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SOMEKAWA’S K-GROUPS AND VOEVODSKY’S HOM

GROUPS

BRUNO KAHN AND TAKAO YAMAZAKI

Abstract. We construct an isomorphism from Somekawa’s K-
group associated to a finite collection of semi-abelian varieties (or
more general sheaves) over a perfect field to a corresponding Hom
group in Voevodsky’s triangulated category of effective motivic
complexes.

Contents

1. Introduction 1
2. Mackey functors and presheaves with transfers 4
3. Presheaves with transfers and motives 8
4. Presheaves with transfers and local symbols 9
5. K-groups of Somekawa type 14
6. K-groups of geometric type 15
7. Milnor K-theory 18
8. K-groups of Milnor type 19
9. Reduction to the representable case 22
10. Proper sheaves 22
11. Main theorem 23
12. Comparison with results of Raskind-Spiess/Akhtar 29
Appendix A. Extending monoidal structures 31
References 33

1. Introduction

In this article, we construct an isomorphism

(1.1) K(k;F1, . . . ,Fn)
∼
−→ Hom

DM
eff
−
(Z,F1[0]⊗ · · · ⊗ Fn[0]).
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2 BRUNO KAHN AND TAKAO YAMAZAKI

Here k is a perfect field, and F1, . . . ,Fn are homotopy invariant
Nisnevich sheaves with transfers in the sense of [24]. On the right hand
side, the tensor product F1[0]⊗· · ·⊗Fn[0] is computed in Voevodsky’s
triangulated category of effective motivic complexes or alternately in
his category of homotopy invariant Nisnevich sheaves with transfers
(ibid.). The group K(k;F1, . . . ,Fn) is a K-group of Somekawa type,
see Definition 5.1. When F1, . . . ,Fn are semi-abelian varieties, it agrees
with the abelian group defined by K. Kato and studied by M. Somekawa
in [17]. (In particular, we have K(k;Gm, . . . ,Gm) ≃ KM

n (k).) Our
definition of K(k;F1, . . . ,Fn) is a natural generalization to homotopy
invariant Nisnevich sheaves with transfers.
This group is defined as a quotient of a larger group

(F1

M
⊗ . . .

M
⊗Fn)(k)

(where
M
⊗ is the tensor product computed in the category of Mackey

functors [7, 8]), which itself is a quotient of
⊕

E/k

F1(E)⊗ · · · ⊗ Fn(E)

where E runs through all finite extensions of k. Therefore (1.1) can
be viewed as a description of Hom-groups by ‘explicit’ generators and
relations.
As a special case of the bijectivity of (1.1), we get a new and less

combinatorial proof of the Suslin-Voevodsky isomorphism

KM
n (k) ≃ Hn(k,Z(n))

see Proposition 7.2 and Remark 7.3. The case of MilnorK-theory turns
out to be pivotal in the proof that (1.1) is an isomorphism in general.
The homomorphism (1.1), in the special case of semi-abelian vari-

eties, was constructed and shown to be surjective rather easily in a
preliminary version of this paper [10]. Sections 2 – 5 and Appendix A
are taken literally from [10], except that the definition of Somekawa K-
groups is generalized to arbitrary homotopy invariant Nisnevich sheaves
with transfers in the current §5. This generalization, including the
proof of surjectivity, is straightforward. Proving the bijectivity of (1.1)
turned out to be more challenging; in particular we could not use the
idea presented in the introduction of [10].
Our strategy to construct (1.1) and prove its bijectivity is as follows:

(1) Construct a surjective homomorphism

(1.2) (F1

M
⊗ . . .

M
⊗Fn)(k)→ Hom

DM
eff
−
(Z,F1[0]⊗ · · · ⊗ Fn[0]).
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This is achieved in §§2.12 and 3.6, see especially (2.10) and
(3.3).

(2) Show that (1.2) kills the defining relations of K(k;F1, . . . ,Fn),
yielding (1.1). This is achieved in Theorem 5.3, the main point
being that the Weil reciprocity law holds in the context of ho-
motopy invariant Nisnevich sheaves with transfers thanks to
Voevodsky’s theory of contracted sheaves, see Proposition 4.6.

This much is identical to what was done in [10]. In order to
prove bijectivity, we introduce two other K-groups:

(3) The group K ′(k;F1, . . . ,Fn) is a K-group of geometric type,
see Definition 6.1. Its definition is quite similar to that of
K(k;F1, . . . ,Fn), but we modified the defining relation slightly
in such a way that (1.2) factors through an isomorphism

(1.3) K ′(k;F1, . . . ,Fn)
∼
−→ Hom

DM
eff
−
(Z,F1[0]⊗ · · · ⊗ Fn[0])

(Theorem 6.2).
(4) We are now reduced to showing that the defining relations of

K ′(k;F1, . . . ,Fn) vanish in K(k;F1, . . . ,Fn). This is almost
trivial when the sheaves Fi are “proper” (see Proposition 10.4),
but not obvious in general.

(5) A Yoneda-type argument reduces us to the case where the
sheaves Fi are of the form hNis

0 (C), where C is a smooth (but
not necessarily proper) k-curve, see Proposition 9.1. This is
where the third K-group comes in.

(6) The group K̃(k;F1, . . . ,Fn) is a K-group of Milnor type, see

Definition 8.2. It is a quotient of (F1

M
⊗ . . .

M
⊗Fn)(k) by “Stein-

berg relations” induced through cocharacters to the Fi. An
argument from Somekawa [17] extends to show that these re-
lations die in K(k;F1, . . . ,Fn). Thus we get a chain of surjec-
tions:

K̃(k;F1, . . . ,Fn) −→→ K(k;F1, . . . ,Fn) −→→ K ′(k;F1, . . . ,Fn).

(7) This composition is not bijective in general: for example, there
are no Steinberg relations if all Fi are abelian varieties. The
basic case where it is bijective is when all Fi equal Gm [17]; this
extends to certain tori, see Proposition 8.8. As a by-product, we
get globally defined residue homomorphisms in this case, whose
existence is far from obvious in general.

(8) The next step is to extend the construction of these global
residue homomorphisms to the case of representable sheaves
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hNis
0 (C), or more generally “curve-like sheaves”: this is achieved

in Proposition 11.5 and Lemma 11.7.
(9) The final step is to prove that these global residue homomor-

phisms satisfy Weil reciprocity in the case of curve-like sheaves
Fi, see Proposition 11.11. For this the crucial step, which is the
point of introducing the Steinberg relations, is to prove that
(when k is infinite), for K the function field of a k-curve, the

group K̃(K;F1, . . . ,Fn,Gm) is generated by elements “in gen-
eral position”: see Proposition 11.9. The main theorem easily
follows (Theorem 11.12).

Acknowledgements. Work in this direction had been done by Mo-
chizuki [13]. The surjective map (1.1) was announced in [19, Remark
10 (b)] and is used in [26, Theorem 3.9] (for semi-abelian F1, . . . ,Fn).
This research was started by the first author, who wrote the first

part of this paper [10]. The collaboration began when the second au-
thor visited the Institute of Mathematics of Jussieu in October 2010.
Somehow, the research accelerated after the earthquake on March 11,
2011 in Japan. We wish to acknowledge the pleasure of such a fruitful
collaboration, along these circumstances.
We acknowledge the depth of the ideas of Milnor, Kato, Somekawa,

Suslin and Voevodsky. Especially we are impressed by the relevance of
the Steinberg relation in this story.

2. Mackey functors and presheaves with transfers

2.1. A Mackey functor over k is a contravariant additive (i.e., commut-
ing with coproducts) functor A from the category of étale k-schemes
to the category of abelian groups, provided with a covariant structure
verifying the following exchange condition: if

Y ′ f ′

−−−→ Y

g′





y

g





y

X ′ f
−−−→ X

is a cartesian square of étale k-schemes, then the diagram

A(Y ′)
f ′∗

−−−→ A(Y )

g′∗





y

g∗





y

A(X ′)
f∗

−−−→ A(X)
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commutes. Here, ∗ denotes the contravariant structure while ∗ denotes
the covariant structure. The Mackey functor A is cohomological if we
further have

f∗f
∗ = deg(f)

for any f : X ′ → X , with X connected. We denote by Mack the
abelian category of Mackey functors, and byMackc its full subcategory
of cohomological Mackey functors.

2.2. Classically [22, (1.4)], a Mackey functor may be viewed as a con-
travariant additive functor on the category Span of “spans” on étale
k-schemes, defined as follows: objects are étale k-schemes. A morphism
from X to Y is an equivalence class of diagram (span)

(2.1) X
g
←− Z

f
−→ Y.

Composition of spans is defined via fibre product in an obvious man-
ner. If A is a Mackey functor, the corresponding functor on Span has
the same value on objects, while its value on a span (2.1) is given by
g∗f

∗.
Note that Span is a preadditive category: one may add (but not

subtract) two morphisms with same source and target. We may as
well view a Mackey functor as an additive functor on the associated
additive category ZSpan.

2.3. Let Cor be Voevodsky’s category of finite correspondences on
smooth k-schemes, denoted by SmCor(k) in [24, §2.1]. The category
ZSpan is isomorphic to its full subcategory consisting of smooth k-
schemes of dimension 0 (= étale k-schemes). In particular, any presheaf
with transfers in the sense of Voevodsky [24, Def. 3.1.1] restricts to a
Mackey functor over k. By [23, Cor. 3.15], the restriction of a homo-
topy invariant presheaf with transfers yields a cohomological Mackey
functor. In other words, we have exact functors

ρ : PST→Mack(2.2)

ρ : HI→Mackc(2.3)

where PST denotes the category of presheaves with transfers (con-
travariant additive functors from Cor to abelian groups) and HI is
its full subcategory consisting of homotopy invariant presheaves with
transfers.

