N
N

N

HAL

open science

Cross-framework Grammar Engineering using
Constraint-driven Metagrammars

Denys Duchier, Yannick Parmentier, Simon Petitjean

» To cite this version:

Denys Duchier, Yannick Parmentier, Simon Petitjean. Cross-framework Grammar Engineering using
Constraint-driven Metagrammars. 6th International Workshop on Constraint Solving and Language

Processing (CSLP’11), Sep 2011, Karlsruhe, Germany. pp.32-43. hal-00614661

HAL Id: hal-00614661
https://hal.science/hal-00614661
Submitted on 19 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00614661
https://hal.archives-ouvertes.fr

Cross-framework Grammar Engineering using
Constraint-driven Metagrammars

Denys Duchier, Yannick Parmentier, and Simon Petitjean

LIFO, Université d’Orléans, F-45067 Orléans Cedex 2, France,
firstname.lastname@univ-orleans.fr,
WWW home page: http://www.univ-orleans.fr/lifo/
— Preprint —

Abstract. In this paper, we present an abstract constraint-driven for-
malism for grammar engineering called eXtensible MetaGrammar and
show how to extend it to deal with cross-framework grammar engineer-
ing. As a case study, we focus on the design of tree-adjoining, lexical-
functional, and property grammars (TAG / LFG / PG).

A particularly interesting feature of this formalism is that it allows to
apply specific constraints on the linguistic structures being described.

Keywords: computational linguistics, formal grammar, metagrammar,
constraint solving.

1 Introduction

Many grammatical frameworks have been proposed over the last decades to
describe the syntax of natural language. Among the most widely used, one may
cite Tree-Adjoining Grammar (TAG) [1], Lexical-Functional Grammar (LFG)
[2], or Head-driven Phrase Structure Grammar (HPSG) [3]. These frameworks
present theoretical and practical interests. From a theoretical point of view, they
provide a formal device for the linguist to experiment with her/his theories.
From a practical point of view, they make it possible to automatically process
natural language in applications such as dialog systems, machine translation, etc.
They differ in their expressivity and complexity. Some reveal themselves more
adequate for the description of a given language than others. Still, for many of
these frameworks, large resources (i.e., grammars) have been designed, at first
by hand, and later via dedicated tools (e.g., integrated grammar environments
such as XLE for LFG [4]). In this paper, we are concerned with this complex task
of grammar engineering, keeping in mind the two above-mentioned theoretical
and practical interests.

Several approaches have been proposed for a computer-aided grammar engi-
neering, mainly to reduce the costs of grammar extension and maintenance. The
main approaches are 1. the automatic acquisition from treebanks (see e.g., [5]
for LFQ), 2. systems based on an abstract description of the grammar, either via
transformation rules, also known as metarules (see e.g, [6] for TAG) or via a de-
scription language, sometimes called metagrammar (see e.g., [7] for TAG). The



advantage of the description-based approach (and especially metagrammars')
over the automatic acquisition approach lies in the linguistic control it provides.
Indeed, these descriptions capture linguistic generalizations and make it possible
to reason about language at an abstract level. Describing language at an abstract
level is not only interesting for structure sharing within a given framework, but
also for information sharing between frameworks and / or languages.

This observation was already made by [9,10]. In their papers, the authors
showed how to extend an existing metagrammar for TAG so that both a TAG
and an LFG could be generated from it. They annotated TAG metagrammati-
cal elementary units (so-called classes) with extra pieces of information, namely
(i) LFG’s functional descriptions and (ii) filtering information to distinguish
common classes from classes specific to TAG or LFG. The metagrammar compi-
lation then generated an extended TAG, from which LFG rules were extracted.
To maximize the structure sharing between their TAG and LFG metagrammars,
the authors defined classes containing tree fragments of depth one. These frag-
ments were either combined to produce TAG trees or associated with functional
descriptions to produce LFG rules. This cross-framework experiment was ap-
plied to the design of a French / English parallel metagrammar, producing both
a TAG and a LFG. This work was still preliminary. Indeed (i) it concerned
a limited metagrammar (the target TAG was composed of 550 trees, and the
associated LFG of 140 rules) (ii) more importantly, there is no clear evidence
whether a generalization to other frameworks and / or languages could be pos-
sible (metagrammar implementation choices, such as tree fragment depth, were
not independent from the target frameworks).

