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Which Depend on the Models of Set Theory

Olivier Finkel
Equipe de Logique Ma#imatique
Institut de Mathématiques de Jussieu
CNRS et Université Paris 7, France.
finkel@logique.jussieu.fr

Abstract

We prove that some fairly basic questions on automata rgadiimite words depend on the
models of the axiomatic systertC. It is known that there are only three possibilities for the
cardinality of the complement of anrlanguagéd.(.A) accepted by a Buchicounter automa-
ton.A. We prove the following surprising result: there existiseounter Buchi automatod
such that the cardinality of the compleméi(td) ~ of thew-language. (A) is not determined
by ZFC:

(1). There is a moddl; of ZFC in which L(.A)~ is countable.

(2). There is a modé¥, of ZFC in which L(A)~ has cardina2™.

(3). There is a modél; of ZFC in which L(A)~ has cardinak; with X < R; < 280,
We prove a very similar result for the complement of an infinjtrational relation accepted by
a2-tape Biichi automatoB. As a corollary, this proves that the Continuum Hypothesay m
be not satisfied for complements btounterw-languages and for complements of infinitary
rational relations accepted Rytape Biichi automata.
We infer from the proof of the above results that basic denigiroblems about-counterw-
languages or infinitary rational relations are actuallyated at thehird level of the analytical
hierarchy. In particular, the problem to determine whethercomplement of a-counterw-
language (respectively, infinitary rational relation) @uotable is in>3 \ (113 U £1). This
is rather surprising if compared to the fact that itlescidablewhether an infinitary rational
relation is countable (respectively, uncountable).

Keywords: Automata and formal languages; logic in computer scienmeypuitational complexity; infinite
words; w-languages;l-counter automatorg-tape automaton; cardinality problems; decision problems
analytical hierarchy; largest thin effective coanalytat;smodels of set theory; independence from the
axiomatic systenz FC.

1 Introduction

In Computer Science one usually considers either finite coatipns or infinite ones. The
infinite computations have length, which is the first infinite ordinal. The theory of automata
reading infinite words, which is closely related to infinitenges, is now a rich theory which is
used for the specification and verification of non-termimgsystems, see [GTWO02, PP04].

Connections between Automata Theory and Set Theory hagemin the study of monadic
theories of well orders. For example, Gurevich, Magidor Shelah proved in [GMS83] that the
monadic theory ofss, wherews is the second uncountable cardinal, may have different tp
ties depending on the actual model*C (the commonly accepted axiomatic framework for Set



Theory in which all usual mathematics can be developped),tla@ monadic theory ab, is in
turn closely related to the emptiness problem for autorredding transfinite words of lengthy.
Another example is given by [Nee08], in which Neeman considesome automata reading much
longer transfinite words to study the monadic theory of samgel uncountable cardinal.

However, the cardinal, is very large with respect to, and therefore the connections between
Automata Theory and Set Theory seemed very far from theipehetspects of Computer Science.
Indeed one usually thinks that the finite or infinite compota appearing in Computer Science
are “well defined” in the axiomatic framework of mathematiasd thus one could be tempted to
consider that a property on automata is either true or faisetiaat one has not to take care of
the different models of Set Theory (except perhaps for theti@oum Hypothesi<CH which is
known to be independent frodFC).

In [Fin09a] we have recently proved a surprising result: tpological complexity of am-
language accepted bylacounter Biichi automaton, or of an infinitary rational tigla accepted
by a2-tape Biichi automaton, is not determined by the axiomastesnZFC. In particular, there
is al-counter Bichi automatod (respectively, 2-tape Biichi automatoff) and two model&/
andV, of ZFC such that thev-languagel.(.A) (respectively, the infinitary rational relatidn(3))
is Borel inVy but not inVs.

We prove in this paper other surprising results, showingdbme basic questions on automata
reading infinite words actually depend on the modelBRCE . In particular, we prove the following
result: there exists &-counter Bichi automatosl such that the cardinality of the complement
L(A)~ of thew-languageL(.A) is not determined by FC. Indeed it holds that:

(1). There is a modél; of ZFC in which L(.A)~ is countable.

(2). There is a modél; of ZFC in which L(.A)~ has cardinap™o.

(3). There is a modél; of ZFC in which L(.A)~ has cardinal; with X < Xy < 2%,

Notice that there are only these three possibilities fordéelinality of the complement of
anw-language accepted by a Budhtounter automatoml because the-languageL(.A) is an
analytic set and thus(.4)~ is a coanalytic set, see [Jec02, page 488].

