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Abstract

This paper proposes a novel technique to reduce the computational burden associated
with the simulation of localised failure. The proposed methodology affords the simulation
of damage initiation and propagation whilst concentrating the computational effort where it
is most needed, i.e. in the localisation zones. To do so, a local/global technique is devised
where the global (slave) problem (far from the zones undergoing severe damage and cracking)
is solved for in a reduced space computed by the classical Proper Orthogonal Decomposition,
while the local (master) degrees of freedom (associated with the part of the structure where
most of the damage is taking place) are fully resolved. Both domains are coupled through a
local/global technique. This method circumvents the difficulties associated with model order
reduction for the simulation of highly non-linear mechanical failure and offers an alternative
or complementary approach to the development of multiscale fracture simulators.
Keywords: Adaptive Model Order Reduction (MOR); Local/global Approach, Nonlinear Frac-
ture Mechanics; Proper Orthogonal Decomposition (POD); Newton/Krylov Solver;

1 Introduction

Simulating damage initiation and subsequent global structural failure is one of the most active
topics in computational mechanics. Several mathematical models and numerical methods have
been developed over the years to assess various limit states such as failure due to permanent
deformations, cracks or decohesion/delamination, e.g. in composite materials. Yet, these models,
be they damage based or relying on discrete cracks are generally computationally expensive, as
they require a fine scale description of the structural and material properties. Therefore, today’s
engineers are not able to use these state-of-the-art models for routine design. For important recent
advances in the treatment of material failure (e.g. discontinuous fracture [1], advanced damage
models [2, 3], damage plasticity models [4, 5] or their combination [6], etc.) to become useful
in practice, it is thus important to devise techniques which are able to significantly reduce the
computational effort required without sacrificing accuracy.

Historically, reducing the computational time associated with solving nonlinear problems in
solid mechanics has mainly been addressed by developing homogenisation techniques [7, 8]. In
this case, the material properties associated with a material point in a coarse representation of
the structure is obtained by averaging of the fine scale material behaviour over a “representative
volume element” which suppresses the need to resolve the fine scale explicitly over the (possibly
large) structure. These methods are widely adopted (see e.g. for a recent description [9]) and are
rather effective in decreasing the computational costs associated with solving fine scale problems.
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However, the application of homogenisation-based methods to failure simulations is not straight-
forward, as the assumptions required to prove the separation of scales are not satisfied. This may
explain why such methods are still under-developed for fracture problems. The ability to coarse-
grain fracture information would however lead to a further decrease of computational time by
concentrating the computational effort where it is needed most. In the wake of a propagating
crack, for example, the full resolution used to resolve fine scale effects close to the crack front is no
longer necessary, and a coarse description may be sufficient. This issue is being intensively inves-
tigated by several teams, namely [10] who developped a coarse graining method called Multiscale
Aggregating Discontinuities, and [11, 12, 13] who were able to derive an homogenisation scheme for
lumping the fine scale deffects of Representative Volume Elements (RVEs) into cohesive cracks in-
troduced at the coarse scale. The solutions proposed so far are however highly problem-dependent
and usually do not inherit the solid mathematical foundations from homogenisation theory.

We propose here to follow an alternative route which relies on very recent advances in model
order reduction strategies for highly nonlinear structural problems [14, 15, 16, 17, 18]. We believe
that, though rarely studied in the context of failure simulation in nonlinear mechanics, this avenue
provides a possibly interesting alternative (or complementary) approach to homogenisation-based
solution procedures. This paper is in substance a significant improvement of the work proposed
in [18], dedicated to the fast prediction of the onset of structural failure by adaptive model order
reduction. We aim here at preserving the computational efficiency and accuracy obtained in [18]
when the size of the damaged zone becomes significant compared to the overall structure.

The definition of model order reduction can vary depending on authors. We speak here of an
approximation of the unknown field in a coarse space spanned by a basis of global vectors (as
opposed to locally supported shape functions, in finite elements for example), called Ritz vectors.
Model order reduction (MOR) finds its roots in the systems engineering community, where the
issue of obtaining a fast and reliable approximation of transfer functions has been extensively
addressed over the years. The interested reader can refer to the review proposed in [19]. In the
context of solid mechanics, most studies have focused on the reduction of dynamics problems.
Starting from classical modal basis [20] in a Ritz-Galerkin framework, two main classes of model
order reduction methods have been proposed. The first propose a truncation of the modal basis
and an approximation of the high-frequency behaviour by static corrections (see for instance [21]).
The second use the idea of domain partitioning. Slave degrees of freedom are eliminated by Guyan
reduction (or static condensation). The famous Craig-Bampton method [22] is an evolution of this
idea, using truncated modal bases to enhance static condensation. These techniques have been
extended to the approximation of nonlinear dynamical behaviour (an interesting review is proposed
in [23]).

The literature concerning the application of model order reduction to the approximation of
the (quasi-)static behaviour of nonlinear structures is a lot sparser. Different routes have been
investigated to develop such reduced models. The first family of methods consists in taking ad-
vantage of the a priori knowledge of a set of representative solutions to fasten the solution process.
These representative responses, called snapshots [24], can be for instance a set of solution vectors
obtained for given values of structural parameters. The Proper Orthogonal Decomposition (POD)
[25, 26] can classically be used to extract a relevant Ritz basis from these snapshot vectors, which
in turn defines a coarse space where the solution to the structural problem with a different set
of parameters can be cheaply searched. The second family is not exactly based on reduction by
projection. Spectral approaches referred to as Proper Generalized Decomposition (PGD) are a
family of solvers capable of building the solution to a multidimensional reference problem as a sum
of products of functions of separate variables. The dimensions can be space or time, but also struc-
tural parameters. Once this solution is obtained offline, the online computation simply consists
in the evaluation of the separated functions, which are known explicitly. These novel methods are
very appealing and were recently applied to linear, stochastic and/or time dependant problems
[27, 28] (including linear predictions of nonlinear solvers [29]), and to non-linear partial differential
equations [30, 28]. Their extension to irreversible constitutive laws such as the ones considered in
damage mechanics does not seem to be straightforward, and, as far as we know, has never been
adressed before (it is therefore a very interesting possible extension of the present piece of work).

We focus here on the first family of solvers. To the authors’ knowledge, the application of Ritz
methods to failure simulations has virtually never been adressed. The main reason for this is that
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the solution fields in the zones of the structure where damage or failure initiate and propagate
are highly parameter-dependent, and cannot be known in advance. Hence, precomputed reduced
bases are unable to represent the structural behaviour beyond the onset of strain localisation,
damage and fracture. In the particular case of linear elastic fracture mechanics, the authors of [31]
have proposed a mesh morphing technique that allows to keep an autosimilar description of the
singularity during propagation. In this particular case, the use of a snapshot POD is relevant and
allow for interesting computational savings. Corrective POD algorithms have also been proposed
to alleviate this in the case of plasticity or damage models [15, 18]. Both these techniques are
based on global corrections of the initial Ritz basis by Krylov algorithms. Though efficient for
global nonlinearities, it was shown in [18] that in the case of damage assessment, the number of
corrections increases when nonlinearities localise, i.e.: when failure occurs. The purpose of this
paper is to circumvent this phenomenon.