Here, we chose to adopt a more generalized approach by designing an extensi-
ble metagrammatical language, that can handle an arbitrary number of distinct
target frameworks. The linguist can thus use the same formalism to describe dif-
ferent frameworks and grammars. Nonetheless, if one wants to experiment with
multi-formalism, e.g., by designing a parallel TAG / LFG grammar, nothing
prevents her/him from defining “universal” classes, which contain metagram-
matical descriptions built on a common sublanguage. Rather than designing a
new metagrammatical language from scratch, we propose to extend an existing
formalism, namely eXtensible MetaGrammar (XMG) [11], which seems particu-
larly adequate thanks to its modularity and extensibility.

The paper is organized as follows. In section 2, we briefly introduce TAG,
as well as the redundancy issues raising while developing large TAG grammars
(which motivated metagrammars). We then introduce the XMG metagrammat-
ical language and show how it can be used to design TAG grammars. In sec-
tion 3, we briefly introduce LFG and present an extension of XMG to describe
LFG grammars. In section 4, we introduce Property Grammar (PG) [12], and
present a second extension of XMG to generate PG grammars. In section 5, we
will generalize over these two extensions, and define a layout for cross-framework
grammar engineering. Finally, we conclude and give perspectives in section 6.

! In rule-based descriptions, one has to carefully define the ordering of the applications
of rules [8], which makes it hard to design large grammars.



2 eXtensible Meta Grammar: generating Tree-Adjoining
Grammars with a metagrammar

2.1 Tree-Adjoining Grammar

TAG? is a tree rewriting system, where elementary trees can be combined via
two rewriting operations, namely substitution and adjunction. Substitution con-
sists in replacing a leaf node labelled with | with a tree whose root has the same
syntactic category as this leaf node. Adjunction consists in replacing an internal
node with a tree where both the root node and one of the leaf nodes (labelled
with *) have the same syntactic category as this internal node. As an illustra-
tion, consider Fig. 1 below. It shows (i) the substitution of the elementary tree
associated with the noun John into the elementary tree associated with the verb
sleeps, and (ii) the adjunction of the elementary tree associated with the adverb
deeply into the tree associated with sleeps.

S
/\
S - NP VP

NS R ‘
NP| VP VP John VP ADV

L | PN o | |
NP \‘/ VPx ADV Y deeply

| |
John sleeps deeply sleeps

(derived tree)

Fig. 1. Tree rewriting in TAG

Basically, a real size TAG is made of thousands of elementary trees [14,15].
Due to TAG’s extended domain of locality, many of these trees share common
sub-trees, as for instance the relation between a canonical subject and its verb,
as shown in Fig. 2. To deal with this redundancy, the metagrammar approach
(in particular XMG) proposes to describe large TAG grammars in an abstract
and factorized way.

2.2 eXtensible MetaGrammar (XMG)

XMG is a metagrammatical language inspired by logic programming. The idea
behind XMG is that a metagrammar is a declarative logical specification of what
a grammar is. This specification relies on the following three main concepts:

e several dimensions of language (e.g. syntax, semantics) can be described;

e for each of these dimensions, descriptions are made of non-deterministic com-
binations of elementary units;

e for some of these dimensions, descriptions must be solved to produce models.

? For a detailed introduction to TAG, see [13].



que

Jean mange une pomme
John eats an apple La pomme que Jean mange
The apple that John eats

Fig. 2. Structural redundancy in TAG

XMG'’s extensibility comes from the concept of dimensions. These allow to
describe an arbitrary number of types of linguistic structures. Non-determinism
allows for factorization, and description solving for assembly and validation (i.e.,
well-formedness of the description according to some target framework). Here-
after, we will first use XMG to describe TAG. Then, we will apply XMG’s exten-
sibility to the description of other frameworks, namely LFG and PG. Eventually,
we will generalize over these applications.

When describing TAG trees with XMG, one defines both (i) tree fragments
and (ii) constraints that express how these fragments have to be combined to
produce the grammar. Two languages are thus used: a description language Lp to
specify fragments, and a control language Lo to specify combination constraints.

