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Abstract

We derive in this paper a new local static condensation strategy which allows to reduce sig-
nificantly the number of unknowns in algebraic systems arising in discretization of partial
differential equations. We apply it to the discretization of a model linear elliptic diffusion and
a model nonlinear parabolic advection–diffusion–reaction problem by Crouzeix–Raviart non-
conforming finite elements. Herein, the unknowns, originally associated with the mesh faces,
can be reduced to new unknowns associated with the mesh elements. The resulting matrices
are sparse, with possibly only four nonzero entries per row in two space dimensions, positive
definite in dependence on the mesh geometry and the diffusion–dispersion tensor, but in general
nonsymmetric. Our approach consists in introducing new element unknowns, the identification
of suitable local vertex-based subproblems, and the inversion of the corresponding local matri-
ces. We give sufficient conditions for the well-posedness of the local problems, as well as for the
resulting global one. In addition, we provide a geometrical interpretation which suggests how
to influence the form of the local and global matrices depending on the local mesh and data.
We finally present an abstract generalization allowing for a further reduction of the number of
unknowns, typically to one unknown per a set of mesh elements. We conclude by numerical
experiments which show that the condition number of the resulting matrices is robust with
respect to the mesh anisotropies and the diffusion tensor inhomogeneities.

Key words: local static condensation, nonconforming finite element method, diffusion equation,
nonlinear parabolic advection–diffusion–reaction equation

1 Introduction

Let Zi and Zb be two given matrices and let E be a given right-hand side vector. We consider in
this paper the following problem: find Λ, Λ := (Λi,Λb)t, such that

(
Zi Zb

0 I

)(
Λi

Λb

)
=

(
E
0

)
. (1.1)
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Here I stands for the identity matrix. Note that it follows from (1.1) that Λb = 0, so that (1.1)
can be equivalently rewritten as: find Λi such that

Z
iΛi = E. (1.2)

System (1.1) typically results in the discretization of elliptic or parabolic problems by the Crouzeix–
Raviart nonconforming finite element method (cf. Crouzeix and Raviart [6]) or by the mixed finite
element method (cf. Raviart–Thomas [10] and Arnold and Brezzi [3]), see Sections 3 and 4 for
details. Therein, Zi is a sparse (symmetric) positive definite matrix.

The purpose of this paper is to devise a general principle allowing to reduce equivalently sys-
tem (1.1) to a system

SP = H, (1.3)

with a sparse and easily computable matrix S and much fewer unknowns P . Let Ω be a compu-
tational domain and Th its simplicial mesh. We suppose that the unknowns Λ are associated with
the mesh faces, whereas the new unknowns P are associated with the mesh elements.

In Section 2, we introduce an abstract and algebraic principle for reducing (1.1) to (1.3). We
introduce an arbitrary matrix N and augment (1.1) with the relation NΛ = P . We then identify
suitable local subproblems of the augmented system, invert the corresponding local matrices, obtain
local expressions of the unknowns Λi in terms of the new unknowns P , and finally identify the
matrix S and the right-hand side vector H of (1.3). Under Assumption 2.2 below, we also prove the
well-posedness of (1.3), the equivalence of (1.3) with (1.1), and characterize the stencil (maximal
number of nonzero entries per each matrix row) of S. This approach generalizes those obtained
in the framework of the mixed finite element method in Younès et al. [19, 18], Chavent et al. [4],
and [14, 17]. In contrast to [19, 4, 18], our starting point is purely algebraic, and no geometrical
mesh or discretization information is used. Moreover, different choices of N are possible and a
family of reformulations can be obtained.

Enlightening the abstract algebraic approach of Section 2, we provide in Section 3 its specifi-
cation for the discretization of a model linear elliptic diffusion problem by the Crouzeix–Raviart
nonconforming finite element method. We also present its geometric interpretation. Here, the
new element values are the values of the Crouzeix–Raviart approximation in points associated
with the elements (not necessarily inside the elements). We give in Section 3 sufficient condi-
tions in terms of the diffusion tensor S and of the geometry of the mesh Th for Assumption 2.2
to hold. We also investigate how the properties of the local problems and of the matrix S can
be influenced by the choice of the element points. In Section 4, we then present similar devel-
opments for a model nonlinear parabolic advection–diffusion–reaction problem discretized by the
Crouzeix–Raviart method.

In Section 5, we report results of several numerical experiments. The matrices S resulting
from our approach are in general positive definite but nonsymmetric. Their condition number is
in our numerical examples insensitive to the anisotropies of the mesh Th and inhomogeneities of
the tensor S for linear diffusion problems. We demonstrate that CPU gains for both direct and
iterative solvers in range 1.5-times to 3-times, 30-times in particular situations, can be achieved.
A concluding discussion is given in Section 6.

We finish the paper by Appendix A which gives a generalization of the approach of Section 2,
weakens Assumption 2.2, and enables a further reduction of the number of unknowns.

2 Static condensation from edges to elements

We introduce in this section our basic static condensation principle, which enables us to rewri-
te (1.1) equivalently as (1.3), reducing the number of unknowns from mesh faces to mesh elements.
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Figure 1: An example of a patch TV around a vertex V in the interior of Ω
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Figure 2: An example of a patch TV around a vertex V close to the boundary of Ω

2.1 The domain and its mesh

Let Ω ⊂ Rd, d ≥ 2, be a polygonal (polyhedral) domain and let Th be a matching (containing no
hanging nodes) simplicial mesh of Ω in the sense of Ciarlet [5]. We denote by Eh the set of all
(d − 1)-dimensional faces of Th. We divide Eh into interior faces E i

h and boundary faces Eb
h . For

σ ∈ Eh, let xσ stand for the barycenter of the face σ. We next denote by Vh the set of vertices of
Th. For a given vertex V ∈ Vh, we shall denote by TV the patch of the elements of Th which share
V , by E int

V ⊂ E i
h the interior faces of TV , and by Eext

V the faces of TV not having V as vertex. We
set EV := E int

V ∪ Eext
V and we also denote by Eb

V the faces of TV which lie on the boundary ∂Ω and
not in EV . We refer to Figures 1–3 for an illustration in two space dimensions. Let K ∈ Th. By
EK , we denote the set of all faces of K and by E i

K the set of such faces of EK which lie in E i
h. Let

V be a vertex of K. We will also employ the notation EV,K for the faces of K which have V as
vertex. Finally, xK denotes the barycenter of K. The symbol |S| stands for the cardinality (the
number of elements) of a set S.
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Figure 3: An example of a patch TV around a vertex V on the boundary of Ω

3



2.2 Augmented problem setting

Let Zi ∈ R|E i

h
|×|E i

h
|, Zb ∈ R|E i

h
|×|Eb

h
| be given matrices. Both have the number of rows equal to the

number of mesh interior faces; the number of columns of Zi is given by the number of mesh interior
faces, whereas that of Zb by that of mesh boundary faces. Let a right-hand side vector E ∈ R|E i

h
|

be also given. We consider the following problem: find Λ ∈ R|Eh|, Λ = {Λσ}σ∈Eh = (Λi,Λb)t, such
that (1.1) holds. Herein, we merely suppose that (1.1) is well posed, i.e., that the system matrix
of (1.1) is nonsingular, and that on a row associated with a face σ ∈ E i

h, the only nonzero entries of
(Zi,Zb) lie on columns associated with faces γ ∈ Eh such that σ and γ belong to the same simplex.

Let N ∈ R|Th|×|Eh|. We suppose that on a row of N associated with an element K ∈ Th, the only
nonzero entries are on columns associated with the faces EK of K; apart from this assumption,
the matrix N is arbitrary. This assumption will ensure locality of our approach and sparsity of
the final matrix S. Introduce one new unknown PK for each mesh element K ∈ Th. Let P be the
corresponding algebraic vector, P = {PK}K∈Th . Consider now the following augmented problem:
find Λ ∈ R|Eh| and P ∈ R|Th| such that (1.1) holds together with

NΛ = P. (2.1)

This problem is well posed in the sense that there exists a unique solution (Λ, P ) of (1.1), (2.1).
Indeed, (1.1) defines Λ in a unique way thanks to its well-posedness. As (2.1) is completely
uncoupled from (1.1), P is simply prescribed by P := NΛ.

2.3 Structure of the algorithm

In order to present the key idea of our approach as clearly as possible and to underline its simplicity,
we now present the structure of our algorithm:

1. Assemble the matrices Zi, Zb, and N from (1.1), (2.1).

2. Consider certain lines from the first block row of (1.1) and from (2.1) on patches of elements
around vertices and assemble the local problems (2.4), see Section 2.4.

