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Cross-framework Grammar Engineering usingConstraint-driven MetagrammarsDenys Du
hier, Yanni
k Parmentier, and Simon PetitjeanLIFO, Université d'Orléans, F-45067 Orléans Cedex 2, Fran
e,firstname.lastname�univ-orleans.fr,WWW home page: http://www.univ-orleans.fr/lifo/� Preprint �Abstra
t. In this paper, we present an abstra
t 
onstraint-driven for-malism for grammar engineering 
alled eXtensible MetaGrammar andshow how to extend it to deal with 
ross-framework grammar engineer-ing. As a 
ase study, we fo
us on the design of tree-adjoining, lexi
al-fun
tional, and property grammars (TAG / LFG / PG).A parti
ularly interesting feature of this formalism is that it allows toapply spe
i�
 
onstraints on the linguisti
 stru
tures being des
ribed.Keywords: 
omputational linguisti
s, formal grammar, metagrammar,
onstraint solving.1 Introdu
tionMany grammati
al frameworks have been proposed over the last de
ades todes
ribe the syntax of natural language. Among the most widely used, one may
ite Tree-Adjoining Grammar (TAG) [1℄, Lexi
al-Fun
tional Grammar (LFG)[2℄, or Head-driven Phrase Stru
ture Grammar (HPSG) [3℄. These frameworkspresent theoreti
al and pra
ti
al interests. From a theoreti
al point of view, theyprovide a formal devi
e for the linguist to experiment with her/his theories.From a pra
ti
al point of view, they make it possible to automati
ally pro
essnatural language in appli
ations su
h as dialog systems, ma
hine translation, et
.They di�er in their expressivity and 
omplexity. Some reveal themselves moreadequate for the des
ription of a given language than others. Still, for many ofthese frameworks, large resour
es (i.e., grammars) have been designed, at �rstby hand, and later via dedi
ated tools (e.g., integrated grammar environmentssu
h as XLE for LFG [4℄). In this paper, we are 
on
erned with this 
omplex taskof grammar engineering, keeping in mind the two above-mentioned theoreti
aland pra
ti
al interests.Several approa
hes have been proposed for a 
omputer-aided grammar engi-neering, mainly to redu
e the 
osts of grammar extension and maintenan
e. Themain approa
hes are 1. the automati
 a
quisition from treebanks (see e.g., [5℄for LFG), 2. systems based on an abstra
t des
ription of the grammar, either viatransformation rules, also known as metarules (see e.g, [6℄ for TAG) or via a de-s
ription language, sometimes 
alled metagrammar (see e.g., [7℄ for TAG). The



advantage of the des
ription-based approa
h (and espe
ially metagrammars1)over the automati
 a
quisition approa
h lies in the linguisti
 
