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POINTWISE-RECURRENT DENDRITE MAPS

ISSAM NAGHMOUCHI

Abstract. Let D be a dendrite and f : D → D a continuous map.
Denote by E(D) and B(D) the sets of endpoints and branch points
of D respectively. We show that if E(D) is countable (resp. B(D)
is discrete) then f is pointwise-recurrent if and only if f is pointwise
periodic homeomorphism (resp. every point in D\E(D) is periodic).

1. Introduction

Recurrence and periodicity play an important role in studying dynamical
systems. It is interesting to study maps f : X → X from a topological space
X to itself that are pointwise-periodic (i.e. all points in X are periodic), or
pointwise-recurrent (i.e. all points in X are recurrent). Montgomery [15]
showed that if X is a connected topological manifold, a pointwise-periodic
homeomorphism f : X → X must be periodic. Weaver [21] showed that
if X is a continuum embedded in an orientable 2-manifold, an orientation-
preserving C1-homeomorphism f : X → X has this property. Gottschalk
[9] proved that if X is a continuum then relatively recurrent homeomor-
phism f : X → X(i.e. the closure of recurrent point set is dense in X)
has every recurrent cut point periodic. In [20], Oversteegen and Tymchatyn
showed that recurrent homeomorphisms of the plane are periodic. Kolev
and Pérouème [11] proved that recurrent homeomorphisms of a compact
surface with negative Euler characteristic are still periodic. Recently, Mai
[13] showed that a graph map f : G → G is pointwise-recurrent if and only
if one of the following statements holds:

(1) G is a circle, and f is a homeomorphism topologically conjugate to
an irrational rotation

(2) f is a periodic homemorphism.
In this paper we will study pointwise-recurrent dendrite maps, their dy-

namical behaviors are both important and interesting in the study of dy-
namical systems and continuum theory. Recent interest in dynamics on
dendrites is motivated by the fact that dendrites have often appear as Julia
sets in complex dynamics (see [4]). In ([1], [3], [7], [14], [18] and [19]) several
results concerning dendrites were obtained. In [19], we proved that every
relatively recurrent monotone dendrite map have all its cut points periodic.
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Before stating our main results, we recall some basic properties of dendrites
and dendrite maps.

A continuum is a compact connected metric space. A topological space
is arcwise connected if any two of its points can be joined by an arc. We
use the terminologies from Nadler [17]. An arc is any space homeomorphic
to the compact interval [0, 1]. By a dendrite D, we mean a locally con-
nected continuum which contains no homeomorphic copy to a circle. Every
sub-continuum of a dendrite is a dendrite ([17], Theorem 10.10) and ev-
ery connected subset of D is arcwise connected ([17], Proposition 10.9). In
addition, any two distinct points x, y of a dendrite D can be joined by a
unique arc with endpoints x and y, denote this arc by [x, y] and let denote
by [x, y) = [x, y] \ {y} (resp. (x, y] = [x, y] \ {x} and (x, y) = [x, y] \ {x, y}).
A point x ∈ D is called an endpoint if D \ {x} is connected. It is called a
branch point if D\{x} has more than two connected components. Denote by
E(D) and B(D) the sets of endpoints, and branch points of D respectively.
A point x ∈ D \ E(D) is called a cut point. The set of cut points of D is
dense in D. A tree is a dendrite with finite set of endpoints.

Let Z+ and N be the sets of non-negative integers and positive integers
respectively. Let X be a compact metric space with metric d and f : X −→
X be a continuous map. Denote by fn the n-th iterate of f ; that is, f0 =
idX : the Identity and fn = f ◦ fn−1 if n ≥ 1. For any x ∈ X the subset
Of (x) = {fn(x) : n ∈ Z+} is called the f -orbit of x. A point x ∈ X is called
periodic of prime period n ∈ N if fn(x) = x and f i(x) 6= x for 1 ≤ i ≤ n−1.
A subset A of X is called f -invariant if f(A) ⊂ A. It is called a minimal
set of f if it is non-empty, closed, f -invariant and minimal (in the sense of
inclusion) for these properties. For a subset A of X, denote by A the closure
of A and by diam(A) the diameter of A. We define the ω-limit set of a point
x to be the set

ωf (x) = {y ∈ X : ∃ ni ∈ N, ni → ∞, lim
i→∞

d(fni(x), y) = 0}

= ∩
n∈N

{fk(x) : k ≥ n}.