2.4. There is a tensor product of Mackey functors
M
⊗, originally de-

fined by L. G. Lewis (unpublished): it extends naturally the symmet-
ric monoidal structure (X, Y ) 7→ X ×K Y on ZSpan via the additive
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Yoneda embedding (see §A.7). If either A or B is cohomological, A
M
⊗B

is cohomological.
This tensor product is the same as the one defined in [7, §5] and

[8]: this follows from (A.2) and the fact that ZSpan is rigid, all ob-
jects being self-dual (indeed, ZSpan is canonically isomorphic to the
category of Artin Chow motives with integral coefficients).

2.5. There is a tensor product on presheaves with transfers defined
exactly in the same way [24, p. 206].

2.6. By definition, the functor (2.2) equals i∗, where i is the inclusion
ZSpan → Cor. This inclusion has a left adjoint π0 (scheme of con-
stants). Both functors i and π0 are symmetric monoidal: for π0, reduce
to the case where k is separably closed.

2.7. By §§A.2 and A.8, this implies that (2.2) is symmetric monoidal.
In other words, if F and G are presheaves with transfers, then

(2.4) ρF
M
⊗ ρG ≃ ρ(F ⊗PST G).

The left hand side is sometimes abbreviated to F
M
⊗G.

2.8. The inclusion functor HI → PST has a left adjoint h0, and the
symmetric monoidal structure of PST induces one on HI via h0. In
other words, if F ,G ∈ HI, we define

(2.5) F ⊗HI G = h0(F ⊗PST G).

Note that (2.3) is not symmetric monoidal (since it is the restriction
of (2.2)).

2.9. For any F ∈ PST, the unit morphism F → h0(F) induces a
surjection

(2.6) F(k)→→ h0(F)(k).

This is obvious from the formula h0(F) = Coker(C1(F)→ F).

2.10. We shall also need to work with Nisnevich sheaves with transfers.
We denote by NST the category of Nisnevich sheaves with transfers
(objects of PST which are sheaves in the Nisnevich topology). By [24,
Theorem 3.1.4], the inclusion functor NST → PST has an exact left
adjoint F 7→ FNis (sheafification). The category NST then inherits a
tensor product by the formula

F ⊗NST G = (F ⊗PST G)Nis.
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Similarly, we define HINis = HI∩NST. The sheafification functor
restricts to an exact functor HI → HINis [24, Theorem 3.1.11], and
HINis gets a tensor product by the formula

F ⊗HINis
G = (F ⊗HI G)Nis.

To summarize, all functors in the following naturally commutative
diagram are symmetric monoidal:

(2.7)

PST
Nis
−−−→ NST

h0





y

hNis
0





y

HI
Nis
−−−→ HINis .

where each functor is left adjoint to the corresponding inclusion.

2.11. Let F be a presheaf on Sm/k, and let FNis be the associated
Nisnevich sheaf. Then we have an isomorphism

(2.8) F(k)
∼
−→ FNis(k).

Indeed, any covering of Spec k for the Nisnevich topology refines to
a trivial covering. In particular, the functor F 7→ FNis(k) is exact.
This applies in particular to a presheaf with transfers and the asso-

ciated Nisnevich sheaf with transfers.

2.12. Let F1, . . . ,Fn ∈ HINis. Then (2.4) yields a canonical isomor-
phism

(2.9) (F1

M
⊗ . . .

M
⊗Fn)(k) ≃ (F1 ⊗PST · · · ⊗PST Fn)(k).

Composing (2.9) with the unit morphism Id ⇒ hNis
0 from (2.7) and

taking (2.5) into account, we get a canonical morphism

(2.10) (F1

M
⊗ . . .

M
⊗Fn)(k)→ (F1 ⊗HINis

· · · ⊗HINis
Fn)(k).

which is surjective by §§2.9 and 2.11.

2.13. If G is a commutative k-group scheme whose identity compo-
nent is a quasi-projective variety, then G has a canonical structure of
Nisnevich sheaf with transfers ([18, proof of Lemma 3.2] completed by
[2, Lemma 1.3.2]). This applies in particular to semi-abelian varieties
and also to the ”full” Albanese scheme [14] of a smooth variety (which
is an extension of a lattice by a a semi-abelian variety). In particu-
lar, if G1, . . . , Gn are such k-group schemes, (2.10) yields a canonical
surjection

(2.11) (G1

M
⊗ . . .

M
⊗Gn)(k)→ (G1 ⊗HINis

· · · ⊗HINis
Gn)(k),
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where the Gi are considered on the left as Mackey functors, and on the
right as homotopy invariant Nisnevich sheaves with transfers.

3. Presheaves with transfers and motives

3.1. The left adjoint hNis
0 in (2.7) “extends” to a left adjoint C∗ of the

inclusion

DMeff
− → D−(NST)

where the left hand side is Voevodsky’s triangulated category of effec-
tive motivic complexes [24, §3, esp. Prop. 3.2.3].
More precisely, DMeff

− is defined as the full subcategory of objects
of D−(NST) whose cohomology sheaves are homotopy invariant. The
canonical t-structure ofD−(NST) induces a t-structure onDMeff

− , with
heart HINis. The functor C∗ is right exact with respect to these t-
structures, and if F ∈ NST, then H0(C∗(F)) = hNis

0 (F).

3.2. The tensor structure of §2.10 onNST extends to one onD−(NST)
[24, p. 206]. Via C∗, this tensor structure descends to a tensor struc-
ture on DMeff

− [24, p. 210], which will simply be denoted by ⊗. The
relationship between this tensor structure and the one of §2.10 is as
follows: if F ,G ∈ HINis, then

(3.1) F ⊗HINis
G = H0(F [0]⊗ G[0])

where F [0],G[0] are viewed as complexes of Nisnevich sheaves with
transfers concentrated in degree 0.
We shall need the following lemma, which is not explicit in [24]:

3.3. Lemma. The tensor product ⊗ of DMeff
− is right exact with respect

to the homotopy t-structure.

Proof. By definition,

C ⊗D = C∗(C
L
⊗D)

for C,D ∈ DMeff
− , where

L
⊗ is the tensor product of D−(NST) defined

in [24, p. 206]. We want to show that, if C and D are concentrated
in degrees ≤ 0, then so is C ⊗D. Using the canonical left resolutions
of loc. cit., it is enough to do it for C and D of the form C∗(L(X))
and C∗(L(Y )) for two smooth schemes X, Y . Since C∗ is symmetric
monoidal, we have

C∗(L(X))⊗ C∗(L(Y ))
∼
←− C∗(L(X)

L
⊗L(Y )) = C∗(L(X × Y ))

and the claim is obvious in view of the formula for C∗ [24, p. 207]. �
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3.4. Let C ∈ DMeff
− . For any X ∈ Sm/k and any i ∈ Z, we have

Hi
Nis(X,C) ≃ Hom

DM
eff
−
(M(X), C[i])

where M(X) = C∗(L(X)) is the motive of X computed in DMeff
− (cf.

[24, Prop. 3.2.7]).
Specializing to the case X = Spec k (M(X) = Z) and taking §2.11

into account, we get

(3.2) Hom
DM

eff
−
(Z, C[i]) ≃ H i(C)(k).

Combining (3.1), (2.8) and (3.2), we get:

3.5. Lemma. Let F1, . . . ,Fn be homotopy invariant Nisnevich sheaves
with transfers. Then we have a canonical isomorphism

(3.3) (F1⊗HINis
· · ·⊗HINis

Fn)(k) ≃ Hom
DM

eff
−
(Z,F1[0]⊗· · ·⊗Fn[0]).

3.6. Summarizing, for any F1, . . . ,Fn ∈ HINis we get the announced
homomorphism (1.2) by composing

(F1

M
⊗ . . .

M
⊗Fn)(k)

(2.9)
≃ (F1 ⊗PST · · · ⊗PST Fn)(k)

(2.6)
→→ h0(F1 ⊗PST · · · ⊗PST Fn)(k)

(2.5)
≃ (F1 ⊗HI · · · ⊗HI Fn)(k)

(2.8)
≃ (F1 ⊗HINis

· · · ⊗HINis
Fn)(k)

(3.3)
≃ Hom

DM
eff
−
(Z,F1[0]⊗ · · · ⊗ Fn[0]).

4. Presheaves with transfers and local symbols

4.1. Given a presheaf with transfers G, recall from [23, p. 96] the
presheaf with transfers G−1 defined by the formula

(4.1) G−1(U) = Coker
(

G(U ×A1)→ G(U × (A1 − {0}))
)

.

Suppose that G is homotopy invariant. Let X ∈ Sm/k (connected),
K = k(X) and x ∈ X be a point of codimension 1. By [23, Lemma
4.36], there is a canonical isomorphism

(4.2) G−1(k(x)) ≃ H1
x(X,GZar)

yielding a canonical map

(4.3) ∂x : G(K)→ G−1(k(x)).