ontrol it provides.Indeed, these des
riptions 
apture linguisti
 generalizations and make it possibleto reason about language at an abstra
t level. Des
ribing language at an abstra
tlevel is not only interesting for stru
ture sharing within a given framework, butalso for information sharing between frameworks and / or languages.This observation was already made by [9,10℄. In their papers, the authorsshowed how to extend an existing metagrammar for TAG so that both a TAGand an LFG 
ould be generated from it. They annotated TAG metagrammati-
al elementary units (so-
alled 
lasses) with extra pie
es of information, namely(i) LFG's fun
tional des
riptions and (ii) �ltering information to distinguish
ommon 
lasses from 
lasses spe
i�
 to TAG or LFG. The metagrammar 
ompi-lation then generated an extended TAG, from whi
h LFG rules were extra
ted.To maximize the stru
ture sharing between their TAG and LFG metagrammars,the authors de�ned 
lasses 
ontaining tree fragments of depth one. These frag-ments were either 
ombined to produ
e TAG trees or asso
iated with fun
tionaldes
riptions to produ
e LFG rules. This 
ross-framework experiment was ap-plied to the design of a Fren
h / English parallel metagrammar, produ
ing botha TAG and a LFG. This work was still preliminary. Indeed (i) it 
on
erneda limited metagrammar (the target TAG was 
omposed of 550 trees, and theasso
iated LFG of 140 rules) (ii) more importantly, there is no 
lear eviden
ewhether a generalization to other frameworks and / or languages 
ould be pos-sible (metagrammar implementation 
hoi
es, su
h as tree fragment depth, werenot independent from the target frameworks).Here, we 
hose to adopt a more generalized approa
h by designing an extensi-ble metagrammati
al language, that 
an handle an arbitrary number of distin
ttarget frameworks. The linguist 
an thus use the same formalism to des
ribe dif-ferent frameworks and grammars. Nonetheless, if one wants to experiment withmulti-formalism, e.g., by designing a parallel TAG / LFG grammar, nothingprevents her/him from de�ning �universal� 
lasses, whi
h 
ontain metagram-mati
al des
riptions built on a 
ommon sublanguage. Rather than designing anew metagrammati
al language from s
rat
h, we propose to extend an existingformalism, namely eXtensible MetaGrammar (XMG) [11℄, whi
h seems parti
u-larly adequate thanks to its modularity and extensibility.The paper is organized as follows. In se
tion 2, we brie�y introdu
e TAG,as well as the redundan
y issues raising while developing large TAG grammars(whi
h motivated metagrammars). We then introdu
e the XMG metagrammat-i
al language and show how it 
an be used to design TAG grammars. In se
-tion 3, we brie�y introdu
e LFG and present an extension of XMG to des
ribeLFG grammars. In se
tion 4, we introdu
e Property Grammar (PG) [12℄, andpresent a se
ond extension of XMG to generate PG grammars. In se
tion 5, wewill generalize over these two extensions, and de�ne a layout for 
ross-frameworkgrammar engineering. Finally, we 
on
lude and give perspe
tives in se
tion 6.1 In rule-based des
riptions, one has to 
arefully de�ne the ordering of the appli
ationsof rules [8℄, whi
h makes it hard to design large grammars.



2 eXtensible Meta Grammar: generating Tree-AdjoiningGrammars with a metagrammar2.1 Tree-Adjoining GrammarTAG2 is a tree rewriting system, where elementary trees 
an be 
ombined viatwo rewriting operations, namely substitution and adjun
tion. Substitution 
on-sists in repla
ing a leaf node labelled with ↓ with a tree whose root has the samesynta
ti
 
ategory as this leaf node. Adjun
tion 
onsists in repla
ing an internalnode with a tree where both the root node and one of the leaf nodes (labelledwith ⋆) have the same synta
ti
 
ategory as this internal node. As an illustra-tion, 
onsider Fig. 1 below. It shows (i) the substitution of the elementary treeasso
iated with the noun John into the elementary tree asso
iated with the verbsleeps, and (ii) the adjun
tion of the elementary tree asso
iated with the adverbdeeply into the tree asso
iated with sleeps.SNP↓ VP VPNP V VP⋆ ADVJohn sleeps deeply →

SNP VPJohn VP ADVV deeplysleeps(derived tree)Fig. 1. Tree rewriting in TAGBasi
ally, a real size TAG is made of thousands of elementary trees [14,15℄.Due to TAG's extended domain of lo
ality, many of these trees share 
ommonsub-trees, as for instan
e the relation between a 
anoni
al subje
t and its verb,as shown in Fig. 2. To deal with this redundan
y, the metagrammar approa
h(in parti
ular XMG) proposes to des
ribe large TAG grammars in an abstra
tand fa
torized way.2.2 eXtensible MetaGrammar (XMG)XMG is a metagrammati
al language inspired by logi
 programming. The ideabehind XMG is that a metagrammar is a de
larative logi
al spe
i�
ation of whata grammar is. This spe
i�
ation relies on the following three main 
on
epts:
• several dimensions of language (e.g. syntax, semanti
s) 
an be des
ribed;
• for ea
h of these dimensions, des
riptions are made of non-deterministi
 
om-binations of elementary units;
• for some of these dimensions, des
riptions must be solved to produ
e models.2 For a detailed introdu
tion to TAG, see [13℄.