3. Run through all vertices, invert the local matrices MV , and assemble the matrices M̃inv and

M
inv

from (2.10), see Section 2.6.

4. Solve the reduced system (2.11), see Section 2.6.

5. Get Λi from (2.12), see Section 2.6.

2.4 Definition of the local problems

Consider now a vertex V from the set of vertices Vh. Recall that we have denoted by TV the
elements sharing the vertex V and by E int

V the interior faces of this patch. Consider the lines from
the first block row of (1.1) associated with the faces from E int

V and the lines from (2.1) associated
with the elements from TV . The appearing unknowns correspond to the faces of the set EV ∪ Eb

V ,
ΛV := {Λσ}σ∈EV ∪Eb

V
, see Figures 1–3. Remark that EV ∪ Eb

V corresponds to all faces of the patch
TV . We denote the corresponding submatrices by ZV and NV and the right-hand side vectors by
EV , EV := {Eσ}σ∈E int

V
and PV , PV := {PK}K∈TV , respectively. This gives rise to the following

local linear system for all V ∈ Vh: given the vectors EV and PV , find the vector ΛV such that
(

ZV

NV

)
ΛV =

(
EV

PV

)
. (2.2)

The size of the matrix ZV is |E int
V |×|EV ∪E

b
V |, whereas the size of NV is |TV |×|EV ∪Eb

V |. System (2.2)
is square if the vertex V lies inside Ω and thus Eb

V = ∅, see Figures 1–2. If V ∈ ∂Ω, then Eb
V 6= ∅,
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see Figure 3, and the homogeneous Dirichlet boundary condition gives Λb = 0. Thus, keeping only
Λint
V := {Λσ}σ∈E int

V
and Λext

V := {Λσ}σ∈Eext

V
as the unknowns, we can rewrite (2.2) as a block system

which is always square: (
Zint
V Zext

V

Nint
V Next

V

)(
Λint
V

Λext
V

)
=

(
EV

PV

)
. (2.3)

Indeed, it follows from elementary properties of the mesh Th that |TV | = |Eext
V |, which gives

|E int
V |+ |TV | = |E int

V |+ |Eext
V |. Moreover, ordering the elements in the patch TV with their adjacent

external faces from Eext
V , the matrix Next

V is diagonal.
Suppose now that the diagonal entries of the matrix Next

V are nonzero and that the matrix
of (2.3) is nonsingular. Then (2.3) can be reduced to the following Schur-complement system:

MV Λ
int
V = EV − JV PV (2.4)

with

MV := Z
int
V − Z

ext
V (Next

V )−1
N
int
V , (2.5a)

JV := Z
ext
V (Next

V )−1. (2.5b)

We obtain in particular from (2.4)

Λint
V = (MV )

−1(EV − JV PV ), (2.6)

i.e., a local expression of the original unknowns Λint
V from the new unknowns PV . These local

expressions, together with the relation (2.1), will enable us to reduce system (1.1), (2.1) to (1.3).
In order to state such a result in a proper way, we need to introduce some more notation.

2.5 Weights and extension operators

Each face σ ∈ E i
h belongs to d sets E int

V (recall that d is the space dimension). We associate a
weight wV,σ to each vertex V ∈ Vh and each face σ ∈ E int

V and require

∑

V ; σ∈E int

V

wV,σ = 1 ∀σ ∈ E i
h. (2.7)

The condition (2.7) is sufficient for all our theoretical developments and gives a great flexibility;
in the numerical experiments in Section 5 below we, however, only consider the simplest case
wV,σ = 1/d.

Let V ∈ Vh. Let us define a mapping ΥV : R|E int

V | → R|E i

h
|, extending a vector Λint

V = {Λσ}σ∈E int

V

of values associated with the faces from E int
V to a vector of values associated with all interior faces

E i
h by

[ΥV (Λ
int
V )]σ :=

{
Λσ if σ ∈ E int

V

0 if σ 6∈ E int
V

. (2.8)

Let WV be a diagonal matrix of size |E int
V | × |E int

V |, with the diagonal entries given by the weights

wV,σ. Let Λ
i ∈ R|E i

h
| be an arbitrary vector and denote Λint

V = {Λσ}σ∈E int

V
for a given vertex V ∈ Vh.

Due to (2.7), we have

Λi =
∑

V ∈Vh

ΥV (WV Λ
int
V ). (2.9)
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Let us now introduce a mapping ΥV : R|E int

V |×|E int

V | → R|E i

h
|×|E i

h
| (with the same name as the

previous one, as one can easily distinguish them), extending a local matrix MV to a full-size one
by zeros by

[ΥV (MV )]σ,γ :=

{
(MV )σ,γ if σ ∈ E int

V and γ ∈ E int
V

0 if σ 6∈ E int
V or γ 6∈ E int

V

.

We finally in the same way define a mapping ΘV : R|E int

V |×|TV | → R|E i

h
|×|Th|, filling a full-size

representation of a matrix JV by zeros on the rows associated with the faces that are not from E int
V

and on the columns associated with the elements that are not from TV ,

[ΘV (JV )]σ,K :=

{
(JV )σ,K if σ ∈ E int

V and K ∈ TV
0 if σ 6∈ E int

V or K 6∈ TV
.

2.6 The reduced system

Now we are in a position to formulate our reduced system.

Lemma 2.1 (Reduction of (1.1) to one unknown per element). Consider problem (1.1) and aug-
ment it by (2.1). For each vertex V ∈ Vh, define the local problems by (2.3). Let the matrices
Next
V of (2.3) and MV of (2.5a) be nonsingular. Define JV by (2.5b) and M̃inv ∈ R|E i

h
|×|E i

h
| and

M
inv

∈ R|E i

h
|×|Th| by

M̃
inv :=

∑

V ∈Vh

ΥV (WV (MV )
−1), M

inv
:=

∑

V ∈Vh

ΘV (WV (MV )
−1

JV ). (2.10)

Denote N = (Ni,Nb), as induced by Λ = (Λi,Λb)t. Then (1.1), (2.1) can be reduced to

(Ni
M

inv
+ I)P = N

i
M̃

invE, (2.11)

i.e., a system of the form (1.3) with S ∈ R|Th|×|Th| given by S := NiM
inv

+ I and H ∈ R|Th| given
by H := NiM̃invE. The original unknowns Λi then satisfy (2.6).

Proof. Using the notation for the extension operators, we obtain from (2.6)

ΥV (WV Λ
int
V ) = ΥV (WV (MV )

−1)E −ΘV (WV (MV )
−1

JV )P.

Summing over all V ∈ Vh and using (2.9), we deduce

Λi = M̃
invE −M

inv
P (2.12)

with the matrices M̃inv and M
inv

specified in (2.10). We have from (2.1) and from the second block
row of (1.1)

NΛ = (Ni,Nb)

(
Λi

Λb

)
= N

iΛi = P. (2.13)

Plugging (2.12) into (2.13), we arrive at (2.11).
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2.7 Equivalence of the reduced system with the original one

For the moment, we do not know whether system (2.11) is suitable for solving the original prob-
lem (1.1). We show here that under certain assumptions, (2.11) is well-posed and equivalent
to (1.1).

Let σ ∈ E i
h be fixed and let Tσ be given by all elements which share a vertex with σ and Eσ by

the interior faces of this patch, see Figures 4 and 5. For a fixed σ ∈ E i
h, consider the lines from the

first block row of (1.1) associated with the faces from Eσ and the lines from (2.1) associated with
the elements from Tσ, giving rise to

(
ZΣ

NΣ

)
ΛΣ =

(
EΣ

PΣ

)
, (2.14)

with ΛΣ being the vector of unknowns Λγ associated with all faces γ of the patch Tσ. The matrix
ZΣ has |Eσ| rows, and NΣ has |Tσ| rows. Note that the number of rows in (2.14) is always greater
than or equal to the number of columns. In Figure 4, |Eσ| = 11, |Tσ| = 10, and the dimension of
ΛΣ is 11 + 8, whereas in Figure 5, we have a square system of size 10.