The set ωf (x) is a non-empty, closed and strongly invariant set, i.e.
f(ωf (x)) = ωf (x). A point x ∈ X is said to be:

- recurrent for f if x ∈ ωf (x).
- almost periodic if for any neighborhood U of x there exists N ∈ N such

that {fn+i(x) : i = 0, 1, . . . , N} ∩ U 6= ∅ for all n ∈ N.
- regularly recurrent if for any ε > 0, there isN ∈ N such that d(x, fkN (x)) <

ε for all k ∈ N.
It is easy to see that if x is regularly recurrent then it is almost periodic,

hence ωf (x) is a minimal set (see [6], Proposition 5, Chapter V).
Let Fix(f), P(f), AP(f) and R(f) denote the set of fixed points, periodic

points, almost periodic and recurrent points respectively. Then we have the
following inclusion relation Fix(f) ⊂ P(f) ⊂ AP(f) ⊂ R(f). We say that f is

- pointwise-periodic if P(f) = X.
- pointwise-recurrent if R(f) = X.
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- relatively recurrent if R(f) = X.

A continuous map from a dendrite into itself is called a dendrite map.
Our main results are the following:

Theorem 1.1. Let f : D → D be a dendrite map. If B(D) is discrete then
f is pointwise-recurrent if and only if f is a homeomorphism and every cut
point is periodic.

Following ([2], Corollary 3.6), for any dendriteD, we have B(D) is discrete
whenever E(D) is closed. Therefore:

Corollary 1.2. Let f : D → D be a dendrite map. If E(D) is closed then
Theorem 1.1 holds.

Corollary 1.3. If B(D) is discrete and f : D → D is pointwise-recurrent
dendrite map then every endpoint of D is regularly recurrent.

Remark 1.4. If E(D) is closed and f : D → D is a pointwise-recurrent
dendrite map, then an endpoint of D may not be in general periodic (see an
example by Efremova and Makhrova in [7] on Gehman dendrite).

Theorem 1.5. Let f : D → D be a dendrite map. If E(D) is countable
then f is pointwise-recurrent if and only if f is pointwise-periodic homeo-
morphism.

Corollary 1.6. [13] Let T be a tree and f : T → T a continuous map. If f
is pointwise-recurrent then f is periodic.

Recall that the map f is periodic if fn = idT for some n ∈ N.

2. Preliminaries

Lemma 2.1. ([14], Lemma 2.3) Let (Ci)i∈N be a sequence of connected
subsets of a dendrite (D, d). If Ci ∩ Cj = ∅ for all i 6= j, then

lim
n→+∞

diam(Cn) = 0.

Lemma 2.2. Let D be a dendrite and (pn)n∈N be a sequence of D such
that pn+1 ∈ (pn, pn+2) for all n ∈ N, and lim

n→+∞
pn = p∞. Let Un be the

connected component of D \ {pn, p∞} that contains the open arc (pn, p∞).
Then lim

n→+∞
diam(Un) = 0
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Proof. It is easy to see that Un+1 ⊂ Un for all n ∈ N. Suppose that Lemma
2.2 is not true, then there is δ > 0 such that for all n ∈ N, diam(Un) > δ.
We will construct an infinite sequence (Ini

)i∈N of pairwise disjoint arcs such

that diam(Ini
) ≥ δ

3 for all i ∈ N which contradicts Lemma 2.1: Take n0 ∈ N

such that for all n ≥ n0, diam([pn, p∞]) < δ
3 . For an integer n ≥ n0, let

an, bn ∈ Un be such that d(an, bn) > δ. There exist cn, dn ∈ (pn, p∞) such
that [an, cn]∩ [pn, p∞] = {cn} and [bn, dn]∩ [pn, p∞] = {dn}. As d(pn, p∞) <
δ
3 , we have either d(cn, an) >