SN↓ V⋄ N↓Jean mange une pommeJohn eats an apple
NN⋆ SCque SN↓ V⋄La pomme que Jean mangeThe apple that John eatsFig. 2. Stru
tural redundan
y in TAGXMG's extensibility 
omes from the 
on
ept of dimensions. These allow todes
ribe an arbitrary number of types of linguisti
 stru
tures. Non-determinismallows for fa
torization, and des
ription solving for assembly and validation (i.e.,well-formedness of the des
ription a

ording to some target framework). Here-after, we will �rst use XMG to des
ribe TAG. Then, we will apply XMG's exten-sibility to the des
ription of other frameworks, namely LFG and PG. Eventually,we will generalize over these appli
ations.When des
ribing TAG trees with XMG, one de�nes both (i) tree fragmentsand (ii) 
onstraints that express how these fragments have to be 
ombined toprodu
e the grammar. Two languages are thus used: a des
ription language LD tospe
ify fragments, and a 
ontrol language LC to spe
ify 
ombination 
onstraints.

LD is based on the pre
eden
e and dominan
e relations. Furthermore, sin
eTAG allows for the labelling of synta
ti
 nodes with feature stru
tures, so does
LD. A des
ription in LD is a formula built as follows:
Desc := x → y | x →+ y | x →∗ y | x ≺ y | x ≺+ y | x[f :E] | x(p:E) |

Desc ∧ Descwhere x, y refer to node variables, → (resp. ≺) to the dominan
e (resp. pre
e-den
e) relation, and + (resp. ∗) are used to denote the transitive (resp. re�exiveand transitive) 
losure of this relation. The square bra
kets are used to asso
iatea node variable with some feature stru
ture. Parenthesis are used to asso
iate anode variable with some property (su
h as the TAG ⋆ property seen in Fig. 1).Note that node variables are by default lo
al to a des
ription. If a node variableneeds to be a

essed from outside its des
ription, it is possible to use some ex-port me
hanism. On
e a variable is exported, it be
omes a

essible using a dotoperator. For instan
e, to refer to the variable x in the des
ription Desc, onewrites Desc.x. Here is an illustration of a fragment des
ription in XMG (on theright, one 
an see a minimal model of this des
ription):
(x [cat : S] → y [cat : V ] ) ∧
(x → z (mark : subst) [cat : N ] ) ∧
(z ≺ y)

x [
at:S℄z ↓ [
at:N℄ y [
at:V℄
LC o�ers three me
hanisms to handle fragments: abstra
tion via parameter-ized 
lasses (asso
iation of a name and zero or more parameters with a 
ontent),




onjun
tion (a

umulation of 
ontents), and disjun
tion (non-deterministi
 a
-
umulation of 
ontents). A formula in LC is built as follows:
Class := Name[p1 , . . . , pn ] → Content

Content := Desc | Name[. . . ] | Content ∨Content | Content ∧ ContentAs an illustration of LC , let us 
onsider di�erent obje
t realizations. One
ould for instan
e de�ne the 4 fragments: (i) 
anoni
al subje
t, (ii) verbal mor-phology, (iii) 
anoni
al, and (iv) relativized obje
t, and the following 
ombina-tions, thus produ
ing the two trees of Fig. 2:
Object → CanObj ∨ RelObj