In order to study the wellposedness of the global system (2.11), we will use the following
assumption on the local systems (2.3) and (2.14):

Assumption 2.2 (Local well-posedness properties). The mesh Th, the matrices Zi, Zb, the matrix

N, and the corresponding matrices Next
V in (2.3), MV in (2.4), and

(
ZΣ
NΣ

)
in (2.14) are such that:

N
ext
V is nonsingular ∀V ∈ Vh; (2.15a)

MV is nonsingular ∀V ∈ Vh; (2.15b)
(

ZΣ

NΣ

)
has a full rank ∀σ ∈ E i

h. (2.15c)
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Under Assumption 2.2, we obtain our main results:

Theorem 2.3 (Equivalence of (1.1), (2.1) and of (2.11), (2.12)). Let Assumption 2.2 hold. Let
(Λ, P ) be the solution of (1.1), (2.1). Then P is a solution of (2.11), Λi of (2.12), and Λb = 0.
Conversely, let P be a solution of (2.11) and let Λi be given by (2.12). Set Λb = 0. Then the
couple (Λ, P ) is the solution of (1.1), (2.1).

Proof. Let (Λ, P ) be the solution of (1.1), (2.1). The fact that P is also a solution of (2.11) and
Λi the solution of (2.12) follows by Lemma 2.1, using assumptions (2.15a) and (2.15b). Λb = 0
trivially follows from the second block line of (1.1).

We now prove the converse. Let P be a solution of (2.11). Fix V ∈ Vh and consider the
corresponding system (2.3). Then define Λint

V by the Schur complement procedure (2.6). This is
possible, thanks to assumptions (2.15a) and (2.15b). The crucial question, however, is whether the
values for Λσ, σ ∈ E i

h, obtained from systems (2.6) for different V coincide. Suppose that there
exists an interior face σ ∈ E i

h and vertices V ∈ Vh and V ′ ∈ Vh such that σ ∈ E int
V ∩ E int

V ′ and such
that the value Λσ obtained from (2.6) corresponding to V and from (2.6) corresponding to V ′ are
different. Then this leads to a contradiction. Indeed, both corresponding systems (2.3) are subsys-
tems of (2.14). As there are at least as many rows as columns in (2.14) and by assumption (2.15c),
all obtained values Λσ must coincide. Completing them with Λσ = 0 for all σ ∈ Eb

h , we have (2.2).
As each face σ ∈ E i

h belongs to at least one set E int
V , running with (2.2) through all V ∈ Vh, we

obtain all lines of (1.1), (2.1).

The following is an immediate consequence of Theorem 2.3 and of the well-posedness of (1.1),
(2.1):

Corollary 2.4 (Well-posedness of (2.11)). Let Assumption 2.2 hold. Then there exists a unique
solution P of (2.11).

Finally, the following theorem shows that problem (2.11) is computationally appealing:

Theorem 2.5 (Stencil of the system matrix of (2.11)). Let Assumption 2.2 hold. Let K ∈ Th.

Then, on a row of the system matrix S := NiM
inv

+ I of (2.11) associated with this element K,
only possible nonzero entries are on columns associated with elements L of Th such that K and L
share a common vertex.

Proof. It follows from (2.6) and (2.9) that, for σ ∈ E i
h, Λσ can depend on PK whenever there is

V ∈ Vh such that σ ∈ E int
V and K ∈ TV . The assertion follows from the fact that (2.11) has been

obtained upon plugging (2.12) into (2.13).

3 Realization for Crouzeix–Raviart discretization of linear elliptic

diffusion problems and geometrical interpretation

We apply here the developments of the previous section to the discretization of a model linear
elliptic diffusion problem by the Crouzeix–Raviart nonconforming finite element method. We
also give a geometrical interpretation and show how the properties of the final matrix S can be
influenced as a function of the local geometry and of the diffusion tensor S.
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3.1 Model linear elliptic diffusion problem

We consider in this section the pure diffusion model problem

−∇·(S∇p) = g in Ω, (3.1a)

p = 0 on ∂Ω. (3.1b)

For simplicity of our exposition, we only consider the homogeneous Dirichlet boundary condi-
tion (3.1b) and assume that S, a symmetric, bounded, and uniformly positive definite diffusion–
dispersion tensor, and g, the source term, are piecewise constant on Th.

3.2 The Crouzeix–Raviart nonconforming finite element method

Associate with each σ ∈ Eh the basis function ψσ which is piecewise affine on Th and satisfies

ψσ(xσ) = 1, ψσ(xγ) = 0 ∀γ ∈ Eh, γ 6= σ. (3.2)

The Crouzeix–Raviart nonconforming space Ψh (see [6]) is defined as Ψh := span{ψσ; σ ∈ Eh}.
Then the discrete weak problem formulation reads: find λh ∈ Ψh such that λh(xσ) = 0 for all
σ ∈ Eb

h and such that

(S∇λh,∇ψh) = (g, ψh) ∀ψh ∈ Ψh such that ψh(xσ) = 0 ∀σ ∈ Eb
h . (3.3)

Herein, (·, ·) stands for the L2-scalar product on Ω and ∇ for the broken gradient operator such
that for a function v that is smooth within each mesh element, ∇v ∈ [L2(Ω)]d is defined as
(∇v)|K := ∇(v|K) for all K ∈ Th. Using the notion of the basis functions ψσ of (3.2), we
have λh =

∑
σ∈Eh

Λσψσ. Thus (3.3) gives rise to (1.1) with the algebraic vector of unknowns

Λi := {Λσ}σ∈E i

h
, Λb := {Λσ}σ∈Eb

h
, and

Z
i
γ,σ = (S∇ψσ,∇ψγ) γ, σ ∈ E i

h, (3.4a)

Z
b
γ,σ = (S∇ψσ,∇ψγ) γ ∈ E i

h, σ ∈ Eb
h , (3.4b)

Eγ = (g, ψγ) γ ∈ E i
h. (3.4c)

We recall that the Crouzeix–Raviart nonconforming finite element method is equivalent to the
lowest-order Raviart–Thomas mixed finite element method [10], see, e.g., Arnold and Brezzi [3],
Marini [9], Arbogast and Chen [2], and [15, 17], and the references therein.

3.3 Geometrical interpretation

We now give a geometrical interpretation of the approach of Section 2 for the Crouzeix–Raviart
nonconforming finite element method (3.3).

We start by the interpretation of the values PK defined by (2.1). Let K ∈ Th. Remark that

λh|K =
∑

σ∈EK

Λσψσ, (3.5)

where, we recall, ψσ are the basis functions specified by (3.2). Here and in the sequel, we understand
by |K the polynomial on the simplex K extended to the whole space Rd. Denote by NK the row
of (2.1) associated with the element K. Then this row gives NKΛK = PK , with ΛK := {Λσ}σ∈EK .
Combining this observation with (3.5), we have the following geometrical interpretation of the
values PK , K ∈ Th, under assumption (3.6):

9
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zK
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σ

γ

xγ
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V

Figure 6: Triangle K ∈ Th and subtriangle L given by edge midpoints xσ and xγ and the point zK

Lemma 3.1 (Geometrical interpretation of the values PK). Let N in (2.1) be scaled such that

∑

σ∈EK

NK,σ = 1 ∀K ∈ Th. (3.6)

Then, for any simplex K ∈ Th, there is a uniquely defined point zK ∈ Rd (not necessarily inside
K) such that

PK = λh|K(zK). (3.7)

Conversely, associate with any K ∈ Th a point zK ∈ Rd. Then, there is a uniquely defined matrix
N such that (2.1) and (3.6) hold.

In Section 2, we have made assumption (2.15a), requiring that all diagonal entries of the matrix
Next
V are nonzero. This assumption combined with (3.6) is nothing but assuming that the points

zK are such that any d of the (d+ 1) face barycenters xσ of K and the point zK do not lie in the
same hyperplane. In two space dimensions, this means that any two of the three edge midpoints
xσ and the point zK do not lie on the same line, i.e., that zK does not lie on the boundary of the
dashed triangle in Figure 6.

We now give (geometrical) formulas for the local matrices and vectors MV , EV , and JV of (2.4).
Let K ∈ Th and let V be any of the vertices of K. Recall that EV,K denotes the set of faces of K
which have V as vertex. Let a new simplex L (subsimplex of K) be given by the face barycenters
xσ, σ ∈ EV,K , and by the point zK , see Figure 6 (here the points are denoted by zK , xσ, and xγ).
Let ϕσ, σ ∈ EV,K , be the affine function which takes the value 1 in xσ, value 0 in xγ , γ ∈ EV,K ,
γ 6= σ, and value 0 in zK . Similarly, let ϕK take the value 1 in zK and value 0 in xσ, σ ∈ EV,K . The
functions ϕσ, σ ∈ EV,K , and ϕK are the Lagrange basis functions of the first-order polynomials on
the simplex L. We extend them onto K to form basis functions of the first-order polynomials on
K; we illustrate their gradients in Figure 7. By this basis transformation and by (3.5), (3.7), we
get

λh|K =
∑

σ∈EV,K

Λσϕσ + PKϕK . (3.8)

Let V ∈ Vh. Using (3.4), (3.7), and the condition Λb = 0, we see that (2.3) corresponds to

(S∇λh,∇ψγ) = (g, ψγ) ∀γ ∈ E int
V ,

PK = λh|K(zK) ∀K ∈ TV .