Lp is based on the precedence and dominance relations. Furthermore, since
TAG allows for the labelling of syntactic nodes with feature structures, so does
Lp. A description in Lp is a formula built as follows:

Desc =x—y | x=Ty |2y | 2=y | 2<Ty | z[f:E] | z(p:E) |
Desc N\ Desc

where x,y refer to node variables, — (resp. <) to the dominance (resp. prece-
dence) relation, and + (resp. *) are used to denote the transitive (resp. reflexive
and transitive) closure of this relation. The square brackets are used to associate
a node variable with some feature structure. Parenthesis are used to associate a
node variable with some property (such as the TAG x property seen in Fig. 1).
Note that node variables are by default local to a description. If a node variable
needs to be accessed from outside its description, it is possible to use some ez-
port mechanism. Once a variable is exported, it becomes accessible using a dot
operator. For instance, to refer to the variable x in the description Desc, one
writes Desc.xz. Here is an illustration of a fragment description in XMG (on the
right, one can see a minimal model of this description):

(z [cat : S] = yleat:V]) A x [cat:S]
(z — z (mark : subst) [cat : N]) A T~
(z < v) z | [cat:N] y [cat:V]

L offers three mechanisms to handle fragments: abstraction via parameter-
ized classes (association of a name and zero or more parameters with a content),



conjunction (accumulation of contents), and disjunction (non-deterministic ac-
cumulation of contents). A formula in L¢ is built as follows:

Class Name[py, ..., pn] — Content
Content :=  Desc | Namel...] | Content VvV Content | Content A Content

As an illustration of L, let us consider different object realizations. One
could for instance define the 4 fragments: (i) canonical subject, (ii) verbal mor-
phology, (iii) canonical, and (iv) relativized object, and the following combina-
tions, thus producing the two trees of Fig. 2:

Object — CanObj V RelObj
Transitive — CanSubj N VerbMorph A Object

Metagrammar compilation. To produce a grammar from an XMG metagrammar,
we let the logical specification generate, in a non-deterministic way, descriptions.
In other words, the combination constraints are processed to generate descrip-
tions (one per dimension). For some dimensions, descriptions need to be solved
to produce models. This is the case for TAG, a constraint-based tree descrip-
tion solver is thus used to compute trees [11]. Note this solver actually checks
several types of constraints [16]: tree well-formedness constraints, TAG-related
constraints (e.g., unique node labelled «), and language-related constraints (e.g.,
uniqueness and order of clitics in French).

As one of the first ambitions of XMG is multi-formalism, dimensions are an
efficient way to define different types of description language adapted to target
frameworks. Let us see how to define dimensions for LFG and PG.

3 Generating Lexical-Functional Grammars with a
metagrammar

3.1 Lexical-Functional Grammar

A lexical-functional grammar (LFG) consists of three main components: 1. context-
free rules annotated with functional descriptions, 2. well-formedness principles,
and 3. a lexicon. From these components, two main interconnected structures
can be built®: a c(onstituent)-structure, and a f(unctional)-structure. The c-
structure represents a syntactic tree, and the f-structure grammatical functions
in the form of recursive attribute-value matrices. As an example of LFG, con-
sider the Fig. 3 below. It contains a toy grammar and the c- and f-structures for
the sentence “John loves Mary”. In this example, one can see functional descrip-
tions labelling context-free rules (see (1) and (2)). These descriptions are made
of equations. For instance, in rule (1), the equation (1 SUBJ) =/ constrains the
SUBJ feature of the functional description associated with the left-hand side
of the context-free rule to unify with the functional description associated with

3 This connection is often referred to as functional projection or functional mapping.



the first element of the right-hand side of the rule. In other words, these equa-
tions are unification constraints between attribute-value matrices. Nonetheless,
these constraints may not provide enough control on the f-structures licensed by
the grammar, LFG hence comes with three additional well-formedness principles
(completeness, coherence and uniqueness) [2].

