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Knowledge and Productivity in the World’s Largest

Manufacturing Corporations

Lionel Nesta ∗

Abstract

This paper develops a model linking firm knowledge with productivity. The model cap-
tures three characteristics of firm knowledge (capital, diversity and relatedness) that are
tested on a sample of 156 of the world’s largest corporations. Panel data regression models
suggest that unlike knowledge diversity, knowledge capital and knowledge relatedness ex-
plain a substantial share of the variance of firm productivity. Relatedness matters because
it lowers coordination costs between heterogeneous activities. Consequently, the traditional
econometric specification has repeatedly underestimated by 15% the overall short-run con-
tribution of intangible assets to firm productivity. This underestimation becomes fiercer in
high technology sectors.

JEL classification: O3; L2; D24
Keywords: Knowledge; Productivity; Relatedness

1 Introduction

The literature investigating the econometric relationship between R&D and pro-

ductivity has produced a large amount of evidence of the positive contribution

of knowledge capital to firm productivity (Griliches 1986, Griliches and Mairesse

1983, Griliches and Clark 1984, Griliches and Mairesse 1984). Although convinc-

ing, these studies fail to address the issue of how firms cope with heterogeneous

scientific and technical knowledge, the combination of which is likely to affect

overall firm performance. The reasons for this is that knowledge is considered

homogenous and that, as a consequence, firm knowledge capital equates with the

sum of homogeneous pieces of knowledge.
∗Observatoire Français des Conjonctures Economiques , Département de Recherche sur l’Innovation et la
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Instead, I argue that knowledge is intrinsically heterogeneous in nature because

it refers to various scientific disciplines and is embodied in diverse technical de-

vices. Such scientific and technical knowledge may yield a variety of services, the

exploitation of which is far from given to firms. As argued by Penrose (1959),

firms must devote additional efforts to combine their resources, comprising their

knowledge capital, in a non-random and non-obvious way. The combination of

these heterogeneous scientific and technical resources gives rise to ad hoc, local

arrangements, leading to a persistent heterogeneity amongst competing firms.

Teece et al. (1994) argue that the non-random organisation of activities has

its very roots in the firm’s competencies. When entering into new business lines,

firms move into activities with similar scientific and technical competencies and

common complementary assets. The reason for this is that diversification comes at

costs, stemming from increases in agency costs, sub-optimal choices in investments

across divisions and imperfect internal capital market (Rajan et al. 2000, Lamont

and Polk 2001, Graham et al. 2002). An additional cost is that diversification is

likely to decrease momentarily the technological coherence at both the plant and

conglomerate level, thereby disrupting existing coordinating mechanisms. Firms

must then devote part of their focus towards integrating these new sets of activi-

ties, competencies and technological knowledge with pre-existing ones. Therefore,

diversification inherently calls for some sort of integration to increase the relat-

edness of the firm’s activities and the underlying knowledge base (Breschi et al.

2003).

In fact, relatedness across productive activities has been shown to be tightly

linked with firm performance. In one of the earliest examples Rumelt (1974)

showed that diversification is more likely to be successful within related activities
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sharing similar business lines and production chains. Later, related diversification

has been shown to be positively associated with higher profit rates (Scott 1993) and

higher growth rate of profits (Palepu 1985). Schoar (2002) shows that although

increases in diversification lead to a net reduction in total factor productivity, di-

versified firms enjoy higher productivity levels than single segment firms. The main

justification for this lies in the presence of economies of scope, the benefit of which

is likely to be a positive function of relatedness across business lines (Montgomery

1991, Ramanujam and Varadarajan 1989, Montgomery and Hariharan 1991, Teece

et al. 1994).

It is well recognised that economies of scope arise when similar productive se-

quences are shared among several business lines. Still, related diversification also

stems from vertical diversification, where the productive activities across busi-

nesses integrate complementary activities and competencies. Arguably, the cost

of coordinating a set of productive activities decreases as the knowledge used in

these activities is being combined efficiently. For example, Scott and Pascoe (1987)

demonstrate that R&D diversification in large U.S. manufacturing firms is found

to be purposive (to exploit complementarities across research programmes that

consolidate around related categories of products). Thus activities based on a set

of related technological knowledge should prove more productive than activities

based on a heterogeneous and unrelated set of activities. In other words, integrated

knowledge bases should be positively linked with firm productivity.

This paper develops a model that analyses the contribution of firm knowledge.

This model generalises the traditional econometric specification where only intangi-

ble capital is assumed to play a significant role. Instead, the model captures three

characteristics of firm knowledge (knowledge capital, diversity and relatedness),
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showing that the traditional model is the specific case for firms with completely

unrelated scientific and technical knowledge. A firm’s knowledge base is consid-

ered related when all scientific and technological competencies are found to be

statistically inter-dependent. The paper tests for the importance of these three

characteristics (knowledge capital, diversity and relatedness) using financial and

patent data from a sample of the 156 world’s largest manufacturing firms between

1986 and 1996. The major finding is that unlike knowledge diversity, knowledge

capital and relatedness are important sources of productivity at the firm level.

The paper is structured as follows. Section 2 develops the formal model. Sec-

tions 3 and 4 present the measures, data and econometric model used in this paper.

The results are discussed in Section 5, leading to the conclusion of Section 6.

2 The Model

Similar to Griliches (1979), I start by using an augmented Cobb-Douglas produc-

tion function. Firm output is a function of firm traditional factor endowment of

capital and labour and firm knowledge stock:

Qit = A · Cβ
it · Lα

it ·Kδ
it · exp(uit), (1)

where subscripts i and t refer to the firm i and the current year t, Q is output

measured by sales, A is a constant, C is the gross value of plant and equipment, and

L is the number of employees. Traditionally in Eq.(1), K is defined as the firm’s

stock of knowledge corrected for technical obsolescence: Kit = k̇it +(1− δ) ·Ki,t−1,

where k̇it is new knowledge acquired by firm i at time t and δ represents the rate

of knowledge obsolescence. There is no unique way of measuring k̇, but R&D

4

Page 4 of 51 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

expenses and patents, either granted or applied for, have been by far the most

widely used proxies to date.

This approach has received a lot of attention, due both to its simplicity and to

the significant improvement it has brought to our understanding of the contribution

of intangible assets to productivity. However, the above formulation fails to address

the issue of heterogeneous scientific and technical knowledge. These encompass

specific technical artefact, human capital, scientific principles guiding research

activities as in the biopharmaceutical industry and so on, the combination of which

is far from being given to firms. Assume for simplicity that firms are composed

of a vector P of D productive activities, P = [p1, ..., pd, ...pD]. Each activity pd

draws primarily on its associated scientific and technical expertise ed, so that the

firm’s total expertise is vector E = [e1, ..., ed, ...eD]. However, activity pd may also

benefit from the expertise developed in other activities l (l 6= d), depending on

the level of relatedness τ between technical expertise ed and el. It follows that the

knowledge base k used by the dth activity is

kd ≡ ed +
D∑

l 6=d

el · τld. (2)

Eq.(2) means that the knowledge base k available to activity d is knowledge

expertise ed and all other knowledge expertise ed (l 6= d), weighted by their asso-

ciated relatedness τld. Generalising Eq.(2) to all productive activities within the

firm yields the aggregate knowledge base K:

K ≡
D∑

d

ed +
D∑

d

·
D∑

l 6=d

el · τld. (3)

For simplicity, let us hold τld constant across activities d’s and l’s, so that
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τld = R across all productive activities within the firm. Since
∑

d ed is the firm’s

knowledge stock E, Eq.(3) simplifies to

K ≡ E · [1 + (D − 1) ·R]. (4)

Eq.(4) states that firm knowledge is a function of its total knowledge capital or

expertise E, the number D of productive activities implemented within the firm,

and relatedness R across activities.

The amendment of K as done traditionally leads to insert two supplementary

properties of firm knowledge: knowledge diversity and knowledge relatedness. The

existence of these properties is due to the collective nature of knowledge: in order

to produce aggregate outcomes, diverse knowledge must be combined in a non-

random and non-obvious way and integrated into a coherent base. Supposing for

instance that firm i is composed of a set of activities with highly related knowledge

(R > 0), knowledge base K increases with the number D of productive activities

implemented inside the firm weighted by their average relatedness R. Conversely if

firm i is composed of a set of activities with entirely unrelated technical knowledge,

implying no spillovers across activities (R = 0), the knowledge base K is reduced

to its knowledge stock E as measured traditionally. Thus this paper advances a

more general formulation of firm intangible assets, where the traditional measure

of K is the special and unlikely case where R = 0.