We prove a very similar result for the complement of an indfinjtrational relation accepted
by a2-tape Bichi automatoBi. As a corollary, this proves that the Continuum Hypothesiy tve
not satisfied for complements dfcounterw-languages and for complements of infinitary rational
relations accepted B+tape Biichi automata.

In the proof of these results, we consider the largest thén, fivithout perfect subset) effective
coanalytic subset of the Cantor sp&:e whose existence was proven by Kechris in [Kec75] and
independently by Guaspari and Sacks. An important propgerty; is that its cardinal depends
on the models of set theory. We use this fact and some cotistrtadrom recent papers [Fin06a,
Fin06b] to infer our new results abolicounter or2-tape Biichi automata.

Combining the proof of the above results with Shoenfield's@bteness Theorem we get that
basic decision problems abolicounterw-languages or infinitary rational relations are actually
located at thethird level of the analytical hierarchy. In particular, the problem &tetmine
whether the complement of acounterw-language (respectively, infinitary rational relation) is
countable is irt} \ (I13 UX1). This is rather surprising if compared to the fact that désidable
whether an infinitary rational relation is countable (retjppely, uncountable). As a by-product of
these results we get a (partial) answer to a question of €astt Cucker about-languages of
Turing machines.

The paper is organized as follows. We recall the notion ofhteruautomata in Section 2.
We expose some results of Set Theory in Section 3, and we provain results in Section 4.
Concluding remarks are given in Section 5.



Notice that the reader who is not familiar with the notion adinal in set theory may skip part
of Section 3 and just read Theorems 3.3 and 3.5 in this secliom rest of the paper relies mainly
on the set-theoretical results stated in Theorem 3.5.

2 Counter Automata

We assume the reader to be familiar with the theory of formalldnguages [Tho90, Sta97].
We recall the usual notations of formal language theory.

If 3 is a finite alphabet, aon-empty finite wordvery: is any sequence = a; . .. ag, where
a; € Xfori=1,...,k,andk is an integet> 1. Thelengthof z is k, denoted byz|. Theempty
word has no letter and is denoted Byits length isO. >* is theset of finite wordgincluding the
empty word) oveb.

Thefirst infinite ordinalis w. An w-word over Y is anw -sequence ... a, ..., where for
all integersi > 1, a; € ¥. Wheno = a; ...a,... IS anw-word overy:, we writeo(n) = ay,
oln] =0(1)o(2)...0(n)foralln > 1 ando[0] = .

The usual concatenation product of two finite wordandv is denotedu.v (and sometimes
justuv). This product is extended to the product of a finite wardnd arw-word v: the infinite
word u.v is then thev-word such that:

(u.v)(k) = u(k) if k < |u|, and(u.v)(k) = v(k — |u]) if & > |ul.

Theset of w-wordsover the alphabet is denoted by-“. An w-languageV” over an alphabet
Y} is a subset oE¥, and its complement (ik*) is X — V, denotedV —.

We now recall the definition of-counter Biichi automata which will be useful in the sequel.

Let & be an integee> 1. A k-counter machine hak counters each of which containing a
non-negative integer. The machine can test whether thebat a given counter is zero or not.
And transitions depend on the letter read by the machinecuhent state of the finite control,
and the tests about the values of the counters. Notice thtaisrmodel some\-transitions are
allowed. During these transitions the reading head of thehina does not move to the right, i.e.
the machine does not read any more letter.

Formally ak-counter machine is a 4-tuplet=(K, 3, A, qo), whereK is a finite set of states,
¥ is a finite input alphabetyy € K is the initial state, and\ C K x (X U {\}) x {0,1}* x
K x {0,1,—1}* is the transition relation. The-counter machine\ is said to beeal timeiff:
ACK x X x{0,1}* x K x {0,1,—1}*, i.e. iff there are no\-transitions.

If the machineM is in stateq and¢; € N is the content of the” counterC; then the
configuration (or global state) o¥1 is the (k + 1)-tuple (¢, c1, - . ., ck).

