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1 Introduction

The economic literature differentiates between several kinds of uncertainty (cf. Dequech 2006).

According to Knight (1921), uncertainty characterizes situations where the states of nature are

known but their probabilities are not. The multi-prior maximin expected utility (EU) approach of

Gilboa and Schmeidler (hereafter ’GS’) (1989) allows us to model this type of uncertainty. However,

such an approach is inappropriate for decision problems with general uncertainty where neither

states of nature nor their probabilities are known. GS (1995, 2001a) develop the case-based decision

theory (CBDT) for decision-making in situations with general uncertainty. The CBDT is applied to

economic problems, among others, by GS (1997b, 2001b), Blonski (1999), and Jahnke et al. (2005).

The portfolio investor encounters general uncertainty because it is often hard to imagine all states

of nature relevant for the asset allocation problem. In particular, general uncertainty can be seen

as uncertainty whether the pre-selected asset allocation model is correct or/and the underlying

assumptions are valid. To our knowledge there is no literature dealing with this type of uncertainty

in portfolio context. This paper aims is to fill this gap and to assess general uncertainty in portfolio

selection with the tools of the case-based reasoning. We adopt the CBDT for this purpose and

investigate which case-based strategies lead to portfolio performance improvement.

We quantify general uncertainty as a degree of the investor’s distrust in the possibility of achieving

positive utility effects from investing according to the pre-selected formal model for asset allocation.

The time-varying model belief degree is considered as a proxy for general uncertainty. The dynamic

choice of the model belief degree is implemented using a case-based approach in a two stage procedure.

In the first stage the investor applies a conventional portfolio rule, while in the second stage he uses

case-based reasoning for determining his degree of model belief. The CBDT investor makes decisions

solely using his experience, past performance and similarity of past situations to the present. The

similarity function quantifies the distance between two situations; its form depends on the value

of the indifference parameter. The decision to choose should be close to decisions in situations

with favorable and far from those in situations with unfavorable past outcomes. The aspiration level

distinguishes between favorable and unfavorable outcomes. It is adjusted using incoming information.

The case-based approach amends the EU reasoning in situations without information about pos-

sible states of nature (GS 2001a, p. 27ff). The linkage between the CBDT and EU rules is shown

by Matsui (2000). The CBDT is grounded on analogical thinking where current preferences depend

on past experience. It implies bounded rationality in the sense of March and Simon (1958). De-

viations from rationality influence the formation of general equilibrium due to limits to arbitrage.

Behavioral phenomena arise due to biases in people’s belief formation and/or due to preferences

concerning decision-making based on given beliefs (cf. Barberis and Thaler 2003). Alternatively to

the EU approach, the prospect theory of Kahneman and Tversky (1979) and its successors provides

a successful description of economic agent preferences. On the contrary, the CBDT is not an alterna-

tive, but an amendment to the EU and prospect theories. Our case-based investor may exhibit the

representativeness bias (too much weight on recent patterns in the data), conservatism (too much

weight on prior beliefs), anchoring (too much importance on the starting value) or availability biases.

However, we see the focus of this paper not on explaining behaviorial effects but on exploring which

patterns of case-based decisions could be of interest for the portfolio investor.

The agent considered in the paper is an uninformed price-taker, maximizing his EU for a given risk
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aversion coefficient. He is not a representative investor, but merely a person willing to account for

general uncertainty by means of the case-based approach. The indifference and memory parameter

values determine his case-based strategy. The empirical study explores which case-based strategies

bring the best investment results. Pure EU maximization strategies and simple portfolio rules as

well as modified EU approaches are used with and without case-based amendment. The CBDT

investor with a small risk aversion achieves the best EU results for good memory and high indiffer-

ence degree. Such an investor may exhibit anchoring and conservatism biases. His aspiration level

and model belief degree would be gradually adjusted to new information. This corresponds to the

fundamental trading strategy oriented on predictability of the future portfolio performance by the

past one. On the contrary, the investor with a large risk aversion mostly benefits when his CBDT

strategy is characterized by poor memory and a low indifference degree. This implies quick adjust-

ments of the aspiration level and model belief degree. Such an investor may exhibit availability and

representativeness biases. This is a variation of the active trading strategy, implying improvement

of arbitrage on financial markets.

The empirical evidence provides insights about the link between case-based reasoning and mar-

ket efficiency. Active trading should be profitable on markets with a high efficiency degree, while

fundamental trading is more appropriate for non-efficient markets, characterized by a higher degree

of predictability. Investigating the portfolio of Dow Jones Industrial stocks, we find that benefits of

the fundamental strategy reduce over time, while the positive effects of following the active trading

case-based strategy increase. This supports the hypothesis of increasing US market efficiency. The

active case-based trader quickly reacts to newcoming information. Such investment strategy improves

market efficiency and may survive in financial markets in the long run. These findings shed light on

the consequences of applying CBDT to model uncertainty (MU) assessment in portfolio selection.

The rest of the paper is organized as follows. Section 2 discusses the issues of risk and uncertainty

in portfolio selection. Our case-based methodology to assessment of general uncertainty in portfolio

problems is introduced in Section 3. Section 4 provides the empirical study, while Section 5 concludes

the paper. The technical details are provided in the Appendix and in the supplement available on

the JEBO website.

2 Risk and Uncertainty in Portfolio Selection

2.1 Asset Allocation under Uncertainty

The conventional wealth allocation approach suggests choosing portfolio weights by maximizing the

investor’s EU. In the Markowitz (1952) framework, the EU is maximized in the mean-variance proce-

dure by finding the optimal trade-off between the expected portfolio return and risk associated with

future investment outcomes. The unknown model parameters cause estimation risk, its importance

recognized since Klein and Bawa (1976). Estimation errors, especially those in expected returns,

seriously hamper portfolio performance (Best and Grauer, 1991). Bayesian (Jorion 1986, Polson and

Tew 2000, Kumar 2006) or frequentistic (Ledoit and Wolf 2003, ter Horst et al. 2006, Kan and Zhou

2006, Golosnoy and Okhrin 2007) methods reduce of the estimation risk in portfolio selection. The

portfolio rule should be adjusted using one or a combination of the aforementioned methods.
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However, the EU-based portfolio strategies often perform unsatisfactorily even after adjusting

for estimation risk (Michaud, 1998). They may be unable to beat simple benchmark approaches in

terms of the out-of-sample EU. Constraining portfolio weights (Frost and Savarino, 1988, Grauer and

Shen, 2000, Jagannathan and Ma, 2003) or different modifications to equal weight portfolio strategies

(Black and Litterman, 1992, DeMiguel et al., 2008) frequently outperform Markowitz-based rules.

The non-satisfactory performance points at possible misspecification of the pre-selected models. The

investor remains unaware of the true model; thus accounting for MU can mitigate the negative effects

of false model assumptions.