For the sake of simplicity, let us start by using the following approximation:

K ∼= E ·D ·R. (5)

Substituting (5) into (1), noting θK = δ×$K , where $K is the weight attributed

to each of the three properties K = {E, D, R} of firm knowledge base yields:

6
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Qit = A · Cβ
it · Lα

it · [E$E ·D$D ·R$R ]δit · exp(uit) (6)

= Ait · Cβ
it · Lα

it ·
∏

k

kθK
it · exp(uit),

or in the log form:

qit = a + β · cit + α · lit +
∑

k

(θk · kit) + uit, (7)

where k = {e, d, r} and β, α and θk are the parameters of interest. Eq.(7) can be

estimated using ordinary least squares. The error term uit is decomposed into ηi,

λt and εit, where ηi ∼ IID(0,σ2
η) is a 1×1 scalar constant capturing persistent but

unobserved individual heterogeneity across firms such as managerial capabilities,

firm propensity to collaborate, the type of economic environment, and so on, λt ∼
IID(0,σ2

λ) is a 1×1 scalar constant representing the time fixed effect that would

capture positive or negative trends common to all corporations, and εit ∼ IID(0,σ2
ε)

is the individual disturbance.

3 Measures of Firm Knowledge

Perhaps the starting point of any work on knowledge should simply state that

unlike physical assets, it is impossible for all components of intangible capital

to be accurately described. Therefore the observer can only find indirect traces

of knowledge. For example, the contributions by Griliches have repeatedly used

(the accumulation of past) R&D investments as a proxy for knowledge capital.

Patent data have also been used for similar purposes, and in what follows, I base

the three measures of knowledge capital, diversity and relatedness on the use
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of patent statistics. There are several pitfalls in using patent statistics, ranging

from persistent sectoral differences in firm patenting to the quite heterogeneous

economic value of patents (Archibugi 1992, Pavitt 1988). However, these critics

lose their relevance when one uses patents statistics as a proxy for competencies,

not as a proxy for innovative performance.

The other difficulty with the three knowledge variables is that one should ex-

pect them to be collinear, since empirical evidence suggests that firms diversify

into related technologies (Teece et al. 1994, Breschi et al. 2003, Fai 2003). In this

case, the decision to diversify is likely to be conditioned by issues regarding other

knowledge variables. Typically, the decision to diversify will raise issues on the

investments necessary to acquire any new technology, and on its complementar-

ity with existing ones. As a consequence, processes of diversification will always

increase knowledge stock E, but may or may not increase relatedness R, depend-

ing on the degree of complementarity between the newly acquired technology and

those previously mastered by the firm. The question of the drivers of knowledge

expertise, diversification and relatedness and of their interdependencies are impor-

tant questions in their own rights, but they are beyond the scope of the present

paper. Below, I deal with issues of multicollinearity from the statistical viewpoint

only, to then consider all knowledge variables as independent predictors of the

firm’s productive efficiency.

Patent statistics provide information on technology classes in which firms de-

velop technological competencies. This information is essential in experimenting

for the expected positive role of knowledge diversity and knowledge relatedness.

First, I proxy knowledge capital using the so-called permanent inventory method

and measure it as the cumulated stock of past patent grants using a rate of knowl-
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edge obsolescence of 15 percents per annum: Eit = ġit + (1 − δ) · Ei,t−1, where

ġit is the number of patent grants of firm i in year t and δ represents the rate of

knowledge obsolescence.

Second, I define knowledge diversity as the breadth of firm knowledge base. Let

ġkit be the number of patents grants of firm i at time t in technology class k. In

order to compensate for abrupt changes in firm learning strategies and introduce

some rigidities in the technology portfolio of the firm, Pkit sums patent grants over

the past five years: Pkit =
∑4

τ=0 ġki,t−τ . Now let dkit = 1 if the firm has developed

competencies in technology k, (Pkit > 0), 0 otherwise. Knowledge diversity D

is simply the number of technology classes in which the firm develops scientific

competencies over the past five years D =
∑

k dkit.

It should be pointed out, however, that as the patent stock increases, the like-

lihood of developing competencies in auxiliary technologies increases correspond-

ingly. Thus measures E and D, namely knowledge capital and knowledge diversity,

are likely to be correlated, which may induce multicollinearity problems when es-

timating their associated elasticities. I correct for this by computing the difference

between the observed diversity D and the expected diversity D̂, conditional on

patent stocks: D′
it = Dit − E[Dit | Eit] = Dit − D̂it. By its very construction,

D′
it can be either negative or positive. A positive (negative) measure of knowledge

diversity informs on the relatively high (low) degree of knowledge diversity, given

firm knowledge capital.

Third, the measure of knowledge relatedness in two steps: in the first step, I

quantify technological relatedness between any two technologies k and l; in the

second step, I assume that technological relatedness is given to firms, so that firms

first observe all τ ’s and then choose their technology portfolio. Thus I use τkl to

9
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compute the weighted average relatedness of all technologies held within the firm.

In the first step, I estimate the relatedness measures τkl between any two tech-

nologies k and l by comparing the observed frequency fkl with which the two

technologies are jointly used with the expected frequency f̂kl of their co-use. The

observed frequency fkl with which two technologies are used simultaneously is de-

rived from patent documents. The computation of the expected frequency f̂kl may

be grounded on several methods (parametric vs. non-parametric), but in any case

it must be based on the hypothesis that the two technologies are randomly used

together. In this paper, I calculate the expected frequency on the assumption

that the distribution of random technological co-occurrences is hypergeometric

(See Appendix A available on the website of the Journal). The outcome of the

comparison between fkl and f̂kl produces the relatedness measures τkl, as detailed

in Appendix A, Eq.(A-5). Typically, τkl is a real number that can be positive or

negative and may be thought of as the strength of the technological relationship

between technologies k and l, or relatedness.

In the second step, I compute the weighted average relatedness WARk of tech-

nology k with respect to all other technologies within the firm. Similarly to Teece

et al. (1994), the weighted average relatedness WARk of technology k is defined as

the degree to which technology k is related to all other technologies l 6= k present

within the firm, weighted by patent count Plit:

WARkit =

∑
l 6=k τkl · Plit∑

l 6=k Plit

. (8)

Measure WARkit expresses the expected relatedness of technology k with re-

spect to any given technologies randomly chosen within the firm. WARkit may

be either positive or negative, the former (latter) indicating that technology k is

10
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closely (weakly) related to all other technologies within the firm. Consequently,

knowledge relatedness is defined as the weighted average of the WARkit measures:

Rit =
∑

l 6=k

WARkit × Pkit∑
k Pkit

. (9)

Eq.(9) estimates the average relatedness of any technology randomly chosen

within the firm with respect to any other technology. Again, this measure can

be either negative or positive, the latter indicating that the firm’s technologies

are globally well related, while a negative value shows a poor average relatedness

amongst the technologies in which the firm has developed competencies.

Applied to technology classes, the relatedness measure implies a different in-

terpretation than when applied to activities, as done in Teece et al. (1994). For

these authors, the prominent reason for related diversification lies in the similarity

of activities amongst the firm’s various production lines. Diversification is related

when common competencies are shared in a (bounded) variety of business lines.

This differs from our own interpretation of relatedness as applied to technologies.

Technological relatedness τkl assesses the statistical intensity of the joint use of

two given technologies and thus indicates that the utilisation of technology k im-

plies that of technology l in order to perform a specific set of activities. In other

words, technologies are related when their combination leads to specific technolog-

ical functions that are not reducible to their independent use. Hence a reasonable

interpretation of technological relatedness is that it indicates primarily the com-

plementarity of the services rendered by two technologies. In the remaining of the

paper, I shall refer to relatedness as assessing the complementarity between two

technologies1.

1For a thorough discussion and empirical analysis on the various foundations for technological relatedness, see
Breschi et al.
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4 Data

The dataset used in this study is a compilation of a patent data set crossed with

a financial data set. Concerning the former, I used the US Patent and Trademark

Office (henceforth USPTO) patent dataset provided by the National Bureau of

Economic Research (Hall et al. 2001). This dataset comprises more than 3 million

US patent grants since 1963, but requires some additional manipulations to convert

it into a workable tool. First, using the information on the company name and

year of application2, I selected the most abundantly patenting manufacturing firms

using Fortune 500, August 1998 (Fortune 1998). Because many of the world’s

largest companies operate outside the manufacturing sectors, such as banking or

insurance, the selection yielded a sample of 162 companies, meant to be the world’s

largest manufacturing corporations. Second, the lack of data on firm consolidation

in the USPTO patent dataset was overcome using the Who Owns Whom 2000

Edition. The consolidation exercise proved extremely useful, inflating the number

of patents held by the firms in the sample by more than 300,0003.

