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Chapter 1
Verified global optimization for estimating the
parameters of nonlinear models

Michel Kieffer (�), Mihály Csaba Markót, Hermann Schichl, and Eric Walter

Abstract Nonlinear parameter estimation is usually achieved via the minimization
of some possibly non-convex cost function. Interval analysis allows one to derive
algorithms for the guaranteed characterization of the set of all global minimizers of
such a cost function when an explicit expression for the output of the model is avail-
able or when this output is obtained via the numerical solution of a set of ordinary
differential equations. However, cost functions involved in parameter estimation are
usually challenging for interval techniques, if only because of multi-occurrences of
the parameters in the formal expression of the cost. This paper addresses param-
eter estimation via the verified global optimization of quadratic cost functions. It
introduces tools for the minimization of generic cost functions. When an explicit
expression of the output of the parametric model is available, significant improve-
ments may be obtained by a new box exclusion test and by careful manipulations
of the quadratic cost function. When the model is described by ODEs, some of the
techniques available in the previous case may still be employed, provided that sen-
sitivity functions of the model output with respect to the parameters are available.

1.1 Introduction

Estimating the parameters of models from experimental data often involves the op-
timization of possibly non-convex cost functions. Let y(ti) be the vector of all mea-
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surements collected on the system to be modeled at some time instant ti, i = 1, . . . ,N.
The model output ym(x, ti) at some instant ti may consist of an explicit expression
involving the vector x of parameters to be estimated, or it may require the solution
of sets of ordinary differential equations (ODEs) containing x such as

dz
dt

= g(z,x, t) , z(t0) = z0, (1.1)

where z is some state vector with initial value z0 at t0 and with

ym(x, t) = h(z,x, t) .

A standard procedure for estimating x (see, e.g., [9,38] and the references therein)
is via the minimization of a cost function f (x), which may be deduced from proba-
bilistic assumptions on the noise affecting the measurements and on the parameters.
Often, this cost function is quadratic, for instance

f (x) = (ym (x)−y)T (ym (x)−y) , (1.2)

where
yT

m (x) =
(
yT

m(x, t1), . . . ,yT
m(x, tN)

)
(1.3)

and
yT =

(
yT(t1), . . . ,yT(tN)

)
. (1.4)

When ym (x) is linear in x, the minimization of a quadratic f (x) is, up to nu-
merical stability issues, a trivial matter. Unfortunately, many models are actually
nonlinear in x, e.g., knowledge-based models such as those encountered in physics,
chemistry, or biology. As a consequence, f (x) may admit in some cases several
global minimizers that are all equally valid estimates. The usual local methods (such
as those based on Gauss-Newton or conjugate gradient algorithms) then converge at
best to a local minimizer of the cost function. Global optimization methods based
on random search (for instance simulated annealing or genetic algorithms) cannot
guarantee to locate all global minimizers in finite time.

Guaranteed optimization algorithms based on interval analysis [5,11,22,23,39],
on the other hand, are able to derive proven statements about the global minimum of
the cost function and associated set of global minimizers. However, cost functions
involved in parameter estimation are usually challenging for interval techniques,
due, e.g., to multi-occurrences of the vector of parameters in the expression of the
cost function [11, 22]. Getting tight enclosures of cost functions over large boxes
is then very difficult. This, combined with the curse of dimensionality, restrains the
dimension of problems, which may be addressed using such guaranteed techniques.

The aim of this chapter is to provide some results which may help improving the
efficiency of global optimization using interval techniques, especially in the case of
cost functions used in parameter estimation. Tools for the guaranteed minimization
of generic cost functions are first recalled in Section 1.2. Section 1.3 then focuses
on techniques that significantly improve global optimization algorithms, such as
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constraint propagation, a new box exclusion test, and symbolic manipulations of the
cost function. Such manipulations are possible when an explicit expression of the
output of the parametric model is available. When the model is described by ODEs,
some of the techniques introduced in Sections 1.2 and 1.3 may still be employed,
provided that sensitivity functions of the model output with respect to the parameters
are available, see Section 1.3.4. Improvements provided by the tools presented to the
problem of parameter estimation via verified global optimization of quadratic cost
functions are illustrated on a simple compartmental model in Section 1.4.

1.2 Basics of guaranteed optimization

This section recalls some well-known methods for guaranteed optimization that are
relevant for nonlinear parameter estimation.