Fora € XU{\}, ¢,¢ € K and(cy,...,c;) € N¥suchthar; =0forj € E C {1,...,k}
andc; > 0forj ¢ E,if (¢,a,i1,...,%.¢,j1,...,Jr) € Awherei; = 0for j € Eandi; =1
for j ¢ E, then we write:

a: (g, 1y ck)—m (¢ e+ g1, ek + k)

Thus the transition relation must obviously satisfy:
if (q,a,i1,...,%,4,j1,---,J%) € A andi,, = 0 for somem € {1,...,k} thenj,, = 0 or
jm = 1 (but j,, may not be equal te-1).

Leto = ajas ... a, ... beanv-word over:. Anw-sequence of configuratioms= (q;, cﬁ, .. c}%)izl
is called a run ofM on o, starting in configuratioftp, c1, . . ., ¢k ), iff:

Q) (g1, ¢ty --.ct) = (picay - cp)

(2) for eachi > 1, there exist$; € SU{\} suchthab; : (gi,ci,...ch) ~am (g1, et )
and such that eitheraqas ... a,, ... = biby... b, ...



or biby...b,...is afinite word, prefix (i.e. initial segment) ofiyas ... ay, . ..

The runr is said to be complete whenas ... a, ... = biby... b, ...

For every such rum, In(r) is the set of all states entered infinitely often during

A complete run- of M on o, starting in configuratioriqg, 0, . .., 0), will be simply called “a
run of M ong”.

Definition 2.1 A Biichik-counter automaton is a 5-tuplet=(K, X, A, qo, F'), whereM'=(K, 3, A, qo)
is a k-counter machine and’ C K is the set of accepting states. Thdanguage accepted by
Mis: L(M)={o € ¥ | there exists arunr aM ono such thatin(r) N F # 0}

The class ofv-languages accepted by Budhicounter automata is denot®ICL(k),,. The
class otw-languages accepted Bal timeBuichi k-counter automata will be denotedBCL(k),,.
The classBCL(1),, is a strict subclass of the cla6&¥'L,, of context freev-languages accepted
by Biichi pushdown automata.

We recall now the definition of classes of the arithmeticardichy ofw-languages, see
[Sta97]. LetX be a finite alphabet. Aw-language L C X“ belongs to the class,, if and
only if there exists a recursive relatidey, C (N)"~! x X* such that:

L={oceX¥|3ay...Qna, (a1,...,an—1,0lan +1]) € Rr},

where(); is one of the quantifierg or 3 (not necessarily in an alternating order). Adanguagel C
X belongs to the clasH,, if and only if its complemeniX“ — L belongs to the class,,. The
class¥! is the class oéffective analytic setshich are obtained by projection of arithmetical sets.
An w-language L C X* belongs to the clask!] if and only if there exists a recursive relation
Rr C N x {0,1}* x X* such that:

L={ceX¥|3r(r €{0,1}* AVn3m((n,7[m],c[m]) € Rr))}.

Then anw-language L C X is in the classo1 iff it is the projection of anu-language over the
alphabetX x {0,1} which is in the class$l,. The clasdI! of effective co-analytic sets simply
the class of complements of effective analytic sets.

Recall that a Buchi Turing machine is just a Turing machirmgking on infinite inputs with
a Buchi-like acceptance condition, and that the class-tiinguages accepted by Buchi Turing
machines is the class! of effective analytic sets [CG78, Sta97]. On the oher hand,ean con-
struct, using a classical construction (see for instandéJld1]), from a Buchi Turing maching’,
a2-counter Biichi automatod accepting the same-language. Thus one can state the following
proposition.

Proposition 2.2 Anw-language L C X¥ is in the clas<:1 iff it is accepted by a non deterministic
Buchi Turing machine, hence iff it is in the claBLL(2),,.

3 Some Results of Set Theory

We recall that the reader who is not familiar with the notidroainal in set theory may
skip part of this section: the main results in this sectiohicl will be used later in this paper, are
stated in Theorems 3.3 and 3.5.

We now recall some basic notions of set theory which will befuisin the sequel, and which
are exposed in any textbook on set theory, like [Jec02].

4



The usual axiomatic syste@FC is Zermelo-Fraenkel syste@F plus the axiom of choice
AC. The axioms oZFC express some natural facts that we consider to hold in theergd of
sets. For instance a natural fact is that two seasdy are equal iff they have the same elements.
This is expressed by th&xiom of Extensionality

VaVy [z =y < Vz(z €x > 2z €y) |.