Toy grammar:

ns - NP VP
t=L  (tSUBJH =, =i

(2) VP — v NP
=1 1=l (10BJ)=|

(3) John NP, (t PRED) =' JOHN',(t NUM) = SG, (1 PRES) = 3
(4) Mary NP, (t PRED) = MARY', (1 NUM) = SG, (1 PRES) = 3
(5) loves V, (1 PRED) =' LOVE((t SUBJ) (1 OBJ))',(t TENSE) = PRESENT

c-structure: f-structure:

[PRED ’LOVE<(T SUBJ) (1 OBJ)>7_
PRED 'JOHN’

SUBJ for INUM  SG

— PERS 3
PRED ’MARY’

OBJ fs: [INUM  SG
PERS 3

John t=1 (1 OBJ) =| [TENSE PRESENT |

loves Mary
Fig. 3. LFG grammar and c-and f-structures for the sentence “John loves Mary”

3.2 Extending XMG for LFG

In the previous section, we defined the XMG language, and applied it to the
description of TAG. Let us recall that one of the motivations of metagrammars
in general (and of XMG in particular) is the redundancy which affects grammar
extension and maintenance. In TAG, the redundancy is higher than in LFG. Still,
as mentioned in [9], in LFG there are redundancies at different levels, namely
within the rewriting rules, the functional equations and the lexicon. Thus, the
metagrammar approach can prove helpful in this context. Let us now see what
type of language could be used to describe LFG.4

To describe LFG at an abstract level, one needs to describe its elementary
units, which are context-free rules annotated with functional descriptions (e.g.,
equations) and lexical entries using attribute-value matrices. Context-free rules

* A specification language for LFG has been proposed by [17], but it corresponds more
to a model-theoretic description of LFG than to a metagrammar.



can be seen as trees of depth one. Describing such structures can be done in
XMG using a description language similar to the one for TAG, i.e., using the —
(dominance) and < (precedence) relations. One can for instance define different
context-free backbones according to the number of elements in the right-hand
sides of the LFG rules. These backbones are encapsulated in parameterized XMG
classes, where the parameters are used to assign a syntactic category to a given
element of the context-free rule, such as in the class BinaryRule below.

BinaryRule[A, B,C] — (x[cat : A] — yleat : B]) A (x — z[cat : C]) A (y <7 2)
exports (x,y,z)

We also need to annotate the node variables x, y, z with functional descriptions.

Let us see how these functional descriptions Fppse are built:®

Fiese := (g FEAT) | —(g FEAT) | (9% FEAT)| (¢ FEAT) CONST VAL |

Fdesc V Fdesc | (Fdesc) | Fdesc A Fdesc

where g refers to an attribute-value matrix, FEAT to a feature, VAL to a

(possibly complex) value, CON ST to a constraint operator (= for unification, =,

for constraining unification, € for set membership, # for difference), (Fpesc) to

optionality, and * to LFG’s functional uncertainty. Note that g can be complex,

that is, it can correspond to a (relative — using 1 and | — or absolute) path

pointing to a sub-attribute-value matrix.

To specify such functional descriptions, we can extend XMG in a straightfor-
ward manner, with a dedicated dimension and a dedicated description language
L1 rqa defined as follows:

Descrrg = v —y | v=<y | a<Ty | 2 =y | 2[f:E] | 2(Fy) |

Descrpa N\ Descrra

Fg = g| 39.f| gf=vl| gf=cv| gfev| ~Fq| FaVv Fy|
(Fd)| Fa N Fy

goh = 4] hF| fri

where g, h are variables denoting attribute-value matrices, f,i (atomic) feature
names, v (possibly complex) values, and (...) corresponds to LFG’s functional
mapping introduced above. With such a language, it now becomes possible to
define an XMG metagrammar for our toy LFG as follows.5

Srule — br = BinaryRule[S,NP,VP] A br.z(t=]) A br.y((T .SUBJ) =])
A br.z(t=])
V Prule — br = BinaryRule[VP,V,NP] A br.z{(t=]) A br.y(T=])
A br.z{(1 .0BJ) =|)
® We do not consider here additional LFG operators, which have been introduced in
specific LFG environments, such as shuffle, insert or ignore, etc.

5 Here, we do not describe the lexical entries, these can be defined using the same
language as the LFG context-free rules, omitting the right-and-side.



In this toy example, the structure sharing is minimal. To illustrate what can be
done, let us have a look at a slightly more complex example taken from [9]:

VP> V (NP) PP (NP)
t=| (1 OBJ) =] (1 SecondOBJ)=| (1 OBJ) =]

Here, we have two possible positions for the NP node, either before or after the
PP node. Such an situation can be described in XMG as follows:

VPrule2 — br = BinaryRule[VP,V,PP| A wufcat:NP] A bry <" u
A bry(t=l) A br.z{(1 .Second0BJ) =|) A wu((1.0BJ) =)

Here, we do not specify the precedence between the NP and PP nodes. We
simply specify that the NP node is preceded by the V node (denoted by y).
When compiling this description with a solver such as the one for TAG, two
solutions (LFG rules) will be computed. In other terms, the optionality can be
expressed directly at the metagrammatical level, and the metagrammar compiler
can directly apply LFG’s uniqueness principle.