1.2.1 Problem formulation

Consider the generic bound-constrained optimization problem

min f (x),
s.t. x ∈ [x]0,

(1.5)

where [x]0 ∈ IRn is some search box, and the objective function f : Rn → R is at
least twice continuously differentiable on [x]0. The problem of parameter estimation
via minimization of some cost function may be written as (1.5) , provided that a
(possibly very large) initial search box [x]0 has been chosen.

As already mentioned in the introduction, the aim of deterministic global opti-
mization is to find rigorous interval enclosures to all global minimizers and to the
global minimum f ∗. The most widely used scheme of interval-based global opti-
mization methods is the branch–and–bound (B&B) technique introduced by [12,14]
for discrete problems and for continuous problems by [18,35]. There have been nu-
merous improvements, see [22] for a recent survey.

1.2.2 Why is global optimization for parameter estimation difficult?

Assume, for the sake of simplicity, that y(ti) is scalar, so the objective function (1.2)
may be rewritten as

f (x) =
N

∑
i=1

(ym(x, ti)− yi)2. (1.6)
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The cost function (1.6) consists of N squared differences between ym(x, ti) and yi.
Each of these squares may involve several occurrences of the parameter vector x,
leading to at least N occurrences of x in the expression of (1.6). Getting accurate
inclusion functions for f thus may be particularly challenging. Moreover, the func-
tion evaluation near the minimizers is often dominated by cancellation since the
yis and the ym(x, ti)s are often magnitudes higher than their difference. This often
causes severe overestimation in the interval evaluations, which slows down branch-
and-bound methods and increases the cluster effect.

1.2.3 Interval branch–and–bound methods

In general, interval B&B involves the following main iteration loop (the terminology
working list refers to the subboxes waiting for further processing, i.e., those located
at open leaves of the B&B tree):

1. Step 1: select a subbox [x]⊆ [x]0 from the working list;
2. Step 2: split [x] into subboxes [x]i, i = 1, . . . ,k;
3. Step 3: for each i run acceleration tests to eliminate [x]i or parts of it that cannot

contain a global minimizer;
4. Step 4: if the stopping criterion holds for the remaining part of [x]i, then store it

in the result list R, else store the remaining part of [x]i in the working list;
5. Step 5: update the best known upper bound f̃ of the global minimum using in-

formation acquired from [x]i.

Initially the working list contains only [x]0. The main loop is executed until the
working list becomes empty. At the end of the algorithm it is ensured that enclo-
sures of all global minimizers are in R, and the global minimum is in the interval
[min[x]∈R inf( f ([x])), f̃ ].

For all steps of the B&B algorithm, there exist a number of tools. Here we will
focus on describing those tools that were most successful in solving nonlinear least
squares problems using the coco gop ex solver (see Section 1.4.1.4). However,
the methods presented in what follows are quite general and can be applied to solv-
ing all kinds of global optimization problems, see [17].

1.2.3.1 Operations on the working list

The subbox to be subdivided is selected as the one with the smallest lower bound
of interval enclosure for the cost (Moore-Skelboe rule). The boxes are split into two
subboxes in a direction determined by a first order merit function given by Csendes
and Ratz (rule ‘B’ in [24]). The stopping criterion used in Step 4 is diam( f ([y])) < ε

for a pre-specified tolerance value ε .
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1.2.3.2 Tools to update f̃

For every subbox we compute sup( f ([c])) for the interval enclosure of the center c
to update f̃ . Furthermore, if sup( f ([c])) < f̃ , we run a local search from c.

1.2.3.3 Tools to prune or erase [x]

Most of the effort for solving a global optimization problem is spent in this phase of
the solver. The effectivity of the implemented pruning or reduction techniques for
subboxes is essential for the efficiency of the B&B solver.