Another natural axiom is thBairing Axiomwhich states that for all setsandy there exists a set
z = {z,y} whose elements areandy:

VaVy [ Fz(Vw(w € z ¢ (w =z Vw =1y)))]

Similarly thePowerset Axionstates the existence of the set of subsets of a.9dbtice that these
axioms are first-order sentences in the usual logical laggyoéset theory whose only non logical
symbol is the membership binary relation symbolWe refer the reader to any textbook on set
theory for an exposition of the other axioms4FC.

A model (v, €) of an arbitrary set of axiom4 is a collectionV of sets, equipped with the
membership relatiore, where % € y” means that the set is an element of the sat, which
satisfies the axioms df. We often say “ the modal” instead of “ the modelV(, €)”.

We say that two setd and B have same cardinality iff there is a bijection frafnonto B and
we denote this byl =~ B. The relation~ is an equivalence relation. Using the axiom of choice
AC, one can prove that any sétcan be well-ordered so there is an ordinauch thatd ~ ~. In
set theory the cardinal of the satis then formally defined as the smallest such ordinal

The infinite cardinals are usually denoted Ry, N1, N5, ..., R,,... The cardinal}, is also
denoted byw,, when it is considered as an ordinal. The first infinite orllinav and it is the
smallest ordinal which is countably infinite 8 = w (which could be writtenvy). There are
many larger countable ordinals, suchugsw?, ..., w®,...w*",... The first uncountable ordinal
is wp, and formallyX; = wq. In the same ways, is the first ordinal of cardinality greater than,
and so on.

The continuum hypothesBH says that the first uncountable cardiNalis equal ta2®° which
is the cardinal of the continuum. Godel and Cohen have prtvat the continuum hypothesH
is independent from the axiomatic syst&MC, i.e., that there are models 8FC + CH and also
models ofZFC + - CH, where— CH denotes the negation of the continuum hypothesis, [Jec02].

Let ON be the class of all ordinals. Recall that an ordimds said to be a successor ordinal iff
there exists an ordina such thath = 8 + 1; otherwise the ordinak is said to be a limit ordinal
and in this caser = sup{s € ON | 5 < a}.

The classL of constructible setin a modelV of ZF is defined by L = |J,con L(),
where the setk(«) are constructed by induction as follows:

(1).L0O)=90

(2). L(a) = U<, L(B), for a alimit ordinal, and

(3). L(a+1) is the set of subsets &f(«) which are definable from a finite number of elements
of L(«) by a first-order formula relativized («).

If V is a model oZF andL is the class ofonstructible setef V, then the clask is a model of
ZFC + CH. Notice that the axiom\{=L ), which means “every set is constructible”, is consistent
with ZFC becausd. is a model ofZFC + V=L.

Consider now a mod&f of ZFC and the class of its constructible s&tsC 'V which is another
model ofZFC. It is known that the ordinals df are also the ordinals &f, but the cardinals iV
may be different from the cardinals in



In particular, the first uncountable cardinalliris denotedkl, and it is in fact an ordinal o¥
which is denoteds. It is well-known that in general this ordinal satisfies thequalityw! < w;.
In a modelV of the axiomatic syster@FC + V=L the equalityw} = w; holds, but in some other
models ofZFC the inequality may be strict and ther}* < w;: notice that in this casel < w;
holds because there is actually a bijection frorontow? in V (sow? is countable irv) but no
such bijection exists in the inner model(sow! is uncountable ii.). The construction of such
a model is presented in [Jec02, page 202]: one can start fromadelV of ZFC + V=L and
construct by forcing a generic extensifG] in whichwy is collapsed tav; in this extension the
inequalitywl < w; holds.

We assume the reader to be familiar with basic notions ofltgyowhich may be found in
[Mos80, LT94, Sta97, PP04]. There is a natural metric on &&s of infinite words over a finite
alphabet: containing at least two letters which is called grefix metricand is defined as follows.
Foru,v € X andu # v let §(u,v) = 27 prefuv) wherel, ef(u,v) IS the first integen such that
the (n + 1) letter ofu is different from the(n + 1)*! letter ofv. This metric induces o the
usual Cantor topology in which thapen subsetsf ¥« are of the formiV. X, for W C ¥*. A set
L C ¥¥ is aclosed seiff its complement:* — L is an open set.