Employing (3.8), we obtain (2.4) with the following formulas for the local matrices and vectors:

10
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Figure 7: Basis functions gradients in an element K ∈ Th

Lemma 3.2 (Form of the local matrices and vectors MV , EV , and JV ). Let Z
i, Zb, and Eγ in (1.1)

be given by (3.4). Let N in (2.1) satisfy (3.6). Then, for all V ∈ Vh, there holds

(MV )σ,γ :=
∑

K∈TV ; σ∈EK

(S∇ϕγ ,∇ψσ)K , (3.10a)

(EV )σ :=
∑

K∈TV ; σ∈EK

(gK , ψσ)K , (3.10b)

(JV )σ,K := −(S∇ϕK ,∇ψσ)K . (3.10c)

3.4 Sufficient conditions for Assumption 2.2

The geometrical interpretation and the form of the local matrices of Section 3.3 helps us to give a
sufficient condition to satisfy Assumption 2.2:

Theorem 3.3 (A sufficient condition for Assumption 2.2). Let Zi, Zb, and Eγ in (1.1) be given
by (3.4). Let N in (2.1) satisfy (3.6) and let NK,σ 6= 0 for all K ∈ Th and σ ∈ EK . Let the matrices
EV,K ∈ Rd×d given by (with the notation of Figure 7)

(EV,K)σ,γ := (S∇ϕγ ,∇ψσ)K (3.11)

be positive definite for all K ∈ Th and for all vertices V of K. Then Assumption 2.2 holds true.

Proof. Let V ∈ Vh. From the assumption that NK,σ 6= 0, we immediately have (2.15a), as the
matrix Next

V is diagonal and formed by these nonzero values.
We next show (2.15b), or, more precisely, that the positive definiteness of all EV,K, K ∈ TV , in

fact implies the positive definiteness of MV . Let X ∈ R|E int

V
|, X 6= 0. Set ϕ :=

∑
σ∈E int

V
Xσϕσ and

ψ :=
∑

σ∈E int

V
Xσψσ. For each K ∈ TV , define a mapping ΠV,K : R|E int

V | → R|E int

V ∩E i

K |, restricting a

vector of values associated with the faces from E int
V to a vector of values associated with the faces

from E int
V ∩ E i

K . Then, for a vertex not lying on the boundary of Ω,

Xt
MVX =

∑

K∈TV

(S∇ϕ,∇ψ)K =
∑

K∈TV

[ΠV,K(X)]tEV,KΠV,K(X) > 0, (3.12)

due to the fact that all EV,K are positive definite and X is nonzero. For boundary vertices, we
proceed similarly, with only submatrices of EV,K .

11



We finally show (2.15c). We can write (2.14) in the form (cf. (2.3))
(

Zint
Σ Z

ext,b
Σ

Nint
Σ N

ext,b
Σ

)(
Λint
Σ

Λext,b
Σ

)
=

(
EΣ

PΣ

)
, (3.13)

where Λint
Σ := {Λγ}γ∈Eσ and Λext,b

Σ is the vector of unknowns Λγ associated with all faces γ lying
on the boundary of the patch Tσ. A crucial property is that each element K ∈ Tσ having a face
on the boundary of Tσ has only one such face that we associate to it. This is in line with the
fact that the matrix of (3.13) has at least as many rows as columns. Removing the rows of (3.13)
corresponding to elements K ∈ Tσ not having a face on the boundary of Tσ, (3.13) reduces to a
square system (

Zint
Σ Z

ext,b
Σ

N
′int
Σ N

′ext,b
Σ

)(
Λint
Σ

Λext,b
Σ

)
=

(
EΣ

P
′

Σ

)
. (3.14)

After reordering the rows of the second block line of (3.14), N
′ext,b
Σ gets a nonsingular diagonal

matrix. Then a Schur-complement form of (3.14) can be given (cf. (2.4)–(2.5b)). The entries of
this Schur-complement matrix either take the form of (3.4a)–(3.4b) (when in the interior of Tσ),
or the form (3.10a). Then proceeding as in (3.12), positive definiteness of the Schur-complement
matrix of (3.14) can be shown. Consequently, the matrix of (3.14) is nonsingular and thus the
matrix of (3.13) has a full rank.

In two space dimensions, we have the following simple criterion:

Lemma 3.4 (A simple elementwise positive definiteness criterion in two space dimensions). Let
d = 2. The matrices EV,K of Theorem 3.3 are positive definite if and only if for all elements
K ∈ Th and all vertices V of K (with the notation of Figure 7),

SK∇ϕσ·∇ψσ > 0, SK∇ϕγ ·∇ψγ > 0, (3.15a)

|SK∇ϕσ·∇ψγ + SK∇ϕγ ·∇ψσ|
2 < 4(SK∇ϕσ·∇ψσ)(SK∇ϕγ ·∇ψγ). (3.15b)

Proof. A matrix M is positive definite if and only if its symmetric part 1
2(M + Mt) is positive

definite and a symmetric matrix in R2 is positive definite if and only if its diagonal entries and
its determinant are positive; (3.15a)–(3.15b) is nothing but applying this criterion to the matrices
EV,K.

Figure 8 illustrates the sets of points zK (filled region) for different examples of elements K
where the local criterion (3.15a)–(3.15b) is satisfied (and thus our approach is guaranteed to work);
the triangles connecting the edge midpoints are given by the dashed lines and the barycenters by
the stars.

3.5 Choice of the evaluation point

From the developments above, we see that the freedom in the choice of the matrix N of (2.1) is
expressed via the freedom of the choice of the evaluation point zK associated with K ∈ Th; then
the well-posedness of (2.11) and properties of the system matrix of (2.11) depend on the choice of
the points zK . We distinguish three classes of specific points zK , K ∈ Th:

1. zK is the barycenter of K;

2. zK is the barycenter of the region where the matrices EV,K of (3.11) for all vertices V of K
are positive definite (equivalently, where (3.15a)–(3.15b) holds for d = 2) (barycenter of the
filled region in Figure 8);
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Figure 8: Examples of differently shaped triangles and of the corresponding regions where the local
criterion (3.15a)–(3.15b) is satisfied

3. zK is the S-circumcenter of K (if d = 2).

Remark 3.5 (S-circumcenter). In case 3 above, the so-called S-circumcenter is the point charac-
terized by the relations SK∇ϕγ · ∇ψσ = 0 and SK∇ϕσ · ∇ψγ = 0, with the notation of Figure 7.
Such a concept is known, for instance, in finite volume methods, cf. Aavatsmark et al. [1]. Therein,
the terminology “S-orthogonal grids” is used. It is important to note that, in this case, the ma-
trix MV of (2.5a) is diagonal. Consequently, its inverse is trivial and, moreover, the stencil of S
further reduces from that stated in Theorem 2.5 to the neighbors of a given mesh element K only.

More comments on these various choices, as well as on the relations to mixed finite element
and finite volume methods, can be found in [17] and in the references therein.

4 Realization for Crouzeix–Raviart discretization of nonlinear pa-

rabolic advection–diffusion–reaction problems

Let β(·), S(·), f(·), and r(·) be given nonlinear functions and w a given vector field. Let a final
simulation time T > 0 be given. We show here briefly that the approach of Section 2 can also
be applied to Crouzeix–Raviart discretization of nonlinear parabolic advection–diffusion–reaction
problems of the form

∂tβ(p)−∇·(S(p)∇p− f(p)w) + r(p) = g in Ω× (0, T ), (4.1a)

p = 0 on ∂Ω × (0, T ), (4.1b)

p(·, 0) = p0 in Ω. (4.1c)

Consider a strictly increasing sequence of discrete times {tn}0≤n≤N such that t0 = 0 and tN = T
and denote τn := tn− tn−1, 1 ≤ n ≤ N . Let λ0h ∈ Ψh be the approximation of the initial condition
p0. The Crouzeix–Raviart nonconforming finite element method combined with the backward
Euler time stepping for problem (4.1a)–(4.1c) reads: for all n ≥ 1, given λn−1

h , find λnh ∈ Ψh such
that

(
β(λnh)− β(λn−1

h )

τn
, ψh

)
+ (S(λnh)∇λ

n
h,∇ψh)+(∇·(f(λnh)w), ψh)

+ (r(λnh), ψh) = (g, ψh) ∀ψh ∈ Ψh.