The following lemma follows from the construction of the isomor-
phisms (4.2). It is part of the general fact that G defines a cycle module
in the sense of Rost (cf. [4, Prop. 5.4.64]).
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4.2. Lemma. a) Let f : Y → X be a dominant morphism, with Y
smooth and connected. Let L = k(Y ), and let y ∈ Y (1) be such that
f(y) = x. Then the diagram

G(L)
(∂y)
−−−→ G−1(k(y))

f∗

x





ef∗

x





G(K)
∂x−−−→ G−1(k(x))

commutes, where e is the ramification index of vy relative to vx.
b) If f is finite surjective, the diagram

G(L)
(∂y)
−−−→

⊕

y∈f−1(x)

G−1(k(y))

f∗





y

f∗





y

G(K)
∂x−−−→ G−1(k(x))

commutes. �

4.3. Proposition. Let G ∈ HINis. There is a canonical isomorphism

G−1 = Hom(Gm,G).

Proof. This may not be the most economic proof, but it is quite short.
The statement means that G−1 represents the functor

H 7→ HomHINis
(H⊗HINis

Gm,G).

By [23, Lemma 4.35], we have

G−1 = Coker(G → p∗p
∗G)

where p : A1 − {0} → Spec k is the structural morphism and p∗, p
∗

are computed with respect to the Zariski topology. By [23, Theorem
5.7], we may replace the Zariski topology by the Nisnevich topology.
Moreover, by [23, Prop. 5.4 and Prop. 4.20], we have Rip∗p

∗G = 0 for

i > 0, hence p∗p
∗G[0]

∼
−→ Rp∗p

∗G[0].
By [24, Prop. 3.2.8], we have

Rp∗p
∗G[0] = Hom(M(A1 − {0}),G[0])

where Hom is the (partially defined) internal Hom of DMeff
− . By [24,

Prop. 3.5.4] (Gysin triangle) and homotopy invariance, we have an
exact triangle, split by any rational point of A1 − {0}:

Z(1)[1]→M(A1 − {0})→ Z
+1
−→

To get a canonical splitting, we may choose the rational point 1 ∈
A1 − {0}.
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By [24, Cor. 3.4.3], we have an isomorphism Z(1)[1] ≃ Gm[0]. Hence,
in DMeff

− , we have an isomorphism

G−1[0] ≃ Hom(Gm[0],G[0]).

Let H ∈ HINis. We get:

Hom
DM

eff
−
(H[0],G−1[0]) ≃ Hom

DM
eff
−
(H[0]⊗Gm[0],G[0])

≃ HomHINis
(H0(H[0]⊗Gm[0]),G) =: HomHINis

(H⊗HINis
Gm,G)

as desired (see (3.1)). For the second isomorphism, we have used the
right exactness of ⊗ (Lemma 3.3). �

4.4. Remark. The proof of Proposition 4.3 also shows that, in DMeff
− ,

we have an isomorphism

Hom(Gm[0],G[0]) ≃ Hom(Gm,G)[0]

where the left Hom is computed in DMeff
− and the right Hom is com-

puted in HINis. In particular, Hom(Gm[0],−) : DMeff
− → DMeff

− is
t-exact.

4.5. Proposition. Let C be a smooth, proper, connected curve over k,
with function field K. There exists a canonical homomorphism

TrC/k : H
1
Zar(C,G)→ G−1(k)

such that, for any x ∈ C, the composition

G−1(k(x)) ≃ H1
x(C,G)→ H1

Zar(C,G)
TrC−→ G−1(k)

equals the transfer map Trk(x)/k associated to the finite surjective mor-
phism Spec k(x)→ Spec k.

Proof. By [24, Prop. 3.2.7], we have

H1
Zar(C,G)

∼
−→ H1

Nis(C,G) ≃ Hom
DM

eff
−
(M(C),G[1]).

The structural morphism C → Spec k yields a morphism of motives
M(C)→ Z which, by Poincaré duality, yields a canonical morphism

Gm[1] ≃ Z(1)[2]→M(C).

(One may view this morphism as the image of the canonical mor-
phism L→ h(C) in the category of Chow motives.)
Therefore, by Proposition 4.3 and Remark 4.4, we get a map

TrC/k : H1
Zar(X,G)→ Hom

DM
eff
−
(Gm[1],G[1]) = G−1(k).

It remains to prove the claimed compatibility. Let Mx(C) be the
motive of C with supports in x, defined as C∗(Coker(L(C − {x}) →
L(C)). Let Zk(x) = M(Spec k(x)). By [24, proof of Prop. 3.5.4], we
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have an isomorphism Mx(C) ≃ Zk(x)(1)[2], and we have to show that
the composition

Z(1)[2]→M(C)
gx
−→ Zk(x)(1)[2]

is Trk(x)/k, up to twisting and shifting. To see this, we observe that gx
is the image of the morphism of Chow motives

h(C)→ h(Spec k(x))(1)

dual to the morphism h(Spec k(x)) → h(C) induced by the inclusion
Spec k(x) → C: this is easy to check from the definition of gx in [24]
(observe that in this special case, Blx(C) = C and that we may use a
variant of the said construction replacing C × A1 by C × P1 to stay
within smooth projective varieties). The conclusion now follows from
the fact that the composition

Spec k(x)→ C → Spec k

is the structural morphism of Spec k(x). �

4.6. Proposition (Reciprocity). Let C be a smooth, proper, connected
curve over k, with function field K. Then the sequence

G(K)
(∂x)
−−−→

⊕

x∈C G−1(k(x))
∑

x Trk(x)/k
−−−−−−−→ G−1(k)

is a complex.

Proof. This follows from Proposition 4.5, since the composition

G(K)→
⊕

x∈C

H1
x(C,G)

(gx)
−→ H1(C,G)

is 0. �

4.7. If F ,G are presheaves with transfers, there is a bilinear morphism
of presheaves with transfers (i.e. a natural transformation over PST×
PST):

F(U)⊗ G−1(V ) =

Coker
(

F(U)⊗ G(V ×A1)→ F(U)⊗ G(V × (A1 − {0}))
)

→

Coker
(

(F ⊗PST G)(U × V ×A1)→ (F ⊗PST G)(U × V × (A1 − {0}))
)

= (F ⊗PST G)−1(U × V )

which induces a morphism

(4.4) F ⊗PST G−1 → (F ⊗PST G)−1.

In particular, for G = Gm, we get a morphism F → (F⊗PSTGm)−1.
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4.8. Theorem. Suppose F ∈ HINis. Then
a) The composition

F → (F ⊗PST Gm)−1 → (F ⊗HINis
Gm)−1

is the unit map of the adjunction between −⊗HINis
Gm and (−)−1 stem-

ming from Proposition 4.3.
b) This composition is an isomorphism.

Proof. a) is an easy bookkeeping. For b), we compute again in DMeff
− .

By Proposition 4.3, we are considering the morphism in HINis

(4.5) F → Hom(Gm,F ⊗HINis
Gm).

Consider the corresponding morphism in DMeff
−

F [0]→ Hom(Gm[0],F [0]⊗Gm[0]).

As recalled in the proof of Proposition 4.3, we have Gm[0] = Z(1)[1],
hence the above morphism amounts to

F [0]→ Hom(Z(1),F [0](1))

which is an isomorphism by the cancellation theorem [25]. A fortiori,
(4.5), which is (by Remark 4.4) the H0 of this isomorphism, is an
isomorphism. �

4.9. Notation. Let F ,G ∈ HINis and H = F ⊗HINis
G. Let X,K, x be

as in §4.1. For (a, b) ∈ F(K)× G(K), we denote by a · b the image of
a⊗ b in H(K) by the map

F(K)⊗ G(K)→ H(K).

We define the local symbol on F

F(K)×K∗ → F(k(x))

to be the composition

F(K)×K∗ ·
→ (F⊗HINis

Gm)(K)
∂x→ (F ⊗HINis

Gm)−1(k(x)) ∼= F(k(x))

where the first map is given by the above construction with G = Gm,
and the last isomorphism is given by Theorem 4.8. The image of (a, b) ∈
F(K)×K∗ by the local symbol is denoted by ∂x(a, b) ∈ F(k(x)).

4.10. Proposition (cf. [4, Prop. 5.5.27]). Let F ,G ∈ HINis, and
consider the morphism induced by (4.4)

F ⊗HINis
G−1

Φ
−→ (F ⊗HINis

G)−1.
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Let X,K, x be as in §4.1. Then the diagram

F(OX,x)⊗ G(K) //

i∗x⊗∂x
��

(F ⊗HINis
G)(K)

∂x

��

F(k(x))⊗ G−1(k(x))

��
(F ⊗HINis

G−1)(k(x))
Φ // (F ⊗HINis

G)−1(k(x))

commutes, where i∗x is induced by the reduction map OX,x → k(x). In
other words, with Notation 4.9 we have the identity

(4.6) ∂x(a · b) = Φ(i∗xa · ∂xb)

for (a, b) ∈ F(OX,x)× G(K).

4.11. Corollary. Let F ∈ HINis; let X,K, x be as in §4.1 and let
(a, f) ∈ F(K)×K∗.
a) Suppose that there is ã ∈ F(OX,x) whose image in F(K) is a. Then
we have

∂x(a, f) = vx(f)a(x)

where a(x) is the image of ã in F(k(x)) (which is independent of the
choice of ã).
b) Suppose that vx(f − 1) > 0. Then ∂x(a, f) = 0.