Definition 3.1 Let P C X, whereX is a finite alphabet having at least two letters. The Bas
said to be a perfect subset Bf if and only if :

(1) P is a non-empty closed set, and

(2) for everyz € P and every open séf containingz there is an elemenj € P N U such that

So a perfect subset @i is a non-empty closed set which has no isolated points. el w
known that a perfect subset Bf* has cardinality2™, i.e. the cardinality of the continuum, see
[Mos80, page 66].

Definition 3.2 A setX C X¥ is said to be thin iff it contains no perfect subset.

The following result was proved by Kechris [Kec75] and indiegently by Guaspari and
Sacks.

Theorem 3.3 (see [Mos80] page 24712 FC) Let X be a finite alphabet having at least two let-
ters. There exists a thiH%-setCl(Ew) C X¥ which contains every thirlﬂ-subset ov. Itis
called the largest thidll-set inX«.

An important fact is that the cardinality of the largest thih-set inX* depends on the model
of ZFC. The following result was proved by Kechris, and indepetigidny Guaspari and Sacks,
see [Kan97, page 171].

Theorem 3.4 (ZFC) The cardinal of the largest thifi}-set inX“ is equal to the cardinal af¥.

This means that in a given mod¥l of ZFC the cardinal of the largest thiiii-set inX« is
equal to the cardinah V of w}, the ordinal which plays the role of the cardingl in the inner
modelL of constructible sets of.

We can now state the following theorem which will be usefuthie sequel. It follows from
Theorem 3.4 and from some constructions of models of setttaae to Cohen (for (a)), Levy
(for (b)) and Cohen (for (c)), see [Jec02].



Theorem 3.5

(@) There is a modeV; of ZFC in which the largest thidli-set in¥* has cardinal®; with
Ny = 2%o,

(b) There is a modeV, of ZFC in which the largest thidli-set inX* has cardinalXy, i.e. is
countable.

(c) There is a modeV 3 of ZFC in which the largest thil}-set inX* has cardinalX; with
Ng < Ny < yACH

In particular, all models offFC + V=L) satisfy (a). The models &IFC satisfying (b) are the
models of ZFC + wl < wy).

4 Cardinality problems for w-languages

Theorem 4.1 There exists a real-timé&-counter Richi automaton4 such that the cardinality of
the complement (A)~ of thew-languageL(.A) is not determined by the axiomatic systéRrC:
(1). There is a modél; of ZFC in which L(A)~ is countable.
(2). There is a modél; of ZFC in which L(.A)~ has cardinal2®°.
(3). There is a modél; of ZFC in which L(A)~ has cardinal; with Ry < ®; < 2%,

Proof. From now on we seE = {0,1} and we shall denote b§; the largest thinl}-set in
{0,1}% = 2v.

This setC; is alli-set defined by al}-formula ¢, given by Moschovakis in [Mos80, page
248]. Thus its complementt; = 2¥ — C; is a¥i-set defined by th&i-formulay = —¢. By
Proposition 2.2, the-language’; is accepted by a Buchi Turing maching and by a&2-counter
Buchi automatond; which can be effectively constructed.

We are now going to use some constructions which were usegrievéous paper [Fin06a] to
study topological properties of context-freelanguages, and which will be useful in the sequel.

Let E be a new letter not irt, S be an integee> 1, andfg : ¥ — (X U {E})“ be the
function defined, for alk € X, by:

QS(SU) = I(l).Es,x(Z).ESQ_x(3).ES3.w(4) o :U(n)ESnac(n + 1).ES"+1

We proved in [FinO6a] that i. C »“ is anw-language in the clasBCL(2), andk =
cardinal(¥)+2, S = (3k)3, then one can effectively construct from a Bugkiounter automaton
A, acceptingL a real time Buchg-counter automatomly such thatl(As) = 05(L).

On the other hand, it is easy to see that>“)~ = (X U {E})¥ — 65(X¥) is accepted by
a real time Buchil-counter automaton. The classBCL(8),, O r-BCL(1),, is closed under
finite union in an effective way, sés(L) U 65(X%)~ is accepted by a real time Buckicounter
automatonAs which can be effectively constructed fray.