(4.2)

Typically, mass lumping and/or numerical quadrature is used in (4.2) for the temporal and reaction
terms and upwind-weighting stabilization for the advection term. Such a procedure is closely
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related to combined finite volume–nonconforming finite element method for (4.1a)–(4.1c), cf. [7]
and the references therein. Finally, we obtain on each time step n a system of nonlinear algebraic
equations of size |Eh| × |Eh|. This system is typically linearized by, e.g., the Newton method; on a
time step n and a linearization step k, a system of linear algebraic equations in the matrix form

(
Zi,n,k Zb,n,k

0 I

)(
Λi,n,k

Λb,n,k

)
=

(
En,k

0

)
(4.3)

is obtained. Note that the matrices Zi,n,k, Zb,n,k of (4.3) have the same sparsity pattern as the
matrices Zi, Zb of (3.4a)–(3.4b). Thus the procedure of Section 2 applies here as well. Consider a
matrix N ∈ R|Th|×|Eh| as in Section 2.2 and set Λn,k = (Λi,n,k,Λb,n,k)t. We first complement (4.3)
with

NΛn,k = Pn,k, (4.4)

in an analogy of (1.1), (2.1). We then form the local systems

(
Z
n,k,int
V Z

n,k,ext
V

Nint
V Next

V

)(
Λn,k,int
V

Λn,k,ext
V

)
=

(
En,k

V

Pn,k
V

)
(4.5)

for all V ∈ Vh, cf. (2.3). Proceeding from (4.5) in the way of Section 2, we reduce the linear
system (4.3) on each time step n and linearization step k to an equivalent of (1.3) in the form

S
n,kPn,k = Hn,k. (4.6)

In particular, the well-posedness of (4.6) is guaranteed under Assumption 2.2. Once we solve (4.6)
for Pn,k, we obtain Λn,k (the solution of (4.3)) by an equivalent of (2.12) and continue the lin-
earization/time stepping in order to get next linear system (4.3).

5 Numerical experiments

We present in this section the results of several numerical experiments, illustrating the theoretical
developments of the paper.

In Section 5.1, we concentrate on the model problem (3.1a)–(3.1b) and the developments of
Section 3. We first in Section 5.1.1 focus on the influence of the choice of the evaluation point zK .
Then, in Sections 5.1.2–5.1.4 respectively, we systematically compare various reduced formulations
to the original nonconforming method for anisotropic meshes, inhomogeneous diffusion–dispersion
tensor, and inhomogeneous and anisotropic diffusion–dispersion tensor, respectively. Section 5.2 is
then devoted to the numerical illustration of the application of our approach to nonlinear parabolic
(advection–)diffusion–reaction problems, illustrating the developments of Section 4.

For consistency, we use the same terminology as in [14, 17, 16]:

1. MFEB: approach of the present paper, zK is the barycenter of K;

2. MFEC: approach of the present paper, zK is the S-circumcenter of K;

3. MFEO: approach of the present paper, zK is the barycenter of the region where the matrices
EV,K of (3.11) for all vertices V of K are positive definite;

4. CMFE: approach of [14];

5. FV: approach of [19, 4, 18], corresponding to a variant of the finite volume method;

6. NCFE: the original formulation (1.2);
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Abbreviation Meaning

Meth. method, one of the equivalent nonconforming finite element formulations
Un. number of unknowns (matrix size)
Mat. matrix
St. stencil (the maximum number of nonzero entries on each matrix row)
Nonz. total number of matrix nonzero entries
CN 2-norm condition number
CNS 2-norm condition number after diagonal scaling
DS direct linear solver
(P)IS (preconditioned) iterative linear solver
Iter. number of iterations of an iterative linear solver
Prec. CPU time of incomplete factorizations for preconditioning
SPD symmetric positive definite
SID symmetric indefinite
NPD nonsymmetric positive definite
NNS nonsymmetric negative stable
NID nonsymmetric indefinite

Table 1: Abbreviations used in Tables 2–11

7. FV–NCFE: combined finite volume–nonconforming finite element method (FV–NCFE)
of [7] for unsteady nonlinear advection–diffusion–reaction problems.

Recall that the first five approaches have one unknown per element K ∈ Th, whereas the
two last ones have one unknown per interior face σ ∈ E i

h. Recall also all these approaches are
equivalent, in the sense that the same solution Λi is always recovered (up to rounding errors). We
refer to [19, 4, 18, 14] for details on the links between the different methods; a unified treatment
and additional numerical experiments are presented in [17].

We present our results in Tables 2–11 below; Table 1 summarizes the different abbreviations
used therein. Recall that a real matrix S ∈ RM×M is positive definite if P tSP > 0 for all P ∈ RM ,
P 6= 0, and negative stable when all its eigenvalues have positive real parts (this is in particular
the case for positive definite matrices). The 2-norm condition number of a matrix S is defined
by ‖S‖2‖S

−1‖2. We also consider the 2-norm condition number after diagonal scaling, by which
we mean the minimal of the two 2-norm condition numbers of the two matrices diag(S))−1 S,
|diag(S)|−1/2 S |diag(S)|−1/2. Here |diag(S)|−1/2 is obtained by taking the diagonal of the matrix
S, the absolute value of the entries, and the reciprocal of their square roots.

We also study the computational cost. We first test the Matlab “\” direct solver. A direct
solver may not be usable for very large systems or may not be suitable for parabolic or nonlin-
ear problems. Thus also the behavior of iterative solvers is very important. We test two simple
iterative methods. If the matrix is symmetric and positive definite, we use the conjugate gra-
dient method [8]. For nonsymmetric matrices, we employ the bi-conjugate gradient stabilized
method [13]. Unpreconditioned iterative linear solvers may be rather slow but usually illustrate
very well the matrix properties and especially the matrix condition number. To accelerate their
convergence, we use incomplete Cholesky or incomplete LU factorizations with a specified drop
tolerance as preconditioners, cf. [12]. The drop tolerance is always chosen in such a way that the
sum of CPU times of the preconditioning and of the solution of the preconditioned system was
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b = 1 b = 0.1 b = 0.025

Meth. Un. Mat. St. Nonz. CN CNS CN CNS CN CNS

MFEB 32 NPD 12 280 19 19 19 19 19 19
MFEO 32 NPD 13 298 19 18 15 15 14 14
NCFE 40 SPD 5 136 29 25 206 25 3090 25

Table 2: Matrix properties of the different equivalent reformulations of the nonconforming finite
element method, coefficients (5.1), mesh A

minimal. We always use a zero start vector and stop the iterative process as soon as the relative
residual ‖H − SP̃‖2/‖H‖2, where P̃ is the approximate solution to the system SP = H, decreases
below 1e-8.

All computations were performed in double precision on a notebook with Intel Core2 Duo 2.6
GHz processor and MS Windows Vista operating system. Machine precision was in the power of
1e-16. All linear system solutions were done with the help of MATLAB 7.0.4. In all tested cases,
the criterion (3.15a)–(3.15b) was satisfied.

5.1 Linear elliptic problems

We first consider the Crouzeix–Raviart nonconforming finite element method (3.3) for the model
problem (3.1a)–(3.1b).

5.1.1 Influencing the matrix properties by the choice of the evaluation point

We set here Ω := (0, b) × (0, 1), where we test three different values of the parameter b: b = 1,
b = 0.1, and b = 0.025. The associated meshes get more and more anisotropic while decreasing
the value of b. We consider (3.1a)–(3.1b) with

S = I, (5.1)

g = −2exey, and a Dirichlet boundary condition given by the exact solution p(x, y) = exey. In the
left part of Figure 9, we plot the evaluation points zK given as the barycenters (MFEB) and as
the optimal evaluation points zK (MFEO approach) in the case b = 0.025. Note the alignment of
these last points in almost horizontal lines (remark that the x and y axes have not the same scale
in this figure).

In Table 2, we compare the original NCFE method with the MFEB and MFEO reformulations.
We can see that the matrix condition number of the NCFE method is strongly influenced by the
anisotropy of the mesh. In contrast, the MFEB reformulation shows a stable behavior. The choice
of the optimized evaluation point in MFEO proves here as superior over MFEB, as the condition
number even decreases with increasing the anisotropy of the mesh. The situation is different if
we apply a diagonal scaling to the NCFE method. Then the condition number is also stable
with respect to the mesh anisotropy. Thus our static condensation acts as a built-in diagonal
preconditioner.