The first stage of the proposed method is to only reduce the set of balance equations which
exhibits a “smooth” nonlinearity. In the context of the simulation of damage, one part of the
degrees of freedom, corresponding to highly damaged zones, will be considered as master degrees
of freedom, which will be fully solved for, while the remaining will be approximated as a linear
combination of Ritz vectors, which may be precomputed and corrected on the fly. In this respect,
the proposed method has strong links with Craig-Bampton methods, or model order reduction
by substructure such as the one proposed in [32, 33, 29]. A similar approach was also proposed
in [34]. The second stage of our developments consists in developing an efficient solver for the
linearized system of equations obtained by a Newton solution algorithm for the reduced problem.
The system is condensed on the master degrees of freedom, and solved by a Krylov algorithm. The
global Ritz basis is used to efficiently solve the consensed problem: an augmentation technique
ensures that the iterations are performed in a space which is orthogonal to the one spanned by
the Ritz basis. As a result, the augmented Krylov iterations correspond to a two-level solver, the
coarse level being the space spanned by the restriction of Ritz vectors to the fully resolved set of
degrees of freedom.

The paper is organized as follows. In the first section, we recall the basics of projection-based
model order reduction applied to the solution of nonlinear quasi-static problems. In section 3, we
formally describe the proposed local/global reduction algorithm. This technique is applied to the
reduction of damage models in section 4. Finally, we show in the last section that this technique
permits to drastically reduce the number of corrections of the Ritz basis required to obtain a
desired level of accuracy.

2 Model order reduction by projection: general concepts

Projection-based model order reduction can be introduced as a means to obtain, at low computa-
tional cost, a good approximation to a set of nonlinear equations of the form:

F
(
(Xi)i∈J0,NK

)
= 0 (1)

Where F is a vectorial, possibly nonlinear, function of a set of vectorial state variables X. The
expression of this function can take various forms, depending on the application.

2.1 Problem statement in nonlinear continuum mechanics

We consider a structure occupying a continuous domain Ω with boundary ∂Ω. It is subjected to
prescribed displacements UD on its boundary ∂Ωu and to prescribed tractions FD on the comple-
mentary boundary ∂Ωf = ∂Ω\∂Ωu, over time interval [0, T ]. Let u be the unknown displacement
field, which belongs to the space U of kinematically admissible fields:

U =
{
u ∈ H1(Ω) | u|∂Ωu

= UD

}
(2)

Let U0 be the associated vector space.

U0 =
{
u ∈ H1(Ω) | u|∂Ωu

= 0
}

(3)
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Under the assumptions of quasi-static evolution of the structure and small perturbations, the
weak form of the equilibrium and constitutive laws read, at any time t ∈ [0, T ]:

∀u⋆ ∈ U0, find u ∈ U such that:∫

Ω

σ : ǫ(u⋆) dΩ =

∫

Ω

f
D
.u⋆ dΩ+

∫

∂Ωf

FD.u
⋆ dΓ

σ = σ
((

ǫ(u)|τ
)
τ≤t

) (4)

where σ is the Cauchy stress tensor and ǫ(u) is the symmetric part of the displacement gradient.
The constitutive relation between σ and ǫ(u) is nonlinear and described using internal variables
(plasticity, damage for instance). It is assumed local and rate-independent.

2.1.1 Space and time discretization

Let us perform a standard finite element approximation of the space of unknown displacement field
U (and a similar approximation of the space of test functions U0):

Uh(Ω) =

{
u(x) | u(x) =

nn∑

i=1

Ni(x)ui

}
(5)

where nn is the number of nodes, x is the position vector, (Ni)i∈J1,nnK are the finite element shape
functions associated to each node of the finite element mesh, and (ui)i∈J1,nnK are the nodal values
of the displacement field.

The nonlinear solution strategy used to solve the problem over time is a classical time discretiza-
tion scheme for quasi-static and rate-independent problems. This procedure consists in finding a
set of consecutive solutions at times (tn)n∈J0,ntK.

The introduction of the finite element approximation and time discretization into equation (4)
at any time tn+1 of the analysis leads to the following nonlinear vectorial equation:

FInt

(
∆U,

(
U|tm

)
m∈J0,nK

)
+ FExt = 0 (6)

where the vector of increment in the nodal unknowns ∆U ∈ R
nu (nu is the number of scalar

nodal unknowns) is defined by ∆U = U|tn+1
−U|tn , FInt ∈ R

nu and FExt ∈ R
nu are respectively

the internal forces resulting from the discretization of the internal virtual work (left-hand side of
the first equation of system (4)) and the external forces resulting from the discretization of the
external virtual work (right-hand side of the first equation of system (4)). In the following, the
dependency of the internal forces with respect to the history of the unknown fields will not be
written explicitly, unless necessary.

The set of successive solution vectors to problem (6) at times (tn)n∈J0,ntK, obtained by a tangent
Newton algorithm, will be considered as the reference solution. The algorithms used in the following
should provide a solution that is closer to the reference solution, but for a cheaper computational
cost. Therefore, the relevance of (i) the initial space and time discretizations and (ii) the chosen
Newton solution algorithm will not be discussed in this paper.

2.2 Reduced solution of the balance equations by projection

2.2.1 Principle

The solution vector is searched for in a space of small dimension (several orders smaller than the
number of finite element degrees of freedom). Let us call C the matrix whose columns form a basis
of this space:

C =
(
C1 C2 ... Cnc

)
(7)

where nc is the dimension of the reduced space, and (Ck)k∈J1,ncK ∈ (Rnu)
nc are the basis vectors,

usually called Ritz vectors. Applied to the reduction of problem (6), the increment in the solution
field is approximated by:

∆U = Cα (8)
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where we introduced the reduced state variables α ∈ R
nc . Problem (6) is now overconstrained.