Proof. a) This follows from Proposition 4.10 (applied with G = Gm)
and Theorem 4.8. b) This follows again from Proposition 4.10, after
switching the rôles of F and G. �

4.12. Proposition. Let G be a semi-abelian variety. The local symbol
on G defined in Notation 4.9 agrees with Somekawa’s local symbol [17,
(1.1)] (generalising the Rosenlicht-Serre local symbol) on G.

Proof. Up to base-changing from k to k̄ (see Lemma 4.2 a)), we may
assume k algebraically closed. By [16, Ch. III, Prop. 1], it suffices
to show that the local symbol in Notation 4.9 satisfies the properties
in [16, Ch. III, Def. 2] which characterize the Rosenlicht-Serre local
symbol. In this definition, Condition i) is obvious, Condition ii) is
Corollary 4.11 b), Condition iii) is Corollary 4.11 a) and Condition iv)
is Proposition 4.6. �

5. K-groups of Somekawa type

5.1. Definition. Let F1, . . . ,Fn ∈ HINis.
a) A relation datum of Somekawa type for F1, . . . ,Fn is a collection
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(C, h, (gi)i=1,...,n) of the following objects: (i) a smooth proper con-
nected curve C over k, (ii) h ∈ k(C)∗, and (iii) gi ∈ Fi(k(C)) for each
i ∈ {1, . . . , n}; which satisfies the condition

(5.1) for any c ∈ C, there is i(c) such that c ∈ Ri for all i 6= i(c),

where Ri := {c ∈ C | gi ∈ Im(Fi(OC,c)→ Fi(k(C)))}.
b) We define the K-group of Somekawa type K(k;F1, . . . ,Fn) to be the

quotient of (F1

M
⊗ . . .

M
⊗Fn)(k) by its subgroup generated by elements

of the form

(5.2)
∑

c∈C

Trk(c)/k(g1(c)⊗ · · · ⊗ ∂c(gi(c), h)⊗ · · · ⊗ gn(c))

where (C, h, (gi)i=1,...,n) runs through all relation data of Somekawa
type.

5.2. Remark. In view of Proposition 4.12, our group K(k;F1, . . .Fn)
coincides with the Milnor K-group defined in [17] when F1, . . . ,Fn are
semi-abelian varieties over k. 1

5.3. Theorem. Let F1, . . . ,Fn ∈ HINis. The homomorphism (2.10)
factors through K(k;F1, . . . ,Fn). Consequently, we get a surjective
homomorphism (1.1).

Proof. Put F := F1 ⊗HINis
· · · ⊗HINis

Fn. Let (C, h, (gi)i=1,...,n) be a
relation datum of Somekawa type. We must show that the element (5.2)
goes to 0 in F(k) via (2.10). Consider the element g = g1 ⊗ · · · ⊗ gn ∈
F(K). It follows from (4.6) that, for any c ∈ C, we have

g1(c)⊗ · · · ⊗ ∂c(gi(c), h)⊗ · · · ⊗ gn(c)

= g1(c)⊗ · · · ⊗ ∂c(gi(c) ⊗ {h})⊗ · · · ⊗ gn(c) = ∂c(g ⊗ {h}).

The claim now follows from Proposition 4.6. �

6. K-groups of geometric type

6.1. Definition. Let F1, . . . ,Fn ∈ PST.
a) A relation datum of geometric type for F1, . . . ,Fn is a collection
(C, f, (gi)i=1,...,n) of the following objects: (i) a smooth projective con-
nected curve C over k, (ii) a surjective morphism f : C → P1, (iii)
gi ∈ Fi(C

′) for each i ∈ {1, . . . , n}, where C ′ = f−1(P1 \ {1}).
b) We define the K-group of geometric type K ′(k;F1, . . . ,Fn) to be the

1As was observed by W. Raskind, the signs appearing in [17, (1.2.2)] should not
be there (cf. [15, p.10, footnote]).
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quotient of (F1

M
⊗ . . .

M
⊗Fn)(k) by its subgroup generated by elements

of the form

(6.1)
∑

c∈C′

vc(f) Trk(c)/k(g1(c)⊗ · · · ⊗ gn(c))

where (C, f, (gi)i=1,...,n) runs through all relation data of geometric type.
(Here we used the notation gi(c) = ι∗c(gi) ∈ F(k(c)), where ιc : c =
Spec k(c)→ C ′ is the closed immersion.)

The rest of this section is devoted to a proof of the following theorem:

6.2. Theorem. Let F1, . . . ,Fn ∈ HINis. The homomorphism (2.10)
induces an isomorphism (1.3).

6.3. For a smooth variety X over k, denote as usual by L(X) the Nis-
nevich sheaf with transfers represented by X . Recall that L(X)(U) =
c(U,X) is the group of finite correspondences for any smooth variety
U over k, viz. the free abelian group on the set of closed integral sub-
schemes of U ×X which are finite and surjective over some irreducible
component of U . A morphism X → X ′ of smooth varieties induces a
map L(X)→ L(X ′) of Nisnevich sheaves with transfers.
We recall two facts from [24, p. 206], which are fundamental in the

definition of the tensor product in PST.

(1) For any F ∈ PST, there is a surjective map ⊕XL(X) → F of
presheaves with transfers, where X runs through a (huge) set
of smooth varieties over k.

(2) We have (by definition) L(X) ⊗PST L(Y ) = L(X × Y ) for
smooth varieties X and Y .

6.4. Let F ∈ PST. Suppose that we are given the following data: (i) a
smooth projective connected curve C over k, (ii) a surjective morphism
f : C → P1, (iii) a map α : L(C ′) → F in PST, where C ′ = f−1(∆)
and ∆ = P1 \ {1}(∼= A1). To such a triple (C, f, α), we associate an
element

(6.2) α(div(f)) ∈ F(k),

where we regard div(f) as an element of Z0(C
′) = c(Spec k, C ′) =

L(C ′)(k).
One can rewrite the element (6.2) as follows. The map α : L(C ′)→
F can be regarded as a section α ∈ F(C ′). To each closed point
c ∈ C ′, we write α(c) for the image of α in F(k(c)) by the map induced
by c = Spec k(c)→ C ′. Now (6.2) is rewritten as

(6.3)
∑

c∈C′

vc(f) Trk(c)/k α(c).
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6.5. Proposition. Let F ∈ PST. We define F(k)rat to be the subgroup
of F(k) generated by elements (6.2) for all triples (C, f, α) as in §6.4.
Then we have

h0(F)(k) = F(k)/F(k)rat.

Proof. By definition we have

h0(F)(k) = Coker(i∗0 − i∗∞ : F(∆)→ F(k)),

where ∆ = P1 \ {1}(∼= A1) and i∗a is the pull-back by the inclusion
ia : {a} → ∆ for a ∈ {0,∞}.
Suppose we are given a triple (C, f, α) as in §6.4, and set C ′ =

f−1(∆). The graph γf |C′
of f |C′ defines an element of c(∆, C ′) =

L(C ′)(∆). In the commutative diagram

L(C ′)(∆)
α
→ F(∆)

i∗0−i∗∞ ↓ ↓i∗0−i∗∞

L(C ′)(k)
α
→ F(k),

the image of γf |C′
in L(C ′)(k) = Z0(C

′) is div(f), which shows the
vanishing of α(div(f)) in h0(F)(k).
Conversely, given α ∈ F(∆), (6.2) for the triple (P1, idP1 , α) coin-

cides with (i∗0 − i∗∞)(α). This completes the proof. �

6.6. Lemma. Let F1, . . . ,Fn ∈ PST. Put F := F1⊗PST · · · ⊗PST Fn.
Let (C, f, α) be a triple considered in §6.4. Then α ∈ F(C ′) is the sum
of a finite number of elements of the form

(6.4) Trh(g1 ⊗ · · · ⊗ gn),

where D is a smooth projective curve, h : D → C is a surjective mor-
phism, gi ∈ Fi(h

−1(C ′)) for i = 1, . . . , n, and Trh : F(h−1(C ′)) →
F(C ′) is the transfer with respect to h|h−1(C′).

Proof. By the facts recalled in §6.3, we are reduced to the case Fi =
L(Xi) where Xi is a smooth variety over k for each i = 1, . . . , n. Then
we have F = L(X) with X = X1 × · · · × Xn. Let Z be an integral
closed subscheme of C ′ × X which is finite and surjective over C ′. It
suffices to show that Z ∈ c(C ′, X) = L(X)(C ′) can be written as (6.4).
Let q : D′ → Z be the normalization, and let h : D′ → C ′ be the

composition D′ → Z → C ′, so that h is a finite surjective morphism.
For i = 1, . . . , n, we define gi ∈ c(D′, Xi) = L(Xi)(D

′) to be the
graph of D′ → X → Xi. If we set g = g1 ⊗ · · · ⊗ gn ∈ L(X)(D′),
then by definition we have Trh(g) = Z in L(X)(C ′). The assertion is
proved. �
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6.7. Now it follows from Definition 6.1 b), Proposition 6.5, Lemma 6.6
and (6.3) that (2.9) and (2.6) induce an isomorphism

K ′(k;F1, . . . ,Fn) ∼= h0(F1 ⊗PST · · · ⊗PST Fn)(k)

for any F1, . . . ,Fn ∈ PST. If F1, . . . ,Fn ∈ HINis, the right hand side
is canonically isomorphic to Hom

DM
eff
−
(Z,F1[0]⊗ · · · ⊗ Fn[0]) by (3.3)

+ (2.8). This completes the proof of Theorem 6.2. �

7. Milnor K-theory

7.1. Let F1, . . . ,Fn ∈ HINis. We obtained a surjective homomorphism

(7.1) K(k;F1, . . . ,Fn)→ K ′(k;F1, . . . ,Fn).