5.1.2 Anisotropic meshes

Let us now consider two domains Ω given respectively by the corners [0, 0], [0.1, 0], [−0.1, 1], [−0.2, 1]
and [0, 0], [0.1, 0], [0.3, 1], [0.2, 1]. Figure 9, middle and right, shows the corresponding generic mesh
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Figure 9: Mesh A with barycenters (stars) and optimal evaluation points (bullets) (left); generic
elements of meshes B (middle) and C (right) with barycenters and the regions where the local
criterion (3.15a)–(3.15b) is satisfied

DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 8192 NNS 13 104458 6214 6214 0.13 3.04 422.0 0.68 0.09 28.0
MFEC 8192 SID 4 32512 794 808 0.05 2.57 760.5 0.16 0.03 8.0
MFEO 8192 NPD 13 99280 4206 3808 0.09 2.14 289.0 0.40 0.17 10.0
CMFE 8192 NPD 13 104458 3469 2675 0.13 1.88 256.5 0.30 0.06 11.5
FV 8192 SID 4 32512 794 808 0.05 2.54 754.5 0.16 0.04 8.0
NCFE 12160 SPD 5 60292 10164 7113 0.08 2.08 728.0 0.34 0.19 13.0

Table 3: Matrix properties and computational cost of the different equivalent formulations of the
nonconforming finite element method, coefficients (5.1), mesh B

elements, together with the regions where the local criterion (3.15a)–(3.15b) is satisfied. As before,
we use S given by (5.1) and consider the same source function g and inhomogeneous Dirichlet
boundary condition, leading to the exact solution p(x, y) = exey. Tables 3 and 4 present the
results for the sixth-level uniform refinement of the meshes B and C, respectively.

The MFEC approach leads in this case to a symmetric matrix. Moreover, it turns out that this
matrix coincides, up to a constant scaling factor, with that of the FV method. This matrix turns
out to be very well conditioned, especially in the case of the mesh B. Consequently, the MFEC
and FV methods give the smallest CPU times for both the direct and the preconditioned iterative
solvers. The matrices produced by the MFEB approach turn out to have the highest condition
number of the MFEB, MFEC, MFEO, and CMFE approaches. Consequently, the MFEB approach
leads to the highest CPU times using the iterative solver (both with and without preconditioning).
As before, the choice of the optimal evaluation point in the MFEO approach shows to be advanta-
geous. In fact, the iterative solver can be even faster than that for the MFEC and FV approaches.
Interestingly enough, the MFEB approach does not lead, as the only one, to positive definite ma-
trices; also in this respect, the MFEO brings an improvement over MFEB. Finally, the MFEO
approach can also lead to a decrease of the number of nonzero entries, see Table 3, whence also
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DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 8192 NNS 13 104458 5526 5193 0.14 2.84 380.5 0.69 0.10 28.5
MFEC 8192 SID 4 32512 1584 1589 0.05 2.29 651.5 0.16 0.05 6.5
MFEO 8192 NPD 13 104458 3597 3591 0.13 2.37 318.0 0.45 0.13 13.0
CMFE 8192 NPD 13 104332 4426 2534 0.13 2.26 300.5 0.34 0.07 12.5
FV 8192 SID 4 32512 1584 1589 0.05 2.07 607.0 0.17 0.04 8.5
NCFE 12160 SPD 5 60292 9768 6637 0.08 1.97 710.0 0.30 0.14 14.0

Table 4: Matrix properties and computational cost of the different equivalent formulations of the
nonconforming finite element method, coefficients (5.1), mesh C

the direct solver performance in this case is improved. NCFE leads here to the worst-conditioned
matrices, although the gap to the other methods is not very important. This definitely influences
the CPU times of the iterative solvers. Altogether, speed-ups up to a factor of 2 can be achieved
by the equivalent reformulations of the original NCFE method.

5.1.3 Inhomogeneous diffusion tensor

We consider here Ω = (−1, 1)× (−1, 1), divided into four subdomains Ωi corresponding to the axis
quadrants (in the counterclockwise direction). The focus is on an inhomogeneous diffusion tensor
given by

S|Ωi
= sI, i ∈ 1, 3, S|Ωi

= I, i ∈ 2, 4. (5.2)

Inhomogeneous Dirichlet boundary conditions are imposed so that the weak solution has a singu-
larity at the origin. We refer to [11] for more details. We test the different methods on the fourth
level of uniform refinement of the mesh D of the left part of Figure 10. We report the results for
two cases, s = 100 in Table 5 and s = 10000 in Table 6.

The most important feature is that the condition number of the MFEB, MFEC, and MFEO
approaches are almost completely insensitive to the jump of the diffusion tensor, similarly to
the behavior of the condition number with respect to the anisotropy observed in Section 5.1.1.
Consequently, the CPU times of the iterative solvers are up to two orders of magnitude faster
compared to CMFE, FV, and NCFE; the MFEC formulation, thanks to its sparsity pattern,
behaves particularly well. Using the diagonal scaling, once again as in Section 5.1.1, brings the
condition number of all approaches to the same level. Consequently, preconditioned iterative
methods behave similarly to the homogeneous isotropic case, which also seems to be true for
the direct solver. Here the MFEC and FV approaches are superior compared to the other ones.
Overall, speed-ups over the NCFE in the range from 2 to 30 in the extreme case can be achieved.

5.1.4 Inhomogeneous and anisotropic diffusion tensor

We finally consider a test case inspired from [18]. Let Ω = (0, 1) × (0, 1). We focus on an
inhomogeneous and anisotropic diffusion tensor given by

SK =

(
cos(θK) − sin(θK)
sin(θK) cos(θK)

)(
sK 0
0 νsK

)(
cos(θK) sin(θK)
− sin(θK) cos(θK)

)
for K ∈ Th,
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Figure 10: Mesh D (left) and mesh E (middle) with barycenters (pentagrams) and optimal evalu-
ation points (circles); mesh E (right) with the coloring indicating the different cases of (5.3)

DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 28672 NNS 15 363141 21128 21036 0.69 13.18 407.5 1.90 0.50 14.0
MFEC 28672 NNS 4 114304 26202 22813 0.19 5.31 439.5 1.12 0.39 11.5
MFEO 28672 NNS 15 363141 21150 20784 0.70 14.24 442.0 2.05 0.44 15.5
CMFE 28672 NPD 15 363928 389347 15004 0.70 44.45 1356.5 2.00 0.47 15.0
FV 28672 SPD 4 114304 957466 17117 0.18 18.87 3167.0 0.97 0.44 17.0
NCFE 42816 SPD 5 213312 613276 20023 0.36 34.19 2822.0 1.89 0.82 19.0

Table 5: Matrix properties and computational cost of the different equivalent formulations of the
nonconforming finite element method, coefficients (5.2), mesh D, s = 100

where we set

sK ∈ {10, 5, 1, 0.5, 0.1} , θK ∈

{
π

5
,
3π

4
,
π

2
,
3π

5
,
π

3

}
, ν = 0.2. (5.3)

DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 28672 NNS 15 363141 21367 21266 0.69 13.22 407.5 2.01 1.10 8.0
MFEC 28672 NNS 4 114304 26859 23108 0.20 5.21 432.5 1.42 0.73 10.0
MFEO 28672 NNS 15 363141 21404 21010 0.70 13.20 405.0 2.14 1.14 8.5
CMFE 28672 NPD 15 363928 3.84e+7 15207 0.72 575.68 17544.5 2.00 0.63 13.0
FV 28672 SPD 4 114304 9.43e+7 17439 0.18 82.48 14042.0 0.90 0.36 17.0
NCFE 42816 SPD 5 213312 6.04e+7 20326 0.36 158.13 13091.0 1.77 0.66 20.0

Table 6: Matrix properties and computational cost of the different equivalent formulations of the
nonconforming finite element method, coefficients (5.2), mesh D, s = 10000
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DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 13824 NID 14 177652 78637 49183 0.26 8.91 586.5 1.01 0.56 7.5
MFEC 13824 NID 4 55040 4439957 1345919 0.09 — — 0.42 0.20 6.0
MFEO 13824 NID 14 177652 65729 47337 0.27 8.97 590.5 1.02 0.64 5.5
CMFE 13824 NID 14 177652 72329 26573 0.27 14.04 923.5 1.01 0.53 8.0
FV 13824 SID 4 55040 2149267 520164 0.09 — — 0.41 0.20 5.5
NCFE 20608 SPD 5 102528 186537 56933 0.18 11.04 2338.0 1.20 0.65 18.0

Table 7: Matrix properties and computational cost of the different equivalent formulations of the
nonconforming finite element method, coefficients (5.3), mesh E

Inhomogeneous Dirichlet boundary conditions are imposed by the function p(x, y) = 0.1y+0.9. A
sink term g = −0.001 is prescribed on two elements of the initial mesh. Here no analytical solution
is given. We perform the computations on the fourth-level uniform refinement of the mesh E,
see the middle part of Figure 10. The different grey shades in Figure 10, right, correspond,
with increasing intensity, to the different choices sK and θK in (5.3). Note that herein the optimal
evaluation points differ more significantly from the barycenters than in the mesh D of Section 5.1.3.
We report the results in Table 7.

