Issam Naghmouchi 
email: issam.nagh@gmail.com
  
POINTWISE-RECURRENT DENDRITE MAPS

Keywords: Mathematics Subject Classification. 37E99, 37B20 dendrite, dendrite map, ω-limit set, minimal set, periodic point, recurrent point, regularly recurrent point, pointwise-recurrent map

Let D be a dendrite and f : D → D a continuous map.

Denote by E(D) and B(D) the sets of endpoints and branch points of D respectively. We show that if E(D) is countable (resp. B(D) is discrete) then f is pointwise-recurrent if and only if f is pointwise periodic homeomorphism (resp. every point in D\E(D) is periodic).

Introduction

Recurrence and periodicity play an important role in studying dynamical systems. It is interesting to study maps f : X → X from a topological space X to itself that are pointwise-periodic (i.e. all points in X are periodic), or pointwise-recurrent (i.e. all points in X are recurrent). Montgomery [START_REF] Montgomery | Pointwise periodic homeomorphisms[END_REF] showed that if X is a connected topological manifold, a pointwise-periodic homeomorphism f : X → X must be periodic. Weaver [START_REF] Weaver | Pointwise periodic homeomorphisms of continua[END_REF] showed that if X is a continuum embedded in an orientable 2-manifold, an orientationpreserving C 1 -homeomorphism f : X → X has this property. Gottschalk [START_REF] Gottschalk | Powers of homeomorphisms with almost periodic properties[END_REF] proved that if X is a continuum then relatively recurrent homeomorphism f : X → X(i.e. the closure of recurrent point set is dense in X) has every recurrent cut point periodic. In [START_REF] Oversteegen | Recurrent homeomorphisms on R 2 are periodic[END_REF], Oversteegen and Tymchatyn showed that recurrent homeomorphisms of the plane are periodic. Kolev and Pérouème [START_REF] Kolev | Recurrent surface homeomorphisms[END_REF] proved that recurrent homeomorphisms of a compact surface with negative Euler characteristic are still periodic. Recently, Mai [START_REF] Mai | Pointwise-recurrent graph maps[END_REF] showed that a graph map f : G → G is pointwise-recurrent if and only if one of the following statements holds:

(1) G is a circle, and f is a homeomorphism topologically conjugate to an irrational rotation [START_REF] Arevalo | Dendrites with a closed set of end points[END_REF] f is a periodic homemorphism.

In this paper we will study pointwise-recurrent dendrite maps, their dynamical behaviors are both important and interesting in the study of dynamical systems and continuum theory. Recent interest in dynamics on dendrites is motivated by the fact that dendrites have often appear as Julia sets in complex dynamics (see [START_REF] Beardon | Iteration of Rational Functions[END_REF]). In ( [START_REF] Acosta | On open maps between dendrites[END_REF], [START_REF] Balibrea | Minimal sets on graphs and dendrites[END_REF], [START_REF] Efremova | The dynamics of monotone maps of dendrites[END_REF], [START_REF] Mai | R = P for maps of dendrites X with Card(End(X)) < c[END_REF], [START_REF] Naghmouchi | Dynamic of monotone graph, dendrite and dendroid maps[END_REF] and [START_REF] Naghmouchi | Dynamical properties of monotone dendrite maps[END_REF]) several results concerning dendrites were obtained. In [START_REF] Naghmouchi | Dynamical properties of monotone dendrite maps[END_REF], we proved that every relatively recurrent monotone dendrite map have all its cut points periodic.

Before stating our main results, we recall some basic properties of dendrites and dendrite maps.

A continuum is a compact connected metric space. A topological space is arcwise connected if any two of its points can be joined by an arc. We use the terminologies from Nadler [START_REF] Nadler | Continuum Theory: An Introduction[END_REF]. An arc is any space homeomorphic to the compact interval [0, 1]. By a dendrite D, we mean a locally connected continuum which contains no homeomorphic copy to a circle. Every sub-continuum of a dendrite is a dendrite ( [START_REF] Nadler | Continuum Theory: An Introduction[END_REF], Theorem 10.10) and every connected subset of D is arcwise connected ( [START_REF] Nadler | Continuum Theory: An Introduction[END_REF], Proposition 10.9). In addition, any two distinct points x, y of a dendrite D can be joined by a unique arc with endpoints x and y, denote this arc by [x, y] and let denote by Let Z + and N be the sets of non-negative integers and positive integers respectively. Let X be a compact metric space with metric d and f : X -→ X be a continuous map. Denote by f n the n-th iterate of f ; that is, f 0 = id X : the Identity and