Our aim is to show that this map is bijective. The first step is the
special case of the multiplicative groups.

7.2. Proposition. When F1 = · · · = Fn = Gm, the map (7.1) is
bijective.

Proof. It suffices to show the element (6.1) vanishes inK(k;Gm, . . . ,Gm).
Because of Somekawa’s isomorphism [17, Theorem 1.4]

(7.2) K(k;Gm, . . . ,Gm) ∼= KM
n (k)

given by {x1, . . . , xn}E/k 7→ NE/k({x1, . . . , xn}), it suffices to show this
vanishing in the usual Milnor K-group KM

n (k), which follows from Weil
reciprocity [3, Ch. I, (5.4)]. �

7.3. Remark. Since HomDM(Z,Gm[0] ⊗ · · · ⊗ Gm[0]) ∼= Hn(k,Z(n)),
this provides an alternative proof of the isomorphism

KM
n (k) ≃ Hn(k,Z(n))

of [20, Thm. 3.4] or [12, Thm. 5.1] which avoids some specialization
arguments. By bookkeeping, one may check that the two isomorphisms
coincide.

The following lemmas appear to be crucial in the proof of the main
theorem.

7.4. Lemma. Let C be a smooth projective connected curve over k, and
let Z = {p1, . . . , ps} be a finite set of closed points of C. If k is infinite,
then we have KM

2 (k(C)) = {k(C)∗,O∗
C,Z}.

Proof. Let pi be the maximal ideal of A = OC,Z corresponding to pi.
Since A is a semi-local PID, we can choose generators π1, . . . , πs of
p1, . . . , ps. Since k is infinite, we can change πi into µiπi for suitable
µ1, . . . , µs ∈ k∗ to achieve πi + πj 6≡ 0 (mod pk) for i, j, k all distinct
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(indeed, the set of bad (µ1, . . . , µs) is contained in a finite union of
hyperplanes in k̄s). It follows that πi + πj ∈ A∗ for all i 6= j.
By the relation {f,−f} = 0 (f ∈ k(C)∗), we have KM

2 (k(C)) =
{A∗, A∗}+

∑

i<j{πi, πj}. Now the identity

{πi, πj} = {−πi/πj, πi + πj}

proves the lemma. �

7.5. Lemma. Let C be a smooth projective connected curve over k, and
r > 0. If k is an infinite field, then KM

r+1k(C) is generated by elements
of the form {a1, . . . , ar+1} where the ai ∈ k(C)∗ satisfy Supp(div(ai))∩
Supp(div(aj)) = ∅ for all 1 ≤ i < j ≤ r.

Proof. We proceed by induction on r. The assertion is empty when
r = 1. Suppose r > 1. Take a1, . . . , ar+1 ∈ k(C)∗. By induction, there
exist bm,i ∈ k(C)∗ such that Supp(div(bm,i)) ∩ Supp(div(bm,j)) = ∅ for
all i < j < r and m, and

{a1, . . . , ar} =
∑

m

{bm,1, . . . , bm,r}

holds in KM
r k(C). For each m, the above lemma shows that there exist

cm,i, dm,i ∈ k(C)∗ such that

Supp(div(cm,i)) ∩

(

r−1
⋃

j=1

Supp(div(bm,j))

)

= ∅

and that

{bm,r, ar+1} =
∑

i

{cm,i, dm,i}

holds in KM
2 k(C). Then we have

{a1, . . . , ar+1} =
∑

m,i

{bm,1, . . . , bm,r−1, cm,i, dm,i}

in KM
r+1k(C), and we are done. �

8. K-groups of Milnor type

We now generalize the notion of Milnor K-groups to arbitrary ho-
motopy invariant Nisnevich sheaves with transfers, although we shall
seriously use this generalization only for special, representable, sheaves.

8.1. Let F ∈ HINis. We shall call a homomorphism Gm → F a cochar-
acter of F . (By Proposition 4.3, the group HomHINis

(Gm,F) is canon-
ically isomorphic to F−1(k).)
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Let F1, . . . ,Fn ∈ HINis. Denote by St(k;F1, . . . ,Fn) the subgroup
of (F1 ⊗PST · · · ⊗PST Fn)(k) generated by the elements

(8.1) a1 ⊗ · · · ⊗ χi(a)⊗ · · · ⊗ χj(1− a)⊗ · · · ⊗ an

where χi : Gm → Fi, χj : Gm → Fj are 2 cocharacters with i < j,
a ∈ k∗ \ {1}, and am ∈ Fm(k) (m 6= i, j).

8.2. Definition. For F1, . . . ,Fn ∈ HINis, we write K̃(k;F1, . . . ,Fn)

for the quotient of (F1

M
⊗ . . .

M
⊗Fn)(k) by the subgroup generated by

TrE/k St(E;F1, . . . ,Fn), where E runs through all finite extensions of
k. This is the K-group of Milnor type associated to F1, . . . ,Fn.

8.3. The assignment k 7→ K̃(k;F1, . . . ,Fn) inherits the structure of
a cohomological Mackey functor, which is natural in (F1, . . . ,Fn). In
particular, the choice of elements fi ∈ Fi(k) = HomHINis

(Z,Fi) for
i = 1, . . . , r induces a homomorphism

(8.2) K̃(k;Fr+1, . . . ,Fn) = K̃(k;Z, . . . ,Z,Fr+1, . . . ,Fn)

→ K̃(k;F1, . . . ,Fn).

8.4. Lemma. Let F1, . . . ,Fn ∈ HINis. The image of St(k;F1, . . . ,Fn)
vanishes in K(k;F1, . . . ,Fn). Consequently, we have a surjective ho-
momorphism K̃(k;F1, . . . ,Fn) → K(k;F1, . . . ,Fn) and a composite
surjective homomorphism

(8.3) K̃(k;F1, . . . ,Fn) −→→ K ′(k;F1, . . . ,Fn)

Proof. This is a straightforward generalization of Somekawa’s proof
of [17, Th. 1.4]. We need to show the image of (8.1) vanishes in
K(k;F1, . . . ,Fn). By functoriality, we may assume that Fi = Fj =
Gm for some i < j and χi, χj are the identity cocharacters. Given
am ∈ Fm(k) (m 6= i, j) and a ∈ k∗ \ {1}, we put ai = 1 − at−1, aj =
1 − t ∈ Gm(k(P

1)) = k(t)∗. Then (P1, t, (a1, . . . , an)) is a relation
datum of Somekawa type and yields the vanishing of (8.1). �

8.5. Lemma. Let F1, . . . ,Fn ∈ HINis and let G ′ −→→ G ′′ be an epimor-
phism in HINis. If (8.3) is bijective for (G ′,F1, . . . ,Fn), it is bijective
for (G ′′,F1, . . . ,Fn).

Proof. Let G = Ker(G ′ → G ′′). The induced sequence

K̃(k;G,F1, . . . ,Fn)→ K̃(k;G ′,F1, . . . ,Fn)

(∗)
−→ K̃(k;G ′′,F1, . . . ,Fn)→ 0
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is a complex and (∗) is surjective. The corresponding sequence for K ′

is exact because of Theorem 6.2 and Lemma 3.3. The assertion follows
by a diagram chase. �

8.6. Lemma. Let E/k be a finite extension. Let F1, . . . ,Fn−1 ∈ HINis,
and let Fn be a Nisnevich sheaf with transfers over E. We have canon-
ical isomorphisms

K(k;F1, . . . ,Fn−1, RE/kFn) ∼= K(E;F1, . . . ,Fn),

K ′(k;F1, . . . ,Fn−1, RE/kFn) ∼= K ′(E;F1, . . . ,Fn),

K̃(k;F1, . . . ,Fn−1, RE/kFn) ∼= K̃(E;F1, . . . ,Fn).

Proof. The first isomorphism was constructed in [19, Lemma 4] when
F1, . . . ,Fn are semi-abelian varieties. The same construction works for
arbitrary F1, . . . ,Fn and also for K ′ and K̃. �

8.7. If F1 = · · · = Fn = Gm, (8.3) is bijective by Proposition 7.2. This
is false in general, e.g. if all the Fi are proper (Definition 10.1) and
n > 1. However, we have:

8.8. Proposition. a) Let F1 = F
′
1 ⊕F

′′
1 . Then the natural map

K̃(k;F1, . . . ,Fn)→ K̃(k;F ′
1, . . . ,Fn)⊕ K̃(k;F ′′

1 , . . . ,Fn)

is bijective.
b) Let T1, . . . , Tn be tori. Assume that, for each i, there exists an exact
sequence

0→ P 1
i → P 0

i → Ti → 0

where P 0
i and P 1

i are invertible tori (i.e. direct summands of permuta-
tion tori). Then (8.3) is bijective.

Proof. a) This is formal, as K̃(k;F1, . . . ,Fn) is a quotient of the mul-

tiadditive multifunctor (F1

M
⊗ . . .

