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Abstract. If one considers only local neighborhoods for segmenting an
image, one gets contours whose strength is often poorly estimated. A
method for reevaluating the contour strength by taking into account
non local features is presented: one generates a fixed number of ran-
dom germs which serve as markers for the watershed segmentation. For
each new population of markers, another set of contours is generated.
”Important” contours are selected more often. The present paper shows
that the probability that a contour is selected can be estimated without
performing the effective simulations.

1 Introduction

Image segmentation aims at extracting from an image the contours of the objects
of interest. This task is extremely difficult and problem depending. We propose
here a stepwise approach, in which we first extract from the image all contours
which may be pertinent. These contours are the frontiers of a fine partition of the
image. Each tile represents a region which is homogeneous for some criterion. In
general these contours are far too numerous and the image is oversegmented. In a
second step one orders the contours according to their importance in the image.
A dissimilarity between adjacent tiles is estimated. Coarser partitions are then
produced by merging all regions whose dissimilarity is below a given threshold
;every time two regions are merged, one reevaluates their dissimilarity with their
neighborhood, and the process is stopped as soon some additional criterion is
satisfied. Each new fusion produces a finer partition ; these partitions are nested
and may be ranked according their coarseness. The weight of a contour is then
simply the first level of coarseness where this contour is no more present.

Such nested partitions are called hierarchies. There a two main classes of
methods for extracting the contours of interest from the hierarchy, in order to
get the final segmentation. In the first a functional is defined and the set of
contours maximizing this functional is extracted from the hierarchy [1,2]. An-
other approach to segmentation uses seeds or markers for the regions of interest
(including the background). Only the strongest contours separating each pair
of markers are retained. For the resulting segmentation to be satisfactory, two
conditions are to be met : a) the finest partition should contain all contours of
interest ; b) the strength of the contours has to be correctly estimated, otherwise,
the wrong contours separating markers will be selected.
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Unfortunately, some contours of objects are intrinsically weak since they
correspond to transitions between similar color shades for instance, or objects
having almost the same luminance as their background. When such objects are
large enough and appear on a clean background, they are nevertheless easily
recognized by the human eye, but not easily segmented by the computer. Local
methods will estimate these contours as very weak as noticed in [3]. We present
in this paper a set of new methods able to produce useful and reliable estimates
of the contour strength.

Authors of [4] have described such a method in the context of the water-
shed segmentation of gradient images. Random germs are spread all over the
image and server as markers for the watershed segmentation of a gradient im-
age. Large regions, separated by low contrast gradient from neighboring regions
will be sampled more frequently than smaller regions and will be selected more
often. On the other hand, high gradient watershed lines will often be selected
by the watershed construction, as there are many possible positions of markers
which will select them. So the probability of selecting a contour will offer a nice
balance between strength of the contours and size of the adjacent regions. The
method produces good results for multimedia types of images as well as for 3D
granular material but suffers from a major drawback : in order to obtain a ro-
bust estimation of the contour strength a relatively large number of simulations
has to be made, typically on the order of 50 simulations, implying the construc-
tion of 50 watershed. This paper shows how to obtain estimates of the contour
strength without simulations. Analyzing under which conditions a given piece
of contour will be selected by the watershed makes it possible to compute the
contour strength without the need of any simulation. More precisely, one has to
determine for each contour the two zones, separated by this contour, where a
marker has to be present in order for the contour to be selected.

The paper is organized as follows. In a first section we explain how to produce
a hierarchy to start with, obtained with the watershed transform ; we explain
why in this case, the strength of the contour is often badly estimated. We then
describe an efficient representation of a hierarchy, as a weighted tree. The last
part of the paper presents how to implement the stochastic watershed on this
tree, in order to estimate a contour strength compatible with the features one
desires to stress.

2 Producing and representing hierarchies

2.1 Producing a hierarchy with the watershed transform

The watershed associates to each regional minimum of a topographic surface its
catchment basin. Morphological segmentation applies the watershed transform
to the gradient of the image to segment. Like that, one obtains a fine partition
where each region is the catchment basin associated to a minimum of the gradient
image.
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Suppose now that this same topographic surface is flooded up to some level
A. A number of lakes are created, some of them are still regional minima of the
topographic surface, covering one or more minima of the initial surface ; others
are "full”, in the sense that the level of the lake reaches the lowest pass point
leading to another minimum: such lakes are not regional minima anymore. The
catchment basins of this flooded relief form a partition which is coarser than the
partition associated to the unflooded surface ; a number of adjacent regions of
the fine partition will have merged to form larger regions.