[x, y) = [x, y] \ {y} (resp. (x, y] = [x, y] \ {x} and (x, y) = [x, y] \ {x, y}). A point x ∈ D is called an endpoint if D \ {x} is connected. It is called a branch point if
f n = f • f n-1 if n ≥ 1. For any x ∈ X the subset O f (x) = {f n (x) : n ∈ Z + } is called the f -orbit of x. A point x ∈ X is called periodic of prime period n ∈ N if f n (x) = x and f i (x) = x for 1 ≤ i ≤ n -1. A subset A of X is called f -invariant if f (A) ⊂ A. It is called a minimal set of f if it is non-empty, closed, f -invariant
and minimal (in the sense of inclusion) for these properties. For a subset A of X, denote by A the closure of A and by diam(A) the diameter of A. We define the ω-limit set of a point x to be the set

ω f (x) = {y ∈ X : ∃ n i ∈ N, n i → ∞, lim i→∞ d(f n i (x), y) = 0} = ∩ n∈N {f k (x) : k ≥ n}.
The set ω f (x) is a non-empty, closed and strongly invariant set, i.e. f (ω f (x)) = ω f (x). A point x ∈ X is said to be:

-

recurrent for f if x ∈ ω f (x).
almost periodic if for any neighborhood U of x there exists N ∈ N such that {f n+i (x) : i = 0, 1, . . . , N } ∩ U = ∅ for all n ∈ N.

regularly recurrent if for any ε > 0, there is

N ∈ N such that d(x, f kN (x)) < ε for all k ∈ N.
It is easy to see that if x is regularly recurrent then it is almost periodic, hence ω f (x) is a minimal set (see [START_REF] Block | Dynamics in One Dimension[END_REF], Proposition 5, Chapter V).

Let Fix(f ), P(f ), AP(f ) and R(f ) denote the set of fixed points, periodic points, almost periodic and recurrent points respectively. Then we have the following inclusion relation Fix(f

) ⊂ P(f) ⊂ AP(f) ⊂ R(f). We say that f is -pointwise-periodic if P(f ) = X. -pointwise-recurrent if R(f ) = X.
relatively recurrent if R(f) = X.

A continuous map from a dendrite into itself is called a dendrite map.

Our main results are the following:

Theorem 1.1. Let f : D → D be a dendrite map. If B(D) is discrete then f is pointwise-recurrent if and only if f is a homeomorphism and every cut point is periodic.

Following ([2], Corollary 3.6), for any dendrite D, we have B(D) is discrete whenever E(D) is closed. Therefore:

Corollary 1.2. Let f : D → D be a dendrite map. If E(D) is closed then Theorem 1.1 holds. Corollary 1.3. If B(D) is discrete and f : D → D is pointwise-recurrent dendrite map then every endpoint of D is regularly recurrent. Remark 1.4. If E(D) is closed and f : D → D is a pointwise-recurrent dendrite map
, then an endpoint of D may not be in general periodic (see an example by Efremova and Makhrova in [START_REF] Efremova | The dynamics of monotone maps of dendrites[END_REF] on Gehman dendrite).

Theorem 1.5. Let f : D → D be a dendrite map. If E(D) is countable then f is pointwise-recurrent if and only if f is pointwise-periodic homeo- morphism.
Corollary 1.6. [START_REF] Mai | Pointwise-recurrent graph maps[END_REF] Let T be a tree and f : T → T a continuous map. If f is pointwise-recurrent then f is periodic.

Recall that the map f is periodic if f n = id T for some n ∈ N.

Preliminaries

Lemma 2.1. ([14], Lemma 2.3) Let (C i ) i∈N be a sequence of connected subsets of a dendrite (D, d). If C i ∩ C j = ∅ for all i = j, then lim n→+∞ diam(C n ) = 0. Lemma 2.2. Let D be a dendrite and (p n ) n∈N be a sequence of D such that p n+1 ∈ (p n , p n+2 ) for all n ∈ N, and lim n→+∞ p n = p ∞ . Let U n be the connected component of D \ {p n , p ∞ } that contains the open arc (p n , p ∞ ). Then lim n→+∞ diam(U n ) = 0
Proof. It is easy to see that U n+1 ⊂ U n for all n ∈ N. Suppose that Lemma 2.2 is not true, then there is δ > 0 such that for all n ∈ N, diam(U n ) > δ. We will construct an infinite sequence (I n i ) i∈N of pairwise disjoint arcs such that diam(