In [Fin06a] we used also another coding which we now recait K = 2 x 3 x 5 x 7 x
11 x 13 x 17 x 19 = 9699690 be the product of the eight first prime numbers. LCdie a finite
alphabet; here we shall set= ¥ U {E'}. Anw-wordz € T'“ is coded by thes-word

hic(z) = A.CK (1).B.C** . A.C*° 2(2).B.C*° A.C 2(3).B...BCK" . A.CK" 2(n).B...

over the alphabel'; = I' U {A, B,C}, where A, B, C are new letters not il. We proved in
[Fin06a] that, from a real time BuicBicounter automatoml; acceptingL(.A3) C I'Y, one can ef-
fectively construct a Buchi-counter automato, accepting the-languagéh i (L(.As))Uh g (I') .



Consider now the mappingx : (I' U{A, B,C})* — (T' U{A, B, C, F'})* which is simply
defined by: for ale € (' U{A4, B,C})*,

b (x) = FE L o). FE L 22)... FELa(n) FE L a(n+1).FEK-1 .

Then thew-languagep i (L(A4)) = ¢x (hi (L(As))Uhk (') ™) is accepted by a real time Biichi
1-counter automatos which can be effectively constructed from the BUgkdounter automaton
Ay, [Fin06a].

On the other hand, it is easy to see that éhtanguage(I' U {A, B,C,F})* — ¢x((T' U
{A,B,C})¥) is w-regular and to construct d-counter) Buchi automaton accepting it. Then
one can effectively construct fromd; a real time Bichil-counter automatomds accepting the
w-languagep (h (L(As))Uhk (I')7) U ok (I'U{A, B,C})*) ™.

To sum up: we have obtained, from a Buchi Turing machMeaccepting thevu-language
C; C X¥ = 2¥, a2-counter Buchi automatonl; accepting the same-language, a real time
Biichi8-counter automatosls accepting thes-languagel(As) = 05(C; ) Ubs(X“)~, aBuchil-
counter automatonl, accepting thes-languageh  (L(.As))Uhg (I')~, and a real time Buchi-
counter automatos accepting thes-languagep i (hi (L(A3))Uh g (T'“) 7 )Udr (TU{A, B,C})“)~.
From now on we shall denote simpl; by A.

Therefore we have successively the following equalities:

L(A) =Cy,

L(.Al)_ =Cyq,

L(As)™ = 0s(C1),

LA™ = h(L(A3)™) = hi (65(C1)),

L(Ae)™ = ¢x (hx (L(A3)7)) = ox (hk (0s(C1))).

This implies easily that the-languaged.(A;)~, L(A3)~, L(A4)~, andL(Ag)~ = L(A)~
all have the same cardinality as the 8gtbecause each of the mafys hx and¢x is injective.

Thus we can infer the result stated in the theorem from thgeabbeorem 3.5. O

The following corollary follows directly from Item (3) of Téorem 4.1.

Corollary 4.2 1t is consistent wittZFC that the Continuum Hypothesis is not satisfied for com-
plements of -counterw-languages, (hence also for complements of contextfrEaguages).

Remark 4.3 This can be compared with the fact that the Continuum Hysighe satisfied for
regular languages of infinite trees (which are closed unaenplementation), proved by Niwinski
in [Niw91]. Notice that this may seem amazing because froopalbgical point of view one can
find regular tree languages which are more complex than octiitee w-languages, as there are
regular tree languages in the clags; \ X1 N IT{ while context-freev-languages are all analytic,
i.e. X1-sets.

Recall that a real-timé-counter Biichi automatofi has a finite description to which can be
associated, in an effective way, a unique natural numbésccie index ofC. From now on, we
shall denote, as in [Fin09b], k¥, the real time Bichil-counter automaton of index (reading
words over2 = {0,1, A, B,C, E, F'}).

We can now use the proofs of Theorem 3.5 and 4.1 to prove tha satural cardinality prob-
lems are actually located at thieird level of the analytical hierarchy. The notions of analytical
hierarchy on subsets 6f and of classes of this hierarchy may be found for instanc€@®89] or
in the textbook [Rog67].



Theorem 4.4
(1). {z e N| L(C,)~ is finite } is I1}-complete.
(2). {z e N| L(C,)™ is countable} is in 33 \ (I13 U 1).
(). {z € N| L(C,)™ is uncountablg is in TT3 \ (T3 U X3).

Proof. Item (1) was proved in [Fin09b], and item (3) follows dirgcttom item (2).

We now prove item (2). We first show thét € N | L(C,)~ is countable} is in the classt!.