Economic literature differentiates uncertainty types depending on the amount of information about

states of nature and their probabilities. According to Knight, the issue of risk refers to situations

where the states of nature as well as their probabilities are given, while uncertainty refers to sit-

uations where the states of nature are given but the probabilities are unknown. Moreover, there

exist situations in which the decision-maker faces general uncertainty or structural ignorance (cf.

GS 2001a), where even states of nature are neither known nor can be easily constructed. The EU

framework is appropriate for decision making under risk. GS (1989) propose the maximin EU ap-

proach for situations with unknown probabilities and known states of nature. However, the EU rule

is inappropriate for situations with unknown probabilities and states of nature. GS (1995, 2001a)

develop the CBDT for decision-making in such situations. The case-based economic agent makes

decisions using his experience and the similarity of encountered situations to the current one. Next

we discuss the assessment of Knightian and general uncertainty in portfolio selection.

2.2 Assessment of Knightian Uncertainty

Decision making under Knightian uncertainty is grounded on the papers of GS (1989) and Cham-

berlain (2000). Their probabilistic maximin approach implies the choice of the EUs over the set of

alternative prior distributions. The application of maximin to MU is based on choosing the most

favorable variant from the set of least favorable alternatives. The maximin-based multiprior ap-

proaches are widely used for uncertainty modeling in economic applications (cf. Hansen and Sargent

2001, Kogan and Wang 2003, Aiolfi and Favero 2005).

An elegant way to quantify the degree of Knightian uncertainty in portfolio context in a Bayesian

framework is developed by Pastor (2000) and Pastor and Stambaugh (2000). The prior variance

of the intercept in asset-pricing factor models serves as a proxy for the uncertainty degree. The

size of the variance determines the trade-off between the influence of the prior density and of the

likelihood function on the posterior density. In the case of low uncertainty, the prior plays a more

important role; otherwise the investor gives more weight to the likelihood (i.e. to the data). Avramov

(2002) assesses MU by averaging alternative forecasting models, extending the approach of Pastor.

Tu and Zhou (2004) additionally consider the uncertain data-generating process (DGP) by means of

Bayesian updating of prior beliefs about the true DGP.

The quantification of Knightian uncertainty in portfolio selection is combined with decision making

in a multiprior framework by Wang (2005) and Garlappi et al. (2007). Wang extends the approach

of Pastor by considering an investor with a maximin portfolio problem,

max
w

min
ω

EU(w, ω), (1)
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where the EU is maximized with respect to the portfolio weights w and minimized with respect to

the MU degree ω. The approach of Wang (2005) is Bayesian; the prior variance of ω determines the

degree of uncertainty, which could be seen as a degree of trust in the factor model. Garlappi et al.

propose a frequentistic multiprior approach to MU. They impose additional constraints on model

parameters, allowing a wide range of possible alternative distributions for the uncertain values. The

size of the constraints influences asset allocation and represents the degree of Knightian uncertainty.

This approach is based on selecting from a set of different models; unfortunately it is limited by a

relatively small number of alternatives.

However, it remains unclear why MU should be Knightian (i.e. limited by any clearly restricted

set of alternatives). In real economic situations there is uncertainty about the underlying distribution

of asset returns or whether this distribution will be unchanged in the future. The investor may be

uncertain whether his investment opportunities are representative enough as well as about systematic

risk of his investments. Hence, there are very different uncertainty types, so it may be difficult to

imagine all states of nature, not even considering assigning utility outcomes to each possible state.

The EU reasoning is inappropriate for this type of modeling, where analogy-based methods should

be used (GS 2001a, p. 45ff).

2.3 Assessment of General Uncertainty

The portfolio investor unable to imagine possible states of nature faces general uncertainty. GS

(2001a) suggest using the tools of the CBDT for making decisions in these situations. The case-based

reasoning amends the EU rule and is grounded not on probabilistic but on psychological aspects of

decision-making. Next we propose a way of adjusting conventional portfolio rules by introducing a

degree of general uncertainty.

We relate general uncertainty to the strength of an investor’s belief in the chosen model. Uncer-

tainty is quantified as a degree of disbelief in the possibility of achieving some EU gains by investing

in risky assets compared to the risk-free alternative. The degree of model belief at time point t is

denoted by θt ∈ [0; 1] where θt = 0 stands for complete disbelief while θt = 1 indicates complete

belief. The interval is restricted from zero to unity in order to escape model “overconfidence” θt > 1

and “negative belief” θt < 0. These issues remain beyond the scope of the paper, but may occur in

practical situations. Accordingly, the degree of disbelief is quantified by 1 − θt.

The portfolio strategy with general uncertainty is described as follows. The optimal portfolio

weights ŵt at time point t are estimated using one of the portfolio selection models. We suggest

using the model belief degree for the linear weighting of wealth proportions chosen with a non-CBDT

rule. The optimal weights of risky assets adjusted to the model belief degree are given by

v̂t = θtŵt. (2)

This way of modeling originates from the idea of adjusting portfolio composition by moving along

the capital market line (CML). If the degree of model belief θt decreases, the investor moves on the

CML towards the risk-free rate. This is equivalent to choosing a larger coefficient of risk aversion,

similar to the idea of ter Horst et al.

5
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3 Case-Based Approach to General Uncertainty

Now we introduce the CBDT approach for determining the model belief degree θt. First we describe

the essence of the case-based approach, then we adopt the CBDT for our purposes. Finally, we

discuss the role of case-based reasoning in portfolio selection.

3.1 The Essence of Case-Based Approach

The CBDT grounds decision making on previous experience and on the similarity of previous sit-

uations to the current one. The economic agent chooses current action by maximizing utilities of

previous outcomes weighted by a similarity function. The similarity function provides the distance

between the current and previously encountered problem-act pairs. GS (1997a) introduce similarity

of acts for situations where the same problem should be solved many times and there is a large

number of different acts to choose from.

To formalize the approach let Θ denote the discrete set of possible/experienced acts. The CBDT

selects the decision θ∗t ∈ Θ at the time t maximizing the objective function Q(θt)

θ∗t = arg max
θt∈Θ

Q(θt) with Q(θt) =
∑
θ∈Θ

(U(θ) − Ht)s(θ, θt).

The objective function is a weighted sum of the excess utilities, calculated as the difference between

realized utilities of possible outcomes θ ∈ Θ and the aspiration level Ht, measuring the decision

maker’s satisfaction. The aspiration Ht differentiates between favorable and unfavorable outcomes

and is updated with incoming information. The similarity function s(θ, θt) penalizes the distance

between decision θ∗t and possible outcomes θ ∈ Θ. The current decision (act) θ∗t should be chosen

“close” to decisions in situations with favorable and “far” from decisions in situations with unfavor-

able outcomes. The distance depends on the indifference parameter; low indifference indicates large

distance even between similar situations. The CBDT decision maker assumes that acts favorable for

a current problem in the past will also be favorable in the future. Thus the chosen θ∗t can be seen as

a CBDT forecast for the optimal model belief degree in the next period.