One usually tackle this problem by prescribing a Galerkin orthogonality condition: the residual
of equation (6) R = FInt(U|tn + Cα) + FExt is constrained to be orthogonal to any test vector

δU⋆ = C δα
⋆ belonging to the space spanned by the Ritz vectors (Ck)k∈J1,ncK:

CT R = 0 (9)

The reduced form of problem (6) is:

CT
(
FExt + FInt(U|tn

+Cα)
)
= 0 (10)

2.2.2 One particular choice of projection space: the proper orthogonal decomposition
(POD)

Various choices of projection spaces are proposed in the literature. One of the most successful, as
far as nonlinear simulations are concerned, is the snapshot-POD [24]. This particular technique
requires the knowledge of a representative family of solutions to the global problem. This set of
vectors (Sk)k∈J1,nsK is called snapshot. The aim is to find an orthonormal basis (Ck)k∈J1,ncK, of
dimension nc smaller than ns such that the distance between spaces Im(C) and Im(S) is minimum.
This distance can be quantified by the following metric:

J(C1, . . . ,Cnc) =

ns∑

j=1

∥∥∥∥∥S
j −

nc∑

i=1

(
CiTSj

)
Ci

∥∥∥∥∥

2

(11)

which must be minimized under the constraint of orthonormality of (Ck)k∈J1,ncK. Problem (11)
can be reformulated as an unconstrained formulation:

L(C1, . . . ,Cnc , λ11, . . . , λncnc
) = J(C1, . . . ,Cnc) +

nc∑

i=1

nc∑

j=i

λij

(
CiTCj − δij

)
(12)

where (λij)i,j∈J1,ncK are Lagrange multipliers and δij the Kronecker symbol. The nc(nc+1)/2 opti-
mality conditions for maximizing the Lagrangian with respect to the lagrange multiplier naturally
ensure the orthogonality of the basis:

∂L

∂λij

= 0 → CiTCj = δij (13)

Whereas the nc optimality conditions for minimizing the Lagrangian with respect to the basis
vectors reads:

∂L

∂Ci
= 0 →

ns∑

j=1

Sj
(
CiTSj

)
= λii C

i and λij = 0 for i 6= j (14)

Defining λi = λii and S =
(
S1 S2 ... Sns

)
∈ R

nu × R
ns , equations (14) can be written as

the following nu × nu eigenvalue problem:

SSTCi = λi C
i (15)

This problem is equivalent to computing the Singular Value Decomposition (SVD) of S, where

the singular values si are such that s2i = λi ≥ 0. If ns ≪ nu (which is the case in general when
applying the snapshot-POD), replacing problem (15) by the eigenvalue problem on the ns × ns

operator STS is computationally cheaper, and reads:

Ci = λ
− 1

2
i SVi with STSVi = λi V

i (16)

The error associated with the truncation of the SVD at rank nc is quantifyed by the distance
J(C1, ...,Cnc) which can be shown to be equal to the sum of the truncated eigenvalues:

J(C1, ...,Cnc) =

ns∑

i=nc+1

λi (17)
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This result provides a precious tool for choosing the most relevant basis. Indeed, only the basis
vectors Ci associated with the largest λi (in practice, those such that λi/λmax > ε, ε being a small
parameter depending on the required accuracy) are selected as Ritz vectors. This ensures that for
an given number nc of basis vectors, the approximation of the snapshot space is maximised in the
sense of (11).

2.3 Nonlinear solution algorithm

At any time step, problem (10) can be solved by classical Newton algorithms (successive lin-
earizations). Iteration i+ 1 of the tangent Newton method consists in solving the following linear
predictor:

Ki

T,R
δα

i+1 = −Ri
R (18)

where the increment in the reduced state variables is δα
i+1 = αi+1 − αi, and the residual and

tangent operator obtained from the knowledge of the solution at iteration i read (see [18] for more
details): 




Ri
R = CT

(
FInt(U|tn +Cα

i) + FExt

)

Ki

T,R
= CT

∂FInt(U|tn
+Cα)

∂α

∣∣∣∣
α=α

i

(19)

3 Local/global model order reduction strategy

Projection-based model order reduction techniques introduce a global approximation of the dis-
placement. As such, even adaptive versions [35, 18] of these methods are not well suited to the
analysis of localised nonlinearities. We propose in the following to use reduction techniques by
projection for the “weakly nonlinear” equations of reference problem (6), namely equations for
which reduced order modelling (ROM) is relevant, while the remaining equations will be solved
directly.

3.1 Displacement approximation

The principle of the proposed local/global strategy is to split the unknown solution vector into
two parts, only one of them being approximated as a linear combination of Ritz vectors. We shall
use superscript (r) for the approximated “slave” part of the solution vector, while superscript (f)

(which stands for “fully resolved”) will be used to denote its complementary “master” part.

More precisely, let ∆̃U be the unknown increment vector at time tn+1, the numbering being
reorganised as follows:

∆̃U =

(
∆̃U

(r)

∆̃U
(f)

)
=

(
E(r)

E(f)

)
∆U (20)

In the above notations, ∆̃U
(r)

∈ R
nr and ∆̃U

(f)
∈ R

nf , with nr + nf = nu and nf much smaller

than nr. E(r) ∈ {0, 1}nr × {0, 1}nu and E(f) ∈ {0, 1}nf × {0, 1}nu are two boolean extractors
(rectangular matrices with one 1 per line, the other coefficients being null).

∆̃U
(r)

is approximated as a linear combination of Ritz vectors (Ck)k∈J1,ncK ∈ (Rnu)
nc :

∆̃U
(r)

=
(
E(r)C

)
α (21)

where α ∈ R
nc is the vector of reduced degrees of freedom. In the initial numbering, the

unknown vector can be expressed in the form:

∆U = ∆U(r) +∆U(f)

where





∆U(r) = E(r)T ∆̃U
(r)

∆U(f) = E(f)T ∆̃U
(f)

(22)
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Introducing projector P(r) = E(r)TE(r), the approximation of the displacement increment finally
reads:

∆U = P(r)Cα+E(f)T ∆̃U
(f)

(23)

For the sake of legibility, we define the new state vector X at time tn+1:

X =

(
α

∆̃U
(f)

)
(24)

Using the above definition, the approximation of the displacement increment is now:

∆U = A X where A =
(
P(r)C E(f)T

)
(25)

3.2 Locally reduced set of balance equations

At that point, we need to define how the overconstrained balance equations (6) will be solved for.
Let us restrict our numerical investigations to the Galerkin procedure. The balance equation are
therefore required to be orthogonal to any test vector:

δU⋆ = A

(
α⋆

δ̃U
(f)⋆

)
(26)

where δα
⋆ ∈ R

nc and δ̃U
(f)⋆

∈ R
nf are arbitrary test state variables. The orthogonality require-

ment applied to the initial nonlinear set of equations (6) yields the following nonlinear system:

RR(X) = AT
(
FInt

(
∆U(X) +U|tn

)
+ FExt

)
= 0 (27)

3.3 Newton solution scheme

At each time step of the time discretization scheme, the reduced problem (27) is solved by a Newton
algorithm. The (i+ 1)th Newton iteration consists in finding δXi+1 satisfying the following set of
nc + nf linearized equation:

∂RR(X)