I n i ) ≥ δ 3 for all i ∈ N which contradicts Lemma 2.1: Take n 0 ∈ N such that for all n ≥ n 0 , diam([p n , p ∞ ]) < δ 3 . For an integer n ≥ n 0 , let a n , b n ∈ U n be such that d(a n , b n ) > δ. There exist c n , d n ∈ (p n , p ∞ ) such that [a n , c n ] ∩ [p n , p ∞ ] = {c n } and [b n , d n ] ∩ [p n , p ∞ ] = {d n }. As d(p n , p ∞ ) < δ 3 , we have either d(c n , a n ) > δ 3 or d(d n , b n ) > δ 3 . So we let I n = [c n , a n ] if d(c n , a n ) > δ 3 and I n = [d n , b n ] if d(d n , b n ) > δ 3 . Choose an integer m > n such that p m ∈ (c n , p ∞ ) if I n = [a n , c n ] and p m ∈ (d n , p ∞ ) if I n = [b n , d n ]. Then I n ∩ U m = ∅: Indeed, otherwise there exists z ∈ I n ∩ U m . Take I n = [a n , c n ]. As c n / ∈ U m and z ∈ U, then [z, c n ] contains p n or p ∞ . In either cases, [z, c n ] ⊃ [c n , p n ] = {c n }, a contradiction.
By the same way as I n , we obtain an arc I m ⊂ U m such that I m intersect the arc [p m , p ∞ ] in a single point and has diameter greater than δ 3 . So by repeating this process infinitely many times beginning from n 0 , we obtain an infinite sequence of arcs (I n i ) i∈N with diameter greater than δ 3 and satisfying the following property: for all i ∈ N, I n i ⊂ U n i and I n i ∩ U n i+1 = ∅. This implies that (I n i ) i∈N are pairwise disjoint, which is our claim. 

, m ∈ N such that {f k (x), f m (y)} ⊂ U , then U ∩ P (f ) = ∅.
We say that a dendrite map f : D → D is monotone if the preimage of any point by f is connected. Notice that if f is monotone so is f n for any n ∈ N. 

:= f (w -1 ) = z. By continuity of f , we have [z, w] ⊂ f ([a, w -1 ]) ∩ f ([b, w -1 ]) ⊂ f (D).
Hence each point in (z, w) has at least two preimages by f , a contradiction.

(ii) =⇒ (i): Let I ⊂ f (D) be a nondegenerate arc. Then (f -1 ({x})) x∈I is a family of uncountably many pairwise disjoint connected non-empty subsets of D. Suppose that for every x ∈ D, f -1 ({x}) is not reduced to a point, then there is a non degenerate arc I x ⊂ f -1 ({x}) containing no endpoints. By ( [START_REF] Nadler | Continuum Theory: An Introduction[END_REF], Corollary 10.28), D can be written as follow:

D = ∪ n∈N A n ∪ E(D)
where (A n ) n∈N is a family of arcs with pairwise disjoint interiors. Hence, for each arc I x , there is n(x) ∈ N such that I x ∩ A n(x) is a non degenerate arc. So necessarily, there is an arc A n 0 containing an uncountably many pairwise disjoint nondegenerate arcs of (I x ) x∈I , which is a contradiction. Lemma 2.6. Let X be a compact metric space and f : X → X is a pointwise-recurrent continuous map. Then every periodic point of f has a unique pre-image by f n for all n ∈ N.

Proof. As R(f ) = R(f n ) for all n ∈ N (see [START_REF] Block | Dynamics in One Dimension[END_REF]), it suffices to prove the Lemma for f . Suppose that for some periodic point p of period n ∈ N, f -1 ({p}) contains more than one point. So there is q = f n-1 (p) such that f (q) = p. Since q is recurrent and Proof. For n ∈ N, let U n be defined as in Lemma 2.2, let V n := U n ∪{p n , p ∞ } and let denote by N n the period of the point p n . It is easy to see that if there is a sub-sequence of (p n ) n∈N with bounded periods then by the continuity of f (and hence the continuity of its iterated maps), the point p ∞ is periodic, in particular, it is regularly recurrent point. Otherwise, we have to prove the Lemma 2.6 in the case of p ∞ is not periodic. Then without loss of generality, the sequence (p n ) n∈N can be assumed such that