The implementation of case-based procedure depends primarily on the choice of the similarity

function and the way the aspiration level is updated. Extensive discussion of these issues for various

economic situations is provided by GS (2001a).

3.2 Selecting Degree of Uncertainty

The act similarity, proposed by GS (1997a), is appropriate for our problem because it remains the

same for all periods. The belief degree θt specifies the act and reflects investor’s uncertainty. We

consider a continuous set of possible acts and determine the optimal degree of model belief θ∗t ∈ [0; 1]

by maximizing the case-based objective function Q(θt):

θ∗t = arg max
θt∈[0,1]

Q(θt), with Q(θt) =

∫ 1

0

∆Ut(θ)s(θt, θ)dθ, (3)
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where s(·) is a similarity function for acts, ∆Ut(θ) = Ut(θ) − Ht is a hypothetical excess utility

for a fixed θ, and Ht denotes the aspiration level. In the classical CBDT (e.g. by visiting different

restaurants), a person chooses just one and remains unaware of realizations of other alternatives. Our

investor can easily determine the results of all hypothetically possible choices of θ at any point of

time. Thus we calculate the hypothetical excess utilities ∆Ut(θ) for each choice of θ ∈ [0; 1] and then

select the optimal θ∗t by maximizing Q(θt). Gilboa et al. (2002) axiomatize hypothetical reasoning.

The hypothetical CBDT returns rp,i(θ) at time i = 1, . . . , t for any θ are given by

rp,i(θ) = θŵ′
i−1ri + (1 − θŵ′

i−11)rf = θ(rp,i − rf ) + rf , (4)

where ŵi−1 denotes the portfolio composition at time i − 1 and rp,i denotes the realized portfolio

return from portfolio rules without general uncertainty. Thus for each θ we get a time series of

portfolio returns {rp,i(θ)} of length t. Then we calculate the hypothetical utility function by

U(θ) = θE(rp) + (1 − θ)rf − γθ2

2
V (rp). (5)

The expectation E(rp) and variance V (rp) are estimated using the whole history of realized {rp,i}.
Here we neglect the variability in rf because it is tiny compared to those of risky assets.

The aspiration level is a “happiness point” of the investor. The acts outperforming the aspiration

level are perceived as favorable, while underperforming acts are regarded as unfavorable. We do

not consider exogenous (Oechssler, 2002) or uncertain aspirations (MacLeod and Pingle, 2005), but

use endogenous aspirations depending on individual payoff history only. Our endogenous aspiration

level is updated with outcomes of the investor’s acts. Because the portfolio problem stays the same,

the aspiration updating corresponds to the investor’s learning procedure, similar to game theory

literature (Boergers and Sarin, 2000). We utilize the proposition of GS (2001a, p. 155ff) to update

aspirations according to the exponential rule,

Ht = (1 − λ)Ht−1 + λut, (6)

with a smoothing λ ∈ [0; 1] denoting the memory strength. The exponential rule is widely used for

adjustments of the aspiration level for innovations (cf. Hanaki et al. 2005). GS (2001a, p. 159ff)

argue that the CBDT can also be used with some other aspiration updating rules. The aspiration

innovations are defined by ut = rp,t(θ
∗
t−1) − γr2

p,t(θ
∗
t−1)/2. The aspiration level can be written as

Ht = H0 + λ

t∑
i=1

(1 − λ)t−irp,i(θ
∗
i−1) −

γ

2
λ

t∑
i=1

(1 − λ)t−ir2
p,i(θ

∗
i−1), (7)

where H0 denotes the initial level. Thus it is calculated by exponential smoothing of the realized

rp,t(θ
∗
t−1) and squared r2

p,t(θ
∗
t−1) CBDT returns.

The choice of the similarity function is of great importance for the case-based reasoning. We

consider the modulus similarity function:

s(θi, θj) = 1 − |θi − θj |κ. (8)
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Other similarity functions may also be of interest (Billot et al., 2005). The indifference parameter

κ ∈ (0, +∞) determines the form of the similarity function. Small values of κ lead to a large distance

even between very similar acts. The modulus similarity function is linear for κ = 1, concave for

κ > 1 and convex for κ < 1.

To simplify the problem (3), we provide an explicit expression for the objective function Q(θt)

for the given form of hypothetical utility (5), aspiration adjustments (6) and similarity function (8).

Proposition 1 is obtained by integrating out θ from Q(θt).

Proposition 1. For the modulus similarity function s(θi, θj) = 1 − |θi − θj |κ with κ ∈ (0, +∞), it
holds that the case-based objective function Q(θt) from (3) is given by

Q(θt) = (rf − Ht) × c1 + (E(rp) − rf ) × c2 − γ

2
V (rp) × c3,

with c1 = 1 − θκ+1
t + (1 − θt)κ+1

κ + 1
, c2 =

1
2
− θκ+2

t + (1 − θt)κ+1(1 + κ + θt)
(κ + 1)(κ + 2)

, and

c3 =
1
3
− 2θκ+3

t + (1 − θt)κ+1[(1 + κ)(1 − θt) + (1 + κ + θt)(1 + κ + 2θt)]
(κ + 1)(κ + 2)(κ + 3)

.

The influence of the similarity function s(·) on the objective Q(θt) is complex. The investor perceives

the similarity of different portfolio choices based on the indifference parameter κ, which ascertains

how strongly the investor distinguishes between different θs. Moreover, the κ value determines the

inclination of the investor to the sub-optimal choices. A value of κ close to zero would give the unit

weight to the largest utility and zero weights for the utilities with other θs. In this case the optimal θ∗t
would be the value providing the best historical CBDT performance. For large κs the investor would

hardly differentiate between utilities; thus the chosen θ∗t may be far from the value of θ maximizing

the historical EU. The Appendix provides more discussion on the similarity functions.

3.3 The Role of Case-Based Reasoning in Portfolio Selection

The purely EU-maximizing investor with a risk aversion γ has no need to be case-based, because

following CBDT implies departures from Savage rationality. He would likely follow some of the

conventional portfolio rules. Nevertheless, some investors may be concerned about MU and would

like to account for it. Their decision process for uncertainty modeling can be formalized by case-based

intuition. Our CBDT methodology quantifies MU in portfolio selection.

The case-based portfolio investor determines his model belief degree θ∗t by maximizing his objective

function Q(θt) for the given risk aversion γ. The optimal θ∗t is calculated for the case-based strategy,

characterized by parameters (κ, λ). Thus the case-based approach is not really an improvement in

the portfolio selection procedure but a possible pattern of the investor’s behavior in the presence

of MU. The investigation of case-based decision patterns via perception of uncertainty in portfolio

application is a core point of our study.