Transitive → CanSubj ∧ VerbMorph ∧ ObjectMetagrammar 
ompilation. To produ
e a grammar from an XMGmetagrammar,we let the logi
al spe
i�
ation generate, in a non-deterministi
 way, des
riptions.In other words, the 
ombination 
onstraints are pro
essed to generate des
rip-tions (one per dimension). For some dimensions, des
riptions need to be solvedto produ
e models. This is the 
ase for TAG, a 
onstraint-based tree des
rip-tion solver is thus used to 
ompute trees [11℄. Note this solver a
tually 
he
ksseveral types of 
onstraints [16℄: tree well-formedness 
onstraints, TAG-related
onstraints (e.g., unique node labelled ⋆), and language-related 
onstraints (e.g.,uniqueness and order of 
liti
s in Fren
h).As one of the �rst ambitions of XMG is multi-formalism, dimensions are ane�
ient way to de�ne di�erent types of des
ription language adapted to targetframeworks. Let us see how to de�ne dimensions for LFG and PG.3 Generating Lexi
al-Fun
tional Grammars with ametagrammar3.1 Lexi
al-Fun
tional GrammarA lexi
al-fun
tional grammar (LFG) 
onsists of three main 
omponents: 1. 
ontext-free rules annotated with fun
tional des
riptions, 2. well-formedness prin
iples,and 3. a lexi
on. From these 
omponents, two main inter
onne
ted stru
tures
an be built3: a 
(onstituent)-stru
ture, and a f(un
tional)-stru
ture. The 
-stru
ture represents a synta
ti
 tree, and the f-stru
ture grammati
al fun
tionsin the form of re
ursive attribute-value matri
es. As an example of LFG, 
on-sider the Fig. 3 below. It 
ontains a toy grammar and the 
- and f-stru
tures forthe senten
e �John loves Mary�. In this example, one 
an see fun
tional des
rip-tions labelling 
ontext-free rules (see (1) and (2)). These des
riptions are madeof equations. For instan
e, in rule (1), the equation (↑ SUBJ) =↓ 
onstrains the
SUBJ feature of the fun
tional des
ription asso
iated with the left-hand sideof the 
ontext-free rule to unify with the fun
tional des
ription asso
iated with3 This 
onne
tion is often referred to as fun
tional proje
tion or fun
tional mapping.



the �rst element of the right-hand side of the rule. In other words, these equa-tions are uni�
ation 
onstraints between attribute-value matri
es. Nonetheless,these 
onstraints may not provide enough 
ontrol on the f-stru
tures li
ensed bythe grammar, LFG hen
e 
omes with three additional well-formedness prin
iples(
ompleteness, 
oheren
e and uniqueness) [2℄.Toy grammar:(1) S → NP VP
↑=↓ (↑ SUBJ) =↓ ↑=↓(2) VP → V NP
↑=↓ ↑=↓ (↑ OBJ) =↓(3) John NP, (↑ PRED) =′ JOHN ′, (↑ NUM) = SG, (↑ PRES) = 3(4) Mary NP, (↑ PRED) =′ MARY ′, (↑ NUM) = SG, (↑ PRES) = 3(5) loves V, (↑ PRED) =′ LOV E〈(↑ SUBJ) (↑ OBJ)〉′, (↑ TENSE) = PRESENT
-stru
ture: f-stru
ture:S

↑=↓NP
(↑ SUBJ) =↓

VP
↑=↓John V

↑=↓
NP

(↑ OBJ) =↓loves Mary
f1:















PRED 'LOVE〈(↑ SUBJ) (↑ OBJ)
〉'SUBJ f2:PRED 'JOHN'NUM SGPERS 3 



OBJ f3:PRED 'MARY'NUM SGPERS 3 



TENSE PRESENT
































Fig. 3. LFG grammar and 
-and f-stru
tures for the senten
e �John loves Mary�3.2 Extending XMG for LFGIn the previous se
tion, we de�ned the XMG language, and applied it to thedes
ription of TAG. Let us re
all that one of the motivations of metagrammarsin general (and of XMG in parti
ular) is the redundan
y whi
h a�e
ts grammarextension and maintenan
e. In TAG, the redundan
y is higher than in LFG. Still,as mentioned in [9℄, in LFG there are redundan
ies at di�erent levels, namelywithin the rewriting rules, the fun
tional equations and the lexi
on. Thus, themetagrammar approa
h 
an prove helpful in this 
ontext. Let us now see whattype of language 
ould be used to des
ribe LFG.4To des
ribe LFG at an abstra
t level, one needs to des
ribe its elementaryunits, whi
h are 
ontext-free rules annotated with fun
tional des
riptions (e.g.,equations) and lexi
al entries using attribute-value matri
es. Context-free rules4 A spe
i�
ation language for LFG has been proposed by [17℄, but it 
orresponds moreto a model-theoreti
 des
ription of LFG than to a metagrammar.