∂X

∣∣∣∣
X=Xi

δXi+1 = −Ri
R (28)

where δXi+1 = Xi+1 −Xi and Ri
R is the residual of problem (27) computed at iteration i:

Ri
R = RR(X

i) (29)

The expression of the tangent operator Ki

T,R
=

∂RR(X)

∂X

∣∣∣∣
Xi

is obtained by differentiation of

equation (27) with respect to the set of reduced state variables, in any arbitrary direction δX such
that:

δX =

(
δα

δ̃U
(f)

)
(30)

This differentiation reads:

Ki

T,R
δX =

∂RR(X)

∂X

∣∣∣∣
Xi

δX (31)

Using the tangent operator of the full system of equations (6), and assuming that
∂FExt

∂∆U
= 0, on

can write:

Ki

T,R
δX = AT ∂FInt(∆U)

∂∆U

∣∣∣∣
∆U=AXi

∂∆U

∂X

∣∣∣∣
∆U=AXi

δX (32)
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Using the notation Ki

T
=

∂FInt

∂∆U

∣∣∣∣
∆U(Xi)

, the previous equation yields the expression of the reduced

tangent operator as a function of the tangent of the full system of equations:

Ki

T,R
δX = ATKi

T
A δX (33)

Introducing the above expression of the tangent into equation (28), and expanding the expression
of operator A, one finally obtains the following linearized system:

(
CTP(r)Ki

T
P(r)C CTP(r)Ki

T
E(f)T

E(f)Ki

T
P(r)C E(f)Ki

T
E(f)T

)
δXi+1

= −
(

CTP(r)

E(f)

)(
FInt

(
∆U(Xi) +U|tn

)
+ FExt

) (34)

Notice that problem (34) is considerably reduced compared to a direct linearisation of (6).
Indeed, Ki

T,R
∈ R

nc × R
nf where nc ≪ nu and, applied to the analysis of localised nonlinearities,

we can reasonably expect that nf is at least one order of magnitude smaller than nu, which means
that only a few of the balance equations are strongly nonlinear. This assumption will be validated
in section 4.

This framework is very general. It does not rely on domain decomposition but on a splitting of
the balance equations. Yet, this technique will be particularized in section 4, and we will show that
using the ideas inspired from domain decomposition methods [36, 37] and local/global methods
[38, 39] provides efficient splitting in the case of damage mechanics.

3.4 Two-level solution of the linearized systems

The successive solution to (28) could be obtained by a direct solver. This would not affect the
results given in the following. However, we believe that, for this particular application, an iterative
solver has several advantages:

• Iterative solvers, such as a conjugate gradient (see [40] for instance), do not require any
factorisation. Factorisations usually deteriorate the sparsity of algebraic systems, which
results in an increase in the memory requirements. Newton-Krylov methods do not, in
theory [41], even require the assembly of the stiffness operator.

• Direct solvers are less versatile than iterative ones, and are usually a limiting point to extend
numerical solution schemes to parallel computing.

• Solving exactly the successive linearized systems (28) is not required. This idea has led to
intensive work on Inexact Newton Methods [42], but this issue will not be addressed in this
paper. The interested reader can refer to [37, 18] for studies on similar topics in the scope of
domain decomposition and model order reduction.

• More importantly, a basic direct solver such as Cholesky factorizations will not make use of
any mechanically relevant information obtained during the previous iterations of the nonlinear
solver. In the chosen iterative algorithm, the part of the displacement field that is “fully
resolved” will be solved for efficiently using the Ritz basis as a preconditioner, following the
ideas proposed for instance in [43, 41, 37].

We use here a Krylov algorithm to efficiently find a solution to linearized system of equation
(28). Three stages of preconditioning are performed: a condensation, a projection and a crude
preconditioning of the resulting system.

3.4.1 Condensation

Let us condense the linearized problem (34) on the master (i.e.: “fully resolved”) degrees of fredom:

S(f)

P
δ̃U

(f)
= R

(f)
C (35)
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where the superscript corresponding to the current and previous Newton iterations have been

dropped for the sake of legibility. S(f)

P
is the primal Schur complement and R

(f)
C the condensed

residual. They are defined by:





S(f)

P
= K(ff)

T,R
−K(fr)

T,R

(
K(rr)

T,R

)−1

K(rf)

T,R

R
(f)
C = K(fr)

T,R

(
K(rr)

T,R

)−1

R
(r)
R −R

(f)
R

(36)

Where we have used the usual block notations:

K
T,R

=

(
K(rr)

T,R
K(rf)

T,R

K(fr)

T,R
K(ff)

T,R

)
(37)

RR =

(
R

(r)
R

R
(f)
R

)
(38)

The state variables corresponding to the reduced part of the displacement vector increment
have been eliminated from the system of equations and can be retrieved as follows:

δα = −
(
K(rr)

T,R

)−1
(
R

(r)
R +K(rf)

T,R
δ̃U

(f)
)

(39)

(
K(rr)

T,R

)−1

is an operator of very small size, which can be explicitly computed prior to applying

the iterative Krylov solver. However, in the case where a very large number of Ritz vectors is used
to approximate the unknown field in the smooth region, computing the Schur-complement/vector
products corresponding to the construction of the successive Krylov basis vectors will become
computationally more efficient.

3.4.2 Iterative solution to the condensed problem

The classical projected (or augmented) conjugate gradient [44, 36] is applied to the approximate
solution of (35) (the linearized operator is assumed symmetric, positive and definite). The chosen

augmentation space is the space spanned by the Ritz vectors Im(C(f)) with the restriction C(f) =

E(f)C.
The starting point of augmented Krylov solvers is to decompose the unknown solution increment

into two supplementary spaces:

δ̃U
(f)

= δU
(f)
C + δU

(f)
K

where





δU
(f)
C ∈ Im

(
C(f)

)

δU
(f)
K ∈ Im(C(f))

⊥
S
(f)
P = Ker

(
C(f)TS(f)

P

) (40)

⊥
S(f)

P

designing the S(f)

P
−orthogonality, which is ensured by introducing the classical projector:

P = I
d
−C(f)(C(f)TS(f)

P
C(f))−1C(f)TS(f)

P
(41)

and writing that δU
(f)
K = P δU

(f)
K .

This separation of the search space into two subspaces Im
(
C(f)

)
and Im(P) in direct sum

leads to the following uncoupled equations:

δU
(f)
C = C(f)(C(f)TS(f)

P
C(f))−1C(f)TR

(f)
C(

PTS(f)

P
P
)
δU

(f)
K = PTR

(f)
C

(42)
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The first line of equation (42) is a coarse initialization of the projected conjugate gradient. The

second line is the linear prediction of the full problem projected on Im(C(f))
⊥

S
(f)
P . This system is

symmetric and can be solved by a preconditioned conjugate gradient. Hence one solves iteratively:

M̃
−1
(
PTS(f)

P
P
)
δU

(f)
K = M̃

−1
PTR

(f)
C (43)

where M̃
−1

is the left preconditioner (symmetric, definite and positive). In our test cases, M̃ is

a diagonal matrix whose entries are the elements of the diagonal of S(f)

P
. Algorithm 1 gives the

classical implementation of an augmented preconditioned conjugate gradient.