δ
3 or d(dn, bn) >

δ
3 . So we let In = [cn, an] if

d(cn, an) >
δ
3 and In = [dn, bn] if d(dn, bn) >

δ
3 . Choose an integer m > n

such that pm ∈ (cn, p∞) if In = [an, cn] and pm ∈ (dn, p∞) if In = [bn, dn].
Then In ∩ Um = ∅: Indeed, otherwise there exists z ∈ In ∩ Um. Take
In = [an, cn]. As cn /∈ Um and z ∈ U, then [z, cn] contains pn or p∞. In
either cases, [z, cn] ⊃ [cn, pn] 6= {cn}, a contradiction. By the same way as
In, we obtain an arc Im ⊂ Um such that Im intersect the arc [pm, p∞] in a
single point and has diameter greater than δ

3 . So by repeating this process
infinitely many times beginning from n0, we obtain an infinite sequence
of arcs (Ini

)i∈N with diameter greater than δ
3 and satisfying the following

property: for all i ∈ N, Ini
⊂ Uni

and Ini
∩ Uni+1

= ∅. This implies that
(Ini

)i∈N are pairwise disjoint, which is our claim. �

Theorem 2.3. ([14], Theorem 2.13) Let f : D → D be a dendrite map, [x, y]
be an arc in D, and U be the connected component of D \ {x, y} containing
the open arc (x, y). If there exist k,m ∈ N such that {fk(x), fm(y)} ⊂ U ,
then U ∩ P (f) 6= ∅.

We say that a dendrite map f : D → D is monotone if the preimage of
any point by f is connected. Notice that if f is monotone so is fn for any
n ∈ N.

Theorem 2.4. ([19], Theorem 1.6) Let f : D → D be a dendrite map. If f
is monotone then the following statements are equivalent:

(i) f is pointwise-recurrent.
(ii) f is relatively recurrent.
(iii) every cut point is a periodic point.

Lemma 2.5. Let f : D → D be a dendrite map, then the following proper-
ties are equivalent:

(i) any nondegenerate arc I ⊂ f(D) contains a point with unique preim-
age by f .

(ii) the map f is monotone.

Proof. (i) =⇒ (ii): If f is not monotone, then there exists z ∈ D such
that f−1(z) is not connected. So one can find a, b ∈ D with a 6= b and
w−1 ∈ (a, b) such that f(a) = f(b) = z and w := f(w−1) 6= z. By continuity
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of f , we have [z, w] ⊂ f([a,w−1]) ∩ f([b, w−1]) ⊂ f(D). Hence each point in
(z, w) has at least two preimages by f , a contradiction.

(ii) =⇒ (i): Let I ⊂ f(D) be a nondegenerate arc. Then (f−1({x}))x∈I is
a family of uncountably many pairwise disjoint connected non-empty subsets
of D. Suppose that for every x ∈ D, f−1({x}) is not reduced to a point,
then there is a non degenerate arc Ix ⊂ f−1({x}) containing no endpoints.
By ([17], Corollary 10.28), D can be written as follow: D = ∪n∈NAn∪E(D)
where (An)n∈N is a family of arcs with pairwise disjoint interiors. Hence, for
each arc Ix, there is n(x) ∈ N such that Ix ∩An(x) is a non degenerate arc.
So necessarily, there is an arc An0

containing an uncountably many pairwise
disjoint nondegenerate arcs of (Ix)x∈I , which is a contradiction. �

Lemma 2.6. Let X be a compact metric space and f : X → X is a
pointwise-recurrent continuous map. Then every periodic point of f has
a unique pre-image by fn for all n ∈ N.

Proof. As R(f) = R(fn) for all n ∈ N (see [6]), it suffices to prove the Lemma
for f . Suppose that for some periodic point p of period n ∈ N, f−1({p})
contains more than one point. So there is q 6= fn−1(p) such that f(q) = p.
Since q is recurrent and ωf (q) = Of (p), it follows that q ∈ Of (p), so there is

k ∈ N such that q = fk(p). Thus fn−1(p) = fn(q) = fk(fn(p)) = fk(p) = q,
a contradiction. �

Lemma 2.7. Let f : D → D be a dendrite map. Assume that f is a
pointwise-recurrent. Let (pn)n∈N ⊂ D be a sequence of periodic points of f
such that pn+1 ∈ (pn, pn+2) for all n ∈ N, and lim

n→+∞
pn = p∞. Then p∞ is

a regularly recurrent point.

