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Estimation of residual stresses in laminated

composites using field measurements on a

cracked sample

Abstract

Abstract: Today, advanced damage models taking into account residual stresses

are available. In particular, microcracking as a degradation mechanism in lami-

nates is very sensitive to manufacturing-induced stresses. However, these stresses

are often introduced through a model parameter whose identification remains dif-

ficult or requires time-consuming and costly additional tests. Here, we propose

a relatively simple method based on the observation of the displacement field

associated with the creation of a transverse crack in a crosswise laminate. Subse-

quently, this displacement field can be reinterpreted according to the model being

used in order to build the quantity required by the model.

Keywords: A - Laminate / C - Residual stress / C - Transverse cracking / D -

Optical microscopy

Preprint submitted to Elsevier Science



 

 

 

ACCEPTED MANUSCRIPT 

 

1 Introduction

Because of their manufacturing process, laminated composites are subject to residual

stresses which can be significant and lead to various consequences between the manu-

facturing stage and the end of the application’s life [1]. These residual stresses can have

different sources: thermomechanical sources (different expansion coefficients for the rein-

forcement and the matrix), chemical sources (matrix shrinkage during polymerization)

. . . (a review can be found in [2]).

A well-known consequence of these initial residual stresses is the problem of the di-

mensional stability of molded pieces [3]. As far as mechanical degradation models are

concerned, these stresses were long ignored, but today most approaches take them into

account in behavior prediction. A classical example, which is reported here, is transverse

cracking, a degradation mechanism which is well-documented in the literature (see [4]

[5] for reviews). Several authors pinpointed the need to take into account the residual

stresses associated with the manufacturing process in estimating the fracture criterion [6]

[7] [8]. However, even when the models do manage to integrate these residual stresses,

these parameters often remain difficult to identify and evaluate precisely.

A first approach to the resolution of this problem consists in simulating the process as

exhaustively as possible in order to deduce these residual stresses from the simulation

([9] [10] . . . ). This is probably the best solution for the long-term future. Today, how-

ever, the number of parameters and physical phenomena involved is too large for the

whole evaluation to be controlled. A second solution consists in evaluating these residual

stresses within the structure. Thus, a series of destructive or non-destructive experimental

approaches was gradually derived for this purpose [11]. A classical estimation technique

Email address: lubineau@lmt.ens-cachan.fr (Gilles Lubineau).
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 consists in observing the effects of these residual stresses on a geometric modification

of the structure. Among other works along these lines, one could mention, for example,

studies on bimetallic strips [12] or applications of what is known as the “incremental

hole” method [13] [14] [15] [16] [17]. Each of these tests must be carried out carefully and

represents an additional experiment in the series needed to identify a material.

Here, we propose a simple approach in order to obtain a first approximation of the residual

stress state within a ply’s material in the context of a study of transverse microcracking.

The method consists in observing (using a numerical camera) then analyzing the dis-

placement field generated by the opening of a transverse crack. The multicracking test is

classically used in micromechanics to observe crack density/load ratios in order to iden-

tify the associated material model [18] [19] [20]. During such a test, each occurrence of a

transverse crack results in a localized perturbation of the energy density in its vicinity.

The displacement field associated with this perturbation can be calculated through the

resolution of a residual problem which can take seemingly different, but actually very

similar, forms depending on the authors [4] [21] [22]. Under linear elasticity assumptions,

this perturbation is proportional to the residual field which existed along the crack’s lip

prior to its occurrence. Therefore, by observing this field one can gain some information

about the internal stress state of the composite material [23].

In the first section, we review the reference problem, which is about the occurrence of

a transverse crack in an initially crack-free crosswise laminate. Through a classical de-

composition by superposition, we pinpoint the respective roles of the mechanical loading

and the initial residual loading in each component of the field. We also emphasize in the

related appendix some properties of the residual field thus introduced.

The second section describes the measurement method itself. The objective is to measure

the displacements caused by initial residual stresses. The construction of these displace-

ments requires the comparison of two fields, one obtained experimentally through image

analysis, the other obtained numerically through finite element simulation. The experi-
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 mental method for the construction of the first field is described in details and illustrated

in the case of a carbon/epoxy laminate with [0/90]s lay-up.

In the third section, these residual displacements are interpreted in terms of residual

stresses and used to measure the “equivalent polymerization temperature” referred to by

several microcracking models [24]. The value obtained is fully consistent with the usually

accepted orders of magnitude.

2 The reference problem

Let us consider the general case of a cracked cross-ply laminate under generalized plane

strains. A more detailed description of the problem is given in Appendix A. Here, we

are considering only the two states (cracked and uncracked) of the laminate described in

Figure 1.