Algorithm 1: Augmented preconditioned conjugate gradient for the solution to the con-
densed linearized reduced problem

Compute





S(f)

P
= K(ff)

T,R
−K(fr)

T,R

(
K(rr)

T,R

)−1

K(rf)

T,R

R
(f)
C = R

(f)
R −K(fr)

T,R

(
K(rr)

T,R

)−1

R
(r)
R

C(f) = E(f)C

(C(f)TS(f)

P
C(f))−1

δU
(f)
C = C(f)(C(f)TS(f)

P
C(f))−1C(f)TR

(f)
C ;

RCG,0 = R
(f)
C − S(f)

P
δU

(f)
C = PTR

(f)
C ;

Z0 = PM̃
−1

RCG,0 , W0 = Z0 and δU
(f)
K,0 = 0;

for j = 1, . . . , n do

αj−1 = (RCG,j−1,Wj−1)/(S
(f)

P
Wj−1,Wj−1)

δU
(f)
K,j = δU

(f)
K,j-1 + αj−1Wj−1

RCG,j = RCG,j−1 − αj−1S
(f)

P
Wj−1

Zj = PM̃
−1

RCG,j

βj = (S(f)

P
Wj−1,Zj)/(Wj−1,S

(f)

P
Wj−1)

Wj = Zj − βjWj−1

end

3.4.3 Interpretation and comments on the expected additional costs

The three preconditioning techniques that we have detailed in the previous sections define a cheap
structural preconditioner. A schematic representation of this algorithm is given in figure (1).

From an algebraic point of view, it can easily be proved that the condensation has the same
effect on the conjugate gradient iterations as a left block preconditioner for system (34):

M̃
Condens

−1
=

( (
K(rr)

T,R

)−1

0

0 0

)
(44)

From a mechanical point of view, condensing the problem on the master degrees of freedom ensures
that any solution provided by the iterative solver exactly solves the reduced part of the balance
equations.

The augmentation of the conjugate gradient can also be seen as a left preconditioner for the con-
densed system of equations (second line of system (42)), which is associated with an initialization

of the iterative alogrithm. The initialization δU
(f)
C (first line of system (42)) is the best solution of

the condensed problem in the restriction of the pre-computed reduced basis to the master degrees
of freedom (in the sense of a (S(f)

P
)−1-norm). Taking into account the previous comments on the

interpretation of the condensation step, this initialisation is exactly the solution to the linearized

10



δU = E(f)T δU(f) +P(r)C δα

δUf
C = δU

(f)
C + δU

(f)
K

j ← j + 1

j = 0

Condensation of the linearized reduced 
problem on the master degrees of freedom

Computation of the residual             of the 
projected problem (“non-corrected” search 

direction)          

Coarse scale correction of the 
search direction by orthogonality 
with respect to the reduced space

Orthogonalization and 
Minimisation

Computation of the displacement 
of the slave degrees of freedom

Computation of the displacement 
of the master degrees of freedom

Convergence checkYES

NO

A priori reduced basis
FD

New problem

FD

Zj = P�M
−1

RCG,j

Coarse initialisation in the reduced space 

δUf
C ∈ Im

(

E(f)C
)

||RCG,j ||
||R(f)

C ||
< ε

RCG,j

δU
(f)
K,0 = 0

δU
(f)
K,j = δU

(f)
K,j-1 + αj Wj

Figure 1: Graphical representation of the two-level solution algorithm.
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system of equation (18) on the master degrees of freedom. In other words, the initialization of
the iterative algorithm provides the solution of the reduced linearized problem which would have
been obtained without local/global enhancement. No significant additional costs compared to the
basic projection-based reduced order modelling are involved so far. In the case where the solution
which is looked for is correctly approximated in the reduced space (e.g.: “smooth” nonlinearity, or
unloading of the structure), no conjugate gradient iteration is required.

If conjugate gradient iterations are required, the augmentation acts as a global correction of
the successive search directions (see figure (1)). It ensures that any solution of the form (40)
still satisfies the reduced balance equations without local/global enhancement. Therefore, the

complementary solution δU
(f)
K can be interpreted as a local correction to the solution provided

by the pre-computed reduced model. We will see in the examples that, as the conjugate gradient
does not need to search for the part of the solution that is directly captured in the pre-computed
reduced space, the convergence rate is very high.

The diagonal preconditioner M̃
−1

classically accounts for local heterogeneities in the struc-
ture. A much more sophisticated preconditioner can of course be used (e.g.:incomplete Cholesky
factorization). Yet, if the reduced basis is correctly pre-computed and/or updated, the compu-
tational effort required to obtain a good solution of the projected problem should be relatively
low. Hence, the potentially expensive construction of an advanced preconditioner is not a priori

justified. The example section will show that the number of conjugate gradient iterations required
to compute a correction to the reduced model is indeed kept very low, even while only using this
crude preconditioner.

4 Application to the adaptive reduction of damage prob-

lems

4.1 Damageable lattice model

We focus on a very simple damageable lattice structure, made of bars under traction or compression
(figure (3)). Elementary bar indiced b occupies domain Ωb such that Ω =

⋃
b∈J1,nbK Ωb, where nb

is the number of bars. The direction of bar number b is denoted by nkl = PkPl/‖PkPl‖ where Pk

and Pl (k < l and (k, l) ∈ J1, nP K2) are the two extremities of the bar as defined in figure (2). The
displacement field in is supposed constant in a cross-section. Therefore, the displacement of any
point M ∈ Ωb can be expressed in the following form:

u|M∈Ωb
= (u(x̃).nkl)nkl = u(x̃)nkl (45)

where each cross section is parametrised by a scalar x̃ ∈ [0, ‖PkPl‖], defined by x̃ = PkM.nkl.
We use a constitutive law based on classical damage mechanics to describe the behaviour of

the lattice structure. The lineic strain energy of bar b reads:

ed|x̃ =
1

2
E(1− d)Sb ǫ

2
|x̃ (46)

where ǫ|x̃ = u,x̃(x̃) is the strain measured in the direction of the bar, (Sb)b∈J1,nbK, is the section of
the bar, and d is a damage variable which ranges from 0 (undamaged material) to 1 (completely
damaged material). The local state equations, derived from the strain energy read:





N|x̃ =
∂ed
∂ǫ

= E(1− d)Sb ǫ|x̃

Y|x̃ = −∂ed
∂d

=
1

2
E Sb ǫ

2
|x̃

(47)

where we have introduced the axial force N = Sb

(
nT
kl.σ.nkl

)
, and the thermodynamic force Y . A

non-local evolution law is defined to link the damage variables to the thermodynamic forces:

d|x̃ = max
x̃∈[0,‖PkPl‖]

(
min

(
1,max

τ≤t

(
α(Y|x̃,τ )

β
)))

(48)
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Figure 2: Definition of the lattice problem.
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Figure 3: Reference solution obtained at the eighth load increment of the full-scale simulation
(maximum value of prescribed forces before unstable damage propagation). Darker bars have a
higher damage state.
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We suppose that the lattice is not subjected to any volume force, that the material of each
elementary bar is isotropic and homogeneous, and that the section of each bar is constant. As a
consequence, the resulting displacement field evolves linearly along the direction of each bar.