8
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Considering the patterns of case-based decisions, we aim to answer two questions. The first one is

which patterns of case-based decision making are successful. This is of importance because investors

with given γ following successful strategies (κ, λ) would stay in the market. On the contrary, the

non successful CBDT investors would lose the money and abandon the market in the long run. This

intuitively shows that the prevailing type of CBDT investors would potentially follow some successful

(κ, λ) strategies. The second question is on the interpretation of these successful case-based strategies.

Empirical study in Section 4 provides answers to both questions.

4 Empirical Study

The empirical study has the following structure. First we introduce the conventional non-CBDT

portfolio rules. Then we describe the data and methodological details of the CBDT approach in

portfolio selection. Finally, we provide and discuss the empirical evidence.

4.1 Conventional Asset Allocation Procedures

We consider the economy with k risky and one risk-free assets. Our investor chooses the portfolio

weights w by maximizing the mean-variance objective function for the portfolio return rp:

max
w

E(rp) − γ

2
V (rp) with rp = w′r + (1 −w′1)rf , (9)

where γ denotes a risk aversion coefficient, r is a k-dimensional vector of risky asset returns with

E(r) = µ, V (r) = Σ. The problem (9) corresponds to the maximization of the expected quadratic

utility. Now we introduce several approaches for selecting the portfolio weights w.

4.1.1 Markowitz-Based Procedures

The classical Markowitz optimal weights depend on the unknown true distribution parameters (µ,Σ).

We use the classical sample estimators (µ̂, Σ̂) based on n past returns. The true w and estimated

ŵ Markowitz optimal weights are given by

w =
1

γ
Σ−1(µ − rf1), and ŵ =

1

γ
Σ̂−1(µ̂ − rf1). (10)

The practical application of Markowitz weights (10) often leads to unsatisfactory results primarily

due to estimation errors in µ̂ and Σ̂ (cf. Michaud). Estimation risk could be mitigated by various

methods, discussed in Section 2.1. For its reduction we combine the advantages of Jorion’s Bayesian

approach and the shrinkage methodology of Ledoit and Wolf. The shrunk covariance matrix is

estimated according to

Σ̂LW = ηΣ̂ + (1 − η)F, (11)

9
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where Σ̂ is a sample covariance matrix, F is a covariance matrix from the one-factor model, and η is

a shrinkage coefficient defined by Ledoit and Wolf. The shrunk mean returns are computed according

to the Jorion procedure:

µ̂J = (1 − φj)µ̂ + φjµ
G1, (12)

where µ̂ denotes the sample mean, µG is the mean of the global minimum variance portfolio, and

φj is a shrinkage coefficient defined by Jorion. The estimated optimal weights ŵJ,LW are obtained by

substituting the shrinkage parameters µ̂J and Σ̂LW into the EU maximization problem (9).

4.1.2 Simple Rules for Portfolio Selection

Simple investment rules are not justified by the EU approach but yield good results in practical

applications. The recent overview of these methods is given in DeMiguel et al. Here we consider the

two simple equal-weight approaches widely used in practice. The first alternative is to choose equal

weights for all k risky and the risk-free assets. The weights of risky assets and the fraction of wealth

invested riskily are given by

wi =
1

k + 1
, and

k∑
i=1

wi =
k

k + 1
. (13)

The second alternative is based on the capital market line (CML) consideration and is developed in

spirit of Black and Litterman. The investor chooses equal weights for all risky assets and constructs

the composite asset with return rct = (r1t + ... + rkt)/k. Then the portfolio problem is reduced to

allocation between the composite and risk-free assets. We use the sample estimator for the composite

asset variance σ̂2
c and estimate the mean µ̂c along the CML by

µ̂∗
c = rf +

σ̂c

σM
(µM − rf ), (14)

where (µM , σ2
M) are the long-term parameters of the market portfolio proxy. Then the fraction of

wealth invested in the composite risky asset is given by

wc =
1

γ

µ̂∗
c − rf

σ̂2
c

, (15)

so the weight of each risky asset is given by wi = wc/k for i = 1, ..., k. This approach combines the

advantages of both Markowitz and CAPM procedures.

4.1.3 Constrained Markowitz-based Portfolio Selection

Constraining portfolio weights improves Markowitz-based procedures. Introducing constraints is

advocated among others by Frost and Savarino (1988), Grauer and Shen (2000), and Jagannathan

and Ma (2003). It avoids extreme portfolio positions while preserving the advantages of Markowitz

rules. These procedures provide a good out-of-sample portfolio performance in practical applications,
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see DeMiguel et al. Note that analytical solutions for constrained optimization problems are often

unavailable; consequently numerical methods should be use. We implement the constraints by solving

the problem (9) with the portfolio weights of risky assets restricted by

0 ≤ wi ≤ 1/a for i = 1, ..., k. (16)

We impose equal constraints for all risky assets. The choice a = k guarantees w′1 ≤ 1, implying no

risk-free borrowing or lending.

4.2 Data and Methodological Issues

In our study the US investor allocates his wealth to risky assets listed in the Dow Jones Industrial

Average Index (DJIA). The US 3-month T-Bill rate serves as a proxy for the risk-free rate. The

asset returns are based on weekly prices for the period from 01.01.1973 to 06.10.2005, in total 1709

observations, for k = 24 stocks permanently listed in the DJIA. The October 1987 crash has induced

improvements in financial market regulation. In order to investigate whether our findings are valid

for recent history, we report the results for k = 30 Dow Jones stocks for the subperiod from 01.01.87

to 06.10.2005, in total 980 observations. All data is taken from DataStream.

The CBDT approach is applied to three groups of portfolio rules. The first group consists of

pure EU-maximization approaches, namely simple Markowitz strategy (10), the Jorion approach

(12) and the combined Jorion and Ledoit & Wolf approach (11, 12). The equal weight approach (13)

and equal weight strategy based on the CML consideration (15) constitute the second group. The

annualized parameters of the market portfolio proxy are taken to be µM = 0.13 and σM = 0.21 as

in Farrell (1997, p.46). The third group consists of the adjusted EU-approaches, namely constrained

procedures from the first group. We prohibit short selling and restrict the portfolio weights to [0, 1/k]

for all risky assets. The risk-free rate serves as a basic benchmark.

The expected utilities (9) are reported for all non-CBDT and CBDT approaches for the investor

with given γ = {2, 10, 25} and different case-based strategies (λ, κ). The chosen values of the memory

parameter λ ∈ {0, 0.1, 0.5, 0.9, 1.0} correspond to perfect, good, average, poor and no memory,

respectively. The indifference parameter of the similarity function takes the values κ ∈ {0.2, 1, 3.0},
defining convex, linear and concave functional forms. The moments in (9) are computed from the

whole sample of realized portfolio returns. The non-CBDT portfolio weights are calculated as in

Section 4.1. The respective CBDT portfolio weights are estimated by (2) with θ computed from (3)

with the modulus similarity function. Other similarity functions do not alter the results significantly.