Third, the USPTO dataset provides only one U.S. patent technology class per

patent grant, hampering the computation of technological relatedness. An appeal-

ing opportunity is to use citations across patents to link technologies with one

another, but as emphasised by Jaffe et al. (1998), citations remain a rather noisy

event, for they encompass various legal matters regarding the validation of the

technological novelty. Instead, information on the technological content of patents

was completed by collecting all international technology classes (IPC) assigned to

2The USPTO advertise only patent grants, not patent applications. This should not be a problem for computing
all knowledge variables since it acts as a quality filter on the firm’s patent portfolio. Note that I use the year of
application, not the year in which the firm was awarded the patent.

3The number of patents held by the world’s largest manufacturing firms reached 500,000 prior to consolidation,
but increased to 800,000 after controlling for consolidation. This illustrates the need for such an exercise as well
as indicating the difficulty of the task. I am very thankful to Parimal Patel for providing the information.
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every US patent documents4. The six-digit technology classes prove too numerous,

and I choose to use them at the three-digit level, analogous to a technological space

of 120 technologies5. Because more than one technology may be listed within one

single patent document, it is then possible to calculate the frequency with which

two technologies are listed together6. This new patent dataset further enhances

the computation, at the firm level, of the variables measuring knowledge capital

(E), knowledge diversity (D) and knowledge relatedness (R) between 1968 and

1999.

[Table 1 about here.]

The other data set, the 1997 edition of Worldscope Global Researcher, provides

the financial variables needed. Firm sales are used as a proxy for output (Q),

gross value of property plant and equipment proxies firm capital (C), and the

number of employees is used to proxy labour (L). Ideally, one would like to

measure value-added to measure output (Q) more accurately and control for labour

quantity and quality by having data on the number of hours worked and on wages

and compensation. Unfortunately, companies do not disclose such information

systematically and the resulting figures proved too scarce to be of any use. We do

not have information on value-added by firms, and information on the number of

hours worked or on education is not systematically provided in the company SEC

filings. Therefore, the variable on labour input can only be used in ratio, yielding

4This was completed using all IPC codes as displayed on the Internet Web Site of the European Patent Office.
I am indebted to Bart Verspagen and Paola Criscuolo for their much appreciated help during the automated
process.

5The aggregation of technology classes into larger categories is a necessary but delicate exercise because it
influences negatively the variance of knowledge diversity and relatedness across firms. Prior literature (Jaffe 1986,
Hall et al. 2001), suggests that a thirty-dimensional technological space may be an appropriate aggregation, but
since this paper deal with the largest manufacturing firms, using such a level of aggregation is likely to reflect
product more than knowledge diversification while decreasing too severely the variance of knowledge diversity
and relatedness across firms.

6Altogether, of three million patents, 751,935 US patents have more than one technology class, which proves
adequate to measure technological relatedness.
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the following functional form:

(
Q

L

)

it

= A ·
(

C

L

)β

it

· Lϕ
it ·

∏

k

kθK
it · exp(uit) (10)

where ϕ = α + β − 1. The parameter ϕ is used as an assessment for constant

returns to scale. If the parameter ϕ is not significantly different from nullity (i.e.

ϕ = 0), the world’s largest manufacturing firms are enjoying constant returns scale

in production. However if ϕ is significantly different from zero, the production of

the representative firm in the sample departs from an equilibrium of constant

returns to scale, and leaves prospect for either downsizing (ϕ < 0) or expansion in

the scale of productive activities (ϕ > 0). Taking logs yields

(q − l)it = a + β · (c− l)it + ϕ · lit +
∑

k

(θk · kit) + uit, (11)

where k = {e, d, r}. The left hand side of Eq.(11) is the logarithm of labour

productivity, and β, ϕ and θk are the parameters of interest and can be estimated

by ordinary least squares.

Additional data on the net value of property plant and equipment (NC), R&D

investments(R), main industry group (two-digit IPC) and secondary industry

groups are also used to control for the age of capital by calculating the ratio

of net over gross capital (NC/C), R&D intensity(R/Q), industry specific effects

and product diversification, respectively. Financial data originally expressed in

national currency have been converted in US dollars using the exchange rates pro-

vided by the Organisation for Economic Co-operation and Development (OECD).

All financial data were then deflated into 1996 US dollars using the Implicit Price

Deflator provided by the U.S. Department of Commerce, Bureau of Economic

Analysis.
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[Table 2 about here.]

Compiling data from both the patent and financial datasets produced an unbal-

anced panel dataset of 156 companies observed between 1986 and 1996, yielding

1,608 observations. Tables 1 and 2 display the descriptive statistics for the set of

variables and provide general information on the various industry groups of the

sample (Standard Industry Classification - SIC two digit). The sample is com-

posed of firms from 11 industry groups. These are rather heterogeneous, as they

differ significantly in terms of their aggregate productivity levels, research inten-

sity, and knowledge characteristics (Table II). The largest sectors in the sample are

Chemicals and Allied Products, including Drugs (SIC 28, 29 corporations); Trans-

portation Equipment (SIC 37, 27 corporations); Electronic and Other Electric

Equipment (SIC 36, 17 corporations); and Industrial Machinery and Equipment

(SIC 35, 16 corporations). These sectors are generally highly intensive in R&D

activities (see table II), with more than 5 percent of their sales invested in re-

search. Thus, our findings are likely to be biased towards more research-intensive

sectors, which is in line with the selection procedure of selecting the most abun-

dantly patenting firms in the set of the world’s largest manufacturing corporations.

Consistent with Eq.(11), all variables are entered in logs, and their correlation co-

efficients are displayed in Table 3.

[Table 3 about here.]

15

Page 15 of 51 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

5 Results

5.1 Preliminary results

Several econometric specifications have been used to estimate Eq.(11), and Table

4 reports the main results. In Column (1), the results of Ordinary Least Squares

(OLS) on the pooled sample show that all explanatory variables have a significant

effect on labour productivity. Not surprisingly, the effect of physical capital (c− l)

is large (0.690) and in line with previous findings that state that the omission

of materials in the production function overestimates the effect of physical capital

(Griliches and Mairesse 1984). The estimate for labour l is significant and negative

(-0.197), which implies that the world’s largest manufacturing corporations cope

with decreasing returns to scale. This is hardly surprising, for the size of the world’s

largest corporations offers little scope for productivity gains related to increases in

their scale of operations. The effect of the newness of capital (NC/C) is significant

(1.005), suggesting a positive contribution of embodied technical progress to firm

productivity.

The effects related to firm knowledge are all significant. Consistent with the

works of Griliches, knowledge capital contributes positively to firm productivity

(0.035), although knowledge capital as measured here differs from measures of

R&D stocks. The negative sign of knowledge diversity (- 0.101) is in line with,

but not identical to, the so-called ”diversification discount”. As product diversifi-

cation, diversified knowledge bases impact negatively on firm productivity owing

to increased agency costs and sub-optimal choices in investments across divisions.

By the latter, we mean that assimilating technologies unrelated to those already

mastered by the firm increases initial investments. These sunk costs should pre-

sumably affect productivity negatively, at least in the short run.
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Knowledge relatedness is positive (0.894) with high significance. This conforms

to the initial intuition that knowledge relatedness is related to coordination costs:

firms diversifying in related activities are more productive because the cost of co-

ordinating a heterogeneous set of related productive tasks is simply inferior to that

combining unrelated activities. This is consistent with the proposition that effec-

tive knowledge combination lowers coordination costs across the productive activ-

ities within firms. This finding is particularly important because it also implies

that the overall effect of firm knowledge is larger that the mere effect of knowledge

capital. That is, the traditional econometric specification has repeatedly underes-

timated the overall contribution of intangible asset to firm performance.

Columns (2)-(5) explore alternative specifications of Eq.(11) in order to test

the robustness of these preliminary findings. Column (2) controls for unobserved

heterogeneity by converting all variables as differences from group (firm) means:

x
′
it = xit − xi, where x is any of the dependent and independent variables. This

wipes out the unobservable and persistent heterogeneity across firms that may

alter the consistency of the estimates. The specification (Least Square Dummy

Variable - LSDV) produces significant estimates for most explanatory variables:

large corporation cope with decreasing returns to scale, and the effect of knowledge

capital and relatedness remain highly significant whereas the effect of knowledge

diversity to productivity becomes insignificant.