an be seen as trees of depth one. Des
ribing su
h stru
tures 
an be done inXMG using a des
ription language similar to the one for TAG, i.e., using the →(dominan
e) and ≺ (pre
eden
e) relations. One 
an for instan
e de�ne di�erent
ontext-free ba
kbones a

ording to the number of elements in the right-handsides of the LFG rules. These ba
kbones are en
apsulated in parameterized XMG
lasses, where the parameters are used to assign a synta
ti
 
ategory to a givenelement of the 
ontext-free rule, su
h as in the 
lass BinaryRule below.
BinaryRule[A,B,C] → (x[cat : A] → y[cat : B]) ∧ (x → z[cat : C]) ∧ (y ≺+ z)exports 〈x, y, z〉We also need to annotate the node variables x, y, z with fun
tional des
riptions.Let us see how these fun
tional des
riptions FDesc are built:5
Fdesc := ∃(g FEAT ) | ¬(g FEAT ) | (g ∗ FEAT ) | (g FEAT ) CONST V AL |

Fdesc ∨ Fdesc | (Fdesc) | Fdesc ∧ Fdescwhere g refers to an attribute-value matrix, FEAT to a feature, V AL to a(possibly 
omplex) value, CONST to a 
onstraint operator (= for uni�
ation,=cfor 
onstraining uni�
ation, ∈ for set membership, 6= for di�eren
e), (FDesc) tooptionality, and ∗ to LFG's fun
tional un
ertainty. Note that g 
an be 
omplex,that is, it 
an 
orrespond to a (relative � using ↑ and ↓ � or absolute) pathpointing to a sub-attribute-value matrix.To spe
ify su
h fun
tional des
riptions, we 
an extend XMG in a straightfor-ward manner, with a dedi
ated dimension and a dedi
ated des
ription language
LLFG de�ned as follows:

DescLFG := x → y | x ≺ y | x ≺+ y | x = y | x[f :E] | x〈Fd〉 |

DescLFG ∧ DescLFG

Fd := g | ∃g.f | g.f = v | g.f =c v | g.f ∈ v | ¬Fd | Fd ∨ Fd |

(Fd) | Fd ∧ Fd

g, h := ↑ | ↓ | h.f | f ∗ iwhere g, h are variables denoting attribute-value matri
es, f, i (atomi
) featurenames, v (possibly 
omplex) values, and 〈. . . 〉 
orresponds to LFG's fun
tionalmapping introdu
ed above. With su
h a language, it now be
omes possible tode�ne an XMG metagrammar for our toy LFG as follows.6
Srule → br = BinaryRule[S, NP, VP] ∧ br.x〈↑=↓〉 ∧ br.y〈(↑ .SUBJ) =↓〉

∧ br.z〈↑=↓〉

V Prule → br = BinaryRule[VP, V, NP] ∧ br.x〈↑=↓〉 ∧ br.y〈↑=↓〉

∧ br.z〈(↑ .OBJ) =↓〉5 We do not 
onsider here additional LFG operators, whi
h have been introdu
ed inspe
i�
 LFG environments, su
h as shu�e, insert or ignore, et
.6 Here, we do not des
ribe the lexi
al entries, these 
an be de�ned using the samelanguage as the LFG 
ontext-free rules, omitting the right-and-side.