For a level p > A, the same process can be repeated, leading to a yet coarser
partition. Hence, the partitions formed by the catchment basins of a topographic
surface, for increasing levels of flooding of this surface, form a hierarchy. This
hierarchy can be represented by the fine partition formed by the catchment
basins of the unflooded surface plus a dissimilarity measure between adjacent
regions, equal to the flooding level for which these regions merge.

2.2 Dissimilarity associated hierarchies

More generally, we may associate a hierarchy to each partition for which a dis-
similarity between adjacent regions has been defined. Merging all regions with a
dissimilarity between some level A produces a coarser partition. For increasing
levels A the partitions become coarser and coarser, producing again a hierarchy.

2.3 Representing a hierarchy as a tree

In order to give a visual support to the algorithms presented below, we asso-
ciate to each hierarchy a topographic surface defined as follows. This surface is
completely flat, except along the edges of the tile of the finest partition /7 in the
hierarchy. A 0 thickness wall is erected along each piece of contour, with a height
equal to the dissimilarity between both adjacent regions. Fig.1 illustrates this
construction process. The bottom row shows the successive levels of a hierarchy,
where from level to level the most similar regions have merged ; the left most
image represents the finest partition. The central row of fig.1 presents the con-
struction of a tree representing the hierarchy. In the left most image, this tree
is reduced to isolated nodes, representing each a tile of the partition II. Each
region p; is represented by a node v; of the tree, weighted by the area of the
region.

We then flood this topographic surface in order to construct a tree represent-
ing the hierarchy. The upper row shows the topographic surface during flooding.
The left most level shows the walls separating the tiles ; the color of each tile
being the color of the source which will flood this tile. As the level of the flood
increases, it first reaches the level of the lowest wall : the two adjacent lakes
are merged and get a uniform color. As these lakes merge for the first time, an
edge is created between the corresponding nodes, with a weight equal to the
dissimilarity between both regions ; we write e;; for the edge linking the nodes
v; and vj.
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Level O Level 1 Level 2 Level 3

Fig. 1. Construction of the minimum spanning tree by flooding a topographic surface.

At level 2 in fig.1, again two lakes meet for the first time along a wall which
separated both lakes and a new edge is created. The same happens at level 3,
for which the surface is entirely flooded and the tree which has been constructed
spans all nodes. However there exists pieces of walls still emerging from the lakes.
As the flood further increases and reaches the level of such a wall, there are not
two lakes which meet for the first time, as it is the same lake which is present
on both sides of the wall ; in this case no edge is created.

In summary, as the flood reaches the level of a wall separating two regions
pi and p; of II, there are two possibilities : the lakes on each side of the wall are
distinct lakes which merge and an edge (e;;) is created between the correspond-
ing nodes v; and v; ; or both lakes form in reality one and the same lake, created
by mergings of lakes at a lower level, in this case, no edge is created between
them. This shows that regions may merge at a lower level than the dissimilarity
between them : it is sufficient that they belong to a chain of lakes which have
merged at lower flooding levels. Based on this remark, we may replace the initial
dissimilarity between adjacent regions by the flooding dissimilarity, that is the
level for which both regions belong to the same lake during flooding, which is
lower (in mathematical terms, this new dissimilarity is a distance, called sub-
dominant ultrametric distance associated to the initial dissimilarity). In Fig.2
we see on the left the initial image and in the center its gradient. The catch-
ment basins of the watershed constitute the finest partition ; the dissimilarity
between tiles being the lowest pass point on the gradient image between adjacent
regions. The right image shows as dissimilarity the flooding level for which the
tiles merge for the first time. The grey tone values on the right are well below
the values of the gradient image, specially for large regions, as it is the case for
the coat of the cameraman. On the contrary some small contrasted regions are
surrounded by extremely bright pieces of contour. This is due to the fact that
for larger regions, there are often some parts of the contour which are weaker,
leading to early mergings with neighboring regions.

Remark 1. The tree T defined above is the minimum spanning tree of the region
neighboring graph defined as follows : each region is represented by a node ;
adjacent nodes are linked by an edge with a weight equal to the dissimilarity
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Fig. 2. (a) Initial image. (b) Gradient value on the contour lines of a segmented image.
(c) Contours weighted by the level of flooding for which they disappear.

between both regions. Edges weights along paths of the minimum spanning tree
are minimizing the maximum dissimilarity between each pair of nodes [5]. The
construction of the flooding tree corresponds also to the single-linkage hierarchy
in the context of data clustering.