Eq.(11) relies on the critical assumption that the error term eit is serially un-

correlated. One can relax this assumption by adopting a dynamic representation

of Eq.(11), converting all level variables into growth rates (log differences). This

specification is robust to spurious regressions where significant estimates may be

driven by their positive correlation with time. First in column (3), all variables
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are expressed as differences from their value at time t − 1 weighted by parame-

ter ρ representing first order autocorrelation (AR1): x
′
it − ρx

′
it−1. The estimated

ρ has a standard value of slightly above 0.5. In the first difference model (FD,

Column 4) where ρ is set to unity, knowledge capital and relatedness keep their

high significance levels, although the latter becomes significant at the 5 % level.

This observation is quite satisfactory, as the autoregressive models with firm fixed

effects is a fairly conservative method where a substantial share of the information

available in the dataset is swept away before the actual estimation.

[Table 4 about here.]

The inclusion of a lagged dependent variable makes the standard panel estima-

tion techniques, Ordinary Least Squares (OLS), inconsistent because the lagged

dependent variable induces a correlation between the explanatory variables and

the error term. A standard procedure for dealing with variables that are corre-

lated with the error term is to instrument them using the Generalised Method

of Moment (GMM) estimator along the lines suggested by Arellano and Bond

(1991). The GMM one-step estimates (Column 5) produce significant estimates

for all variables, with the exception of knowledge diversity. They imply that from

a dynamic perspective, positive changes in knowledge capital and relatedness lead

to positive changes in firm productive efficiency. We also note that the significance

of newness is low. Globally, these results are consistent with the idea that both

knowledge capital and knowledge relatedness are significant drivers of productivity

at the firm level.

One crucial question relates to the magnitude of the parameter estimates for

both knowledge capital and knowledge relatedness. Fundamentally, these results

suggest that knowledge relatedness is economically valuable, the extent to which
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remains difficult to assess. Given that little is known about investments by firms

to improve knowledge relatedness, these results inform us exclusively on the sig-

nificance and direction of the relationship between the firm’s productive efficiency

and knowledge relatedness. To gain insights on its relative weight, one way to go

forward is to compute the standardised coefficients of variables using the Least

Square Dummy Variable (LSDV) specification. The exercise shows that the stan-

dardised coefficients for knowledge capital θsd
e and knowledge relatedness θsd

r reach

respectively 0.245 and 0.045. Hence the contribution of intangible assets is due

primarily to its knowledge stock. However knowledge relatedness is of importance.

Computing the ratio θsd
r

θsd
e +θsd

r
, I find that 16% of the short-run contribution of intan-

gible assets to productive efficiency has been ignored by the usual specification that

implicitly assumes R = 0. The coherence of the firm’s technological diversification

does have an impact on productive efficiency, and ignoring its contribution leads

to a substantial underestimation of the overall contribution of intangible assets to

firm performance.

Altogether, the various specifications show that: (i) large corporations face

steep decreasing returns to scale; (ii) the stock of knowledge is a prime deter-

minant of firm productivity; (iii) knowledge relatedness plays a significant role,

contributing positively to firm productivity; (iv) positive changes in the previ-

ously mentioned variables entail positive changes in firm productivity; and (v)

knowledge diversification remains insignificant, suggesting that the breadth of firm

knowledge is not linked to productivity. The rationale for the important role of

knowledge relatedness to firm productive efficiency lies in the fact that the cost of

coordinating coherent knowledge bases is simply lower than that of coordinating

unrelated pieces of knowledge. Such economies arise when diversifying in related
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technologies increases the potential for scope economies and lowers the sunk costs

of investing in and mastering additional technologies.

Sub-sections 5.2, 5.3 and 5.4 address three issues that may potentially affect

the results: the characteristics of the sample, alternative measures for intangible

assets, and alternative econometric specifications overcoming the simplifications

that K = E ·D ·R.

5.2 Sample Decomposition

I deal with the first issue by decomposing the sample in several ways. The results

are reported in Table 5. The parameter estimates reveal their usual robustness,

but interesting insights emerge from the results. In column (6), I control for

the possible contagion of results from outliers by excluding observations located

in the top and bottom 5 percentiles of observations for the dependent variables.

The results are consistent with Table 4, although the estimated parameters, while

keeping their significance levels, are all closer to zero (note the drop in the R-

square). This suggests that a good deal of information on the relationship between

tangible and intangible assets and firm productivity is found in the tails of the

distribution. Interestingly, computing θsd
r

θsd
e +θsd

r
inflates the ratio to 19%, reinforcing

the argument that knowledge relatedness must be accounted for when assessing

the contribution of intangible assets to firm productivity.

In columns (7)-(9), I control for the R&D intensity of sectors, where obser-

vations have been grouped according to the sectoral aggregate R&D intensity as

displayed in Table 2. High-technology sectors comprise 53 large corporations from

Chemicals (29 firms), Electronics (17 firms) and Instruments (7 firms), with an ag-

gregate (R/Q) ratio above 6 percent. Medium-technology sectors comprise 50 large
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corporations from Industrial Machinery (16 firms), Transportation Equipment (27

firms) and Communications (7 firms), with an aggregate (R/Q) ratio between 4

and 6 percent. The low-technology sectors gather 31 firms (Oil, 5 firms; Food, 6

firms; Primary Metal, 11 firms; Petroleum, 9 firms) but exclude the miscellaneous

category entitled ”Others”.

The results show that capital productivity is fairly stable across sectors, but

the values of the labour estimate suggests that decreasing returns to scale are

not as steep in high-technology sectors as for others. This in turn may be due

to several factors, but among other things, is consistent with the idea that such

sectors constantly bring about new products that may keep the scale of productive

activities closer to equilibrium. The knowledge variables exhibit an interesting

gradual pattern, where knowledge capital and relatedness are significantly higher in

high-technology sectors. Looking at the standardised coefficients, we observe that

the θsd
r

θsd
e +θsd

r
ratio reaches 21%, implying that in high-technology sectors, the impact

of diversifying in related technology on labour productivity becomes considerably

fiercer.

In low-technology sectors, the source of superior productivity does not seem

to rely on the characteristics of firm knowledge. In fact, one should be careful in

rejecting the role of knowledge in low-technology sectors for two reasons. First,

it may well be that these firms have all achieved a satisfactory level of knowl-

edge capital and relatedness that is a pre-requisite for their productive operations.

Since knowledge is supposedly more stable, the knowledge variables are no more

a discriminating criterion for high productivity, but remain a criterion for firm

survival. Failure to accumulate and integrate knowledge in a productive fashion

may lead to firm exit. Second, the method using patent statistics may be more
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suitable for high technology sectors, where frontier technologies are more likely to

be embodied in patent documents than in low technology sectors. More generally,

the two explanations provided meet when one mentions that in low technology

sectors, productivity growth may be imported from other sectors (i.e embodied

from technical change developed in other sectors). In high-technology sectors,

productivity growth would be more the results of within sector technical change.

[Table 5 about here.]

Last in columns (10) and (11), I investigate the effect of geography on the

production function by grouping firms in two sets: America, including Canada

(Column 10) and Europe (Column 11). Both groups have a peculiar production

function. American firms conform mostly to the general results. The determi-

nants of firm productivity in European corporations are similar with the excep-

tion of knowledge relatedness, whose parameter estimate, though positive, becomes

non-significant. How should we interpret this? One can think of two competing

interpretations. First, the observed regional differences reflect actual differences

in production function, notably concerning the use of scientific knowledge and the

way heterogeneous knowledge is combined. Second, these parameter differences are

the outcome of differences in regional sector endowment. This second explanation

implies that in Europe, knowledge relatedness should be a significant contribu-

tor to firm productivity in high technology sectors as well. To arbitrate between

these two explanations, we ran an additional within regression for the sample of

European firms in high-technology sectors. The results 7 show that indeed in high

technology sectors, both knowledge capital and knowledge relatedness are active

component of the production function in Europe.

7The results are not reported here, but can be obtained upon request to the author.
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5.3 Using Alternative Measures of Firm Knowledge

One may object that our results are driven by the way with which we measure

firm knowledge. This choice is important because it may affect the significance and

signs of the relationships with productivity. In order to test the robustness of the

results, table 6 provides the parameter estimates using alternative measures of firm

knowledge. In column (12), I follow Griliches and Clark (1984) and Griliches and

Mairesse (1984) and use the ratio (R/Q) to proxy knowledge capital. The results

are as expected, positive and significant, although the estimate for knowledge

relatedness loses its significance due to its co-linearity with R&D investments.