In other words, the metagrammar here not only allows for structure sharing
via the (conjunctive or disjunctive) combination of parameterized classes, but
it also allows to apply well-formedness principles to the described structures.
In the example above with the two NP nodes, this well-formedness principle
is checked on the constituent structure and indirectly impacts the functional
structure (which is the structure concerned with these principles). If we see the
functional structures as graphs and equations as constraints on these, one could
imagine to develop a specific constraint solver. This would allow to turn the
metagrammar compiler into an LFG parser, which would, while solving tree
descriptions for the constituent structure, solve graph-labelling constraints for
the functional structure.

Note that a similar approach of structure sharing within an LFG through
combinations of elementary units has been proposed by [18]. In their paper, the
authors describe how to share information between LFG structures by defining
named descriptions, called templates. These templates can abstract over conjunc-
tion or disjunction of templates, they are thus comparable to our metagrammar
classes. The main difference with our approach, is that nothing is said about
an interpretation of these templates (they act in a macro-like fashion), while in
XMG, one could apply some specific treatments (e.g. constraint solving) on the
metagrammar classes.

4 Generating Property Grammars with a metagrammar

4.1 Property Grammar

Property Grammar (PG) [12] differs from TAG or LFG in so far as it does not
belong to the generative syntax family, but to the model-theoretic syntax one.
In PG, one defines the relations between syntactic constituents not in terms



of rewriting rules, but in terms of local constraints (the so-called properties).”

The properties licensed by the framework rely on linguistic observations, such
as linear precedence between constituents, coocurrency, mutual exclusion, etc.

Here, we will consider the following 6 properties, that constrain the relations
between a constituent (i.e., the node of a syntactic tree), with category A and
its sub-constituents (i.e., the daughter-nodes of A):8

Obligation A:AB at least one B child

Uniqueness A: B! at most one B child

Linearity A:B <C |B child precedes C child

Requirement |A: B = C |if a B child, then also a C child
Exclusion A: B+ C |B and C children are mutually exclusive
Constituency |A: S children must have categories in .S

In a real size PG, such as the French PG of [19], these properties are encapsulated
(together with some syntactic features) within linguistic constructions, and the
latter arranged in an inheritance hierarchy®. An extract of the hierarchy of [19]
is presented in Fig. 4 (fragment corresponding to basic verbal constructions).

V (Verb) V-n (Verb with negation) inherits V']
INTR |ID|[NATURE |SCAT [.SCAT 1
| [ ]] INTR |SYN NEGA RECT
const. : V: DEP Adv-n
CAT Vv o
SCAT - (aux-etre V aux-avoir) uniqueness : AdXZE];g)!

requirement : =Adv-n
linearity : Adv-ng=<
: Adv-ng<Adv-np
: Adv-np=< [1 | [MODE inf]
: .[MODE —inf] <Adv-np

V-m (Verb with modality) inherits V ; V-n

RECT
DEP Prep

INTR |:SYN |:INTRO |:

uniqueness : Prep!
requirement : =Prep
linearity : | 1 | <Prep

Fig. 4. Fragment of a PG for French (basic verbal constructions)

Let us for instance have a closer look at the properties of the V-n construction
of Fig. 4. It says that in French, for verbs with a negation, this negation is made

7 An interesting characteristic of these constraints is that they can be independently
violated, and thus provide a way to characterize agrammatical sentences.

® Here, we omit lexical properties, such as cat(apple) = I.

9 Note that this hierarchy is a disjunctive inheritance hierarchy, i.e., when there is
multiple inheritance, the subclass inherits one of its super-classes.



of an adverb ne (labelled with the category Adv-ng) and / or an adverb pas (or a
related adverb such as guere, labelled with the category Adv-np). These adverbs,
if they exist, are unique (uniqueness property), and linearly ordered (linearity
property). When the verb is an infinitive, it comes after these adverbs (e.g., ne
pas donner (not to give) versus je ne donne pas (I do not give)).