Fig. 1. Cross-ply laminate in traction (A being the healthy state, B the cracked

state)

By simple superposition, the field of the displacement jump ∆U between State A and

State B is the result of the combination of the external mechanical loading and the

internal residual stresses. Let us simply write:

∆U = λĀF̄ + UR (1)
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 where F̄ is the external loading, λĀ a linear operator (see Appendix A) and UR the part

of the displacement field associated with the relaxation of the residual stresses over the

crack’s lips. Here, the objective is to evaluate the residual field UR to obtain the residual

stresses; therefore, we simply transform this equation into:

UR = ∆U− λĀF̄ (2)

Equation 2 involves the mechanical loading (Part [λĀF̄ ]), the observed displacement

fields (Part [∆U]) and the displacements associated with the residual stresses (Part [UR]).

Thus, we are going to use this relation to recover the field UR associated with the initial

residual stresses.

3 Estimation of the residual displacement UR

Thus, the construction of the residual displacement field UR from Equation 2 requires /

an experimental field: ∆U / and a numerical field: λĀF̄ .

Here, we will illustrate the method in the case of a crosswise laminate consisting of a

[0/90]s lay-up of width b=20mm. The elementary ply has a width of 0.142mm and its

material characteristics are given in Table 1.

Ell Ett νlt νtt Glt

(MPa) (MPa) (MPa)

157,000 8,500 0.29 0.4 5,000

Table 1

Elastic properties of the carbon-epoxy material being used

The material is an IM7/977-2 carbon-epoxy provided by EADS, which was in charge

of optimizing the polymerization cycle for a supersonic application (a completely stable

polymerized material free from post-baking effects). In order to achieve a minimal residual
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 polymerization rate, a post-baking cycle was added to the customary cycle used for this

material in subsonic applications. The cycle chosen consisted of a 3-hour gelation phase

at 150◦c followed by a 2-hour polymerization phase at 180◦C. Cooling and heating were

applied at a rate of 2◦C/mn. A pressure of 7 bars was applied from the beginning of the

cycle until the return to ambient temperature. Post-baking consisted of heating at a rate

of 3◦C/mn until 210◦C, followed by 2 hours at constant 210◦C temperature, then cooling

at a rate of 3◦C/mn until the return to ambient temperature.

3.1 Measurement of Field ∆U

This measurement was carried out based on an observation of the sample area using a nu-

merical camera. A numerical camera mounted on a long-distance QUESTAR microscope

(Figure 2) enabled us to acquire data on the edge of the sample.

The macroscopic loading was incremented in ∆F steps. For each load level (Fn = n∆F ),

a series of pictures was taken through automatic scanning of the sample area. (This

step was required because the position of the future crack was of course unknown.) The

procedure was repeated for each increment. When a transverse crack was detected, the

load level was reduced down to the previously recorded level. Then, a picture of the

cracked zone was taken in order to play the role of Picture B.

Thus, we had pictures of the zone before and after cracking (Figure 3) corresponding to

the same load level (FA = FB = F ). The size of both pictures was 1024 ∗ 1280px2. The

resolution was 1.66 pixel/micron.

Next, the field of the displacement vectors ∆UA→B between the two pictures A and B

was obtained by image analysis. The classical technique [25] [26] consists in dividing the

zone of interest of Picture A (hereafter denoted SObs) into elementary patterns following

a regular grid (Figure 4). Then, each elementary zone of Picture A is sought in Picture B

by correlation, leading to the displacement of the center of the elementary pattern. Thus,
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Fig. 2. Setup for the optical observation and incremental scanning of the edge of

the crosswise laminate

Fig. 3. Pictures of the zone of interest before and after cracking

the displacement field ∆UA→B is obtained in discrete manner at the center of each of the

elementary zones. In our case, this operation was carried out using the code CORRELIQ2,

which uses a more elaborate version of this technique in which the relative displacements

are interpolated through a finite-element approximation [27]. This is illustrated in Figure

5[b], which shows ∆U2A→B
(the displacement field according to N2 between the two
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 pictures) expressed in pixels in the [Q;N2, N3] coordinate system.

Fig. 4. The zone of interest SObs and the decomposition grid of the reference picture

for image analysis purposes

This is the raw information issued from the analysis. In order to obtain usable information,

two additional operations were carried out on the measured field:

filtering: The raw field obtained in Figure 5 [b] is highly perturbed. The greater part of

this perturbation comes from the dimension of the observation in relation to that of the

fiber/matrix arrangement. Indeed, the elementary zones used were 16*16 pixels. Each

elementary zone contained about 2 to 3 fibers, which is less than the representative

elementary volume of the homogenized arrangement. Therefore, we carried out some

smoothing of the solution (Figure 5[c]), which is equivalent to homogenizing the result,

leading to the effective elimination of the perturbation related to the microstructure.