In column (13), I introduce knowledge diversity computed as the dispersion

of firm competencies across technological areas: D
′′
it = µP,it ÷ σ2

P,it. This mea-

sure is the inverse of the coefficient of variation and increases as firm compe-

tencies are distributed evenly across technologies ( lim
σ2

Pkit
→∞

D′′
it → +∞). Impor-

tantly, this measure is not based directly on the number of patents held by the

firm over the past 5 years, but on its revealed technological advantage, defined

as RTAit = (Pit/
∑

k Pkit) ÷ (
∑

i Pkit/
∑

ki Pkit). The numerator is the share of

patents in technology k in the total patent stock of firm i. Likewise, the denomi-

nator represents the share of patents in technology k in the total patent stock of

all actors. Therefore for a given technology, if the share of patents of firm i exceeds

that of all actors, RTA will be greater than unity and firm i will have a so-called

Revealed Technological Advantage in technology k.8 This measure has the advan-

tage of re-scaling all patent grants to a measure accounting for heterogeneous firm

propensities to patent by relying on a more accurate idea of the firm’s distinctive

skills.
8Conversely, a value below unity indicates an area of relative weakness. See also Fai (2003) for a detailed

analysis of the world’s largest corporation based on the RTA.
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The results show a persistent non-significance of technological diversification

with firm productivity, whereas the other estimates are consistent with previous

results. I do not, however, rule out the significant role of technological diversity

in firm activities. First, diversification has been depicted to be a major input

for innovative activities, simply because new ideas are more likely to emerge from

a stock of diversified knowledge (Henderson and Cockburn 1996). Switching the

dependent variable with innovative output would certainly depict the positive and

significant contribution of knowledge diversity to firm innovation. Second, tech-

nological diversification is being increasingly viewed as a major characteristic of

modern productive activities: firms differ more on the basis of their product port-

folio than they do in terms of their technological competencies, precisely because

the share of scientific and technical knowledge in productive activities has in-

creased substantially, keeping the number of productive activities constant (Patel

and Pavitt 1997, Gambardella and Torrisi 1998). Finally firms must develop tech-

nical competencies other than those they directly exploit in their very productive

activities, first to benefit from technical spillovers from competitors (Jaffe), and

second to cope with the technological development of their most direct partners

(Brusoni et al. 2001).

Last, I develop several measures of knowledge relatedness. Echoing Section 3,

there are two main choices one must make when measuring knowledge related-

ness within firms: the choice of a relatedness measure τkl and the choice of how

to measure knowledge relatedness within the firm, given technological relatedness.

Concerning the former, Appendix A suggests that there is no authoritative metrics

for quantifying relatedness between technologies. Instead of relying on a paramet-

ric setting that produces relatedness τP
kl , one can also develop a non-parametric
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measure of technological relatedness τNP
kl based on information theory. Regarding

the latter choice, one can start by representing firm knowledge as forming a graph

G = (K,R), where K is the set of vertices (i.e. firm technological competencies),

and R is the set of edges (i.e. technological relatedness), that links technologies

together. In fact, Eq.(8) assumes firm competencies to form a fully connected

graph; in a corporation with k technological competencies, all k× (k−1)÷2 pairs

of technologies are included in the computation of WAR. Quite likely however,

not all technologies within the firm are related to all other ones: only subsets of

technologies relate to other subsets of technologies. To account for this, I follow

Teece et al. (1994) and Breschi et al. (2003) and include only the (m−1) strongest

links that are needed to create a connected graph that comprises all firm compe-

tencies. This captures the strongest associations across technical areas k and l and

is equivalent to depicting the maximum spanning tree from graph G = (K, R). I

thus rewrite Eq.(8) as follows:

WAR
′
kit =

∑
l 6=k τkl · Plit · λkl∑

l 6=k Plit · λkl

, (12)

where λkl = 1 is the link between technological competencies k and technological

competence l is part of the tree. Because WAR′ only includes the strongest links

within the firm, WAR′ is likely to produce measures of firm knowledge related-

ness that are biased upwards, whereas conversely the previous measure is biased

downwards.

[Table 6 about here.]

The results in Table 6 show that the measure of knowledge relatedness is gen-

erally robust. In column (14), knowledge relatedness based on τNP
kl remains both

highly significant and positive. Remarkably, the θsd
r

θsd
e +θsd

r
ratio for column (14) (τNP

kl )
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remains virtually unchanged at 15%, implying that the choice of the relatedness

measure has virtually no effect on the amount of information brought by the iden-

tity K ∼= E · D · R. In column (15), knowledge relatedness based on WAR′
P is

positive and significant at the 5% level, while the θsd
r

θsd
e +θsd

r
ratio drops to 12%. In

column (16), knowledge relatedness based on both τNP
kl and WAR′ becomes non-

significant, raising the issue regarding the very measure of knowledge relatedness.

Clearly, knowledge relatedness embodies a large firm-specific element that is not

captured with the methodology developed in the paper and that goes beyond the

means of the metrics suggested here.

In all instances, this measure is likely to embody quite a bit of noise, which

in turn should bias the parameter estimate of knowledge relatedness θR down-

wards with respect to its unknown true value θ̂R. Thus globally, the positive and

significant relation between knowledge relatedness and firm productivity is quite

supportive for the theory that more integrated knowledge is associated with lower

coordination costs, thereby increasing significantly firm productivity. Although the

ratio θsd
r

θsd
e +θsd

r
drops to 12%, its level remains sufficiently large to motivate further

research in this area.

5.4 The Non-Linear Specification

The last issue concerns the validity of the linear specification, relying on the sim-

plification that K ≡ E · D · R, whereas the original model implies that K =

E + (1 + (D − 1) · R). Consistently with the previous results, I consider the es-

timate of knowledge diversity ωD as being a residual, so that ωD = 1 − ωE − ωR.

Substituting (4) into (6) yields
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(
Q

L

)

it

= A ·
(

C

L

)β

it

·
(
E$E

it + [1 + (Dit − 1)1−$E−$R ·R$R
it ]

)δ

· exp(uit), (13)

where the parameters $E and $R represent the weights associated with, respec-

tively, knowledge capital and knowledge relatedness, whereas δ represents the over-

all effect of firm knowledge base on firm productivity. In the log form, Eq.(13)

becomes

(q − l)it = a + β · (c− l)it + ϕ · lit + δ · log
(
E$E

it [1 + (Dit − 1)1−$E−$R ·R$R
it ]

)
+ uit.(14)

All variables are expressed as deviations from firm means, wiping out the un-

observable heterogeneity across firms. Importantly, log(E + (1 + (D− 1) ·R)) can

be negative, implying that Eq.(14) cannot be estimated. To deal with this issue,

all knowledge variables are standardised in such a way that E, D, R ∈ [2; 3].

[Table 7 about here.]

Table 7 reports the results for the whole sample and for the high-technology

sectors. It also distinguishes between the two measures of knowledge relatedness

based on the WAR and WAR′ computations. Although the parameter estimates

for knowledge relatedness are at the borderline of significance (Columns 17 and

19), the results remain globally consistent with the previous remarks. First, the

elasticity of deflated sales with respect to physical capital, although overestimated,

remains quite stable across the specifications. The parameter for returns to scale

is consistently negative for the sample as a whole, whereas firms active in high

technology sectors operate in constant returns to scale.
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The estimates depicting the elasticity of output with respect to firm knowledge

are globally satisfactory. In columns (17) and (19), parameter δ is largely signifi-

cant and positive, suggesting that firm total knowledge is tightly linked with firm

output per employee. The weights $E and $R imply that knowledge capital is the

prime intangible capital, more so than knowledge relatedness. They also suggest

that the effect of knowledge diversity on firm productivity may not be a simple

residual (columns 17 and 19). Computing $D = $E −$R shows that the role of

knowledge diversity becomes quite large (0.218 in column 17 and 0.210 in column

19) for the whole sample of firms.

The comparison of columns (17) with (18) and (19) with (20) suggests that

in high-technology sectors, the role of knowledge relatedness is essential in boost-

ing firm productivity. This is further compatible with the last estimates relating

to the newness of physical capital (NC/C). Its large and significant effect in

high-technology sectors suggests that much of firm productivity gains go through

investments embodied in high-technology equipment. The supposedly higher tech-

nological turbulence in sectors such as chemicals (including the highly turbulent

pharmaceutical industry), instruments, and electronics challenges large corpora-

tions in their ability to assimilate and exploit new technical knowledge by inte-

grating it into their own production function.