In this toy example, the stru
ture sharing is minimal. To illustrate what 
an bedone, let us have a look at a slightly more 
omplex example taken from [9℄:
V P → V (NP ) PP (NP )

↑=↓ (↑ OBJ) =↓ (↑ SecondOBJ) =↓ (↑ OBJ) =↓Here, we have two possible positions for the NP node, either before or after thePP node. Su
h an situation 
an be des
ribed in XMG as follows:
V Prule2 → br = BinaryRule[VP, V, PP] ∧ u[cat : NP] ∧ br.y ≺+ u

∧ br.y〈↑=↓〉 ∧ br.z〈(↑ .SecondOBJ) =↓〉 ∧ u〈(↑ .OBJ) =↓〉Here, we do not spe
ify the pre
eden
e between the NP and PP nodes. Wesimply spe
ify that the NP node is pre
eded by the V node (denoted by y).When 
ompiling this des
ription with a solver su
h as the one for TAG, twosolutions (LFG rules) will be 
omputed. In other terms, the optionality 
an beexpressed dire
tly at the metagrammati
al level, and the metagrammar 
ompiler
an dire
tly apply LFG's uniqueness prin
iple.In other words, the metagrammar here not only allows for stru
ture sharingvia the (
onjun
tive or disjun
tive) 
ombination of parameterized 
lasses, butit also allows to apply well-formedness prin
iples to the des
ribed stru
tures.In the example above with the two NP nodes, this well-formedness prin
ipleis 
he
ked on the 
onstituent stru
ture and indire
tly impa
ts the fun
tionalstru
ture (whi
h is the stru
ture 
on
erned with these prin
iples). If we see thefun
tional stru
tures as graphs and equations as 
onstraints on these, one 
ouldimagine to develop a spe
i�
 
onstraint solver. This would allow to turn themetagrammar 
ompiler into an LFG parser, whi
h would, while solving treedes
riptions for the 
onstituent stru
ture, solve graph-labelling 
onstraints forthe fun
tional stru
ture.Note that a similar approa
h of stru
ture sharing within an LFG through
ombinations of elementary units has been proposed by [18℄. In their paper, theauthors des
ribe how to share information between LFG stru
tures by de�ningnamed des
riptions, 
alled templates. These templates 
an abstra
t over 
onjun
-tion or disjun
tion of templates, they are thus 
omparable to our metagrammar
lasses. The main di�eren
e with our approa
h, is that nothing is said aboutan interpretation of these templates (they a
t in a ma
ro-like fashion), while inXMG, one 
ould apply some spe
i�
 treatments (e.g. 
onstraint solving) on themetagrammar 
lasses.4 Generating Property Grammars with a metagrammar4.1 Property GrammarProperty Grammar (PG) [12℄ di�ers from TAG or LFG in so far as it does notbelong to the generative syntax family, but to the model-theoreti
 syntax one.In PG, one de�nes the relations between synta
ti
 
onstituents not in terms



of rewriting rules, but in terms of lo
al 
onstraints (the so-
alled properties).7The properties li
ensed by the framework rely on linguisti
 observations, su
has linear pre
eden
e between 
onstituents, 
oo
urren
y, mutual ex
lusion, et
.Here, we will 
onsider the following 6 properties, that 
onstrain the relationsbetween a 
onstituent (i.e., the node of a synta
ti
 tree), with 
ategory A andits sub-
onstituents (i.e., the daughter-nodes of A):8Obligation A : △B at least one B 
hildUniqueness A : B! at most one B 
hildLinearity A : B ≺ C B 
hild pre
edes C 
hildRequirement A : B ⇒ C if a B 
hild, then also a C 
hildEx
lusion A : B 6⇔ C B and C 
hildren are mutually ex
lusiveConstituen
y A : S 
hildren must have 
ategories in SIn a real size PG, su
h as the Fren
h PG of [19℄, these properties are en
apsulated(together with some synta
ti
 features) within linguisti
 
onstru
tions, and thelatter arranged in an inheritan
e hierar
hy9. An extra
t of the hierar
hy of [19℄is presented in Fig. 4 (fragment 
orresponding to basi
 verbal 
onstru
tions).V (Verb)INTR [ID|NATURE [SCAT 1 .SCAT]