As in Ledoit et al. (2003), we estimate the parameters (µ,Σ, σ2
c ) with n = 104 weekly returns. The

choice of other estimation periods (n = 78, 130) does not change the reported evidence. The history

of portfolio returns is needed for estimating portfolio expectation and variance for constructing the

CBDT objective function Q(θt). Thus we introduce a learning period for computing E(rp) and

V (rp). The first case-based decision is conducted at the end of the learning period at t = 0. The

initial aspiration H0 equals the average risk-free rate over the learning period. The one year (52

weekly observations) learning period is sufficient for getting reliable estimators of E(rp), V (rp). Their

precision is constantly improved by taking all newly incoming rps for estimation purposes. The case-

based investor with a given γ chooses the optimal θ∗0 by maximizing Q(θ0) for all κ values. The next

period aspiration H1 is obtained according to (6) updating for all λs.

11
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4.3 Empirical Results: Description

We report the effect of introducing case-based reasoning on portfolio performance. The best CBDT

strategies are identified and interpreted from an economic viewpoint. Finally, a graphical illustration

highlights the intuition behind case-based decision making. Thee EUs for both non-CBDT and

CBDT strategies based on the out-of-sample portfolio returns are presented in Table 1 for the period

1973-2005 (24 risky assets) and in Table 2 for the period 1987-2005 (30 risky assets) for given γs and

different constellations of (κ, λ).

The non-CBDT investor with risk aversion γ = 2 obtains the best overall results for the CML

approach. The CBDT-CML approach is of interest for the investor with good memory λ � 0 and

the concave similarity function with indifference κ > 1, which implies a high degree of similarity

between different acts. However, the advantages of the CBDT-CML approach decrease in the period

1987-2005 compared to the whole sample 1973-2005. The non-CBDT investor with γ = {10, 25} gets

the best results with the CML approach, too. However, the CBDT-adjusted Markowitz rules are

superior. They provide the best performance for the convex similarity function with a large distance

even between similar acts. The memory λ ≈ 0.5 is of advantage for γ = 10, while for γ = 25 the best

results are obtained for the weak memory λ ≈ 0.9, implying quick aspiration adjustments. These

findings are even more pronounced in the recent history of financial markets from 1987 to 2005.

The purely Markowitz-based approaches underperform the risk-free one. For this class of strategies,

the CBDT investor would avoid risky assets and invest almost exclusively in the risk-free one. This

evidence holds for all γs and is robust with respect to the sub-sample selection.

Thus we identify two CBDT strategies with the best performance for the considered portfolio rules.

The investor with small risk aversion should prefer the strategy with large indifference parameter κ >

1 and nearly perfect memory λ � 0. Such an investor hardly differentiates between acts with favorable

and unfavorable outcomes and heavily relies on historical information. He can be characterized as

a fundamental investor, following a variation of passive portfolio strategies. This approach implies

gradual changes of model belief degree and the presence of anchoring and conservatism behavioral

biases. Alternatively, the investor with large risk aversion should select a strategy with small κ < 1

and large λ � 1. Then the model belief degree would quickly react to recent incoming information.

Such an actively trading investor may exhibit representativeness and availability biases.

Figure 1 illustrates the time evolution of the model belief degree θ∗t for the CML and constrained

Markowitz-Jorion strategies. The CBDT parameters are κ = 3.0, λ = 0.1 for γ = 2 and κ = 0.2, λ =

0.9 for γ = 10. An increase in λ and decrease in κ accelerate the model belief adjustment. The

time evolution of θ∗t is characterized by three domains of attraction θd = {0, 0.5, 1}. They denote

the states of complete disbelief, average and complete belief. The optimal θ∗t strongly depends on

the past performance of the underlying non-CBDT strategies and of the risk-free rate evolution.

The optimal θ∗t from the interval [0.5, 1], characterizing strong belief degree, can hardly switch to

the interval [0, 0.5], characterizing weak belief, and vice versa. Previous investment failures increase

the disappointment of investor. On the contrary, past successes increase the investor’s confidence,

stimulating him to invest more in risky assets. The technical motivation for this effect is provided in

the Appendix. The aspiration level on Figure 2 visualizes the evolution of the investor’s satisfaction.

It varies around the risk-free rate and exhibits clusters coinciding with the periods of low and high

market volatility. This agrees with March and Simon’s proposition: “Over time, the aspiration level

12
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tends to adjust to the level of achievement ... the level of satisfactory performance is likely to be

very close to the actually achieved level of recent performance” (pp. 182-183).

4.4 Empirical Results: Discussion

The CBDT investor allows departures from rationality. Two successful case-based patterns premise

completely different behavior. The fundamental trading approach is based on perfect memory, with

low differentiation between acts. On the contrary, active trading exploits recent information and prof-

its from high differentiation between favorable and unfavorable outcomes. Consequently, fundamental

and active traders exhibit different behavioral biases. Now we provide an economic explanation for

why these case-based strategies are of interest.

Fundamental CBDT trading implies making decisions relying on good memory about acts and

outcomes. This would bring the highest benefit in situations with predictable returns and/or their

second moments. Predictability on asset markets points to departures from efficiency. Thus the

fundamental strategy may be more successful in markets, which are rather far from efficiency due to

limits to arbitrage. In our empirical study we investigate the success of CBDT on the established

US market. We consider the entire sample from 1973 to 2005 as well as two subsamples, from

1973 to 1986 and from 1987 to 2005. The predictability of the utility function could be separated

into predictability of portfolio return and predictability of portfolio variance. We illustrate the

predictability by providing the autocorrelations for the first and second moments of the equal weight

portfolio return for all periods, considered in the study.

Table 3 reports a drastic decrease of autocorrelations in the subperiod 1987-2005 compared to

whole period 1973-1986. This suggests that the US market updates more precisely upon new in-

formation. This indicates a decrease of predictability and increase of efficiency. Comparing the

case-based results for the period 1973-2005 with the results for the period 1987-2005 confirms the

evidence that the US market is becoming more efficient. Benefits from the fundamental strategy

have reduced over time. This can be interpreted as support for the hypothesis that acceleration

of information transfer improves arbitrage in the market. From this viewpoint the fundamental

CBDT investors would abandon efficient markets in the long run. On the contrary, the benefits from

case-based active trading have increased in the period 1987-2005. Active trading exploits the latest

information and can be interpreted as arbitrage. Thus the active CBDT strategy serves to improve

market efficiency. Consequently, such traders would survive in the long run.