4.2 Extending XMG for PG

In order to describe PG, we need to extend the XMG formalism with linguistic
constructions. These will be encapsulated within XMG’s classes. As for LFG, we
extend XMG with a dedicated dimension and a dedicated description language
Lpg. Formulas in Lpg are built as follows:

Descpg =2 | =y | «#y| [f:E] | {P}| Descpe¢ N Descpa
P:=A:AB| A:B!'| A:B<C | A:B=C | A:B+&C | A:B

where z,y correspond to unification variables, = to unification, # to unification
failure, F to some (possibly complex) expression to be associated with the feature
f, and {P} to a set of properties. Note that £ and P may share unification
variables. With this language, it is now possible to define the above V, V-n and
V-m constructions as follows:

Velass — [INTR: [ID|[NATURE : [CAT : X.SCAT]]] A (V : X)
A (X =[CAT : V,SCAT : Y]) A (Y # aux—etre) A (Y # aux—avoir)

V—n — Vclass A[INTR:[SYN:[NEGA:[RECT:X, DEP:Adv—n]]]]
A(V :Adv—ng!) A (V : Adv—np!) A (V : X = Adv—n)
A(V : Adv—ng < X) A (V : Adv—ng < Adv—np)
A(V :Adv—ng < Y)A(V :Z < Adv—np)
A (Y =inf) A (Y = X.mode) A =(Z = inf) A (Z = X.mode)

V—m — (VclassV V—n)A[INTR:[SYN:[INTRO:[RECT:X, DEP:Prep]|]]]
A(V :Prep!) A(V : X = Prep) A (V : X < Prep)

Note that the disjunction operator from XMG’s control language Lo allows
us to represent [19]’s disjunctive inheritance. Also, compared with TAG and
LFG, there is relatively few redundancy in PG, for redundancy is already dealt
with directly at the grammar level, by organizing the constructions within an
inheritance hierarchy based on linguistic motivations.

As for LFG, the metagrammar could be extended so that it solves the proper-
ties contained in the final classes, according to a sentence to parse. This could be
done by adding a specific constraint solver such as that of [20] as a post-processor
of the metagrammar compilation.



5 Towards an extensible metagrammatical formalism

We have seen two extensions of the XMG formalism to describe not only TAG
grammars, but also LFG and PG ones, these rely on the following concepts:
e The metagrammar describes a grammar by means of conjunctive and / or dis-
junctive combinations of elementary units (using a combination language L¢).
e The elementary units of the (meta)grammar depend on the target framework,
and are expressed using dedicated description languages (Lp,Lrra,LpG)-
When compiling a metagrammar, the compiler executes the logic program under-
lying L (i.e., unfolds the combination rules) while storing the elementary units
of Lp|rraipe in dedicated accumulators. The resulting accumulated descrip-
tions may need some additional post-processing (e.g., tree description solving
for TAG). Thus, to extend XMG into a cross-framework grammar engineer-
ing environment, one needs (i) to design dedicated description languages, and
(ii) to develop the corresponding pre/post-processing modules (e.g., metagram-
mar parsing / description solving).

A first version of XMG (XMG 1) was developed in Oz-Mozart.!9 Tt imple-
ments the language described in section 2, and supports tree-based formalisms,
namely TAG and Interaction Grammar [21]. It has been used to design various
large tree grammars for French, English and German.!! The implementation
of a new version of XMG (XMG 2) has started in 2010, in Prolog (with bind-
ings to the Gecode Constraint Programming C++ library)!'2, with the goal of
supporting cross-framework grammar engineering as presented here.

6 Conclusion and perspectives

In this paper, we presented a metagrammatical formalism for cross-framework
grammar engineering. This formalism offers a collection of description languages,
making it possible to describe different types of linguistic structures (TAG’s syn-
tactic trees, LFG’s functional descriptions, PG’s linguistic constructions), these
structures being combined either conjunctively or disjunctively via a common
control language. The formalism also applies specific constraints on some of these
structures to ensure their well-formedness (e.g., rank principle for TAG).

Using a formalism that can describe several types of grammar frameworks
offers new insights in grammar comparison and sharing. This sharing appears
naturally when designing parallel grammars, but appears also when designing
distinct grammars (e.g., reuse of the combinations of elementary units).