The condition numbers of the MFEC and FV approaches are in this case highly increased
compared to the other approaches. Preconditioned iterative solvers or the direct solver allow
to overcome this difficulty, but the unpreconditioned iterative solvers do not converge in 50000
iterations. This nonconvergence is obviously also linked to the fact that the NCFE formulation
is the only one giving positive definite matrices; all other approaches lead to indefinite matrices.
Still the present alternative formulations, as well as the FV one, allow to solve the linear system
1.2- to 3-times faster.

5.2 Nonlinear parabolic problems

We now advance to the nonlinear parabolic setting of Section 4. We consider two test cases taken
from [14].

5.2.1 A reaction–diffusion problem

We first consider the nonlinear reaction–diffusion problem

∂(p + pα)

∂t
−∇ · (S∇p) + 3p+ αpα = 0 in Ω× (0, T ) (5.4)

with Ω = (0, 2) × (0, 1), T = 1, α = 0.5, and either

S =

(
1 0
0 1

)
in Ω (5.5)

or

S =

(
1 0
0 1

)
for x < 1 , S =

(
0.75 0.25
0.25 10

)
for x > 1 . (5.6)

Dirichlet boundary and initial conditions are given by the exact solution p(x, y, t) = exeye−t/e3.
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Figure 11: Mesh F (left) and mesh G (right)

DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 32768 NPD 14 405782 1664 1674 0.80 7.34 202.5 1.73 0.52 12.5
MFEC 32768 NPD 4 130688 2041 2034 0.26 3.60 227.0 0.71 0.43 3.0
FV–NCFE 48960 SPD 5 244032 3421 2119 0.42 6.93 484.0 2.22 0.46 35.0

Table 8: Matrix properties and computational cost of the different equivalent formulations of
the FV–NCFE method, reaction–diffusion problem (5.4), first time and linearization steps, coeffi-
cients (5.5), mesh F

For the discretization of (5.4), we employ the combined finite volume–nonconforming finite
element method (FV–NCFE) of [7] (recall that it represents the nonconforming finite element
method with mass lumping and numerical quadrature) with Newton linearization. On each time
step n and linearization step k, we obtain a linear algebraic system of the form (4.3) that we
reformulate as (4.6) as described in Section 4. We consider the evaluation points zK either as
barycenters of the elements (MFEB) or as S-circumcenters (MFEC). The MFEC approach still
leads here to a very narrow 4-point stencil. We note that the FV approach of [19, 4, 18] cannot
directly be used here.

In Tables 8 and 9, we compare the properties of the system matrices Zi,n,k and Sn,k and the
computational costs of (4.3) and (4.6) for the first time step and the first Newton linearization
step. Table 8 does so for the coefficients (5.5) and the mesh F of Figure 11, whereas Table 9 for
the coefficients (5.6) and the mesh G of Figure 11. As in the linear elliptic cases, the MFEB and
MFEC approaches give matrices with quite low condition number, which can hardly be improved
by diagonal scaling for the isotropic diffusion–dispersion tensor S. The MFEC approach allows a
speed-up by a factor of roughly two for the direct solver and three for the preconditioned iterative
solver. The MFEB approach allows an important speed-up for the preconditioned iterative solver
but not for the direct one or the unpreconditioned iterative one.

5.2.2 An advection–diffusion–reaction problem

We finally consider the nonlinear advection–diffusion–reaction problem

∂(p + pα)

∂t
−∇ · (S∇p) +∇ · (pw) + αpα = 0 in Ω× (0, T ) (5.7)
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DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 32768 NNS 14 414304 21101 9279 0.80 26.43 726.5 2.31 1.02 10.5
MFEC 32768 NID 4 130688 110496 112764 0.26 — — 0.95 0.57 4.0
FV–NCFE 48960 SPD 5 244032 46527 9590 0.42 22.84 1686.0 3.02 1.51 22.0

Table 9: Matrix properties and computational cost of the different equivalent formulations of
the FV–NCFE method, reaction–diffusion problem (5.4), first time and linearization steps, coeffi-
cients (5.6), mesh G

with Ω = (0, 2) × (0, 1), T = 1, α = 0.5, and either

S =

(
1 0
0 1

)
in Ω , w = (3, 0) in Ω (5.8)

or

S =

(
1 0
0 1

)
for x < 1 , S =

(
8 −7

−7 20

)
for x > 1 ,

w = (3, 0) for x < 1 , w = (3, 12) for x > 1 . (5.9)

Dirichlet boundary and initial conditions are as before given by the exact solution p(x, y, t) =
exeye−t/e3.

For the discretization of (5.7), we again employ the combined finite volume–nonconforming
finite element method (FV–NCFE) of [7] (local Péclet upstream weighting is used for the stabiliza-
tion of the advective term). We use Newton linearization and proceed as explained in Section 4.
Only the evaluation points zK given by barycenters (MFEB) are considered; the MFEC leads here
to much wider stencil (equal to that of MFEB) because of the presence of the advective term.

In Tables 10 and 11, we compare the properties of the system matrices Zi,n,k and Sn,k and the
computational costs of (4.3) and (4.6) for the first time step and the first Newton linearization
step. Table 10 does so for the coefficients (5.8) and the mesh F of Figure 11, whereas Table 11
for the coefficients (5.9) and the mesh G of Figure 11. Here again, the MFEB approach gives
matrices with quite low condition number, which can hardly be improved by diagonal scaling.
The CPU times of the direct solver are similar as in the previous cases. Concerning the iterative
solvers, one notable difference is that the FV–NCFE method now leads to nonsymmetric matrices
because of the advective term; thus the Bi-CGStab solver is used in place of the CG one. In the
preconditioned case and for coefficients (5.9) also in the unpreconditioned one, roughly 1.5 times
faster CPU times can be achieved for the MFEB formulation with respect to the original one.

6 Concluding remarks

We have introduced a new local static condensation from face to element unknowns and we have
applied it to the Crouzeix–Raviart nonconforming finite element method.

It appears that the matrix condition numbers of some of the equivalent reformulations of
the nonconforming finite element method developed (MFEO in particular) are insensitive to the
anisotropy of the mesh and to the inhomogeneity of the diffusion tensor. This seems to be a built-
in property, whereas a similar result for the original matrix of the nonconforming finite element
method can only be achieved upon employing a diagonal scaling.
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DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 32768 NPD 14 422894 1697 1708 0.89 9.40 251.5 1.83 0.79 9.5
FV–NCFE 48960 NPD 5 244032 3483 2158 0.44 8.74 315.0 2.84 1.50 10.0

Table 10: Matrix properties and computational cost of the different equivalent formulations of the
FV–NCFE method, advection–diffusion–reaction problem (5.7), first time and linearization steps,
coefficients (5.8), mesh F

DS IS PIS

Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU Prec. Iter.

MFEB 32768 NNS 14 417218 26317 20610 0.89 29.37 794.5 2.27 1.32 8.5
FV–NCFE 48960 NPD 5 244032 104836 18160 0.44 42.42 1471.5 3.35 1.62 12.5

Table 11: Matrix properties and computational cost of the different equivalent formulations of the
FV–NCFE method, advection–diffusion–reaction problem (5.7), first time and linearization steps,
coefficients (5.9), mesh G

Amongst the different equivalent reformulations of the nonconforming finite element method,
the MFEC approach proposed in this paper and the FV approach of [19, 4, 18] are of special interest
and due to their sparsity structure especially appealing for the use with direct solvers. However,
they are not applicable for advection–diffusion problems and only on very special meshes in three-
space dimensions; however, the MFEC can in contrast to FV easily be applied to unsteady nonlinear
reaction–diffusion problems. They also lead to quite badly conditioned matrices for anisotropic
diffusion tensors. Alternalively, the MFEB approach is very robust throughout all different cases
tested, including anisotropic tensors.

The static condensation principle developed in this paper is quite general and is not restricted
to a particular model problem or discretization scheme. In particular, its application to the dif-
ferent equivalent reformulations of the nonconforming finite element method give an appealing
alternative to the classical formulation, enable to influence the final matrix properties, lead to
(quite important) computational savings for only a marginally more expensive setup which may
involve inversion of local linear systems, and offer a nontraditional viewpoint on the nonconforming
finite element method.