This empirical evidence supports the CBDT application for the US market investor. The best

identified case-based strategies may mimic widely observed behavioral biases. The success of funda-

mental and active trading CBDT strategies is linked to the degree of market efficiency. This stresses

the importance of case-based decision making for general uncertainty assessment.

5 Summary

In this paper we quantify general uncertainty in portfolio selection using the case-based reasoning

of Gilboa and Schmeidler (2001a). The situations with general uncertainty are characterized by

an absence of information both about possible states of nature and their probabilities. Case-based

13
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Figure 1: The dynamics of the optimal degree of model belief θ∗t
a

0 500 1000 1500

0.
0

0.
4

0.
8

CML strategy with γ = 2
θ t

0 500 1000 1500

0.
0

0.
4

0.
8

CML strategy with γ = 25

θ t

0 500 1000 1500

0.
0

0.
4

0.
8

Constrained Markowitz−Jorion strategy with γ = 2

θ t

0 500 1000 1500

0.
0

0.
4

0.
8

Constrained Markowitz−Jorion strategy with γ = 25

θ t

a The indifference parameter κ is set to 3 and the memory parameter λ to 0.1 for the strategies with γ = 2 and to 0.2 and to 0.9 for the

strategies with γ = 25, respectively.
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Figure 2: The dynamics of the aspiration level Ht and risk-free rate rf
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a The indifference parameter κ is set to 3 and the memory parameter λ to 0.1 for the strategies with γ = 2 and to 0.2 and to 0.9 for the

strategies with γ = 25, respectively.
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Table 1: Expected utilities with and without CBDT reasoning for the period 1973-2005a

RF Mark MJ MJLW EQ CML Mc MJc MJLWc

γ = 2

1.159 -133.938 -33.256 -22.726 1.488 1.811 1.406 1.202 1.205

λ = 0.0
κ = 0.2 1.159∗ 1.159∗ 1.159∗ 1.391 1.662 1.287 1.173 1.170
κ = 1.0 1.159∗ 1.159∗ 1.159∗ 1.405 1.652 1.298 1.187 1.185
κ = 3.0 1.159∗ 1.159∗ 1.159∗ 1.422 1.664 1.302 1.184 1.182

λ = 0.1
κ = 0.2 1.159∗ 1.159∗ 1.159∗ 1.484 1.898 1.251 1.088 1.089
κ = 1.0 1.159∗ 1.159∗ 1.159∗ 1.502 1.903 1.251 1.098 1.106
κ = 3.0 1.159∗ 1.159∗ 1.159∗ 1.476 1.895 1.269 1.092 1.097

λ = 0.5
κ = 0.2 1.159∗ 1.159∗ 1.159∗ 1.376 1.673 1.254 1.149 1.144
κ = 1.0 1.159∗ 1.159∗ 1.159∗ 1.385 1.686 1.237 1.140 1.132
κ = 3.0 1.159∗ 1.159∗ 1.159∗ 1.398 1.696 1.230 1.151 1.163

λ = 0.9
κ = 0.2 1.159∗ 1.159∗ 1.159∗ 1.312 1.502 1.266 1.104 1.116
κ = 1.0 1.159∗ 1.159∗ 1.159∗ 1.304 1.488 1.269 1.099 1.132
κ = 3.0 1.159∗ 1.159∗ 1.159∗ 1.304 1.483 1.288 1.062 1.083

λ = 1.0
κ = 0.2 1.159∗ 1.159∗ 1.159∗ 1.255 1.481 1.269 1.121 1.127
κ = 1.0 1.159∗ 1.159∗ 1.159∗ 1.246 1.469 1.264 1.129 1.166
κ = 3.0 1.159∗ 1.159∗ 1.159∗ 1.233 1.452 1.257 1.126 1.132

γ = 10

1.157 -25.873 -5.733 -3.618 -0.473 1.288 0.721 0.703 0.720

λ = 0.0
κ = 0.2 1.157∗ 1.157∗ 1.153∗ 1.081∗ 1.249 1.131∗∗ 1.137∗∗ 1.138∗∗
κ = 1.0 1.157∗ 1.157∗ 1.157∗ 1.054∗ 1.249 1.117∗∗ 1.124∗∗ 1.128∗∗
κ = 3.0 1.157∗ 1.157∗ 1.157∗ 1.114∗ 1.247 1.081∗∗ 1.097∗∗∗ 1.104∗∗

λ = 0.1
κ = 0.2 1.157∗ 1.157∗ 1.155∗ 1.132∗ 1.305 1.069 1.193∗∗ 1.192∗∗
κ = 1.0 1.157∗ 1.157∗ 1.157∗ 1.079∗ 1.305 1.223∗∗ 1.031∗∗∗ 1.138∗∗
κ = 3.0 1.157∗ 1.157∗ 1.157∗ 1.061∗ 1.307 1.182∗∗∗ 1.087∗∗∗ 1.209∗∗∗

λ = 0.5
κ = 0.2 1.157∗ 1.156∗ 1.156∗ 1.144∗ 1.252 1.236∗∗ 1.236∗∗ 1.197∗∗
κ = 1.0 1.157∗ 1.157∗ 1.157∗ 1.129∗ 1.253 1.303∗∗ 1.257∗∗ 1.194∗∗
κ = 3.0 1.157∗ 1.157∗ 1.157∗ 1.031∗ 1.255 1.256∗∗ 1.157∗∗ 1.211∗∗

λ = 0.9
κ = 0.2 1.157∗ 1.156∗ 1.168∗ 1.228∗ 1.239 1.197∗∗ 1.187∗∗ 1.197∗∗
κ = 1.0 1.157∗ 1.157∗ 1.157∗ 1.164∗ 1.239 1.205∗∗ 1.205∗∗ 1.202∗∗
κ = 3.0 1.157∗ 1.157∗ 1.157∗ 0.969∗ 1.240 1.153∗∗∗ 1.133∗∗ 1.146∗∗

λ = 1.0
κ = 0.2 1.157∗ 1.156∗ 1.164∗ 1.205∗ 1.236 1.226∗∗ 1.214∗∗ 1.205∗∗
κ = 1.0 1.157∗ 1.157∗ 1.157∗ 1.108∗ 1.236 1.253∗∗ 1.199∗∗ 1.179∗∗
κ = 3.0 1.157∗ 1.157∗ 1.157∗ 1.051∗ 1.236 1.218∗∗ 1.150∗∗ 1.152∗∗

γ = 25

1.154 -9.666 -1.607 -0.761 -4.149 1.207 0.020 0.224 0.290

λ = 0.0
κ = 0.2 1.154∗ 1.154∗ 1.145∗ 1.147∗ 1.189 1.118∗ 1.112∗ 1.104∗
κ = 1.0 1.154∗ 1.154∗ 1.154∗ 1.154∗ 1.189 1.091∗ 1.094∗ 1.081∗
κ = 3.0 1.154∗ 1.154∗ 1.154∗ 1.154∗ 1.188 1.091∗ 1.093∗ 1.082∗