Proof. For n ∈ N, let Un be defined as in Lemma 2.2, let Vn := Un∪{pn, p∞}
and let denote by Nn the period of the point pn. It is easy to see that if there
is a sub-sequence of (pn)n∈N with bounded periods then by the continuity of
f (and hence the continuity of its iterated maps), the point p∞ is periodic,
in particular, it is regularly recurrent point. Otherwise, we have to prove the
Lemma 2.6 in the case of p∞ is not periodic. Then without loss of generality,
the sequence (pn)n∈N can be assumed such that

(2.1) (pn, p∞] ∩ Fix(fNn) = ∅.

We will prove that for all n ∈ N, the orbit of the point p∞ under the
map fNn+1 is included into the set Vn: Indeed, otherwise for some n ∈ N,
there is k ∈ N such that fkNn+1(p∞) /∈ Vn, so we have two possibilities
both of them lead to a contradiction: p∞ ∈ (pn+1, f

kNn+1(p∞)) or pn ∈
(pn+1, f

kNn+1(p∞)). Let m := kNn+1.
Suppose that p∞ ∈ (pn+1, f

m(p∞)). As pn+1 ∈ Fix(fm), by the continuity
of fm, we have fm([pn+1, p∞]) ⊃ [pn+1, f

m(p∞)] ∋ p∞. Hence there is a
point p∞,−1 ∈ (pn+1, p∞) such that fm(p∞,−1) = p∞. Similarly, there is
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a point p∞,−2 ∈ (pn+1, p∞,−1) such that fm(p∞,−2) = p∞,−1. Thus, by
induction we construct a sequence (p∞,−k)k∈N in (pn+1, p∞) such that for
all k ∈ N, p∞,−(k+1) ∈ [pn+1, p∞,−k] and

(2.2) fkm(p∞,−k) = p∞.

As p∞,−1 6= p∞, there is ps ∈ (p∞,−1, p∞) for some s ∈ N. Let r ∈ N be
such that f r(pn+1) = pn+1 and f r(ps) = ps. Hence, f rm(pn+1) = pn+1 and
f rm(ps) = ps. By (2.2), f rm(p∞,−r) = p∞ and by the continuity of f rm,
f rm([pn+1, p∞,−r]) ⊃ [pn+1, p∞] ∋ ps, hence ps has a pre-image q by the
map f rm in the arc [pn+1, p∞,−r] and as ps /∈ [pn+1, p∞,−r], q 6= ps, this
contradicts Lemma 2.6 since ps is a fixed point of f rm.

Suppose now the second case, pn ∈ (pn+1, f
m(p∞)). By the continuity

of fm, fm([pn+1, p∞]) ⊃ [pn+1, f
m(p∞)] ∋ pn. So pn has a preimage q by

the map fm in the arc [pn+1, p∞]. By Lemma 2.6, q is a periodic point
that belongs to the orbit of pn hence q has the same period as pn. Hence,
q ∈ (pn, p∞] ∩ Fix(fNn), this contradict (2.1).

It follows that for any n ∈ N, the orbit of the point p∞ under the map
fNn+1 is included into the set Vn and as diam(Vn) = diam(Un),
lim

n→+∞
diam(Vn) = 0, by Lemma 2.5. This implies that p∞ is regularly

recurrent point. �

3. Proof of Theorem 1.1 and Corollary 1.3

Proof of Theorem 1.1: The “if” part of the Theorem results clearly from
Theorem 2.4 since f is in particular monotone. Lets prove the “only if”
part:

Assume that f is pointwise-recurrent, then f is surjective. We will use
Lemma 2.5: Let I ⊂ D be a nondegenerate arc. Since B(D) is discrete, there
exists a non-degenerate open arc J ⊂ I containing no branch points, hence
J is an open subset in D. So let x ∈ J . Since f is pointwise-recurrent, one
can find n,m ∈ N such that x, fm(x) ∈ J and fn+m(x) ∈ (x, fm(x)). Thus
(x, fm(x)) ⊂ I is the connected component of D \ {x, fm(x)} containing
the open arc (x, fm(x)). By Theorem 2.3, (x, fm(x)) contains a periodic
point p and by Lemma 2.6, p has a unique preimage by f . We conclude by
Lemma 2.5 that f is monotone. Therefore, by ([19], Corollary 1.7), f is a
homeomorphism and by Theorem 2.4, every cut point is periodic. The proof
is complete. �

Proof of Corollary 1.3: Let e ∈ E(D). By Theorem 1.1, one can find a
sequence of periodic points (pn)n∈N ⊂ D such that pn+1 ∈ (pn, pn+2) for all
n ∈ N and lim

n→+∞
pn = e. Hence by Lemma 2.7, e is regularly recurrent. �
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4. Proof of Theorem 1.5

We need the following result.

Theorem 4.1. [14] Let f : D → D be a dendrite map. If E(D) is countable

then R(f) = P (f).

Lemma 4.2. Let f : D → D be a dendrite map. If E(D) is countable and
f is pointwise-recurrent then ωf (x) ∩ P (f) 6= ∅ for all x ∈ D.

Proof. If ωf (x) ⊂ E(D) then ωf (x) is compact countable. If ωf (x) is infinite
then it is perfect. Since for any y ∈ ωf (x), y = lim

k→+∞
fnk(x) where (nk)k∈N is

an infinite sequence of positif integers. As x ∈ ωf (x), then Of (x) ⊂ ωf (x),
hence y is an accumulation point of ωf (x). So ωf (x) is uncountable, a
contradiction. Therefore, ωf (x) is finite, that is ωf (x) is a periodic orbit and
so x is a periodic point. One can then assume that ωf (x)\E(D) 6= ∅, so let

y ∈ ωf (x)\E(D). SinceR(f) = D, it follows by Theorem 4.1 that P (f) = D,
so one can find p, q ∈ P (f) such that y ∈ [p, q]. Let N ∈ N be such that
fN (p) = p and fN (q) = q. We already have y ∈ [p, fN (y)] ∪ [q, fn(y)]. One
can suppose that y ∈ [p, fN (y)], the same proof being true with p replaced
by q. In this case, we have y ∈ fN([p, y]), so there is y−1 ∈ [p, y] such
that fN(y−1) = y. Again, y−1 ∈ [p, y] = [p, fN (y−1)] ⊂ fN([p, y−1]), so
there is y−2 ∈ [p, y−1] such that fN(y−2) = y−1. Thus, we construct by
induction a sequence (y−n)n∈N ⊂ [p, y] such that y−(k+1) ∈ (y−k, y−(k+2)),

fN (y−(k+1)) = y−k for every k ∈ N, and lim
n→+∞

y−n = y∞ ∈ [p, y]. Therefore

one has fN (y∞) = y∞ (by the continuity of fN) and so y∞ ∈ P (f). Since
R(f) = D and for any k ∈ N, fkN(y−k) = y, it follows that y−k ∈ ωf (y−k) =
ωf (y). Therefore y∞ ∈ ωf (y) and as ωf(y) ⊂ ωf(x), we conclude that
y∞ ∈ ωf (x) ∩ P (f). �

Lemma 4.3. Let f : D → D be a dendrite map and let p∞ as in Lemma
2.7. If E(D) is countable and f is pointwise-recurrent, then p∞ is a periodic
point.

Proof. By Lemma 2.7, p∞ is regularly recurrent, hence ωf (p∞) is a minimal
set. It follows, by Lemma 4.2, that ωf (p∞) is a periodic orbit, and so p∞ is
a periodic point since p∞ ∈ ωf (p∞). �

Lemma 4.4. Let D be a dendrite with countable set of endpoints. Then
every sub-dendrite of D has countable set of endpoints.
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Proof. Let Y be a sub-dendrite of D. By ([8], page 157, (see also [17])), Y is
a monotone retraction of D by r : D → Y . Then we have r(E(D)) = E(Y ).
Indeed, r(E(D)) ⊂ E(Y ) follows from the fact that r(x) lies in any arc join-
ing x to any point of Y . Let a ∈ E(Y ) and let Z the connected component
of D \Y such that Z contains a. Then r(Z) = {a}. As Z ∩E(D) 6= ∅, there
is b ∈ Z ∩ E(D) with r(b) = a. It follows that Card(E(Y )) ≤ Card(E(D))
and hence E(Y ) is countable. �

Proof of Theorem 1.5: The “if” part of the Theorem is clear. Lets prove the
“only if” part: By Theorem 4.1, one has P (f) = D.