2.4 Marker based watershed segmentation

The flooding tree also plays an important role in the marker based watershed
construction. Some regions, called markers, are selected and play the role of
sources from which the topographic surface will be flooded. Their flow is such
that they create lakes with a uniform and growing altitude. Consider now the
evolution of a particular lake A; when the flooding level increases and reaches
the lowest pass point leading to another region. If there is a lake on the other
side, there are two possibilities : this lake is a distinct lake A;, produced by
another source and these lakes meet for the first time. The pass point where
they meet corresponds to an edge of the flooding tree. This edge will be assigned
a dissimilarity 1. If on the contrary the lake on the other side is the same lake
A;, originating from the same source, the corresponding edge does not belong
to the flooding tree. If the region on the other side is still dry, it will be flooded
by the overflood of our lake and they will form a unique lake ; in this case, the
corresponding edge belongs to the flooding tree, but does not correspond to a
contour of the marker based segmentation : it is assigned a dissimilarity 0. It is
noteworthy that all significant events such as mergings of lakes and overflood of
a lake into its neighbor take place along the tree constructed above.

The new binary distribution of weights on the flooding tree represents the
marker based segmentation. Cutting all edges with weight 1 produces a forest.
Each tree of this forest has its root in a distinct marker. The union of all regions
belonging to a same tree of the forest constitutes a region of the marker based
segmentation. In mathematical terms, marker based segmentation results in a
minimum spanning forest of the neighborhood graph, in which each tree is rooted
in a marker [5].
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3 Stochastic evaluation of the strength of the contours

3.1 Stochastic marker based watershed

The stochastic evaluation of the contour strength as defined by Angulo et al.
[4] assigns to each piece of contour the probability to appear as contour in a
watershed segmentation, with random markers. As we have seen, marker based
segmentation results in a forest derived from the flooding tree by cutting some
edges of this tree. In order to compute the probability that such an edge becomes
a contour we have to understand for which marker distribution this happens. We
have defined markers as particular regions of the hierarchy which act as sources.
One way to select such regions as markers is by drawing random punctual germs
onto the surface. If at least one germ falls in a given region, this region is selected
as markers ; a region without a germ is not a marker and will be flooded through
sources placed in other regions.

Let us first consider two markers m; and msy. Both markers become sources
which pour water. Their flow is such that they create lakes with a uniform and
growing altitude. These two lakes keep separated until they finally meet on the
lowest edge, at an altitude A separating them, which becomes a contour edge.
Each lake will have covered a number of catchment basins separated by walls
with a lower altitude than \. Both lakes L, and L, are separated from the rest
of the topographic surface by edges higher than A.

If one of the regions, for instance L; is without a marker, it can only be
flooded through a neighboring region. The lowest connecting edge to a neigh-
boring region is the edge ejs of altitude A. So if the region L, has a marker, it
will flood the region L; through ejo, which is not selected as a contour edge.

If both regions Ly and Ly are without markers, then the union of both regions
L1U Ly will be flooded from outside, through a pass point of altitude greater than
A and again the edge e;2 between both regions will not be selected as contour
edge.

The same analysis may now be reformulated using the flooding tree. Consider
and edge e1 with an altitude A of the tree, joining two nodes v, and v,. Cutting
all edges of the tree with an altitude higher than or equal to A produces a forest.
Let us call T} and T5 the trees of the forest containing respectively the nodes v
and vs. The edge e12 will be a contour edge in a marker based segmentation, if
and only if each of the trees 77 and T5 has at least one node which is a marker.

The next section will propose several modes for promoting randomly a node
to a marker in the tree. For each mode, we then compute the probability of the
edges of the tree to become contour edges.
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3.2 Contour strength for various random distribution of markers

Uniform Poisson distribution of germs on the surface : the surfacic
stochastic watershed. We first use points as germs. The simplest distribution
of germs is a Poisson distribution. For a fixed number N of germs this reduces
to a uniform distribution of N germs on the topographic surface. As soon one
or more germs fall into a region R; of the fine partition I7, the corresponding
node is selected as marker. The probability that a germ falls into a region A of
area A obeys a binomial distribution of probabilities p = % and 1 — p, where S
is the area of the domain occupied by the function f. So the probability that

out of N germs no one falls into 4 is (1 — 2)".

Using the same notations as above, we consider an edge e of altitude A. We
cut all edges higher or equal than A and consider the trees T and T of the forest
adjacent to e12. The edge e15 is a contour edge in a marker based segmentation,
if and only if each of the trees T7 and Ty adjacent to e has at least one node
which is a marker. This means that at least one germ has fallen in each of the
regions L1 and Ly spanned by both trees. We have to compute the probability
of the event {there is at least one germ in L;} and {there is at least one germ
in Lo}. The opposite event is the union of two non exclusive events {there is no
germ in L1} or {there is no germ in Ly}. Its probability is p{there is no germ in
L1} + p{there is no germ in Lo} - p{there is no germ in L; U Ly}, which is:

— N —\ N -— N
. L1 L2 L1+L2
T I IR (===

As we have assigned to each node v; of the tree T' the area of the underlying
region, the area L is simply the sum of the weights of the nodes of the tree T}
in the forest obtained after cutting the edges above A. We write meas(7}) = L;.