Globally, the non-linear specifications produce estimates that compare well with

previous estimations. There is an issue regarding the role of knowledge relatedness,

but the associated parameter estimate remains at the borderline of significance. Its

value is consistent with previous estimations: knowledge capital and knowledge re-

latedness are active components of firm productivity, especially in high-technology

sector.
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6 Conclusion

This paper has developed a model linking firm knowledge with productivity. This

model generalises the traditional econometric specification where only intangible

capital is assumed to play a significant role. Instead, our model captures three

characteristics of firm knowledge (knowledge capital, diversity and relatedness)

that are then tested on a sample of 156 of the world’s largest corporations. The

major finding is that unlike knowledge diversity, knowledge capital and relatedness

are important sources of productivity at the firm level. The traditional economet-

ric specification has repeatedly underestimated by about 15% the overall short-run

contribution of intangible assets to firm performance. This underestimation be-

comes fiercer in high technology sectors.

Importantly, knowledge capital cannot exhaust the contribution of intangibles

to firm productivity. The intrinsically heterogeneous nature of knowledge implies

that the way scientific and technical knowledge is combined impacts on firm pro-

ductivity. The econometric results show that more integrated, better-articulated

knowledge bases reach higher levels of productivity, beyond and above the prime

role of knowledge capital. The theoretical justification lies at the heart of eco-

nomic theory: the cost of coordinating coherent knowledge bases is simply lower

than that of coordinating unrelated pieces of knowledge.

Several issues relate to the heterogeneous nature of the sample across time,

industries and regions. Although there are important differences, these apply to

the knowledge base as a whole more than they question the economic relevance

of knowledge relatedness. Globally, the role of knowledge relatedness becomes

stronger in knowledge-intensive sectors such as chemicals, drugs, electronics and

instruments. In other sectors, its contribution remains positive and significant,
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but significantly lower, even after controlling for plausible mismeasurements in the

knowledge variables and possible mispecifications in the econometric model.

The persistent non-significance of knowledge diversity contradicts the view that

technological diversification is a major characteristic of modern productive activ-

ities: firms differ more on the basis of their product portfolio than they do in

terms of their technological competencies. The reason for this is that for a given

product line, the share of scientific and technical knowledge in productive activi-

ties has increased dramatically with the rise of the knowledge economy. However,

firms must develop technical competencies other than those they directly exploit

in their very productive activities in order to cope with technological turbulence.

Thus, one should keep in mind that firms seek several goals at once, some contra-

dicting others. Unquestionably in the short run firms need to generate revenues.

In the long run, they must anticipate as accurately as possible the potential tech-

nological opportunities that may impact directly on their productive operations.

In other words, firms must invest in several research avenues, few of which may

prove highly profitable.

This tension between profitability and survival has long been identified (March

1991). I suspect that the characteristics of firm knowledge must reflect these di-

verging goals, and future work shall investigate more systematically the behaviour

of the knowledge variables with respect to alternative measures of firm economic

performance.
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Notes

1For a thorough discussion and empirical analysis on the various foundations for technological

relatedness, see Breschi et al. (2003)

2The USPTO advertise only patent grants, not patent applications. This should not be a

problem for computing all knowledge variables, since it acts as a quality filter on the firm’s

patent portfolio. Note that I use the year of application, not the year in which the firm was

awarded the patent.

3The number of patents held by the world’s largest manufacturing firms reached 500,000 prior

to consolidation, but increased to 800,000 after controlling for consolidation. This illustrates the

need for such an exercise as well as it indicates the difficulty of the task. I am very thankful to

Parimal Patel for providing the information.

4This was completed using all IPC codes as displayed on the Internet Web Site of the European

Patent Office. I am indebted to Bart Verspagen and Paola Criscuolo for their much appreciated

help during the automated process.

5The aggregation of technology classes into larger categories is a necessary but delicate exer-

cise, because it influences negatively the variance of knowledge diversity and relatedness across

firms. Prior literature (Jaffe 1986, Hall et al. 2001), suggests that a thirty-dimensional tech-

nological space may be an appropriate aggregation. But since this paper deal with the largest

manufacturing firms, using such a level of aggregation is likely to reflect product more than

knowledge diversification while decreasing too severely the variance of knowledge diversity and

relatedness across firms.

6Altogether, of three million patents, 751,935 US patents have more than one technology

class, which proves adequate to measure technological relatedness.

7The results are not reported here, but can be obtained upon request to the author.
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8Conversely, a value below unity indicates an area of relative weakness. See also Fai (2003)

for a detailed analysis of the world’s largest corporation based on the RTA.
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A Measures of Technological Relatedness

Technological relatedness has been investigated in several publications (Sherer

1982, Jaffe 1986, Breschi et al. 2003). Similar to Teece et al., I rely on the so-called

survivor principle that less efficient pairs of technologies are called to disappear

ultimately and assume that the frequency with which two technology classes are

jointly assigned to the same patent documents may be thought of as the strength

of their technological relationship, or relatedness.

The analytical framework is similar to Breschi et al. and departs from the

square symmetrical matrix obtained as follows. Let the technological universe

consist of a total of N patent applications. Let pnk = 1 if patent n is assigned to

technology k, k = {1, . . . , K}, 0 otherwise. The total number of patents assigned

to technology k is thus fk =
∑

n pnk. Now let pnl = 1 if patent n is assigned

to technology l, 0 otherwise. Again, the total number of patents assigned to

technology l is fl =
∑

n pnl. Since two technologies may co-occur within the same

patent document, then fk ∩ fl 6= ®, and thus the number fkl of observed joint

occurrences of technologies k and l is fkl =
∑

n pnkpnl. Applying the latter to all

possible pairs, we then produce the square matrix Ω(K × K) whose generic cell

is the observed number of joint occurrences fkl. This count of joint occurrences

is used to construct our measure of relatedness, relating it to some measure of

expected frequency f̂kl under the hypothesis of random joint occurrence.

There is no authoritative measure of f̂kl, and I shall consider below a parametric

and non-parametric setting. In a parametric setting, one can consider the number

fkl of patents assigned to both technologies k and l as a hypergeometric random

variable. The probability of drawing f patents with both technologies k and l

follows the hypergeometric density function (Population N , special members fk,
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and sample size fl):

P (fkl = f) =

(
fk

f

)(
N−fk

fl−f

)
(

N
fl

) , (A-1)

where f is the hypergeometric random variable. Its expected frequency is

f̂kl = E(fkl = f) =
fk · fl

N
. (A-2)

If the actual number fkl of co-occurrences observed between two technologies

k and l greatly exceeds the expected frequency f̂kl of random technological co-

occurrence (fkl > f̂kl), then the two technologies are highly related: there must

be a strong, non-casual relationship between the two technology classes. Inversely,

when fkl < f̂kl , then technologies k and l are poorly related. Hence, a preliminary

parametric-based measure of relatedness rP
kl is

rP
kl = fkl − f̂kl. (A-3)

Eq.(A-3) may further be designed to control for the variance of the sample

at use. Assuming a hypergeometric distribution, the variance and relatedness

measures are

σ2
kl = f̂kl ·

(
N − fk

N

)
·
(

N − fl

N − 1

)
. (A-4)

Thus,

τP
kl =

fkl − f̂kl

σkl

. (A-5)

Eq.(A-5) has three attractive features. First, relatedness τP
kl is a real number

that can be either positive or negative, the sign being a straightforward and intu-
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itive indication of the relatedness between any two pairs of technologies. Note that

relatedness measure τP
kl has no lower or upper bounds: τP

kl ∈]−∞; +∞[. Second,

relatedness τP
kl is similar to a t-student, so that if τP

kl ∈] − 1.96; +1.96[ , one can

safely accept the null hypothesis H0 of no relatedness between technologies k and l.

Third, τP
kl is a symmetric measure of technological relatedness so that relatedness

τP
kl between k and l is strictly equal to relatedness τP

lk between l and k. This is the

case if one assumes that N = N−1, so that σ2
kl ≈ f̂kl · (N−fk

N
) · (N−fl

N
). Considering

the number N of patent grants for each year, it is a reasonable approximation.

This may go some way against the intuition that knowledge and technologies form

a hierarchical tree (Popper 1972) but it offers the advantage of simplicity when

dealing with multi-technology firms.