]
onst. : V :
1

[CAT VSCAT ¬ (aux-etre ∨ aux-avoir)] V-n (Verb with negation) inherits VINTR

SYN 

NEGA [RECT 1DEP Adv-n]uniqueness :
Adv-ngAdv-np !requirement : 1 ⇒Adv-nlinearity : Adv-ng≺ 1

: Adv-ng≺Adv-np
: Adv-np≺ 1 .[MODE inf ]

: 1 .[MODE ¬inf ] ≺Adv-npV-m (Verb with modality) inherits V ; V-nINTR

SYN 

INTRO [RECT 1DEP Prep]uniqueness : Prep!requirement : 1 ⇒Preplinearity : 1 ≺PrepFig. 4. Fragment of a PG for Fren
h (basi
 verbal 
onstru
tions)Let us for instan
e have a 
loser look at the properties of the V-n 
onstru
tionof Fig. 4. It says that in Fren
h, for verbs with a negation, this negation is made7 An interesting 
hara
teristi
 of these 
onstraints is that they 
an be independentlyviolated, and thus provide a way to 
hara
terize agrammati
al senten
es.8 Here, we omit lexi
al properties, su
h as cat(apple) = N.9 Note that this hierar
hy is a disjun
tive inheritan
e hierar
hy, i.e., when there ismultiple inheritan
e, the sub
lass inherits one of its super-
lasses.



of an adverb ne (labelled with the 
ategory Adv-ng) and / or an adverb pas (or arelated adverb su
h as guère, labelled with the 
ategory Adv-np). These adverbs,if they exist, are unique (uniqueness property), and linearly ordered (linearityproperty). When the verb is an in�nitive, it 
omes after these adverbs (e.g., nepas donner (not to give) versus je ne donne pas (I do not give)).4.2 Extending XMG for PGIn order to des
ribe PG, we need to extend the XMG formalism with linguisti

onstru
tions. These will be en
apsulated within XMG's 
lasses. As for LFG, weextend XMG with a dedi
ated dimension and a dedi
ated des
ription language
LPG. Formulas in LPG are built as follows:
DescPG := x | x = y | x 6= y | [f :E] | {P} | DescPG ∧ DescPG

P := A : △B | A : B! | A : B ≺ C | A : B ⇒ C | A : B 6⇔ C | A : Bwhere x, y 
orrespond to uni�
ation variables, = to uni�
ation, 6= to uni�
ationfailure, E to some (possibly 
omplex) expression to be asso
iated with the feature
f , and {P} to a set of properties. Note that E and P may share uni�
ationvariables. With this language, it is now possible to de�ne the above V, V-n andV-m 
onstru
tions as follows:
V class → [INTR : [ID|NATURE : [CAT : X.SCAT]]] ∧ (V : X)

∧ (X = [CAT : V, SCAT : Y ]) ∧ (Y 6= aux−etre) ∧ (Y 6= aux−avoir)

V−n → V class ∧ [INTR:[SYN:[NEGA:[RECT:X,DEP:Adv−n]]]]

∧ (V : Adv−ng!) ∧ (V : Adv−np!) ∧ (V : X ⇒ Adv−n)

∧ (V : Adv−ng ≺ X) ∧ (V : Adv−ng ≺ Adv−np)

∧ (V : Adv−ng ≺ Y ) ∧ (V : Z ≺ Adv−np)

∧ (Y = inf) ∧ (Y = X.mode) ∧ ¬(Z = inf) ∧ (Z = X.mode)

V−m → (V class ∨ V−n) ∧ [INTR:[SYN:[INTRO:[RECT:X,DEP:Prep]]]]