A A general static condensation principle

The purpose of this Appendix is to generalize the approach of Section 2, allowing in particular
further reduction of the number of unknowns and relaxing assumption (2.15a). We do the presen-
tation in an abstract framework, not (necessarily) related to the sets such as the mesh elements,
faces, and vertices; as an example, this approach allows to reduce the system (1.1) to one unknown
per a set of elements (typically a couple of simplices forming a quadrilateral, a parallelepiped, or a
general polygon/polyhedron). As such, it gives rise to a discretization scheme leading to one un-
known per element on arbitrary polygonal/polyhedral meshes, see also the discussion and references
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in [17].

A.1 Setting

Let Th be a simplicial mesh of the domain Ω as specified in Section 2.1. Let Zi ∈ R|E i

h
|×|E i

h
| be a

given matrix and E ∈ R|E i

h
| a given vector. In contrast to Section 2.2, we do not need to assume

here anything about the emplacement of the nonzero entries of the matrix Zi, we merely suppose
that (1.2) is well-posed. Let T̄h be a given set; T̄h can be the set of mesh elements Th as in
Section 2, but this is not necessary. Typically, the elements of T̄h are sets of the simplices from Th.
We define one new unknown PK for each K ∈ T̄h and let P be the corresponding algebraic vector,
P = {PK}K∈T̄h

. We show how (1.2) can be equivalently reduced to (1.3) with S ∈ R|T̄h|×|T̄h|.
Let Ni be a |T̄h| × |E i

h| matrix, completely arbitrary. Consider the following analogy of (1.1),

(2.1): find Λi ∈ R|E i

h
| and P ∈ R|T̄h| such that (1.2) and

N
iΛi = P (A.1)

hold together. Remark that (1.2), (A.1) is well-posed.

A.2 Definition of the local problems

Consider now a new set V̄h; V̄h can be the set of the mesh vertices Vh as in Section 2, but this is
not necessary. With each V ∈ V̄h, we associate a set of faces from E i

h denoted by Ē int
V and a set of

elements of T̄h denoted by T̄V . Again, these sets can be the same as E int
V and TV in Section 2.1,

see Figures 1–3, but this is not required. We only suppose that each K ∈ T̄h belongs to at least
one set T̄V and that each σ ∈ E i

h belongs to at least one set Ē int
V .

Let V ∈ V̄h. We now consider the lines from (1.2) associated with the faces from Ē int
V and the

lines from (A.1) associated with the elements from T̄V . This gives rise to the following local linear
system, an analogy of (2.2): (

ZV

NV

)
ΛV =

(
EV

PV

)
. (A.2)

Denote by ĒV the faces of E i
h corresponding to the unknowns ΛV . In order to proceed further, we

need to assume at this point that |ĒV | = |Ē int
V |+ |T̄V |, so that the system matrix of (A.2) is square;

we also suppose that it is nonsingular. Then (A.2) enables to express locally the unknowns ΛV

from PV , considered as parameters. In contrast to (2.4), (A.2) is of bigger size, which eventually
will lead to a wider stencil of the final matrix S. On the other hand, we do not need here to
elaborate on the block structure (2.3) and to ensure that the matrices Next

V in (2.3) are square and
diagonal.

A.3 The reduced system

We now proceed similarly to Section 2.6. Keep the developments and notation (2.7)–(2.9), where we
merely replace E int

V by ĒV . As for the matrix mapping ΥV , change it into ΥV : R|ĒV |×(|Ē int

V |+|T̄V |) →

R|E i

h
|×(|E i

h
|+|T̄h|), extending a local matrix MV to a full-size one by zeros by

[ΥV (MV )]σ,γK :=

{
(MV )σ,γK if σ ∈ ĒV and γK ∈ Ē int

V ∪ T̄V
0 if σ 6∈ ĒV or γK 6∈ Ē int

V ∪ T̄V
.

Inverting the system matrix in (A.2), introducing the weights matrices WV , summing over all
V ∈ V̄h, setting

M
inv :=

∑

V ∈V̄h

ΥV

(
WV

(
ZV

NV

)−1
)
, (A.3)
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and using the analogy of (2.9), we obtain

Λi = M
inv

(
E
P

)
. (A.4)

Using the block form of Minv, Minv = (Minv
E ,Minv

P ), and plugging (A.4) into (A.1), we arrive at

(Ni
M

inv
P − I)P = −N

i
M

inv
E E, (A.5)

i.e., at a system of the form (1.3) with S := NiMinv
P − I and H := −NiMinv

E E. Once we solve (A.5)
for P , we can obtain Λi locally from (A.2) or from (A.4).

A.4 Equivalence of the reduced system with the original one

As in Section 2.7, we show here that, under a weakening of Assumption 2.2, (A.5) is well-posed
and equivalent to (1.2).

Let σ ∈ E i
h be fixed and denote by Ēσ the set of all faces γ ∈ E i

h appearing in the various ĒV ,
Ēσ := ∪V ;σ∈ĒV

ĒV . Denote also by T̄σ the set of all elements K ∈ T̄h appearing in the corresponding

T̄V , T̄σ := ∪V ; σ∈ĒV
T̄V . Similarly to (A.2), for a fixed σ ∈ E i

h, consider the lines from (1.2) associated
with the faces from Ēσ and the lines from (A.1) associated with the elements from T̄σ, giving

(
ZΣ

NΣ

)
ΛΣ =

(
EΣ

PΣ

)
(A.6)

with obvious notation. Remark that (A.6) is similar to (2.14) but is larger (as the sets Ēσ and T̄σ
are bigger here). Remark also that (A.2) form subsystems of (A.6).

Assumption A.1 (Local well-posedness properties). The mesh Th, the matrix Zi, the matrix Ni,
and the sets Ē int

V , ĒV , and T̄V in (A.2) and the sets Ēσ and T̄σ in (A.6) are such that:

each K ∈ T̄h belongs to at least one set T̄V ; (A.7a)

each σ ∈ E i
h belongs to at least one set Ē int

V ; (A.7b)
(

ZV

NV

)
is square and nonsingular ∀V ∈ V̄h; (A.7c)

(
ZΣ

NΣ

)
has at least as many rows as columns and a full rank ∀σ ∈ E i

h. (A.7d)

The following three results are equivalents of Theorems 2.3, 2.5 and of Corollary 2.4. They can
be proven analogously as in Section 2.7.

Theorem A.2 (Equivalence of (1.2), (A.1) and of (A.5), (A.4)). Let Assumption A.1 hold. Let
(Λi, P ) be the solution of (1.2), (A.1). Then P is also a solution of (A.5) and Λi the solution
of (A.4). Conversely, let P be a solution of (A.5) and let Λi be given by (A.4). Then the couple
(Λi, P ) is the solution of (1.2), (A.1).

Corollary A.3 (Well-posedness of (A.5)). Let Assumption A.1 hold. Then there exists one and
only one solution P to (A.5).

Theorem A.4 (Stencil of the system matrix of (A.5)). Let Assumption A.1 hold. Let K ∈ T̄h.
Consider the row of Ni associated with K and denote by ĒK the faces σ ∈ E i

h corresponding to
nonzero entries on this row of Ni. Then, on a row of the system matrix S = NiMinv

P − I of (A.5)
associated with this K, only possible nonzero entries are on columns associated with elements of
T̄h from the set ∪σ∈ĒK

∪V ; σ∈ĒV
T̄V . Thus, in particular, when Zi and Ni are sparse, then S is also

sparse.
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We conclude by the two following remarks:

Remark A.5 (Approaches of Section 2 and of Appendix A). Comparing Theorem 2.5 with The-
orem A.4, we see that the disadvantage of the approach of Appendix A is that the system matrix
S has, a priori, a much wider stencil than that of Section 2. Note, however, that the approach of
Appendix A is much more general and that the indicated stencils may further reduce in particular
circumstances, cf. Remark 3.5.

Remark A.6 (Further generalization of Assumption A.1). It appears that the matrix
(
ZV
NV

)

in (A.7c) needs not to be square and nonsingular. When (A.7d) holds true, there is still a way to
equivalently reduce (1.2) to (1.3). Such an approach is studied in [16].
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[14] Vohraĺık, M. Equivalence between lowest-order mixed finite element and multi-point finite
volume methods on simplicial meshes. M2AN Math. Model. Numer. Anal. 40, 2 (2006), 367–
391.
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