Thus, the function X can be rewritten in the following manner: X =
∑n
i=1 x̃iIÃi

,where x̃i := xi − xi+1 ≥ 0, xn+1 := 0 and Ãi := ∪ik=1Ak. This representation proves to be veryuseful, as will be seen later on in the proof, because the functions x̃iIÃi
and x̃jIÃj

are a coupleof comonotonic functions. In the same manner, the function Y has the following representation:
Y =

∑m
j=1 ỹjIB̃j

where ỹj ≥ 0 and B̃j ⊂ B̃j+1.Thanks to the subadditivity of the Choquet integral with respect to a concave capacity and tothe positive homogeneity of the Choquet integral, we have
Eµ(XY ) ≤

n
∑

i=1

m
∑

j=1

x̃iỹjµ(Ãi ∩ B̃j).On the other hand, we see that rX =
∑n

i=1 rXi
a.e. where we have set Xi := x̃iIÃi

andwhere rXi
designates a quantile function of Xi. Indeed, as mentioned above, the functions in thesum ∑n

i=1 x̃iIÃi
are pairwise comonotonic, and therefore, the functions ∑k−1

i=1 x̃iIÃi
and x̃kIÃkare comonotonic which allows us to obtain the desired property by induction. By the sameargument, rY =

∑m
j=1 rYj

a.e. where Yj := ỹjIB̃j
and rYj

designates a quantile function of Yj .So,
∫ 1

0

rX(t)rY (t)dt =
n

∑

i=1

m
∑

j=1

x̃iỹj

∫ 1

0

rIÃi
(t)rIB̃j

(t)dtwhere the non-negativity of x̃i and ỹj and lemma A.1 have been used.The proof for non-negative step functions is therefore �nished as the �rst part of the proof aboutindicator functions implies that µ(Ãi ∩ B̃j) ≤
∫ 1

0
rIÃi

(t)rIB̃j
(t)dt.Now, let X and Y be two measurable non-negative functions. Let (Xn) be a sequence of non-negative step functions such that Xn ↑ X and let (Yn) be a sequence of non-negative stepfunctions such that Yn ↑ Y . This implies that 0 ≤ XnYn ↑ XY and we use the monotoneconvergence theorem (theorem A.1) to obtain limn→∞ Eµ(XnYn) = Eµ(XY ). On the other



REFERENCES 31hand, by using lemma C.2, we obtain 0 ≤ rXn
(t) ↑ rX(t) for almost every t and 0 ≤ rYn

(t) ↑

rY (t) for almost every t; we thus conclude that 0 ≤ rXn
(t)rYn

(t) ↑ rX(t)rY (t) for almost every t.By applying the monotone convergence theorem for Lebesgue integrals to the sequence (rXn
(.)rYn

(.)),we have limn→∞

∫ 1

0
rXn

(t)rYn
(t)dt =

∫ 1

0
rX(t)rY (t)dt which concludes the proof.
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