ω f (q) = O f (p), it follows that q ∈ O f (p), so there is k ∈ N such that q = f k (p). Thus f n-1 (p) = f n (q) = f k (f n (p)) = f k (p) = q, a contradiction.
(2.1) (p n , p ∞ ] ∩ Fix(f Nn ) = ∅.
We will prove that for all n ∈ N, the orbit of the point p ∞ under the map f N n+1 is included into the set V n : Indeed, otherwise for some n ∈ N, there is k ∈ N such that f kN n+1 (p ∞ ) / ∈ V n , so we have two possibilities both of them lead to a contradiction:

p ∞ ∈ (p n+1 , f kN n+1 (p ∞ )) or p n ∈ (p n+1 , f kN n+1 (p ∞ )). Let m := kN n+1 . Suppose that p ∞ ∈ (p n+1 , f m (p ∞ )). As p n+1 ∈ Fix(f m ), by the continuity of f m , we have f m ([p n+1 , p ∞ ]) ⊃ [p n+1 , f m (p ∞ )] ∋ p ∞ . Hence there is a point p ∞,-1 ∈ (p n+1 , p ∞ ) such that f m (p ∞,-1 ) = p ∞ . Similarly, there is a point p ∞,-2 ∈ (p n+1 , p ∞,-1 ) such that f m (p ∞,-2 ) = p ∞,-1 . Thus, by induction we construct a sequence (p ∞,-k ) k∈N in (p n+1 , p ∞ ) such that for all k ∈ N, p ∞,-(k+1) ∈ [p n+1 , p ∞,-k ] and (2.2) f km (p ∞,-k ) = p ∞ .
As p ∞,-1 = p ∞ , there is p s ∈ (p ∞,-1 , p ∞ ) for some s ∈ N. Let r ∈ N be such that f r (p n+1 ) = p n+1 and f r (p s ) = p s . Hence, f rm (p n+1 ) = p n+1 and f rm (p s ) = p s . By (2.2), f rm (p ∞,-r ) = p ∞ and by the continuity of f rm ,

f rm ([p n+1 , p ∞,-r ]) ⊃ [p n+1 , p ∞ ] ∋ p s ,
hence p s has a pre-image q by the map f rm in the arc [p n+1 , p ∞,-r ] and as p s / ∈ [p n+1 , p ∞,-r ], q = p s , this contradicts Lemma 2.6 since p s is a fixed point of f rm .

Suppose now the second case,

p n ∈ (p n+1 , f m (p ∞ )). By the continuity of f m , f m ([p n+1 , p ∞ ]) ⊃ [p n+1 , f m (p ∞ )] ∋ p n .
So p n has a preimage q by the map f m in the arc [p n+1 , p ∞ ]. By Lemma 2.6, q is a periodic point that belongs to the orbit of p n hence q has the same period as p n . Hence, q ∈ (p n , p ∞ ] ∩ F ix(f Nn ), this contradict (2.1).

It follows that for any n ∈ N, the orbit of the point p ∞ under the map Assume that f is pointwise-recurrent, then f is surjective. We will use Lemma 2.5: Let I ⊂ D be a nondegenerate arc. Since B(D) is discrete, there exists a non-degenerate open arc J ⊂ I containing no branch points, hence

f N n+1 is included into the set V n and as diam(V n ) = diam(U n ), lim n→+∞ diam(V n ) = 0,
J is an open subset in D. So let x ∈ J. Since f is pointwise-recurrent, one can find n, m ∈ N such that x, f m (x) ∈ J and f n+m (x) ∈ (x, f m (x)). Thus (x, f m (x)) ⊂ I is the connected component of D \ {x, f m (x)} containing the open arc (x, f m (x))
. By Theorem 2.3, (x, f m (x)) contains a periodic point p and by Lemma 2.6, p has a unique preimage by f . We conclude by Lemma 2.5 that f is monotone. Therefore, by ([19], Corollary 1.7), f is a homeomorphism and by Theorem 2.4, every cut point is periodic. The proof is complete. We need the following result.