λ = 0.1
κ = 0.2 1.154∗ 1.150∗ 1.148∗ 1.153∗ 1.202 1.190∗ 1.171∗ 1.171∗
κ = 1.0 1.154∗ 1.153∗ 1.154∗ 1.153∗ 1.204 1.073∗ 1.156∗ 1.169∗
κ = 3.0 1.154∗ 1.154∗ 1.154∗ 1.154∗ 1.205 1.149∗ 1.137∗ 1.137∗

λ = 0.5
κ = 0.2 1.154∗ 1.159∗ 1.178∗ 1.099∗ 1.188 1.222∗ 1.186∗ 1.194∗
κ = 1.0 1.154∗ 1.149∗ 1.158∗ 1.154∗ 1.190 1.198∗ 1.179∗ 1.234∗
κ = 3.0 1.154∗ 1.154∗ 1.154∗ 1.154∗ 1.191 1.166∗ 1.135∗ 1.155∗

λ = 0.9
κ = 0.2 1.154∗ 1.168∗ 1.183∗ 1.070∗ 1.182 1.141∗ 1.168∗ 1.160∗
κ = 1.0 1.154∗ 1.150∗ 1.156∗ 1.154∗ 1.182 1.110∗ 1.143∗ 1.153∗
κ = 3.0 1.154∗ 1.154∗ 1.154∗ 1.154∗ 1.183 1.134∗ 1.117∗ 1.108∗

λ = 1.0
κ = 0.2 1.154∗ 1.174∗ 1.185∗ 1.042∗ 1.181 1.156∗ 1.148∗ 1.142∗
κ = 1.0 1.154∗ 1.152∗ 1.150∗ 1.156∗ 1.180 1.116∗ 1.126∗ 1.132∗
κ = 3.0 1.154∗ 1.154∗ 1.154∗ 1.154∗ 1.179 1.129∗ 1.041∗ 1.046∗

a For each value of γ the first line contains the non-CBDT expected utilities; the rest of the block contains the CBDT-

utilities with the given values of memory λ and indifference parameters κ. Mark denotes the classical Markowitz

approach, MJ the Markowitz approach with the mean estimated as in Jorion, MJLW the Markowitz approach

with the mean estimated as in Jorion and the covariance matrix as in Ledoit and Wolf, EQ the strategy with

equal portfolio weights, CML the approach based on capital market line considerations, Mc constrained Markowitz

approach, MJc constrained MJ strategy, and MJLWc constrained MJLW strategy. The CBDT strategies with

significantly higher EUs than the non-CBDT strategy are marked with ∗ for 1% significance level, ∗∗ for 5% and
∗∗∗ for 10%. The number of assets in the portfolio is equal to 24.
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Table 2: Expected utilities with and without CBDT reasoning for the period 1987-2005a

RF Mark MJ MJLW EQ CML Mc MJc MJLWc

γ = 2

0.778 -217.379 -46.681 -28.363 1.452 1.655 1.457 1.386 1.413

λ = 0.0
κ = 0.2 0.636∗ 0.236∗ -0.057∗ 1.277 1.581 1.298 1.304 1.322
κ = 1.0 0.778∗ 0.348∗ 0.181∗ 1.243 1.598 1.314 1.323 1.354
κ = 3.0 0.778∗ -0.245∗ 0.663∗ 1.353 1.561 1.337 1.301 1.334

λ = 0.1
κ = 0.2 0.732∗ 0.473∗ -1.284∗ 1.405 1.486 1.330 1.168 1.191
κ = 1.0 0.778∗ 0.575∗ -0.611∗ 1.394 1.516 1.337 1.180 1.197
κ = 3.0 0.778∗ -0.027∗ -0.194∗ 1.384 1.477 1.335 1.201 1.210

λ = 0.5
κ = 0.2 0.877∗ -1.080∗ -0.936∗ 1.200 1.223 1.179 1.055 1.075
κ = 1.0 0.778∗ 0.001∗ -0.024∗ 1.187 1.151 1.167 1.047 1.069
κ = 3.0 0.778∗ 0.284∗ -0.098∗ 1.159 1.124 1.149 1.051 1.063

λ = 0.9
κ = 0.2 0.906∗ 0.459∗ -1.069∗ 1.126 1.124 1.131 0.905 0.936
κ = 1.0 0.778∗ 0.371∗ -1.898∗ 1.111 1.096 1.128 0.902 0.938
κ = 3.0 0.778∗ -0.071∗ -1.000∗ 1.085 1.044 1.094 0.884 0.916

λ = 1.0
κ = 0.2 0.427∗ 0.819∗ -1.867∗ 1.083 1.019 1.127 0.896 0.923
κ = 1.0 0.778∗ 0.866∗ -1.329∗ 1.075 0.984 1.126 0.880 0.910
κ = 3.0 0.778∗ 0.347∗ -1.236∗ 1.039 0.955 1.125 0.863 0.891

γ = 10

0.778 -42.857 -8.717 -5.042 -0.464 0.953 0.715 0.771 0.773

λ = 0.0
κ = 0.2 0.752∗ 0.664∗ 0.609∗ 0.779∗∗ 0.932 0.488 0.563 0.608
κ = 1.0 0.778∗ 0.687∗ 0.668∗ 0.606∗∗ 0.932 0.483 0.545 0.602
κ = 3.0 0.778∗ 0.570∗ 0.752∗ 0.542∗∗ 0.933 0.502 0.548 0.609

λ = 0.1
κ = 0.2 0.787∗ 0.774∗ 0.387∗ 0.814∗ 0.932 0.794 0.676 0.671
κ = 1.0 0.778∗ 0.730∗ 0.487∗ 0.704∗ 0.937 0.789 0.661 0.682
κ = 3.0 0.778∗ 0.710∗ 0.585∗ 0.628∗∗ 0.935 0.771 0.656 0.665

λ = 0.5
κ = 0.2 0.797∗ 0.289∗ 0.431∗ 0.274∗∗∗ 0.859 0.618 0.637 0.643
κ = 1.0 0.778∗ 0.624∗ 0.447∗ 0.288∗∗∗ 0.849 0.618 0.609 0.664
κ = 3.0 0.778∗ 0.648∗ 0.599∗ 0.297∗∗∗ 0.857 0.579 0.630 0.672

λ = 0.9
κ = 0.2 0.803∗ 0.697∗ 0.317∗ 0.441∗∗ 0.859 0.487 0.491 0.542
κ = 1.0 0.778∗ 0.703∗ 0.268∗ 0.403∗∗ 0.856 0.465 0.500 0.551
κ = 3.0 0.778∗ 0.417∗ 0.426∗ 0.229∗∗∗ 0.859 0.428 0.478 0.546