In terms of finite element discretization, each bar will be considered as a linear element

u(x̃) =

(
1− x̃

‖PkPl‖

)
u|Pl

+
x̃

‖PkPl‖
u|Pk

(49)

Because of the assumptions made previously on the loading, geometry and material properties, the
finite element solution yields the “exact” solution to the damageable lattice problem.

4.2 Lattice structure and loading

We solve the problem defined in figures (3). The sections and Young’s modulus are unitary. The
material parameters are β = 0.5 and α =

√
2. Any bar parallel to axis (O, x), (O, y) or (O, z) has

a unitary length.
The Dirichlet boundary conditions applied to the structure read, for any node (Pi) (with i ∈

J1, npK) of the lattice such that (Pi) ∈ (O, x, y):

u|Pi
.z = 0 (50)

As represented in figure (3), homogenous Neuman boundary conditions, in the −z direction, are
applied to any point Pi that belongs to plane P defined by:

P = {M = (x, y, z) |x ∈ [7, 9] and y ∈ [8, 10] and z = 11} (51)
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Figure 4: Final damage obained at the end of the full-scale simulation, performed in 30 load
increments. The bars that are completely damaged are not represented.

Increasing the value of the applied forces leads to the initiation and propagation of a damaged
zone as shown in figure (4). This phenomenon is unstable from a structural point of view, and
the damage state represented in this figure is past the limit point at which the force applied to
the structure reaches its maximum value. An arc-length algorithm with local control is used to
solve the damage propagation beyond this limit point. The basic idea of this algorithm is to look
for the amplitude of the force under the constraint that the maximum increment in the damage
variables over a time step is fixed (see [45, 2] or [18] for additional details). The reference solution is

14



obtained by solving the full problem (6) in 30 of these damage increments of the Newton/arc-length
algorithm. The final state is represented in figure (4).

Our purpose is to check the adequacy of the proposed local/global reduction technique when
trying to obtain at cheap costs the load/deflection curve (pre and post failure phases) of the
structure under the loading conditions described previously. The results provided in the following
sections give the value of the norm of the external forces vector (also called loading factor) obtained
by the arc-length method. The displacement used to plot the load/deflection curves is the average
vertical displacement of the points at which forces are applied.

4.3 Particularisation of the local/global approach

4.3.1 Definition of the Local/Global splitting
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Figure 5: Splitting obtained at two different stages of the simulation performed by the local/global
reduction method (left: load increment 4, right: load increment 30). Dark bars are connected to
at least one fully resolved node. As time increases, the degrees of freedom for which no reduction
is performed localises in the region of failure.

We need at that point to particularize the general method developed in section 3. The split-

ting between reduced degrees of freedom ∆̃U
(r)

and the complementary ones ∆̃U
(f)

is made by
considering that the part of the structure undergoing strong damage variations will not be cor-
rectly solved for when projected on a pre-computed Ritz basis (see [38, 37] for similar assumptions
in a domain decomposition-based local/global approaches). This statement is purely based on
mechanical intuition and will be validated in the following examples.

The following procedure is adopted. The splitting will be fixed over a time step, to avoid the
stagnation or divergence of the Newton process. At the end of a time step, the element undergoing
the maximum damage increment is spotted, and a sphere of radius ρs, centred at the isobarycenter
of the element is created. Every degree of freedom belonging to a node located inside this sphere
is set as a fully resolved degree of freedom.

This procedure is repeated on the remaining elements (those which do not have all their degrees
of freedom in the previous list).

The algorithm is stopped if one of the two following statements is satisfied.

• The maximum damage increment in the remaining elements is lower than kDam times the
global maximum. In our examples, kDam is set to 0.5. This ensures that the fully resolved
degrees of freedom are actually connected to elements undergoing a significant increase in
their damage state compared to the remaining of the structure.

• The number of fully resolved degrees of freedom exceeds kLocGlo times the total number of
unknowns. kLocGlo is set to 0.1 in our examples. This statement will be satisfied if the former
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one is not, which means that the structure undergoes a virtually homogeneous increase in its
damage state. In that case, the local/global procedure might be inefficient.

To illustrate this procedure, two different reduced domains are represented in figure (5). The
dark elements are connected to at least one fully resolved node. The first one is obtained at the end
of the third time step and is used to solve the fourth time step of the analysis, while the second one
is used to solve the thirtieth and last time step. The first figure is obtained during the initiation
phase. Notice that the maximum damage increments are found in the zone where the the load
is applied, and in the “pillar” that is closer to this zone, which undergoes a significant bending
loading. In the later case, corresponding to unstable propagation phase, the damage increment
localises in the zone where the load is applied.

This empirical choice for the local/global splitting is only justified by its efficiency. However we
only considered one type of model for brittle fracture. We expect the optimal splitting to depend
on the chosen model and on the stage of the structural failure. A more suitable criterion should
be investigated in future work, based on algebra to circumvent this dependency. For instance, one
could consider the decrease rate of the singular values of the correlation matrix restricted to an
assumed smoothed domain and loosely maximise it, with a greedy-like algorithm, by successive
small modifications of this domain.

4.3.2 Modification of the global Ritz basis

At the end of a time step, the Ritz basis is enriched in order to take into account the information
provided by the local iterative solver. The procedure used here is simply to add the successive
solutions to the initial snapshot, and sort them by a singular value computation. This step can
be optimized, following our previous work [18]. The issue here is that the reduced basis is only
locally enhanced, which might results in ill-posed reduced problems if not correctly addressed.
This question will not be further discussed in this paper, which focuses on the benefits provided
by the local/global approach.

4.4 A posteriori Ritz basis

4.4.1 Reference solution to construct the a posteriori Ritz basis

The first test consists in using as a snapshot the consecutive reference solutions obtained by a
Newton/arc-length solution algorithm performed on the initial system of equations, without re-
duction. In other terms, we try to reproduce the snapshot by reduced order modelling. It terms
of realistic applications, this example is not of particular interest as one would need to know the
solution in advance in order to obtain the followinf results. However, studying this academic case
is interesting to understand the behaviour of the proposed strategy.