Theorem 4.1. [14] Let f : D → D be a dendrite map. If E(D) is countable then R(f ) = P (f ). Lemma 4.2. Let f : D → D be a dendrite map. If E(D) is countable and f is pointwise-recurrent then ω f (x) ∩ P (f ) = ∅ for all x ∈ D. Proof. If ω f (x) ⊂ E(D) then ω f (x) is compact countable. If ω f (x) is infinite then it is perfect. Since for any y ∈ ω f (x), y = lim k→+∞ f n k (x) where (n k ) k∈N is an infinite sequence of positif integers. As x ∈ ω f (x), then O f (x) ⊂ ω f (x), hence y is an accumulation point of ω f (x). So ω f (x) is uncountable, a contradiction. Therefore, ω f (x) is finite, that is ω f (x)
is a periodic orbit and so x is a periodic point. One can then assume that ω f (x)\E(D) = ∅, so let y ∈ ω f (x)\E(D). Since R(f ) = D, it follows by Theorem 4.1 that P (f ) = D, so one can find p, q ∈ P (f ) such that y ∈ [p, q]. Let N ∈ N be such that f N (p) = p and f N (q) = q. We already have y ∈ [p, f N (y)] ∪ [q, f n (y)]. One can suppose that y ∈ [p, f N (y)], the same proof being true with p replaced by q. In this case, we have y ∈ f N ([p, y]), so there is y Proof. Let Y be a sub-dendrite of D. By ( [START_REF] Gordh | Monotone Retracts and some Characterizations of Dendrites[END_REF], page 157, (see also [START_REF] Nadler | Continuum Theory: An Introduction[END_REF]) Claim .1. If x ∈ D is not periodic then for any z ∈ D with z = x, (x, z) contains a non periodic branch point. Indeed, [x, z] contains an infinite sequence of branch points that converges to x. Since otherwise, there is y ∈ (x, z] such that (x, y) ∩ B(D) = ∅. So (x, y) is an open subset of D, hence as P (f ) = D, one can find a sequence (p n ) n∈N of periodic points in (x, y) such that p n+1 ∈ (p n , p n+2 ) for all n ∈ N, and lim n→+∞ p n = x. By Lemma 4.3, x is periodic, a contradiction. Now, Suppose that every branch point in (x, z) is periodic, then again by Lemma 4.3, x is periodic. Therefore, necessarily one branch point in (x, z) must be not periodic.

-1 ∈ [p, y] such that f N (y -1 ) = y. Again, y -1 ∈ [p, y] = [p, f N (y -1 )] ⊂ f N ([p, y -1 ]), so there is y -2 ∈ [p, y -1 ] such that f N (y -2 ) = y -1 .
Claim.2. If there exists x ∈ D not periodic then D contains a sub-dendrite with uncountably set of endpoints. Suppose that x ∈ D is not periodic. By Claim.1, there is a ∈ B(D) not periodic. Now, as a is a branch point, there exist two nondegenerate arcs I 0 , I 1 with one endpoint is x and form with [x, a] a family of three arcs having pairwise disjoint interior. As a is not periodic then by Claim.1, there is a 0 ∈ I 0 (resp. a 1 ∈ I 1 ) a non periodic branch point distinct from a. Denote by J 0 (resp. J 1 ) the arc [a, a 0 ] (resp. [a, a 1 ]). In the second step, as a 0 and a 1 are branch points, there exist two nondegenerate arcs I 00 and I 01 (resp. I 10 and I 11 ) with one endpoint is a 0 (resp. a 1 ) and form with [a, a 0 ] (resp. [a, a 1 ]) a family of three arcs having pairwise disjoint interior. Similarly, by Claim.1, we find, for any i, j ∈ {0, 1}, a non periodic branch point a ij ∈ I ij distinct from a i , let denote by J ij := [a i , a ij ]. Thus by induction, we construct for all n ∈ N a sequence of arcs J αn and a sequence of non periodic branch points a αn where α n ∈ {0, 1} n satisfying the following properties: (i) J αn0 = [a αn , a αn0 ] and J αn1 = [a αn , a αn1 ], (ii) J αn ∩ J αn0 = J αn ∩ J αn1 = J αn0 ∩ J αn1 = {a αn }. any n ∈ N, D n = ∪ αn∈{0,1} n J αn , then clearly D n is a tree. Also we have D n+1 ⊂ D n for all n ∈ N. Hence D ∞ = ∪ n∈N D n is a sub-dendrite. Take β ∈ {0, 1} N . For each n ∈ N, we have [a, a β(n) ] ⊂ [a, a β(n+1) ] (where for i ∈ N, we denote by β(i) the first word of length i in the sequence β). Then ∪ n∈N [a, a β(n) ] is an arc where the sequence (a β(n) ) n∈N is monotone in that arc so it converges to a point namely a β that belongs to the dendrite D ∞ . The points a β for β ∈ {0, 1} N are the endpoints of the sub-dendrite D ∞ . Hence, D ∞ has an uncountable set of endpoints .

We deduce then Theorem 1.5 from Claim.2 and Lemma 4.4.