In a non-parametric setting, one makes no assumption about the form of the dis-

tribution of technological co-occurrences across patents applications. A straight-

forward way to measure relatedness is then to compare the observed probability of

any patent to combine technologies k and l with the expected probability, under

the assumption that the event ”patent with technology k” is independent from the

event ”patent with technology l”. Let skl, sk and sl denote the shares of number

of patent applications with respectively both technologies k and l, technology k,

technology l in the total number of patents applications N : Skl = fkl

N
; Sk = fk

N
;

Sl = fl

N
. By definition, sk ·sl is the share of patents with technologies k and l under

the assumption that both technologies are independent, so that sk · sl represents

the expected share ŝkl with random technological co-occurrences. Using informa-

tion theory (Theil 1972), one can then define the non-parametric technological

relatedness τNP
kl as follows:
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τNP
kl = log(

skl

ŝkl

). (A-6)

The interpretation of Eq.(A-6) is straightforward. If skl÷ŝkl > 1 , then τNP
kl > 0:

technologies k and l are rather well related. If skl ÷ ŝkl < 1 , then τNP
kl < 0:

the technologies k and l are rather poorly related. Again, relatedness is a real

number that can be either positive or negative and is symmetric, so that relatedness

between k and l is strictly equal to relatedness between l and k.

Table A-1 provides the descriptive statistics of the computed values for fkl, τP
kl

and τNP
kl , between 1968 and 2000. The total number of observed technological

co-occurrences is above 138,000. It equates with a yearly mean number of 4,195

two-by-two technological combinations, whereas in a 120-dimensional technologi-

cal space, the total number of potential co-occurrences is K× (K− 1)× 1
2

= 7140.

This gap suggests the presence of some determinism, possibly objective and scien-

tific (Popper 1959), or sociological (Kuhn 1970), since the explored technological

combinations are substantially less numerous than all their potential co-use. On

average, the mean number of patents fkl in which two technologies are used to-

gether is 44. Value fkl ranges between 1 and 6,650, implying a considerable variance

in technological co-occurrences. In fact, the distribution of fkl is positively skewed,

implying notable departure from normality.

Turning to the relatedness measures, the most immediate observation is that

the mean value of both τP
kl and τNP

kl is negative and significantly below 0. This sug-

gests that most technological combinations are unexpected as compared to what

should be expected under the random co-occurrence hypothesis. This reflects,

on the one side, behaviours of technological exploration, and on the other side

choices of local (idiosyncratic) technological combination negatively captured by
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the metrics developed here. Both computations yield the same number of positive

relatedness; 25% of relatedness measures are positive, derived from the same ob-

servations. In terms of distributional spread, the parametric approach produces a

larger dispersion, with higher variance, lower minimal and higher maximal values.

Last, the distribution of the non-parametric measure is closer to normality than

the parametric counterpart, the latter having positive skewness and heavier tails.

However in both cases, the Kolmogorov-Smirnov test of normality rejects the null

hypothesis that the variables are distributed Normal.

Table A-1. Descriptive Statistics for fkl, τP
kl and τNP

kl

fkl τP
kl τNP

kl

Number of Observations 138,464.00 138,464.00 138,464.00
Mean 43.83 -1.70a -1.02a

Number of positive τkl - 35,876.00 35,876.00
Standard deviation 162.46 10.04 1.57
Minimum 1.00 -62.50 -7.22
Maximum 6,050.00 155.40 4.52
Skewness 12.91 3.37 -0.05
Kurtosis 259.82 30.52 2.98

KSb Test: H0 : F (Θ) ∼ ℵ(µ, σ2) 0.00 0.00 0.00

aMean value significantly below 0 at 5% level
bKS: Kolmogorov-Smirnov test of normality

Which of these two measures should one choose? The most immediate advan-

tage of the non-parametric approach lies in the interesting distributional properties

of the computed τNP
kl . Its distribution is very close, albeit not equal, to normality.

In this paper however, I opt for the parametric approach for two reasons. First,

unlike the non parametric setting, the parametric approach has already received

considerable attention in the literature. Hence this choice offers more consistency

with previous works (Teece et al. 1994, Breschi et al. 2003, Nesta and Saviotti
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2005). Second, the major advantage of τP
kl over τNP

kl is that it can be interpreted

as a Student statistics, so that one can evaluate the statistical significance of the

observed relationship between any two technologies. The rule of thumb here is

that when |τP
kl | > 1.96, one can reject the null hypothesis that the observed use

of any two technologies equals their random co-use. In other words, technological

relatedness is significant when |τP
kl | > 1.96.

By way of conclusion, let us consider the strength of the relationship between

both measures of technological relatedness. It appears that the Pearson’s corre-

lation coefficient and the Spearman’s rank correlation coefficient between τP
kl and

τNP
kl reach 0.70 and 0.86 respectively. This large correlation implies that our choice

will affect the computations of R only marginally. In fact, Subsection 5.3 explores

the robustness of the results by computing knowledge relatedness R at the firm

level using the non-parametric measure τNP
kl . It confirms that this choice does not

affect the direction and significance of the contribution of knowledge relatedness

to the firm productive efficiency.
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Table 1: Descriptive Statistics. Pooled Sample

Variable Unit Obs. Avg. Std.Dev. Min Max

Q 109× 1996 US$ 1,608 21,713.4 21,950.4 38.1 167,038.9
C 109× 1996 US$ 1,608 16,969.2 18,613.3 41.2 126,372.3
NC 109× 1996 US$ 1,608 8,070.4 9,629.9 26.6 72,567.3
RD 109× 1996 US$ 1,337 949.5 1,234.6 1.1 8,900.4
L Head count 1,608 91,432.5 96,541.4 647 876,000
E See Section 3 1,608 1,697.2 2,001.0 2.6 12,171.3
D See Section 3 1,608 49.3 20.7 3 98
D′ See Section 3 1,608 0.0 14.3 -50.5 43.9
R See Section 3 1,608 12.5 79.2 -66.1 1,943.4

Q: Sales
C: Gross value of plant and equipment
NC: Net value of plant and equipment
RD: R&D expenditures
L: Number of employees
E: Knowledge capital
D: Knowledge diversity
D′: Unexpected knowledge diversity
R: Knowledge relatedness
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Table 2: Sectoral Decomposition of the Main Variables. 1986-1996

Sectors N Q L (Q/L) ∆(Q/L) (R/Q) E D D′ R

CHEMa 29 13.0 55.9 232.6 4.83 6.47 1,705.5 46.2 -3.2 32.2

COMb 7 23.3 185.0 126.4 6.33 4.02 1,282.0 38.0 -8.2 67.4
ELECc 17 22.7 129.9 174.7 5.99 6.67 3,162.1 60.1 -0.1 0.6

FOODd 6 21.7 135.1 160.8 6.12 1.42 359.9 29.2 -10.1 19.1
INSTe 7 12.1 75.6 160.4 2.63 6.38 2,672.7 64.2 7.6 -5.7

IND. MACHf 16 21.6 98.2 219.6 5.24 5.05 3,134.2 54.9 -5.1 -5.0
METALg 11 13.0 34.9 372.6 5.75 1.67 501.9 46.4 6.1 -2.8

OILh 5 41.4 50.2 824.7 5.79 2.60 1,776.2 44.4 -5.5 16.2
OTHERi 22 14.7 61.1 241.7 4.24 2.90 513.5 40.5 0.0 6.0
PETROLj 9 29.9 63.4 471.1 4.16 1.17 1,686.2 58.6 9.4 -5.9

TRANSPk 27 35.4 141.2 251.4 6.78 4.50 1,434.4 51.2 3.9 17.5

Mean (Total) (156) 21.7 91.4 237.4 5.31 4.59 1,697.2 49.3 0.0 12.5

F-Testl 31.98 36.08 5.55 0.29 58.48 44.80 29.53 22.92 8.22
R-Squarem 0.167 0.184 0.034 0.002 0.303 0.219 0.156 0.126 0.049

a CHEM: Chemicals and allied products (Including drugs)
b COM: Communications
c ELEC: Electronic and other electric equipment
d FOOD: Food and kindred
e INST: Instruments and related products
f IND. MACH: Industrial machinery and equipment
g METAL:Primary metal industries
h OIL: Oil and gas extraction
i OTHER: Other industries
j PETROL: Petroleum and coal products
k TRANSP: Transportation equipment
l F-Test computed from the analysis of variance, where H0 is all sector means are equal. All F-Test
statistics significant at one percent level except for ∆(Q/L).
m R-Square represents the proportion of variance of all variables explained by the sector.
N : Number of firms
Q: Deflated sales (In Billions of 1996 US Dollars)
L: Number of employees (In thousands)
(Q/L): Deflated sales per employee (Thousand of 1996 US Dollars)
∆(Q/L): Annual growth rate of labour productivity
(R/Q): R&D intensity
E: Knowledge capital
D: Knowledge diversity
D′: Unexpected knowledge diversity
R: Knowledge relatedness
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Table 3: Correlation Matrix. 1986-1996. Pooled Sample. N = 1,608