Several smoothing techniques were tested and compared. The key characteristics of

the smoothing method which was finally chosen are described in Annex B. Obtaining

a “clean” field is a prerequisite to an effective suppression of the rigid body movement.

truncation: the displacement field in the immediate vicinity of the crack was not taken

into account. For one thing, its extraction by image analysis is difficult. Besides, even

if this field could be extracted correctly, it would still depend on the local morphology

of the crack and would not be a reliable quantity (even though the perturbations due
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Fig. 5. Processing of the observed displacement field

to the local morphology subside very rapidly, see Annex B). Therefore, it was removed

(Figure 5[c]) in order to retain only information which is independent of the local profile

of the crack.

Once these two operations carried out, we obtained the informative field of Figure 5[d].

It was relatively easy to remove the rigid-body movement in order to extract the dis-

placement field ∆U2|SObs
expressed in the [O;N2, N3] coordinate system (see appendix

C). Finally, the field ∆U2|SObs
, which is the restriction of ∆U2 to the observed surface
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 SObs is illustrated, in microns, in Figure 6.

Fig. 6. The displacement field ∆U2|SObs

Here, the experimental results were illustrated by treating only the component of the

displacement field along N2. In the rest of this article, we will use this component alone.

Of course, the method can also be applied to Component 3 in order to supplement the

identification and make it more robust.

3.2 Construction of Field [λĀF̄ ]

The operator Ā is obtained simply as the displacement field of the finite element problem

described in Figure 7. This is a generalized plane strain problem subjected to a uniform

unit residual along the crack’s lip with zero loading at infinity. (In practice, a finite prob-

lem with length L > 10H provides a good approximation.) This is a problem with natural

boundary conditions alone which is slightly different from that described in [28]. Then,

the component Ā2 associated with the displacement in the N2 direction is illustrated in

Figure 7.

This displacement is shown in Figure 8 for the macroscopic load corresponding to the

experimental observation F = 6, 000N on the observation zone SObs. This field can now
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Fig. 7. The FE problem for the determination of Operator Ā and the displacement

field Ā2 associated with a unit macroscopic load

be compared to the experimental field ∆U2|SObs
.

Fig. 8. The displacement field λĀ2F̄ associated with a macroscopic load

b.F̄ = F = 6000N
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 3.3 Back to the residual field UR

The comparison of Fields ∆U2|SObs
and [λĀ2F̄ ] (figure 9) tells us about the magnitude

of the initial residual stresses.

Fig. 9. Superposition of Fields ∆U2|SObs
and [λĀF̄B]

Thus, the displacement field U2R
can be estimated. It is shown in Figure 10.

Fig. 10. The residual displacement field U2R

4 Estimation of the initial residual stresses

At this point, the interpretation of the residual displacement U2R
in terms of initial

stresses requires that a number of assumptions be made. Here, we will consider the most

common and simplest case:
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 • Assumption H3: the initial stresses are assumed to be uniform across the thickness of

the elementary ply (of course, only through the thickness of the ply of interest; they

may vary between plies.)

Under this assumption, the residual field must read:

U2R
= Ā2σR (3)

Thus, the initial residual stress is obtained by minimizing a distance D between the

measured field and the theoretical field. Here, this distance is defined simply by:

D(σR) =

√√√√√√ ∫
SObs

(
U2R − Ā2σR

)2

SObs

dSObs (4)

Function D is shown in Figure 11. For the measurement which was carried out, we

observe an initial residual stress level of about 22MPa, which is fully consistent with

classical orders of magnitude.

Fig. 11. D as a function of σR

Numerous microcracking models assume the existence of an initial prestress. This pre-

stress is usually calculated as a “thermal prestress” related to a temperature variation

∆T . With a very coarse approximation of the laminate in 1D, one obtains classically
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 (with αl and αt being the expansion coefficients along the fiber and across respectively):

∆T =
Ell + Ett

Ell · Ett · (αl − αt)
σR (5)

For the material being considered, αl ≈ 0 and αt ≈ 30.10−6. Thus, in this case, the

temperature variation equivalent to the process would be around −75oC, which is in

agreement with commonly accepted values. Let us note that the exact interpretation of

the quantity obtained here differs from that presented in other approaches, such as in [24].