The snapshot is composed of ns = 30 vectors. This information is compressed by using a
singular value decomposition as detailed in section 2.2.2. We plot, in figure (6), the normalised
error in the snapshot representation

νSVD =




ns∑

j=1

∥∥∥∥∥S
j −

nc∑

i=1

(
CiTSj

)
Ci

∥∥∥∥∥

2



1
2




ns∑

j=1

∥∥Sj
∥∥2



1
2

=

(
ns∑

i=nc+1

λi

) 1
2

(
ns∑

i=1

λi

) 1
2

(52)

as a function of the order of truncation of the SVD, where the eigenvalues (λI)i∈J1,nsK of the cor-
relation matrix are now sorted in decreasing order. The decrease rate of this criterion is relatively
low, which suggests that the information from the snapshot is poorly suited to compression. For
reference, in [15], the author estimates that the snapshot space is correctly approximated by the
space spanned by the first nc singular vectors if νSVD ≤ 10−8. In our case, this would lead to the
selection of the 30 singular vectors to define a relevant reduced model. The singular vector basis is
here truncated at order nc = 3 in order to yield a significant (thus observable) error in the solution
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[6, 13]})) from the snapshot definition (i.e.: the snapshot now is the restriction of the solutions to
the part of the domain which does not undergo significant damage). The resulting error curves are
plotted in dashed lines.

when using the basic POD method. This error can then be compared to the one obtained when
using the proposed local/global scheme.

In figure (7), the reference load/deflection curved is compared to the one obtained when using
the basic POD on the first hand, and when using the local/global reduction technique on the other
hand. The peak load obtained with the basic POD is slightly underestimated, by less than 2%, but
the overall behaviour of the structure is correctly captured. The local/global algorithm permits to
further increase the accuracy of the approximated solution. The error in the maximum load factor
is now less than 0.5 %.

We now analyse the effect of preconditioning the local iterations of the conjugate gradient by
the projection technique detailed in section 3.4.2. The convergence curves that are plotted in
figure (8, left) are obtained at the third Newton iteration of the fiftieth time step of the analysis
(i.e.: during the damage propagation phase). The norm of the condensed system (35) of equation,
normalized by the norm of the condensed right-hand term is observed as a function of the number of
iterations of the conjugate gradient solver. One can see that the number of iteration to convergence
is significantly decreased when using the augmented Krylov solver.

An other interesting observation is that the convergence curve decreases in a monotonic manner,
which means that the error in the global residual keeps decreasing as a function of the cost of
the local conjugate gradient. This is not, of course, a proof, and this conclusion is probably
problem dependent, but the same behaviour as been observed in all our numerical experiments. A
probable reason for this is that the augmentation deflates the spectrum of the condensed operator,
removing its highest eigenvalues and forcing the Krylov algorithm to its super-convergence phase
(one can refer to [46] for a proper analysis of the effect of eigenvectors-based augmentation on the
convergence of Krylov solvers).
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here is the solution of the direct numerical simulation.
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Figure 8: Convergence curves of the augmented conjugate gradient used to solve the local problem,
at the third Newton iteration of load increment 15. On the left-hand side, the reference solution
is used as a snapshot. On the right-hand side, the snapshot used to define the reduced model is
the solution of the nearby problem.

4.4.2 Nearby solution to construct the a posteriori Ritz basis

In the second test case, we use as a snapshot the consecutive solutions obtained by solving a
nearby problem, which differs from the reference one only by the position of the applied forces:
homogenous Neumann boundary conditions are applied to any point Pi (with i ∈ J1, nP K) such
that Pi ∈ P ′ defined by:

P ′ = {M = (x, y, z) |x ∈ [9, 11] and y ∈ [9, 11] and z = 11} (53)

This snapshot is for instance a particular output of a parametric study meant to obtain the
response of the system subjected to various load cases. One would expect to be able to reuse the
information generated during this simulation to fasten the solution process of the next one. The
difference between the snapshot solution and the reference solution that is looked for is illustrated
in figure (9). It should be noted that far away from the part of the structure where Neumann
boundary conditions are applied, the solutions are qualitatively similar. Yet, they are very different
within this process zone, which qualitatively justifies the local/global splitting proposed in section
(4.3.1). The same effect appears in figure (6, which shows that the combination of the information
from the two load cases can be significantly compressed when removing the process zone from the
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SVD analysis.
Figure (10) compares the load/deflection curves obtained in the reference case, and when using

successively the basic POD strategy and the local/global reduction technique. Obviously, the POD
strategy looses its relevance very quickly, as the damage localises in the part of the structure where
the damage would localise during the snapshot simulation. The resulting model is too stiff, and
the maximum strength of the structure is overestimated. When using the local/global approach,
with the parameters described previsouly for the fine analysis of the damaged areas, a much more
accurate load/deflection curve is obtained. Yet the peak load is still overestimated by 5%. This
remaining inaccuracy is due to the fact that the infomation from the snapshot is not correct in the
reduced zone. Global corrections of the Ritz basis are still necessary. This issue is discussed in the
next section.

In figure (8, right) we analyse the effect of preconditioning the local iterations of the conjugate
gradient by the projection technique. As in the previous test case, the convergence curves are
observed at the third Newton Newton iteration of the fiftieth time step of the analysis. Again, the
number of iteration to convergence is significantly decreased when using the augmentation. We
would expect this precontionning technique to be less efficient in this particular case. Yet it is
not the case, which is probably due to the fact that the global update described in section 4.3.2 is
mechanically relevant.

5 Adaptive Ritz basis

We now try to reduce the inaccuracy observed in figure (10) by using global corrections of the re-
duced model. The adaptation algorithm used here was introduced in [18]. We just recall the basics
of this particular strategy, and explain how it can be used to enhance the proposed local/global
scheme.

5.1 ”On-the-fly” global corrections of the Ritz basis

The principle of these global corrections, is to update the global Ritz basis used to define reduced
problem (10). It is, for now, not linked to the global/local technique described previously in this
paper. The updates are done “on-the-fly”, at any iteration i+ 1 of the Newton algorithm used to
solve (10) at a given time step tn+1 of the analysis. If the reduced problem is sufficiently converged,
and if the residual of the norm of the initial problem evaluated at iteration i is estimated too high,
then the following linearized system is considered:

K̄
i

T
¯δU = −Ri (54)

K̄
i

T
is an approximation of the tangentKi

T
, whileRi is the residual of the initial system of equations

(6) evaluated in U|tn
+Ci

αi. Operator Ci designates the Ritz basis considered at iteration i of
the Newton process.