(q − l) (c− l) l e d d′ r (NC/C)

(q − l) 1.000 0.852 -0.551 -0.065 -0.049 -0.032 0.021 -0.079
(c− l) 1.000 -0.452 -0.017 0.027 0.037 0.016 -0.196
l 1.000 0.487 0.432 0.194 -0.042 0.009
e 1.000 0.806 0.282 -0.173 -0.195
d 1.000 0.701 -0.420 -0.337
d′ 1.000 -0.372 -0.263
r 1.000 0.223
(NC/C) 1.000

(q − l): Natural logarithm of deflated sales per employee
(c− l): Natural logarithm of gross capital per employee
l: Natural logarithm of labour
e: Natural logarithm of knowledge capital
d: Natural logarithm of knowledge diversity
d′: Natural logarithm of unexpected knowledge diversity
r: Natural logarithm of knowledge relatedness
(NC/C): Age of Capital
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Table 4: Knowledge and Productivity. Pooled Sample

OLS LSDV AR1 FD GMM
(1) (2) (3) (4) (5)

Capital per employee 0.690 0.503 0.564 0.558 0.548
[0.037]*** [0.020]*** [0.044]*** [0.049]*** [0.085]***

Labour -0.197 -0.345 -0.347 -0.379 -0.325
[0.019]*** [0.018]*** [0.039]*** [0.051]*** [0.070]***

Know. Capital 0.035 0.206 0.153 0.104 0.240
[0.012]*** [0.014]*** [0.032]*** [0.031]*** [0.049]***

Know. Diversity -0.101 -0.033 -0.023 0.025 -0.046
[0.026]*** [0.024] [0.041] [0.045] [0.058]

Know. Relatedness 0.894 0.589 0.285 0.133 1.017
[0.282]*** [0.158]*** [0.120]** [0.067]** [0.334]***

Newness 1.005 0.208 0.144 0.160 0.515
[0.124]*** [0.086]** [0.128] [0.147] [0.287]*

Intercept -0.410 4.346 0.033 0.012 -
[2.480] [1.236]*** [0.016]** [0.021]

Observations 1,608 1,608 1,608 1,448 1,448
Adjusted R2 0.780 0.780 0.813 0.788 -
Number of firms 156 156 156 155 155
Hansen Test 146.4
Ar1 -1.56
Ar2 -1.02

Standard errors in brackets.
* significant at 10%; ** significant at 5%; *** significant at 1%.
All models include the full set of year dummies. The OLS specification includes
a full set of (SIC two-digit) industry dummies.
All GMM-difference results pertain to the first step. The Hansen tests correspond to
the second step and are χ2 distributed. All explanatory variables are instrumented
using two lags.
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Table 5: Knowledge and Productivity. Sample Decomposition. Within Regressions. Dependent
Variable: Deflated Sales per Employee

90% Sample High Tech. Medium Tech. Low Tech. AMR EU
(6) (7) (8) (9) (10) (11)

Capital per employee 0.339 0.474 0.493 0.464 0.580 0.285
[0.023]*** [0.037]*** [0.034]*** [0.046]*** [0.036]*** [0.032]***

Labour -0.254 -0.122 -0.407 -0.471 -0.305 -0.201
[0.019]*** [0.032]*** [0.032]*** [0.042]*** [0.035]*** [0.025]***

Know. Capital 0.160 0.208 0.253 0.068 0.223 0.145
[0.013]*** [0.025]*** [0.024]*** [0.041] [0.023]*** [0.022]***

Know. Diversity 0.019 -0.002 -0.005 -0.043 -0.007 -0.034
[0.022] [0.055] [0.032] [0.082] [0.034] [0.058]

Know. Relatedness 0.578 1.296 0.588 1.352 0.790 0.150
[0.144]*** [0.438]*** [0.197]*** [1.304] [0.199]*** [0.247]

Newness 0.143 0.599 0.272 -0.407 0.119 -0.006
[0.080]* [0.152]*** [0.142]* [0.214]* [0.139] [0.108]

Intercept 5.619 -3.619 4.811 1.7 1.293 9.317
[1.125]*** [3.323] [1.631]*** [10.182] [1.523] [1.903]***

Observations 1,446 549 508 326 639 512
Adjusted R2 0.621 0.691 0.855 0.815 0.836 0.769
Number of firms 152 53 50 31 61 52
F-Stat 158.6*** 80.9*** 191.1*** 92.5*** 207.7*** 110.4***

See previous table footnote.
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Table 6: Knowledge and Productivity. Alternatives Measures of Knowledge Capital, Diversity
and Relatedness. Within Regressions on Pooled Sample. Dependent Variable: Deflated Sales
per Employee

(RD/Q) Dispersion WARNP WAR
′
P WAR

′
NP

(12) (13) (14) (15) (16)

Capital per Employee 0.573 0.499 0.509 0.513 0.512
[0.024]*** [0.020]*** [0.020]*** [0.020]*** [0.020]***

Labour -0.157 -0.348 -0.339 -0.336 -0.336
[0.018]*** [0.018]*** [0.018]*** [0.018]*** [0.018]***

Know. capital 0.111 0.206 0.204 0.191 0.195
[0.014]*** [0.015]*** [0.014]*** [0.014]*** [0.014]***

Know. diversity -0.040 -0.001 -0.037 -0.037 -0.039
[0.027] [0.028] [0.024] [0.024] [0.024]

Know. Relatedness 0.130 0.604 0.992 0.038 -0.020
[0.344] [0.158]*** [0.277]*** [0.015]** [0.019]

Newness 0.010 0.205 0.211 0.184 0.180
[0.103] [0.086]** [0.086]** [0.086]** [0.086]**

Intercept 7.015 4.199 3.771 8.641 8.763
[2.639]*** [1.233]*** [1.438]*** [0.375]*** [0.374]***

Observations 1,338 1,608 1,608 1,608 1,608
Adjusted R-squared 0.765 0.780 0.780 0.779 0.778
Number of firms 139 156 156 156 156
F-Stat 282.3*** 366.2*** 366.4*** 364.4*** 362.7***

See previous table footnote.
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Table 7: Non-Linear Least Squares with Year and Firm Fixed Effect. Dependent Variable:
Deflated Sales per Employee

WARP WAR
′
P

(17) (18) (19) (20)

Capital per employee 0.592 0.519 0.593 0.514
[0.018]*** [0.036]*** [0.018]*** [0.036]***

Labour -0.234 -0.044 -0.234 -0.057
[0.016]*** [0.031] [0.016]*** [0.031]*

Know. Base 1.935 4.990 1.966 15.615
[0.490]*** [1.441]*** [0.475]*** [3.475]***

Know. Capital 0.549 0.184 0.539 0.066
[0.122]*** [0.053]*** [0.115]*** [0.017]***

Know. Relatedness 0.233 0.746 0.251 0.910
[0.175] [0.078]*** [0.167] [0.025]***

Newness 0.082 0.626 0.080 0.585
[0.085] [0.154]*** [0.085] [0.152]***

Intercept -2.513 -6.064 -2.550 -18.770
[0.588]*** [1.733]*** [0.572]*** [4.161]***

Observations 1,608 549 1,608 549
Adjusted R-squared 0.777 0.687 0.777 0.693
Number of firms 157 53 157 53
F-Stat 350.8*** 76.3*** 350.8*** 78.3***

See previous table footnote.
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Département de Recherche sur l’Innovation et la Concurrence
250, rue Albert Einstein
06560 Valbonne - France
Tel: +33 (0)4 93 95 42 39
Fax: +33 (0)4 93 65 37 98

Email: lionel.nesta@ofce.sciences-po.fr

Abstract

This paper develops a model linking firm knowledge with productivity. The model
captures three characteristics of firm knowledge - capital, diversity and relatedness - that
are tested on a sample of 156 of the world’s largest corporations. Panel data regression
models suggest that unlike knowledge diversity, knowledge capital and knowledge relatedness
explain a substantial share of the variance of firm productivity. Activities based on a related
set of technological knowledge are more productive than those based on unrelated knowledge
because the cost of coordinating productive activities decreases as the knowledge used in
these activities is being integrated efficiently. The traditional econometric specification has
repeatedly underestimated by 15% the overall short-run contribution of intangible assets to
firm productivity. This underestimation becomes fiercer in high technology sectors.
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