M
⊗Fn)(k) (see 8.3).

b) Note that, by Hilbert’s theorem 90, the sequences 0 → P 1
i →

P 0
i → Ti → 0 are exact in HINis. Lemma 8.5 reduces us to the case

where all Ti are permutation tori. Then Lemma 8.6 reduces us to the
case where all Ti are split tori. Finally, we reduce to F1 = · · · = Fn =
Gm by a). �

8.9. Question. Is proposition 8.8 true for general tori?

8.10. Let T1, . . . , Tn be as in Proposition 8.8 b); let C/k be a smooth
projective connected curve, with function field K. From Proposition
8.8 b), Theorem 6.2, Theorem 4.8 b) and (4.3), we get a residue map

∂v : K̃(K;T1, . . . , Tn,Gm)→ K̃(k(v);T1, . . . , Tn)
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for any v ∈ C. These maps satisfy the reciprocity law of Proposition
4.6 and the compatibility of Lemma 4.2.

9. Reduction to the representable case

9.1. Proposition. The following statements are equivalent:
a) The homomorphism (7.1) is bijective for any F1, . . . ,Fn ∈ HINis.
b) Let F1 = · · · = Fn = hNis

0 (C ′) for a smooth connected curve C ′/k.
Then (7.1) is bijective.
c) Let C be a smooth projective connected curve over k, and let f :
C → P1 be a surjective morphism. Let C ′ = f−1(P1 \ {1}) and let
ι : C ′ → A be the tautological morphism, where A = hNis

0 (C ′). These
data define a relation datum of geometric type (C, f, (ι, . . . , ι)) for F1 =
· · · = Fn = A, and its associated element (6.1) is

(9.1)
∑

c∈C′

vc(f) Trk(c)/k(ι(c)⊗ · · · ⊗ ι(c)) ∈ A
M
⊗ . . .

M
⊗A(k).

Then the image of (9.1) in K(k;A, . . . ,A) vanishes.

Proof. Only the implication c) ⇒ a) requires a proof. Let (C, f, (gi))
be a relation datum of geometric type for F1, . . . ,Fn. We need to show
the vanishing of (6.1) in K(k;F1, . . . ,Fn).
By adjunction, the section gi : M(C ′) → Fi[0] induces a morphism

ϕi : A → Fi for all i = 1, . . . , n. Then

(9.2)
∑

c∈C′

vc(f){g1(c), . . . , gn(c)}k(c)/k = 0 in K(k;F1, . . . ,Fn)

because it is the image of (9.1) by the homomorphismK(k;A, . . . ,A)→
K(k;F1, . . . ,Fn) defined by (ϕ1, . . . , ϕn). �

10. Proper sheaves

10.1. Definition. Let F be a Nisnevich sheaf with transfers. We call
F proper if, for any smooth curve C over k and any closed point c ∈ C,
the induced map F(OC,c) → F(k(C)) is surjective. We say that F is
universally proper if the above condition holds when replacing k by
any finitely generated extension K/k, and C by any smooth K-curve.

10.2. Example. A semi-abelian variety G over k is proper (in the above
sense) if and only if G is an abelian variety. A birational sheaf F ∈
HINis in the sense of [9] is by definition proper. If C is a smooth proper
curve, then hNis

0 (C) is proper. Other examples of birational sheaves will
be given in Lemma 11.2 b) below.

In fact:



SOMEKAWA’S K-GROUPS AND VOEVODSKY’S HOM GROUPS 23

10.3. Lemma. Let F ∈ HINis. Then
a) F is proper if and only if F(C)

∼
−→ F(k(C)) for any smooth k-curve

C.
b) F is universally proper if and only if it is birational in the sense of
[9].

Proof. Let us prove b), as the proof of a) is a subset of it. Let X
be a smooth k-variety. By [23, Cor. 4.19], the map F(X) → F(U) is
injective for any dense open subset ofX . By definition, F is birational if
one may replace “injective” by “bijective”. So birational⇒ universally
proper. Conversely, assume F to be universally proper; let x ∈ X(1)

and let p : X → Ad−1 be a dominant rational map defined at x, where
d = dimX . (We may find such a p thanks to Noether’s normalization
theorem.) Applying the hypothesis to the generic fibre of p, we find that
F(OX,x)→ F(k(X)) is surjective. Since this is true for all points x ∈
X(1), we get the surjectivity of F(X) → F(k(X)) from Voevodsky’s
Gersten resolution [23, Th. 4.37]. �

The following proposition is not necessary for the proof of the main
theorem, but its proof is much simpler than the general case.

10.4. Proposition. Let F1, . . . ,Fn ∈ HINis. Assume that F1, . . . ,Fn−1

are proper. Then the homomorphism (7.1) is bijective.

Proof. Suppose (C, f, (gi)) is a relation datum of geometric type. It suf-
fices to show the element (6.1) vanishes in K(k;F1, . . . ,Fn). Let ḡi be
the image of gi in F(k(C)). By assumption we have ḡi ∈ Im(Fi(OC,c)→
Fi(k(C))) for all c ∈ C and i = 1, . . . , n− 1. Hence (C, h, (ḡi)i=1,...,n) is
a relation datum of Somekawa type (with i(c) = n for all c ∈ C). By
Corollary 4.11, the element (6.1) coincides with (5.2), hence vanishes
in K(k;F1, . . . ,Fn). �

11. Main theorem

11.1. Definition. Let F ∈ HINis. We say that F is curve-like if there
exists an exact sequence in HINis

(11.1) 0→ T → F → F̄ → 0

where F̄ is proper (Definition 10.1) and T is a torus for which there
exists an exact sequence

(11.2) 0→ RE1/kGm → RE2/kGm → T → 0

where E1 and E2 are étale k-algebras.

This terminology is justified by the following lemma:
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11.2. Lemma. a) If C is a smooth curve over k, then hNis
0 (C) is the

Nisnevich sheaf associated to the presheaf of relative Picard groups

U 7→ Pic(C̄ × U,D × U)

where C̄ is the smooth projective completion of C, D = C̄ \ C and U
runs through smooth k-schemes.
b) If X is a smooth projective variety over k, then, for any smooth
variety U over k, we have

(11.3) hNis
0 (X)(U) = CH0(Xk(U)),

where k(U) denotes the total ring of fractions of U . In particular,
hNis
0 (X) is birational.

c) For any smooth curve C, hNis
0 (C) is curve-like.

Proof. a) and b) are proven in [21, Th. 3.1] and in [6, Th. 2.2] re-
spectively. With the notation of a), we put E = H0(C̄,OC̄). Then c)
follows from the exact sequence

0→ RE/kGm → RD/kGm → hNis
0 (C)→ hNis

0 (C̄)→ 0

stemming from the Gysin exact triangle

M(D)(1)[1]→M(C)→M(C̄)
+1
−→

of [24, Prop. 3.5.4]. �

11.3. Remark. Let F ∈ HINis be curve-like. The torus T and proper
sheaf F̄ in (11.1) are uniquely determined by F up to unique isomor-
phism. Indeed, this amounts to showing that any morphism T → F̄
is trivial. This is reduced to the case T = RE/kGm as in (11.2), and
further to T = Gm by adjunction as in Lemma 8.6. Then we have
HomHINis

(Gm, F̄) ∼= F̄−1(k) = 0 by definition (see (4.1) and Definition
10.1).
We call T and F̄ the toric and proper part of F respectively.

11.4. Lemma. a) Let F ∈ HINis be curve-like with toric part T , and
let C be a smooth proper connected k-curve. Let Z be a closed subset
of C, A = OC,Z and K = k(C). Then the sequence

0→ T (A)→ T (K)⊕ F(A)→ F(K)→ 0

is exact.
b) Let F1, . . . ,Fn ∈ HINis be curve-like with toric parts T1, . . . , Tn, and
let C,Z,A,K be as in a). Then the group F1(K) ⊗ · · · ⊗ Fn(K) has
the following presentation:

Generators: for each subset I ⊆ {1, . . . , n}, elements [I; f1, . . . , fn]
with fi ∈ Fi(A) if i ∈ I and fi ∈ Ti(K) if i /∈ I.
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Relations:

• Multilinearity:

[I; f1, . . . , fi+f ′
i , . . . , fn] = [I; f1, . . . , fi, . . . , fn]+ [I; f1, . . . , f

′
i , . . . , fn].

• Let I ( {1, . . . , n} and let i0 /∈ I. Let [I; f1, . . . , fn] be a
generator. Suppose that fi0 ∈ Ti0(A). Then [I; f1, . . . , fn] =
[I ∪ {i0}; f1, . . . , fn].

Proof. a) Consider the commutative diagram of 0-sequences

0 −−−→ T (A) −−−→ F(A) −−−→ F̄(A) −−−→ 0




y





y

≀





y

0 −−−→ T (K) −−−→ F(K) −−−→ F̄(K) −−−→ 0.