∧ (V : Prep!) ∧ (V : X ⇒ Prep) ∧ (V : X ≺ Prep)Note that the disjun
tion operator from XMG's 
ontrol language LC allowsus to represent [19℄'s disjun
tive inheritan
e. Also, 
ompared with TAG andLFG, there is relatively few redundan
y in PG, for redundan
y is already dealtwith dire
tly at the grammar level, by organizing the 
onstru
tions within aninheritan
e hierar
hy based on linguisti
 motivations.As for LFG, the metagrammar 
ould be extended so that it solves the proper-ties 
ontained in the �nal 
lasses, a

ording to a senten
e to parse. This 
ould bedone by adding a spe
i�
 
onstraint solver su
h as that of [20℄ as a post-pro
essorof the metagrammar 
ompilation.



5 Towards an extensible metagrammati
al formalismWe have seen two extensions of the XMG formalism to des
ribe not only TAGgrammars, but also LFG and PG ones, these rely on the following 
on
epts:
• The metagrammar des
ribes a grammar by means of 
onjun
tive and / or dis-jun
tive 
ombinations of elementary units (using a 
ombination language LC).
• The elementary units of the (meta)grammar depend on the target framework,and are expressed using dedi
ated des
ription languages (LD,LLFG,LPG).When 
ompiling a metagrammar, the 
ompiler exe
utes the logi
 program under-lying LC (i.e., unfolds the 
ombination rules) while storing the elementary unitsof LD|LFG|PG in dedi
ated a

umulators. The resulting a

umulated des
rip-tions may need some additional post-pro
essing (e.g., tree des
ription solvingfor TAG). Thus, to extend XMG into a 
ross-framework grammar engineer-ing environment, one needs (i) to design dedi
ated des
ription languages, and(ii) to develop the 
orresponding pre/post-pro
essing modules (e.g., metagram-mar parsing / des
ription solving).A �rst version of XMG (XMG 1) was developed in Oz-Mozart.10 It imple-ments the language des
ribed in se
tion 2, and supports tree-based formalisms,namely TAG and Intera
tion Grammar [21℄. It has been used to design variouslarge tree grammars for Fren
h, English and German.11 The implementationof a new version of XMG (XMG 2) has started in 2010, in Prolog (with bind-ings to the Ge
ode Constraint Programming C++ library)12, with the goal ofsupporting 
ross-framework grammar engineering as presented here.6 Con
lusion and perspe
tivesIn this paper, we presented a metagrammati
al formalism for 
ross-frameworkgrammar engineering. This formalism o�ers a 
olle
tion of des
ription languages,making it possible to des
ribe di�erent types of linguisti
 stru
tures (TAG's syn-ta
ti
 trees, LFG's fun
tional des
riptions, PG's linguisti
 
onstru
tions), thesestru
tures being 
ombined either 
onjun
tively or disjun
tively via a 
ommon
ontrol language. The formalism also applies spe
i�
 
onstraints on some of thesestru
tures to ensure their well-formedness (e.g., rank prin
iple for TAG).Using a formalism that 
an des
ribe several types of grammar frameworkso�ers new insights in grammar 
omparison and sharing. This sharing appearsnaturally when designing parallel grammars, but appears also when designingdistin
t grammars (e.g., reuse of the 
ombinations of elementary units).The implementation of the formalism introdu
ed here is a work in progress.We aim to provide the linguist with an extensible formalism, o�ering a ri
h 
ol-le
tion of prede�ned des
ription languages; ea
h one with a library of prin
iples,and 
onstraint solvers to e�e
t spe
i�
 assembly, �ltering, and veri�
ations onthe grammati
al stru
tures des
ribed by the metagrammar.10 See http://sour
esup.
ru.fr/xmg and http://www.mozart-oz.org.11 These are available on line, see http://sour
esup.
ru.fr/proje
ts/xmg (reposi-tory METAGRAMMARS) and http://www.sfs.uni-tuebingen.de/emmy/res-en.html.12 See https://laun
hpad.net/xmg and http://www.ge
ode.org.
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