Notice first that, using a recursive bijectién (N*)2 — N*, we can consider an infinite word
over a finite alphabe® as a countably infinite family of infinite words over the sanghabet by
considering, for anw-word o € Q“, the family ofw-words(s;);>1 such that for each > 1 the
w-word o; € Q¥ is defined by ;(j) = o(b(z, 7)) for eachj > 1.

We can now expressL(C. )~ is countable ” by the formula:

doe Q¥ Vo e Q¥ [(z € L(Cy)) or (Fi € Nz = 0;)]

This is aXi-formula becausé(r € L(C,))”, and hence als6|(z € L(C.)) or (3i € Nx =
0;)]”, are expressed byi-formulas.

We can now prove thafz € N | L(C,)~ is countable} is neither in the clas&} nor in the
classlII}, by using Shoenfield’s Absoluteness Theorem from Set Theory

Let A be the real-timd-counter Biichi automaton cited in Theorem 4.1 anddie its index
so thatA = C,,. Assume thaV is a model of ZFC + w} < wi). In the modeN, the integerz
belongs to the sdtz € N | L(C,)~ is countable}, while in the inner modeL: C 'V, the language
L(C,,)~ has the cardinality of the continuum: thuslinthe integerz, does not belong to the set
{z € N| L(C,)~ is countable}. On the other hand, Shoenfield’s Absoluteness Theoremempli
that everyXi-set (respectivelfiIi-set) is absolute for all inner models of (ZFC), see [Jec@@ep
490]. In particular, if the sefz € N | L(C,)~ is countable} was aXi-set or alli-set then it
could not be a different subset Bfin the modelsV andL considered above. Therefore, the set
{2 € N| L(C,)™ is countable} is neither a-i-set nor dli-set. O

Remark 4.5 Using an easy coding we can obtain a similar resultferounter automata reading
words overy, whereX is any finite alphabet having at least two letters.

Notice that the same proof gives a partial answer to a questidCastro and Cucker. They
stated in [CC89] that the problem to determine whether theptement of thev-language ac-
cepted by a given Turing machine is countable (respectivelgountable) is in the class) (re-
spectively,IT3), and asked for the exact complexity of these decision probl

Theorem 4.6 The problem to determine whether the complement of tlEnguage accepted by
a given Turing machine is countable (respectively, uncahis) is in the class? \ (113 U 1)
(respectivelyIT} \ (II3 U X1)).

We now consider acceptance of binary relations over infimdeds by2-tape Biichi automata,
firstly considered by Gire and Nivat in [GN84]. ZAtape automaton is an automaton having two
tapes and two reading heads, one for each tape, which can asgwehronously, and a finite
control as in the case of d-fape) automaton. The automaton reads a pair of (infinitedsvo
(u,v) whereu is on the first tape and is on the second tape, so tha2-tape Biichi automatoi
accepts an infinitary rational relatidn(3) C X¢ x 3¢, whereX; andX, are two finite alphabets.
Notice thatL(B) C ¥¢ x ¥4 may be seen as alanguage over the product alphabgt x ¥,.



We shall use a coding used in a previous paper [Fin06b] onapeldgical complexity of
infinitary rational relations. We first recall a coding of arword over the finite alphabdd =
{0,1, A, B,C, E, F'} by anw-word over the alphabe?’ = Q U {D}, whereD is an additionnal
letter not inQ2. Forz € Q thew-word h(x) is defined by :

h(z) = D.0.z(1).D.0%.2(2).D.0°.2(3).D ... D.0".z(n).D.0" ™ .2(n +1).D...

It is easy to see that the mappihdrom Q¢ into (QU{D})¥ is injective. Let now be thew-word
over the alphabe®’ which is simply defined by:

a=D.0.D.02.D.03.D.0*.D...D.0".D.0""'.D...
The following result was proved in [Fin06b].

Proposition 4.7 ([Fin06b]) Let L C Q“ be inr-BCL(1), andL = h(L) U (h(©2¥))~. Then

R=rx{a} |J (@) x () - {a})

is an infinitary rational relation. Moreover one can effaly construct from a real time-counter
Blichi automatonA acceptingl a 2-tape Bichi automatoris accepting the infinitary relatior.

We can now prove our second main result.

Theorem 4.8 There exists &-tape Bichi automatorB such that the cardinality of the complement
of the infinitary rational relationZ(B) is not determined b¥FC. Indeed it holds that:

(1). There is a modél; of ZFC in which L(B)~ is countable.

(2). There is a modél, of ZFC in which L(B)~ has cardinal2™o.