Claim .1. If x ∈ D is not periodic then for any z ∈ D with z 6= x, (x, z)
contains a non periodic branch point.
Indeed, [x, z] contains an infinite sequence of branch points that converges
to x. Since otherwise, there is y ∈ (x, z] such that (x, y) ∩ B(D) 6= ∅. So

(x, y) is an open subset of D, hence as P (f) = D, one can find a sequence
(pn)n∈N of periodic points in (x, y) such that pn+1 ∈ (pn, pn+2) for all n ∈ N,
and lim

n→+∞
pn = x. By Lemma 4.3, x is periodic, a contradiction. Now,

Suppose that every branch point in (x, z) is periodic, then again by Lemma
4.3, x is periodic. Therefore, necessarily one branch point in (x, z) must be
not periodic.

Claim.2. If there exists x ∈ D not periodic thenD contains a sub-dendrite
with uncountably set of endpoints.
Suppose that x ∈ D is not periodic. By Claim.1, there is a ∈ B(D) not
periodic. Now, as a is a branch point, there exist two nondegenerate arcs
I0, I1 with one endpoint is x and form with [x, a] a family of three arcs
having pairwise disjoint interior. As a is not periodic then by Claim.1, there
is a0 ∈ I0 (resp. a1 ∈ I1) a non periodic branch point distinct from a.
Denote by J0 (resp. J1) the arc [a, a0] (resp. [a, a1]). In the second step,
as a0 and a1 are branch points, there exist two nondegenerate arcs I00 and
I01 (resp. I10 and I11) with one endpoint is a0 (resp. a1) and form with
[a, a0] (resp. [a, a1]) a family of three arcs having pairwise disjoint interior.
Similarly, by Claim.1, we find, for any i, j ∈ {0, 1}, a non periodic branch
point aij ∈ Iij distinct from ai, let denote by Jij := [ai, aij ]. Thus by
induction, we construct for all n ∈ N a sequence of arcs Jαn

and a sequence
of non periodic branch points aαn

where αn ∈ {0, 1}n satisfying the following
properties:
(i) Jαn0 = [aαn

, aαn0] and Jαn1 = [aαn
, aαn1],

(ii) Jαn
∩ Jαn0 = Jαn

∩ Jαn1 = Jαn0 ∩ Jαn1 = {aαn
}. any n ∈ N, Dn =

∪αn∈{0,1}nJαn
, then clearly Dn is a tree. Also we have Dn+1 ⊂ Dn for all

n ∈ N. Hence D∞ = ∪n∈NDn is a sub-dendrite. Take β ∈ {0, 1}N. For
each n ∈ N, we have [a, aβ(n)] ⊂ [a, aβ(n+1)] (where for i ∈ N, we denote by

β(i) the first word of length i in the sequence β). Then ∪n∈N[a, aβ(n)] is an
arc where the sequence (aβ(n))n∈N is monotone in that arc so it converges
to a point namely aβ that belongs to the dendrite D∞. The points aβ for
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β ∈ {0, 1}N are the endpoints of the sub-dendrite D∞. Hence, D∞ has an
uncountable set of endpoints .

We deduce then Theorem 1.5 from Claim.2 and Lemma 4.4. �

Proof of Corollary 1.6: By Theorem 1.5, f is pointwise-periodic homeomor-
phism. As E(T ) is finite, there is N ∈ N such that every endpoint of T is
fixed by fN . Let a, b ∈ T be two distinct endpoints of T . As f is a home-
omorphism (and so is fN), the arc [a, b] is fN -invariant, hence every point
in [a, b] is fixed by fN . Since T = ∪a,b∈E(T )[a, b], every point in the tree T

is fixed by fN . So f is periodic. �

Acknowledgements. I would like to thanks Professor Habib Marzougui
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