The volumic stochastic watershed. In order to give more importance to
the contrast an alternative measure may be used: we suppose that the marker
is not thrown on the surface but within the volume of the lakes. Considering
again the edge e;; of altitude A, the adjacent regions spanned by the subtrees 1}
and T, may be flooded up to level A and will then be covered by two lakes L
and Lo with volumes (V3 = A x meas(T})) and (Vo = A x meas(T3)). If A is the
highest dissimilarity between two regions of the hierarchy, the volume occupied
by a lake covering the total surface is (V = A x meas(T")). The probability that
e;; is selected as an edge is then:

i\ v\ i+ \ Y
P =1—-(1—— —(1—- = 1—-A—- . 2
S (e O I (o O IR CRE )

The surfacic stochastic watershed with non punctual seeds. In what
precedes we have imagined punctual seeds, able to fall at any point of both
regions L; and L; adjacent to the edge e;;. If the seeds are not points, but a set
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B, the probabilities will be changed, as the probability that the set B falls within
a region X will be proportional, not to the area of X, but to the area X © B of
the set X eroded by the structuring element B. This value does depend upon
the shape of X and we have to measure it on the initial image.

Mutatis mutandis, the area stochastic watershed will weight the edges with
the probability:

_ N N N

Ple1o)=1- 1_L1@B _ 1_L2@B N 1_L1@B+L2@B .
, S -

(3)

As previously we observe that this probability becomes 0 if a regions becomes
too small for containing the set B.

Likewise, the volumic stochastic watershed will weight the edges with the
probability:

where V] = w(e) x L1 © B and Vj = w(e) x Ly © B.

Results. Fig.3 illustrates the results one obtains for the different methods.
Fig.3(a) and (b) show the initial image and the level for which the contours van-
ish during uniform flooding. Fig.3(c) shows the result of the surfacic stochastic
watershed where one uses random points spread over the surface as seeds. If the
random points are spread within the volume of the lakes, one obtains Fig.3(d),
with large regions and small ones if they are contrasted enough. For balls of a
given size taken as random seed, all regions where the ball cannot enter vanish
yielding the segmentation of Fig.3(e).

Fig.3(c) and Fig.3(e) compares the stochastic watershed where points are
used as markers with the result obtained if one uses disks as seeds. Notice that
in this last case, many small regions have vanished, but not all ; some small
regions are created as they lie between the contours of larger regions.

Furthermore, the methods presented so far start all with a hierarchy defined
by a set of weights on the minimum spanning tree and produce a new set of
weights which express a preference for a type of regions compared to others
(large or contrasted regions for instance). This homogeneity in the representa-
tion of the hierarchies permits to chain the process. Fig.3(f) has been obtained
by computing first a surfacic stochastic watershed and on the results compute a
stochastic watershed obtained with disks as markers. One sees some difference
with Fig.3(e) where only the last stochastic watershed has been used. Figure 4

illustrates some hierarchies of contours obtained on images of the Berkeley Seg-
mentation Dataset [6]. Segmentation results were obtained by thresholding the
contour strength map obtained with volumic stochastic watershed with point
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seeds. The Volumic stochastic measures permits to obtain a good trade-off be-
tween size and contrast of the object to be detected.

Fig. 3. (a) Initial image. (b) Flooding level for which the contours disappear. (c) Sur-
facic stochastic watershed with point seeds. (d) Volumic stochastic watershed with
point seeds. (e) Surfacic stochastic watershed with disks as seeds. (f) Stochastic water-
shed with point seeds followed by a stochastic watershed with disk seeds.

4 Conclusion

The stochastic framework is excessively rich as it permits infinite variations :
other probability laws for the distribution of seeds, random choice of seeds be-
longing to a family of shapes, regionalised distribution of seeds according some
properties of the domain they will fall [7], etc. An additional nice feature, is
that the result always is a probability distribution. That is, whatever the rules
which are adopted, the edges get weights between 0 and 1, which makes it easy
to combine hierarchies. Given two hierarchies H; and Hs with distinct dissim-
ilarities, it is possible to combine them, by taking for each edge the minimum
(resp. maximum) of its dissimilarity in H; and Ho.

Furthermore, these reevaluation methods of the contours may be chained:
use a first distribution of random germs and on the resulting hierarchy, apply
a second and then a third, before, ultimately use a marker based segmentation
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Fig. 4. Volumic stochastic watershed with point seeds. Segmentation is obtained by
thresholding the contour strength.

with markers introduced either in an interactive way or through an automated
analysis of the scene.
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