Proof of Corollary 1.6: By Theorem 1.5, f is pointwise-periodic homeomorphism. As E(T ) is finite, there is N ∈ N such that every endpoint of T is fixed by f N . Let a, b ∈ T be two distinct endpoints of T . As f is a homeomorphism (and so is f N ), the arc 

  D\{x} has more than two connected components. Denote by E(D) and B(D) the sets of endpoints, and branch points of D respectively. A point x ∈ D \ E(D) is called a cut point. The set of cut points of D is dense in D. A tree is a dendrite with finite set of endpoints.

Theorem 2 . 3 .

 23 ([14], Theorem 2.13) Let f : D → D be a dendrite map, [x, y] be an arc in D, and U be the connected component of D \ {x, y} containing the open arc (x, y). If there exist k

Lemma 2 . 5 .

 25 Theorem 2.4. ([19], Theorem 1.6) Let f : D → D be a dendrite map. If f is monotone then the following statements are equivalent: (i) f is pointwise-recurrent. (ii) f is relatively recurrent. (iii) every cut point is a periodic point. Let f : D → D be a dendrite map, then the following properties are equivalent: (i) any nondegenerate arc I ⊂ f (D) contains a point with unique preimage by f . (ii) the map f is monotone. Proof. (i) =⇒ (ii): If f is not monotone, then there exists z ∈ D such that f -1 (z) is not connected. So one can find a, b ∈ D with a = b and w -1 ∈ (a, b) such that f (a) = f (b) = z and w

Lemma 2 . 7 .

 27 Let f : D → D be a dendrite map. Assume that f is a pointwise-recurrent. Let (p n ) n∈N ⊂ D be a sequence of periodic points of f such that p n+1 ∈ (p n , p n+2 ) for all n ∈ N, and lim n→+∞ p n = p ∞ . Then p ∞ is a regularly recurrent point.

Proof of Corollary 1 . 3 : 4 .

 134 Let e ∈ E(D). By Theorem 1.1, one can find a sequence of periodic points (p n ) n∈N ⊂ D such that p n+1 ∈ (p n , p n+2 ) for all n ∈ N and lim n→+∞ p n = e. Hence by Lemma 2.7, e is regularly recurrent. Proof of Theorem 1.5

  Thus, we construct by induction a sequence (y -n ) n∈N ⊂ [p, y] such that y -(k+1) ∈ (y -k , y -(k+2) ), f N (y -(k+1) ) = y -k for every k ∈ N, and lim n→+∞ y -n = y ∞ ∈ [p, y]. Thereforeone has f N (y ∞ ) = y ∞ (by the continuity of f N ) and so y ∞ ∈ P (f ). Since R(f ) = D and for any k ∈ N, f kN (y -k ) = y, it follows that y -k ∈ ω f (y -k ) = ω f (y). Therefore y ∞ ∈ ω f (y) and as ω f (y) ⊂ ω f (x), we conclude that y ∞ ∈ ω f (x) ∩ P (f ).

Lemma 4 . 3 .

 43 Let f : D → D be a dendrite map and let p ∞ as in Lemma 2.7. If E(D) is countable and f is pointwise-recurrent, then p ∞ is a periodic point. Proof. By Lemma 2.7, p ∞ is regularly recurrent, hence ω f (p ∞ ) is a minimal set. It follows, by Lemma 4.2, that ω f (p ∞ ) is a periodic orbit, and so p ∞ is a periodic point since p ∞ ∈ ω f (p ∞ ).

Lemma 4 . 4 .

 44 Let D be a dendrite with countable set of endpoints. Then every sub-dendrite of D has countable set of endpoints.

  ), Y is a monotone retraction of D by r : D → Y . Then we have r(E(D)) = E(Y ). Indeed, r(E(D)) ⊂ E(Y ) follows from the fact that r(x) lies in any arc joining x to any point of Y . Let a ∈ E(Y ) and let Z the connected component of D \ Y such that Z contains a. Then r(Z) = {a}. As Z ∩ E(D) = ∅, there is b ∈ Z ∩ E(D) with r(b) = a. It follows that Card(E(Y )) ≤ Card(E(D)) and hence E(Y ) is countable. Proof of Theorem 1.5: The "if" part of the Theorem is clear. Lets prove the "only if" part: By Theorem 4.1, one has P (f ) = D.

  [a, b] is f N -invariant, hence every point in [a, b] is fixed by f N . Since T = ∪ a,b∈E(T ) [a, b],every point in the tree T is fixed by f N . So f is periodic.
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