(3). There is a modél; of ZFC in which L(B)~ has cardinal; with Ry < 8y < 2%,

Proof. Let A be the real timé-counter Biichi automaton constructed in the proof of Teeo4.1,
andB be the2-tape Bichi automaton which can be constructed fréiy the above Proposition
4.7. LettingL = L(.A), the complement of the infinitary rational relatiégh= L(B) is equal to
[(QU{D})Y — L] x {a} = h(L7) x {a}. Thus the cardinality oR~ = L(B)~ is equal to the
cardinality of thew-languageh (L), so that the result follows from Theorem 4.1. d

As in the case of-languages of-counter automata, we can now state the following result,
whereT, is the2-tape Biichi automaton of indexreading words ove®?’ x €)'.

Theorem 4.9
(1). {z € N| L(T,)" is finite } is ITi-complete.
(2). {z e N| L(T,) is countable} is in X3 \ (I1 U X1).
(). {#z € N| L(T.)~ is uncountablg is in 1} \ (I13 U X3).

Proof. Item (1) was proved in [Fin09b]. Items (2) and (3) are providilarly to the case of
w-languages of-counter automata, using Shoenfield’'s Absoluteness Theore O

On the other hand we have the following result.

Proposition 4.10 It is decidable whether an infinitary rational relatioR C X% x X%, accepted
by a giver2-tape Bichi automatori3, is countable (respectively, uncountable).
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Proof. Let R C X¢ x X¢ be an infinitary rational relation accepted bg-tape Buichi automaton

B. It is known thatDom(R) = {u € ¢ | Jv € ¥4 (u,v) € R} andIm(R) = {v € XY |

Ju € ¥¥ (u,v) € R} are regular-languages and that one can find Buchi autométand

A’ acceptingDom(R) andIm(R), [GN84]. On the other hand Lindner and Staiger have proved
that one can compute the cardinal of a given reguldeinguagel(.A) (see [KL0O8] where Kuske
and Lohrey proved that this problem is actually in the claS®ACE). But it is easy to see that
the infinitary rational relation? is countable if and only if the twa-languageDom (R) and
Im(R) are countable, thus one can decide whether the infinitaignidtrelation? is countable
(respectively, uncountable). d

Remark 4.11 The results given by Items (2) and (3) of Theorem 4.9 and Ritipp 4.10 are
rather surprising: they show that there is a remarkable gapween the complexity of the same
decision problems for infinitary rational relations and ftareir complements, as there is a big
space between the clads of computable sets and the clas$ \ (I13 U X3).

5 Concluding remarks

We have proved that amazingly some basic cardinality questn automata reading infinite
words depend on the models of the axiomatic sysi¢iG.

In [Fin09a] we have proved that the topological complexifyan w-language accepted by
a 1-counter Buchi automaton, or of an infinitary rational tiela accepted by &-tape Biichi
automaton, is not determined HyC.

In [Fin10], we study some cardinality questions for Blokdognizable languages of infinite
pictures and prove results which are similar to those we bat&ined in this paper far-counter
w-languages and for infinitary rational relations.

The next step in this research project would be to determinietlwproperties of automata
actually depend on the models 8FC, and to achieve a more complete investigation of these
properties.
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Annexe

Proof of Thorem 3.5.

(@). In the modeL, the cardinal of the largest thiii-set inX“ is equal to the cardinal of; .
Moreover the continuum hypothesis is satisfied ts= R;: thus the largest thifil}-set in%
has the cardinalitg™ = ;.

(b). LetV be a model of ZFC + w! < wy). Sincew; is the first uncountable ordinal ,
wl < w; implies thatw! is a countable ordinal iV Its cardinal isXy, and therefore this is also
the cardinal inv of the largest thifli-set inx«.

(c). It suffices to show that there is a modé} of ZFC in which wl = w; and®; < 2%,
Such a model can be constructed by Cohen'’s forcing: start romodelV of ZFC + V=L (in
whichw]* = w;) and construct by forcing a generic extensif&] in which are addett, (or even
more) “Cohen’s reals”, which are in fast subsets ofu. Notice that the cardinals are preserved
under this extension (see [Jec02, page 219]), and that tisraoctible sets o¥/[G] are also the
constructible sets o¥, thus in the new modeV[G] of ZFC we still havew{J = wj, but now
Ny < 2%, O

13