λ = 1.0
κ = 0.2 0.721∗ 0.712∗ 0.241∗ 0.422∗∗ 0.829 0.476 0.481 0.526
κ = 1.0 0.778∗ 0.796∗ 0.272∗ 0.384∗∗ 0.827 0.480 0.468 0.524
κ = 3.0 0.778∗ 0.612∗ 0.379∗ 0.320∗∗∗ 0.826 0.452 0.456 0.503

γ = 25

0.777 -16.679 -3.023 -1.556 -4.055 0.847 -0.146 -0.034 0.058

λ = 0.0
κ = 0.2 0.766∗ 0.734∗ 0.710∗ 0.714∗ 0.838 0.677∗∗ 0.697∗∗ 0.710∗∗
κ = 1.0 0.777∗ 0.738∗ 0.738∗ 0.731∗ 0.838 0.681∗∗ 0.698∗∗ 0.710∗∗
κ = 3.0 0.777∗ 0.692∗ 0.762∗ 0.755∗ 0.839 0.695∗∗ 0.696∗∗ 0.709∗∗

λ = 0.1
κ = 0.2 0.767∗ 0.770∗ 0.602∗ 0.594∗ 0.847 0.716∗∗ 0.677∗∗ 0.701∗∗
κ = 1.0 0.777∗ 0.761∗ 0.707∗ 0.587∗ 0.846 0.623∗∗ 0.690∗∗ 0.680∗∗
κ = 3.0 0.777∗ 0.750∗ 0.680∗ 0.548∗ 0.841 0.635∗∗ 0.686∗∗ 0.569∗∗

λ = 0.5
κ = 0.5 0.788∗ 0.576∗ 0.625∗ 0.659∗ 0.821 0.639∗∗ 0.613∗∗ 0.581∗∗
κ = 1.0 0.777∗ 0.716∗ 0.662∗ 0.726∗ 0.820 0.627∗∗ 0.699∗∗ 0.627∗∗
κ = 3.0 0.777∗ 0.726∗ 0.708∗ 0.720∗ 0.816 0.577∗∗ 0.730∗∗ 0.553∗∗∗

λ = 0.9
κ = 0.2 0.792∗ 0.730∗ 0.602∗ 0.545∗ 0.814 0.823∗ 0.803∗ 0.822∗
κ = 1.0 0.777∗ 0.741∗ 0.588∗ 0.722∗ 0.815 0.833∗ 0.802∗ 0.793∗
κ = 3.0 0.777∗ 0.708∗ 0.554∗ 0.709∗ 0.815 0.648∗∗ 0.688∗∗ 0.711∗∗

λ = 1.0
κ = 0.2 0.754∗ 0.723∗ 0.531∗ 0.532∗ 0.806 0.841∗ 0.850∗ 0.847∗
κ = 1.0 0.777∗ 0.785∗ 0.513∗ 0.566∗ 0.806 0.837∗ 0.842∗ 0.838∗
κ = 3.0 0.777∗ 0.714∗ 0.601∗ 0.568∗ 0.806 0.753∗ 0.783∗ 0.758∗∗

a For each value of γ the first line contains the non-CBDT expected utilities; the rest of the block contains the CBDT-

utilities with the given values of memory λ and indifference κ parameters. Mark denotes the classical Markowitz

approach, MJ the Markowitz approach with the mean estimated as in Jorion, MJLW the Markowitz approach

with the mean estimated as in Jorion and the covariance matrix as in Ledoit and Wolf, EQ the strategy with

equal portfolio weights, CML the approach based on capital market line considerations, Mc constrained Markowitz

approach, MJc constrained MJ strategy, and MJLWc constrained MJLW strategy. The CBDT strategies with

significantly higher EUs than the non-CBDT strategy are marked with ∗ for 1% significance level, ∗∗ for 5% and
∗∗∗ for 10%. The number of assets in the portfolio is equal to 30.
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Table 3: Autocorrelations of the equal weight portfolio returns and squared returns for different

investment periods.

period 1 2 3 4 5 6

ACF of rp

1973-1986 -0.0342 0.0018 0.1065∗ -0.0541 -0.0358 0.0220
1987-2005 -0.0204 0.0230 0.0221 -0.0258 -0.0405 0.0731∗∗
1973-2005 -0.0250 0.0154 0.0525∗∗ -0.0351 -0.0367 0.0566∗∗

ACF of r2
p

1973-1986 0.2865∗ 0.1832∗ 0.2156∗ 0.2056∗ 0.1643∗ 0.1982∗
1987-2005 0.0878∗ 0.0667∗∗ 0.0390 0.0515 0.0260 0.1650∗
1973-2005 0.1156∗ 0.0835∗ 0.0637∗ 0.0736∗ 0.0462∗∗∗ 0.1706∗

decision theory (CBDT) amends the EU approach for such situations. We define general uncertainty

as the degree of the investor’s belief in the possibility of benefit from conventional investment rules.

The CBDT approach is suggested for selecting the degree of model belief. The major aim of the

study is to identify and interpret successful patterns of case-based decisions.

The case-based investor determines his model belief degree to maximize the objective function,

defined as the sum of excess utilities for all hypothetical acts weighted by similarity of these acts to

the act of choice. Hypothetical reasoning is appropriate because the investor can easily construct

the consequences of all possible past choices. The indifference parameter determines the shape of the

similarity function and serves to measure the distance between acts. The excess utility is calculated as

the difference of the hypothetical utility and aspiration level, serving as a level of investor satisfaction.

The memory strength determines the speed of aspiration adjustment. Indifference and memory

parameters formalize the case-based strategy for a given investor’s risk aversion. The model belief

degree is used for linear adjustment of conventional portfolio rules.

The proposed case-based methodology is investigated in the empirical study. Based on our find-

ings, we identify two successful case-based strategies. The case-based investor with a small risk aver-

sion should choose a strategy implying gradual adjustments of model belief degree. This strategy

provides the best results in a non-efficient market with high predictability degree. On the contrary,

the case-based investor with medium and large risk aversion benefits from a strategy with quick ad-

justments. This implies active trading with immediate reaction on newly incoming information and

market efficiency improvement. Thus the successful case-based approaches provide motivation for

various investment strategies. They incorporate some behavioral phenomena observed on financial

markets and could be seen as a type of decision-making rules under bounded rationality.
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Abstract

Often a portfolio investor can hardly imagine all states of nature relevant to his investment

problem, causing general uncertainty concerning an asset allocation model. We quantify

general uncertainty as the weakness of an investor’s belief in a conventional portfolio procedure,

then we develop the case-based decision making approach for determining the optimal belief

degree. The economic effect of the proposed case-based methodology is investigated in the

empirical study. The empirical results suggest two successful patterns of case-based decisions

that could be linked to the issue of market efficiency. Moreover, our case-based modeling

reflects some behavioral phenomena observed on financial markets.
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