By [the proof of] [23, Cor. 4.18], the top sequence is a direct sum-
mand of the bottom one, which is clearly exact. Thus the top sequence
is exact as well, and the lemma follows from a diagram chase. Then b)
follows from a). �

11.5. Proposition. Let C/k be a smooth proper connected curve, and
let v ∈ C,K = k(C). Then there exists a unique law associating to a
system (F1, . . . ,Fn) of n curve-like sheaves a homomorphism

∂v : F1(K)⊗ · · · ⊗ Fn(K)⊗K∗ → K̃(k(v);F1, . . . ,Fn)

such that

(i) If σ is a permutation of {1, . . . , n}, the diagram

F1(K)⊗ · · · ⊗ Fn(K)⊗K∗ ∂v−−−→ K̃(k(v);F1, . . . ,Fn)

σ





y

σ





y

Fσ(1)(K)⊗ · · · ⊗ Fσ(n)(K)⊗K∗ ∂v−−−→ K̃(k(v);Fσ(1), . . . ,Fσ(n))

commutes.
(ii) If [I, f1, . . . , fn] is a generator of F1(K) ⊗ · · · ⊗ Fn(K) as in

Lemma 11.4 b) for some Z containing v, with I = {1, . . . , i},
then

∂v(f1 ⊗ · · · ⊗ fn ⊗ f) = {f1(v), . . . fi(v), ∂v({fi+1, . . . , fn, f}K/K)}k(v)/k

where ∂v({fi+1, . . . , fn, f}K/K) is the residue of 8.10.

Proof. By Lemma 11.4 b), it suffice to check that ∂v agrees on relations.
Up to permutation, we may assume I = {1, . . . , i} and i0 = i+ 1. The
claim then follows from Proposition 4.10. �
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11.6. Lemma. a) Keep the notation of Proposition 11.5. Let L/K be
a finite extension; write D for the smooth projective model of L and
h : D → C for the corresponding morphism. Let Z = h−1(v). Write
Fn+1 = Gm. Then, for any i ∈ {1, . . . , n+ 1}, the diagram

F1(L)⊗ · · · ⊗ Fn+1(L)
(∂w)

//
⊕

w∈Z

K̃(k(w);F1, . . . ,Fn)

(Trk(w)/k(v))

��

F1(K)⊗ · · · ⊗ Fi(L)⊗ · · · ⊗ Fn+1(K)

u

OO

d
��

F1(K)⊗ · · · ⊗ Fn+1(K)
∂v // K̃(k(v);F1, . . . ,Fn)

commutes, where u is given componentwise by functoriality for j 6= i
and by the identity for j = i, and d is given componentwise by the
identity for j 6= i and by TrL/K for j = i.
b) The homomorphisms ∂v induce residue maps

∂v :

(

F1

M
⊗ . . .

M
⊗Fn

M
⊗Gm

)

(K)→ K̃(k(v);F1, . . . ,Fn).

which verify the compatibility of Lemma 4.2 b).

Proof. a) For clarity, we distinguish two cases: i < n+1 and i = n+1.
In the former case, up to permutation we may assume i = n. It is
enough to check commutativity on generators in the style of Lemma
11.4 b). Let Tl denote the toric part of Fl. In view of Lemma 11.4
a) and Proposition 11.5 (i), it suffices to check the commutativity for
x = f1 ⊗ · · · ⊗ fn ⊗ f when one of the following two conditions is
satisfied:

(i) for some j ∈ {0, · · · , n − 1}, fl ∈ Fl(OC,v) (1 ≤ l ≤ j), fl ∈
Tl(K) (j + 1 ≤ j ≤ n− 1), fn ∈ Tn(L) and f ∈ K∗.

(ii) for some j ∈ {0, · · · , n − 1}, fl ∈ Fl(OC,v) (1 ≤ l ≤ j), fl ∈
Tl(K) (j + 1 ≤ j ≤ n− 1), fn ∈ Fn(OD,Z) and f ∈ K∗.

Let w ∈ Z. If (i) holds, we have

∂w(u(x)) = {f1(w), . . . , fj(w), ∂w({fj+1, . . . , fn, f}L/L)}k(w)/k(w)

and

∂v(d(x)) = {f1(v), . . . , fj(v), ∂v({fj+1, . . . ,TrL/K(fn), f}K/K)}k(v)/k(v).

Observe that the restriction of fl(v) to k(w) is fl(w) for every w ∈ Z
and l = 1, · · · , j. Since the residue maps (∂w) of §8.10 verify the
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compatibility of Lemma 4.2, the commutativity for x follows. (Recall
that Trk(w)/k(v)({a1, · · · , an}k(w)/k(w)) = {a1, · · · , an}k(w)/k(v).)
If (ii) holds, we have

∂w(u(x)) = {f1(w), . . . , fj(w), ∂w({fj+1, . . . , fn−1, f}L/L), fn(w)}k(w)/k(w)

and

∂v(d(x)) = {f1(v), . . . , fj(v), ∂v({fj+1, . . . fn−1, f}K/K),TrL/K(fn)(v)}k(v)/k(v).

In addition to the observation mentioned in (i), we remark that the re-
striction of ∂v({fj+1, . . . , fn−1, f}K/K) to k(w) is ∂w({fj+1, . . . , fn−1, f}L/L)
for every w ∈ Z. The commutativity for x follows from Lemma 4.2 b)
applied to Fn.
If i = n + 1 the check is similar, the projection formula working on

the last variable.

Now b) follows from a) and the definition of
M
⊗ as in [7, p. 84]. �

11.7. Lemma. The homomorphisms ∂v of Lemma 11.6 induce residue
maps

∂v : K̃(K;F1, . . . ,Fn,Gm)→ K̃(k(v);F1, . . . ,Fn).

which verify the compatibility of Lemma 4.2 b).

Proof. Set Fn+1 = Gm. Let i < j be two elements of {1, . . . , n + 1}
and let χi : Gm → Fi, χj : Gm → Fj be two cocharacters. Let
f ∈ K∗ − {1}. We must show that ∂v vanishes on

x = f1 ⊗ · · · ⊗ χi(f)⊗ · · · ⊗ χj(1− f)⊗ · · · ⊗ fn+1

for any (f1, . . . , fn+1) ∈ F1(K) × · · · × Fn+1(K) (product excluding
(i, j)). By functoriality, we may assume that χi, χj are the identity
cocharacters. We distinguish two cases for clarity: j < n + 1 and
j = n + 1. But exactly the same argument works for both cases.
Presently we suppose j < n + 1.
Up to permutation, we may assume i = n − 1, j = n. Let us say

that an element (x1, . . . , xn−2) ∈ F1(K)× · · · × Fn−2(K) is in normal
form if, for each i, either xi ∈ Fi(Ov) or xi ∈ Ti(K). Then Lemma
11.4 reduces us to the case where (f1, . . . , fn−2) is in normal form. Up
to permutation, we may assume that fr ∈ Fr(Ov) for r ≤ r0 and
fr ∈ Tr(K) for r0 < r ≤ n− 2. Then

∂vx = {f1(v), . . . , fr0(v), ∂v({fr0+1, . . . , fn−2, f, (1−f), fn+1}K/K)}k(v)/k(v).

Let ϕv : K̃(k(v), Tr0+1, . . . , Tn) → K̃(k(v),F1, . . . ,Fn) be the ho-
momorphism induced by (f1(v), . . . , fr0(v)) via (8.2), and let ϕK :
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Tr0+1(K) ⊗ · · · ⊗ Tn(K) ⊗ K∗ → F1(K) ⊗ · · · ⊗ Fn(K) ⊗ K∗ be the
analogous homomorphism defined by (f1, . . . , fr0). The diagram

Tr0+1(K)⊗ · · · ⊗ Tn(K)⊗K∗ ∂v−−−→ K̃(k(v);Tr0, . . . , Tn)

ϕK





y

ϕv





y

F1(K)⊗ · · · ⊗ Fn(K)⊗K∗ ∂v−−−→ K̃(k(v);F1, . . . ,Fn)

commutes. But the top map factors through K̃(K;Tr0+1, . . . , Tn,Gm),
hence the desired vanishing.
Thus we have shown that the map ∂v of Proposition 11.5 vanishes on

St(K;F1, . . . ,Fn,Gm). The conclusion now follows from Lemma 11.6
b). �

11.8. Let F ∈ HINis and let C be a smooth proper k-curve. The support
of a section f ∈ F(k(C)) is the finite set

Supp(f) = {c ∈ C | ∂cf 6= 0}.

The following proposition generalizes Lemma 7.5:

11.9. Proposition. Let F1, . . . ,Fn be n curve-like sheaves, and let
C be a smooth proper k-curve. Put Fn+1 = Gm. If the field k is
infinite, the group K̃(k(C);F1, . . . ,Fn,Gm) is generated by elements
{f1, . . . , fn+1}k(D)/k(C) where D is another curve, D → C is a finite
surjective morphism and fi ∈ Fi(k(D)) satisfy

(11.4) Supp(fi) ∩ Supp(fj) = ∅ for all 1 ≤ i < j ≤ n.

Proof. Lemma 11.4 b) reduces us to the case where all Fi are REi/kGm

for some étale k-algebras Ei/k. Using the formula

(RE1/kGm,E1)E2
∼= RE1⊗kE2/E2

Gm,E1⊗E2

and Lemma 8.6 repeatedly, we are further reduced to the case all Fi

are Gm. Then it follows from Lemma 7.5. �

11.10. Lemma. Let C,D,F1, . . . ,Fn be as in Proposition 11.9. Let
fi ∈ Fi(k(D)) and v ∈ D. Put ξ := {f1, . . . , fn+1}k(D)/k(C), regarded as

an element of K̃(k(C);F1, · · · ,Fn,Gm).

(1) If v(fn+1 − 1) > 0, then we have ∂v(ξ) = 0.
(2) Suppose (11.4) holds. If v ∈ Supp(fi) for some 1 ≤ i ≤ n, then

we have

∂v(ξ) = {f1(v), . . . , ∂v(fi, fn+1), . . . , fn(v)}k(v)/k.