The solution to this problem is searched for in two supplementary spaces by a projected Krylov
algorithm:

¯δU = ¯δUC + ¯δUK

where

{
¯δUC ∈ Im(Ci)

¯δUK ∈ Im(Ci)
⊥

K̄
i
T = Ker(CiT K̄

i

T
)

(55)

This problem is solved coarsely by a projected Krylov solver (10−1 is the typical value of the stop-

ping criterion), othogonally to the current Ritz basis. The resulting solution, which is K̄
i

T
−orthogonal

to the Ci, is added to the reduced basis:

Ci+1 =

(
Ci

¯δUK

‖ ¯δUK‖

)
(56)

Newton prediction i+1 can now be solved after updating residual Ri
R and reduced stiffness Ki

T,R

with respect to this new basis vector.
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Various features are added to this algorithm to efficiently sort the successively added basis
vectors, but the main idea described above is sufficient to understand the following results.

5.2 Coupling with the local/global approach

Once the global norm of the residual of locally reduced problem (27) is sufficiently converged, and
if the global residual is juged too high, a correction vector to the global Ritz basis is calculated,
following the algorithm given in the previous subsection. The residual and tangent operator of
problem (27) are updated and condensed tangent problem (35) is solved with the projected conju-
gate gradient algorithm. This algorithm converges in a very few iterations as the new basis vector,
added to the augmentation space, is very close to the solution which is looked for. The slight
mismatch is only due to:

• the approximation of the tangent used to provide the global correction vector.

• the coarse solution of (54).

• the approximation of the displacement in the reduced zone of the local/global approach.

5.3 Results

The test case described in section 4.4.2 is solved using successively the local/global technique on its
own, the global correction algorithm on its own, and the local/global reduction technique coupled
with global corrections. The target norm of the relative global residual norm is 10−1. Corrections
are allowed only if the relative norm of the residual of locally reduced problem (27) is below 10−3.
It is clear from the load-displacement curve in Figure 11 that the global corrections significantly
improve the results of the local/global algorithm. (11). An illustration of the POD basis and its
successive corrections is given in figure (13).

More importantly, the number of relatively expensive global corrections required to achieve the
target in terms of global residual norm is very low when using the local/global approach, as opposed
to the one observed when using only global corrections. This effect is shown in figure (12). On can
also notice that using only the global correction methods lead to an increase in the computational
costs in the damage propagation phase of the analysis, which has been reported in [18]. With the
local/global reduction approach, this effect disappears. The same trends are observed in [37], where
a local/global algorithm was developed in a domain decomposition framework to avoid unnecessary
computations far away from the process zones. This suggests that the result obtained here may be
extended, and that the number of global corrections required to achieve a given level of accuracy
does not depend on the local nonlinearity (i.e: independent on the damage state).

6 Conclusions and discussion

The work described in this paper focuses on decreasing the computational effort required in solving
large scale damage and fracture problems, where small scale phenomena must be taken into account
to accurately represent the global structural behaviour. Although most investigations on this issue
rely on the extension of homogenization frameworks, we followed an alternative route, choosing
projection-based model order reduction as a starting point. The proposed local/global reduction
technique was demonstrated on a damaging 3D frame structure, but we expect that the algorithm
will carry forward to the more general case of the initiation and propagation of cracks in structures.

The main conclusions of the paper are:

• The proposed local/global model order reduction approach can significantly improve the
relevancy of using a global Ritz basis to approximate the displacement field in the case of
localised failure;

• The number of global corrections of the reduced model required to obtain a given level of
accuracy is drastically reduced when the balance equations which exhibit the highest level of
nonlinearity are excluded from the reduction.
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In most of the applications for which this methodology is intended, the additional computational
costs are kept minimal for two reasons:

• The damaged zone where no reduction is performed is small compared to the size of the
structure in realistic engineering problems;

• The local fine scale solution is efficiently obtained by Krylov corrections of a good initialisation
provided by the restriction of the reduced model to the damaged zone.

Yet, some issues need to be addressed before global/local reduction algorithms can be efficiently
and safely used to tackle engineering problem:

• Cost of the construction of the reduced systems. A system reduction is needed to ensure the
computational efficiency of the method. It is now well known that projection-based model
order reduction only reduces the size of the algebraic systems to solve, and that the construc-
tion of these systems is still expensive. Indeed, it involves the evaluation of the internal forces
to construct the tangent stiffness and the residual of the reduced problem, which requires
global updates of the constitutive behaviour, and integrations over the whole domain. System
approximations permit to solve this issue. They basically consist in obtaining a cheap, but
reliable approximation of the internal forces. In [18], we used the so-called hyperreduction
[15] (also introduced as the missing-point approximation by [47] in a different context). We
found that adaptive Ritz basis methods need to be carefully tailored when used within this
framework. Indeed, one cannot rely on the fact that the residual of the full-scale problem
is known at any iteration of the nonlinear solver anymore: the number of global evaluation
of the internal forces must be kept minimal. In addition, we observed that the stability of
the particular system approximation that we used is highly dependent on the choice of its
parameters (reduced integration domain), especially when the damage mechanism localises.
We foresee that excluding the most damaged zones from the reduced domain can significantly
improve the stability of this scheme. Some numerical investigations are required to confirm
this intuitive speculation.

• Quality control. Each step in the algorithm is a source of error: (i) choice of the set of degrees
of freedom for which the solution is searched in a reduced space (ii) choice of the Ritz basis (iii)
choice of the accuracy for the local solution (iv) choice of the system reduction (v) choice
of the time stepping parameters. These choices should be made within an encompassing
framework to ensure that the error associated with each of them can be controlled in the
same manner. Therefore, one needs to find a relevant error criterion and build a control
process, capable of ensuring that the above choices introduce the same order of error in the
solution so that the global error be not dominated by any of them in particular.

In terms of further applications, this method should be validated using more advanced models
for brittle fracture, in particular nonlocal continuum damage or softening plasticity models, for
which the distinction between local and global effects is not trivial. The extension to ductile failure
and/or geometric nonlinearities should also be possible, the global corrections being expected to
efficiently handle the “smooth” part of the nonlinearities, while the local/global scheme should
treat separately the localisation of defects.

We believe that this local/global reduction framework is an important milestone to obtain an
optimal reduction method applicable to the parallel simulation of failure in solids. Indeed, as
alluded to in the introduction of this paper, several authors have proposed to perform a systematic
model order reduction of the expensive local problems (so-called “problems by substructure”)
classically involved in domain decomposition methods [32, 33, 29]. The application of such ideas
to failure assessment has never been tackled so far, as it first requires an efficient reduction scheme
for the local problems, such as the one proposed in this paper, in order to guarantee reasonable
scalabilities and load balancing.
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