The implementation of the formalism introduced here is a work in progress.
We aim to provide the linguist with an extensible formalism, offering a rich col-
lection of predefined description languages; each one with a library of principles,
and constraint solvers to effect specific assembly, filtering, and verifications on
the grammatical structures described by the metagrammar.

19°See http://sourcesup.cru.fr/xmg and http://www.mozart-oz.org.

' These are available on line, see http://sourcesup.cru.fr/projects/xmg (reposi-
tory meracrammars) and http://www.sfs.uni-tuebingen.de/emmy/res-en.html.

2 See https://launchpad.net/xmg and http://wuw.gecode.org.



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of the
Computer and System Sciences 10 (1975) 136-163

Bresnan, J.: The passive in lexical theory. In Bresnan, J., ed.: The Mental Repre-
sentation of Grammatical Relations. The MIT Press, Cambridge, MA (1982)
Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. University of Chicago
Press, Stanford : CSLI Publications, Chicago (1994)

King, T.H., Dipper, S., Frank, A., Kuhn, J., Maxwell, J.: Ambiguity management
in grammar writing. In: Proceedings of the Workshop on Linguistic Theory and
Grammar Implementation, ESSLLI 2000, Birmingham, Great-Britain (2000)
Cahill, A.: Parsing with Automatically Acquired, Wide-Coverage, Robust, Proba-
bilistic LFG Approximations. PhD thesis, Dublin City University (2004)

Becker, T.: Patterns in Metarules for TAG. In: Tree Adjoining Grammars. For-
malisms, Linguistic Analysis and Processing. CSLI, Stanford (2000)

Candito, M.: A Principle-Based Hierarchical Representation of LTAGs. In: Pro-
ceedings of COLING 96, Copenhagen, Denmark (1996)

Prolo, C.: Systematic grammar development in the XTAG project. In: Proceedings
of COLING’02, Taipei, Taiwan (2002)

Clément, L., Kinyon, A.: Generating parallel multilingual LFG-TAG grammars
from a MetaGrammar. In: Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Sapporo, Japan (2003)

Clément, L., Kinyon, A.: Generating LFGs with a MetaGrammar. In: Proceedings
of LFG-03, Saratoga Springs, United States of America (2003)

Duchier, D., Le Roux, J., Parmentier, Y.: The Metagrammar Compiler: An NLP
Application with a Multi-paradigm Architecture. In: Proceedings of the 2nd Oz-
Mozart Conference, MOZ 2004, Charleroi, Belgium (2004)

Blache, P.: Constraints, Linguistic Theories and Natural Language Processing.
Lecture Notes in Artificial Intelligence Vol. 1835. Springer-Verlag (2000)

Joshi, A.K., Schabés, Y.: Tree adjoining grammars. In Rozenberg, G., Salomaa,
A., eds.: Handbook of Formal Languages. Springer Verlag, Berlin (1997)

XTAG Research Group: A lexicalized tree adjoining grammar for english. Technical
Report IRCS-01-03, IRCS, University of Pennsylvania (2001)

Crabbé, B.: Représentation informatique de grammaires fortement lexicalisées :
Application & la grammaire d’arbres adjoints. PhD thesis, Université Nancy 2
(2005)

Le Roux, J., Crabbé, B., Parmentier, Y.: A constraint driven metagrammar. In:
The Eighth International Workshop on Tree Adjoining Grammar and Related For-
malisms (TAG+8), Sydney, Australia (2006)

Blackburn, P., Gardent, C.: A Specification Language for Lexical Functional Gram-
mars. In: Proceedings of EACL’95, Dublin, Ireland (1995)

Dalrymple, M., Kaplan, R., King, T.H.: Lexical structures as generalizations over
descriptions. In: Proceedings of LFG 04, Christchurch, New Zealand (2004)
Guénot, M.L.: Eléments de grammaire du francais pour une théorie descriptive et
formelle de la langue. PhD thesis, Université de Provence (2006)

Duchier, D., Dao, T.B.H., Parmentier, Y., Lesaint, W.: Property Grammar Parsing
Seen as a Constraint Optimization Problem. In: Proceedings of the 15th Interna-
tional Conference on Formal Grammar (FG 2010), Copenhagen, Denmark (2010)
Perrier, G.: Interaction Grammars. In: Proceedings of COLING 2000, Saarbriicken,
Germany (2000)