In the “master plot analysis” type of approach, the determination of the thermal prestress

is achieved through a microcracking development model. Therefore, the temperature vari-

ation which must be introduced is highly dependent on the cracking model. Thus, in the

case of an AS4/3501 − 6, [24] ends up with two different values (−95oC and −143oC)

depending on whether cracking is assumed to occur under prescribed displacement or

prescribed load. In our approach, no degradation model is introduced. Cracking is intro-

duced only to create the heterogeneous field necessary to give rise to residual stresses.

Therefore, this quantity is common to all subsequent mechanisms. This approach also

has the advantage of allowing one measurement point for each transverse crack, which

enables dozens of possible evaluations from a single multicracking test.

5 Conclusion

In this paper, we propose a method for the estimation of residual stresses based on

post-processing a displacement field measured with a numerical camera on a crosswise

laminate, then comparing this field with a finite element calculation. This method has the

advantages of being relatively simple to implement and using a test already included in

classical identification procedures for laminates. The use of a field measurement enables

one to make the measurement robust because it is relatively insensitive to the profile of the

crack being considered. Of course, this method can be used throughout the multicracking
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 test and reused at the occurrence of each new crack. This will significantly enhance both

the accuracy of the method and its robustness, and will be the subject of forthcoming

works.

A Detailed reference problem

Let us consider a crosswise laminate subjected to a macroscopic solicitation in traction

(Figure A.1[a]). Two states are being considered: State A before cracking (with the trac-

tion load FA), and State B after cracking (with the traction load FB > FA).

Fig. A.1. [a]: crosswise laminate in traction (A is the healthy state and B the cracked

state) [b]: simplified problems in generalized plane strain (F̄ = F
b )

The whole study will be carried out under the following assumptions:

• Assumption A1: the problem is independent of the direction N1. This is equivalent both

to neglecting the edge problem and to assuming a crack crossing through the ply width.

Here, this assumption is legitimate (the edge effect has been verified to be negligible

by a FE analysis, and the crossing of the crack has been observed by X-Ray), but this

may not always be the case depending on the sequence being used. In that case, the

method presented here can still be applied using a 3D finite element reanalysis in order

to improve its accuracy. This will be the subject of a forthcoming paper.
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 • Assumption A2: the material’s behavior is linear elastic.

A1 enables us to define simplified problems over a plane domain S (Figure A.1 [b]). These

are generalized plane strain problems, and all the displacement fields will be expressed

in the coordinate system [O;N2, N3], O being the “center” of the crack. In the following

sections, we will consider only the plane part of these displacements.

Remark: a bold quantity X designates a field over S, and an underlined quantity X

denotes a vector. A quantity both bold and underlined X designates a vector field over

S. Thus, Xi is the scalar field associated with the component i of the vector field X.

� For State A, the field of the displacement vectors UA = [U2A
N2 + U3A

N3] can be

expressed as:

UA = [Ã2N2 + Ã3N3]F̄A = ÃF̄A (A.1)

where Ã is the field of the displacement vectors which corresponds to a unit macroscopic

load. In the case of Assumption A1, this operator can be easily obtained analytically

using the classical theory of laminates.

� For state B, the field of the displacement vectors UB can be expressed as the super-

position of a crack-free solution UB

¬ and a residual solution UB

 (see Figure A.2):

UB = UB

¬ + UB

 (A.2)

Of course, as far as Solution ¬ is concerned:

UB

¬ = ÃF̄B (A.3)

Then, this healthy solution is corrected through the residual problem in order to build the

exact solution. Problem  is linear with respect to the residual loading onto the crack’s

lip, denoted P .
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Fig. A.2. Decomposition of State B into a healthy solution and a residual solution

� In the absence of residual internal stresses, P consists only of a part associated with

the mechanical loading F̄B, denoted PM . Of course, PM is proportional to F̄B with a

known proportionality coefficient denoted λ. Thus, in that case:

P = PM = λF̄B (A.4)

The crack also introduces a residual displacement field of the form:

UB

 = [Ā2N2 + Ā3N3]P = λĀF̄B (A.5)

where Ā is the field of the displacement vectors associated with a unit residual and

uniform over the crack’s lip.

� In the presence of internal residual stresses PR, the residual P becomes:

P = PM + PR (A.6)

PR is a priori not necessarily uniform over the cracked surface. Therefore, in general, the

displacement of the residual problem  can be written as:

UB

 = λĀF̄B + UR (A.7)

UR is the part of the displacement field associated with the relaxation of the residual

stress over the crack’s lip. The objective of the rest of this paper is to measure, then
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 interpret this quantity in order to gather information on the existing residual stresses.