Proof. This follows from Corollary 4.11 and Proposition 4.10. �
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11.11. Proposition. Let C be a smooth projective connected curve, and
let F1, . . . ,Fn ∈ HINis be curve-like. The composition

∑

v∈C

Trk(v)/k ◦∂v : K̃(k(C);F1, . . . ,Fn,Gm)→ K̃(k;F1, . . . ,Fn)

→ K(k;F1, . . . ,Fn)

is the zero-map.

Proof. a) Assume first k infinite. If ξ = {f1, . . . , fn+1}k(D)/k(C) satisfies
(11.4), then we have

∑

v∈C Trk(v)/k ◦∂v(ξ) = 0 by Definition 5.1 and
Lemma 11.10 (2). Hence the corollary follows from Proposition 11.9.
b) If k is finite, we use a classical trick: let p1, p2 be two dis-

tinct prime numbers, and let ki be the Zpi-extension of k. Let x ∈
K̃(k(C);F1, . . . ,Fn,Gm). By a), the image of x in K(k;F1, . . . ,Fn)
vanishes in K(k1;F1, . . . ,Fn) and K(k2;F1, . . . ,Fn), hence is 0 by a
transfer argument. �

Finally, we arrive at:

11.12. Theorem. The homomorphism (1.1) is an isomorphism for any
F1, . . . ,Fn ∈ HINis.

Proof. It suffices to show the statement in Proposition 9.1 (3). With
the notation therein, the image of (9.1) in K(k;A, . . . ,A) is seen to be
∑

v∈C Trk(v)/k ◦∂v({ι, . . . , ι, f}k(C)/k(C)) by Lemma 11.10, hence trivial
by Proposition 11.11. �

12. Comparison with results of Raskind-Spiess/Akhtar

12.1. Let X be a smooth variety over k. Recall that for i, j ∈ Z the
motivic homology of X is defined by [5, §9]

Hi(X,Z(j)) := Hom
DM

eff
−
(Z(j)[i],M(X)).(12.1)

When j = 0, Hi(X,Z(0)) is isomorphic to the Suslin homology intro-
duced in [21] by [24, Corollary 3.2.7].

12.2. Proposition. Let X1, . . . , Xn be smooth varieties over k. Put
X = X1 × · · · ×Xn. For any r ≥ 0, we have an isomorphism

K(k; hNis
0 (X1), . . . , h

Nis
0 (Xn),Gm, . . . ,Gm)

∼
−→ H−r(X,Z(−r)),

where we put r copies of Gm on the left hand side.
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Proof. Using Lemma 3.3, we see

Hom
DM

eff
−
(Z, hNis

0 (X1)[0]⊗ · · · ⊗ hNis
0 (Xn)[0]⊗Gm[0]

⊗r)

∼=Hom
DM

eff
−
(Z,M(X1)⊗ · · · ⊗M(Xn)⊗Gm[0]

⊗r).

∼=Hom
DM

eff
−
(Z,M(X)(r)[r]) ∼= H−r(X,Z(−r)).

(Here we used Gm[0] ∼= Z(1)[1].) Now the proposition follows from
Theorem 11.12. �

12.3. Let X1, . . . , Xn be smooth projective varieties over k. Set X =
X1 × · · · × Xn. In view of Lemma 11.2 b), a result of Raskind-Spiess
[15, Theorem 2.2] can be stated as

K(k; hNis
0 (X1), . . . , h

Nis
0 (Xn)) ∼= CH0(X).

We can recover this isomorphism from Proposition 12.2, sinceH0(X,Z(0))
is canonically isomorphic to CH0(X) by [24, Corollary 4.2.6].

12.4. Let X be a smooth projective equidimensional variety over k.
Akhtar proved (in particular) in [1, Theorem 6.1] for any r ≥ 0

K(k; hNis
0 (X),Gm, . . . ,Gm) ∼= CHd+r(X, r),

where d = dimX and we put r copies of Gm on the left hand side. We
can recover this isomorphism from Proposition 12.2, sinceH−r(X,Z(−r))
is canonically isomorphic to CHd+r(X, r) by [24, Proposition 4.2.9].

12.5. Akhtar’s complete result concerns smooth quasi-projective vari-
eties. If char k = 0, we can give a common generalization of the results
of Raskind-Spiess (§12.3) and Akhtar (§12.4) as follows. Let first X be
a k-scheme of finite type, and let M c(X) := Cc

∗(X) ∈ DMeff
− be the

motive of X with compact supports [24, §4.1]. By [6, Th. 2.2], the
sheaf

hNis,c
0 (X) = H0(M

c(X))

is birational, with value

hNis,c
0 (X)(U) = CH0(Xk(U)) =: CH0(X)(U).

for U a smooth connected k-scheme.
Let now X1, . . . , Xn be n equidimensional k-schemes of finite type.

Theorem 11.12 gives an isomorphism

K(k;CH0(X1), . . . , CH0(Xn),Gm, . . . ,Gm)
∼
−→ Hom

DM
eff
−
(Z,F [0])

with

F = hNis,c
0 (X1)⊗HINis

· · · ⊗HINis
hNis,c
0 (Xn)⊗HINis

G
⊗HINis

r
m

= H0(C
c
∗(X1 × · · · ×Xn)(r)[r])
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so that the above isomorphism becomes

K(k;CH0(X1), . . . , CH0(Xn),Gm, . . . ,Gm)
∼
−→ CHd+r(X1 × · · · ×Xn, r)

with d = dimX1 + · · ·+ dimXn, by [24, Prop. 4.2.9].

Appendix A. Extending monoidal structures

A.1. Let A be an additive category. We write A–Mod for the category
of contravariant additive functors from A to abelian groups. This is a
Grothendieck abelian category. We have the additive Yoneda embed-
ding

yA : A → A–Mod

sending an object to the corresponding representable functor.

A.2. Let f : A → B be an additive functor. We have an induced
functor f ∗ : B–Mod→ A–Mod (“composition with f”). As in [SGA4,
Exp. 1, Prop. 5.1 and 5.4], the functor f ∗ has a left adjoint f! and a
right adjoint f∗ and the diagram

A
yA−−−→ A–Mod

f





y

f!





y

B
yB−−−→ B–Mod

is naturally commutative.

A.3. If f is fully faithful, then f! and f∗ are fully faithful and f ∗ is a
localization, as in [SGA4, Exp. 1, Prop. 5.6].

A.4. Suppose that f has a left adjoint g. Then we have natural iso-
morphisms

g∗ ≃ f!, g∗ ≃ f ∗

as in [SGA4, Exp. 1, Prop. 5.5].

A.5. Suppose further that f is fully faithful. Then g∗ ≃ f! is fully
faithful. From the composition

g∗g∗ ⇒ IdA–Mod ⇒ g∗g!

of the unit with the counit, one then deduces a canonical morphism of
functors

g∗ ⇒ g!.
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A.6. Let A and B be two additive categories. Their tensor product is
the category A ⊠ B whose objects are finite collections (Ai, Bi) with
(Ai, Bi) ∈ A× B, and

(A⊠ B)((Ai, Bi), (Cj, Dj)) =
⊕

i,j

A(Ai, Cj)⊗ B(Bi, Dj).

We have a “cross-product” functor

⊠ : A–Mod×B–Mod→ (A⊠ B)–Mod

given by

(M ⊠N)((Ai, Bi)) =
⊕

i

M(Ai)⊗N(Bi).

A.7. Let A be provided with a biadditive bifunctor • : A×A → A. We
may view • as an additive functor A ⊠A → A. We may then extend
• to A–Mod by the composition

A–Mod×A–Mod
⊠
−→ (A⊠A)–Mod

•!−→ A–Mod .

This is an extension in the sense that the diagram

A×A
yA×yA−−−−→ A–Mod×A–Mod

•×•





y

•





y

A
yA−−−→ A–Mod

is naturally commutative.
If • is monoidal (resp. monoidal symmetric), then its associativity

and commutativity constraints canonically extend to A–Mod.

A.8. Let A,B be two additive symmetric monoidal categories, and let
f : A → B be an additive symmetric monoidal functor. The above defi-
nition shows that the functor f! : A–Mod→ B–Mod is also symmetric
monoidal.

A.9. In §A.7, let us write •! =
∫

for clarity. Let P ∈ (A ⊠ A)–Mod.
Then

∫

P is the left Kan extension of P along • in the sense of [11,
X.3]. This gives a formula for

∫

P as a coend (ibid., Theorem X.4.1);
for A ∈ A:

(A.1)

∫

P (A) =

∫ (B,B′)

A(A,B •B′)⊗ P (B,B′).

In particular:

A.10. Proposition. Suppose A rigid. Then (A.1) simplifies as
∫

P (A) =

∫ B

P (B,A •B∗)
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where B∗ is the dual of B ∈ A. In particular, if P = M ⊠ N for
M,N ∈ A–Mod, we have for A ∈ A:

(A.2) (M •N)(A) =

∫ B

M(B)⊗N(A •B∗)

which describes M •N as a “convolution”.

Proof. Applying (A.1) and rigidity, we have

∫

P (A) =

∫ (B,B′)

A(A,B •B′)⊗ P (B,B′)

=

∫ (B,B′)

A(A •B∗, B′)⊗ P (B,B′)

=

∫ B

P (B,A •B∗)

because in the third formula, the variable B′ is dummy (this simplifi-
cation is not in Mac Lane!). �
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