By combining A.3 and A.7, one can express the field of the displacement vectors in

Configuration B:

UB = ÃF̄B + λĀF̄B + UR (A.8)

Let ∆U = UB −UA be the field of the displacement jump vectors between State A and

State B. From A.1 and A.8, one has:

UR = ∆U− Ã(F̄B − F̄A)− λĀFB (A.9)

Now, assuming that F̄B = F̄A = F̄ , Equation A.9 reduces to:

UR = ∆U− λĀF̄B (A.10)

B Smoothing and truncation

The solution chosen is based on an interpolation of the measured field in the vicinity of

each point M . One defines the plane ΠM which provides the best fit, in the least-squares

sense, to the displacement field in the vicinity of V(M). Then, the “smoothed” value of

the displacement field at Point M is defined as ΠM [M ] (Figure B.1).

Fig. B.1. Vicinity and approximation plane for the smoothing procedure

For a square smoothing zone, let (2L+1)2 denote the number of points taken into account
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 in the vicinity. Various levels of smoothing (L=1, L=2, L=3) were tested and no significant

difference was found (Figure B.2). L = 2 was chosen for all the plots.

Fig. B.2. Comparison of the measured and smoothed fields over different character-

istic lines. The dots correspond to direct measurements and the lines to progressive

approximation levels

Regarding truncation, this operation was performed to remove perturbations inherent in

the geometrical defects of the crack’s lip. A rapid finite element analysis (see Figure B.3)

showed that the perturbations due to the cracks’ local profile subside very quickly, which

confirms the advantage of a field measurement compared to a local measurement of the

lip’s opening.

Thus, in practice, the size of the exclusion zone is guided mainly by constraints related

to the field measurements. If the interpolation zones are Npx∗Npx pixels, this exclusion

zone must obviously be at least Npx + Lc pixels wide, Lc being the width of the crack

generated by its waviness. In the example given here, Npx = 16px and Lc ≈ 60px. The

minimum size of the exclusion zone is about 80px. In practice, we recommend a size of

the order of the ply’s thickness.

C Suppression of the rigid body mode

The measured field ∆U2|SObs
is the superposition of a residual field of interest ∆U2r|SObs

and a rigid body field (due, for example, to the variation in the stiffness of the sample
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Fig. B.3. Comparison of the residual displacements for lips with varying roughness

caused by the crack, a poor repositioning of the camera between shots A and B, small

differences in macroscopic loads between shots,. . . ). Here, first of all, we give the key

steps to suppress this rigid body mode when it reduces to a pure translation along N2.

In order to simplify, let us consider the diagram of Figure C.1 [a], representing the dis-

placement field ∆U2|SObs
(here, again for the sake of simplicity, a curve with normal N3).

The residual part is generated by an ideal “virtual” crack whose abscissa is, of course,

unknown, but bounded by X− and X+. Let Xref
2 denote the abscissa of the theoretical

crack chosen between X− and X+.

• Step 1: Choose an arbitrary value of Xref
2

• Step 2: Express the displacement in a coordinate system centered on this new virtual

crack. In 1D, this consists in defining a new field ∆U2|step1
SObs

(Figure C.1[b]):

∆U2|step1
SObs

(x2) = ∆U2|SObs
(X2 = x2 +Xref

2 ) (C.1)
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Fig. C.1. Step-by-step construction of the residual field for a predefined position of

the “ideal” crack

• Step 3: Remove the “rigid body” part for this test; Z1 and Z2 are two symmetrical

zones in the new coordinate system, chosen to be as large as possible depending on the

available data (Figure C.1[c]):

CR =
1

2
·
∫

Z1∪Z2

{
∆U2|step1

SObs
(x) + ∆U2|step1

SObs
(−x)

}
dx (C.2)

in order to build the new field ∆U2|step2
SObs

(Figure C.1[d]):

∆U2|step2
SObs

(x2) = ∆U2|step1
SObs

(x2)− CR (C.3)

• Step 4: Define a quality indicator for the reconstructed solution, in the form:

QUAL =
1

2
·
∫

Z1∪Z2

∣∣∣∆U2|step2
SObs

(x) + ∆U2|step2
SObs

(−x)
∣∣∣ dx (C.4)

The quality indicator is minimum (theoretically zero in the case of perfect measurements)

when Xref
2 corresponds to the position sought for the virtual crack. The whole approach

relies on the fact that the exact residual field is skew-symmetric with respect to x2.
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 Thus, this procedure enables one both to determine effectively the underlying “perfect”

crack (which is needed for comparison with the subsequent finite element analysis) and

to remove the rigid body mode very precisely. The extension to the case of a general

in-plane rigid body mode (two translations and one rotation) is straightforward.
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