Bound (suboptimality) test

If inf(Vf ([x])) > f̃ , then the box [x] cannot contain a global minimizer and may
be discarded. For this test an enclosure f ([x]) of the range Vf ([x]) of the objective
function on [x] is computed by interval evaluation. There are several methods for
computing enclosures for the values taken by a function over a box, naive inter-
val arithmetic being the one that requires the least effort. Naive interval arithmetic
usually overestimates the range, however, and the overestimation is proportional to
the radius of [x]. This is a problem, since it often makes it impossible to eliminate
boxes that are close to a global minimizer without further splitting them. Therefore,
estimation methods with higher order approximation properties, i.e., overestima-
tion being O(rad([x]))p for p > 1, are needed to remove boxes close to a global
minimizer. Centered forms and higher-order centered forms provide such estimates.
They can be based on interval gradients or higher interval derivatives or on slopes
of first or higher order (see [21, 29, 33]). Typical centered forms used to get tigher
enclosures are

Vf ([x])⊆ f (z)+∇ f ([x])T ([x]− z)

Vf ([x])⊆ f (z)+(∇ f (z)T + 1
2 ([x]− z)T

∇
2 f ([x]))([x]− z),

Vf ([x])⊆ f (z)+
(
∇ f (z)T + 1

2 ([x]− z)T (
∇

2 f (z)

+ 1
3 ∑

i
∇

3
i:: f ([x])([x]i− zi)

))
([x]− z),

where z is usually chosen as the center of the box [x], and the notation : indicates
that all possible values of the index should be considered. The first has quadratic,
the next cubic, and the last one quartic approximation property.

Here, the naive interval arithmetic and the first two centered forms above have
been considered.
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Monotonicity test

If 0 /∈V∇i f ([x]) for some i, then [x] cannot contain a global minimizer in its interior.
The range of the gradient over some [x] can also be enclosed using various methods.
It can be computed by forward and backward algorithmic differentiation [28, 33],
the forward evaluation giving better enclosures but taking an effort of O(n) func-
tion evaluations, while the backward method produces slightly worse enclosures
but requires an effort of only about two function evaluations. For both approaches
the overestimation is O(rad([x])). Centered forms can be used to get higher-order
approximation properties for the gradient as well, thus increasing the effectiveness
of the monotonicity test for small boxes close to a critical point. Typical centered
forms are

V∇ f ([x])⊆ ∇ f (z)+∇
2 f ([x])([x]− z),

V∇ f ([x])⊆ ∇ f (z)+
(
∇

2 f (z)+ 1
2 ∑

i
∇

3
i:: f ([x])([x]i− zi))

)
([x]− z),

where again z usually is chosen as the center of the box [x]. The first centered form
has quadratic and the second cubic approximation property. Here, the first centered
form update of the interval gradient has only been used, whenever an interval Hes-
sian has been computed.

Interval Newton test

A Gauss-Seidel iteration is used to solve the interval system

∇
2 f ([x]) · ([x]− c)+∇ f (c) = 0, (1.7)

with c ∈ [x], to verify the uniqueness or non-existence of a stationary point in [x]
[21]. The interval Newton test can shrink [x] or return a set of subboxes of [x] that
needs to be considered further in place of [x].

Constraint propagation (CP)

Since every global minimizer x∗ of (1.5) has to satisfy f (x∗) ≤ f̃ , the additional
constraint f (x) ≤ f̃ may be introduced. We attempt to reduce [x] by propagating
this information back to the variables. An especially efficient method for constraint
propagation is the PAID propagator [36], see Section 1.3.1. It is based on coordinat-
ing forward evaluation and backward propagation steps to reduce the bounds on all
variables and intermediate nodes as much as possible.

For the least squares situation (1.6), the constraint propagator will, e.g., automat-
ically take into account the N additional constraints



1 Verified global optimization for parameter estimation 7

ym(x, ti)− yi ∈
[
−
√

f̃ ,
√

f̃
]
, (1.8)

which may be deduced from the fact that if f (x)≤ f̃ , then each term of the sum in
(1.6) has to satisfy (ym(x, ti)− yi)

2 ≤ f̃ , which may be rewritten as (1.8).

Exclusion/inclusion boxes

To avoid the cluster effect [10] higher-order methods are necessary. These are usu-
ally invoked right after a new approximate local minimizer x̃ has been detected, in
order to provide a pair of boxes x̃ ∈ [x]i ⊆ [x]e. In the inclusion box [x]i uniqueness
of the local optimizer is proved, along with non-existence of another local optimizer
in the interior of the exclusion box [x]e. This box [x]e then significantly reduces the
size of the result list, since boxes are pruned from the search tree, whenever they
are interior to [x]e. A more detailed description of this technique can be found in
Section 1.3.2.

1.3 Improving the efficiency of guaranteed techniques

1.3.1 The PAID constraint propagator

For the PAID propagator the cost function needs to be represented as a directed
acyclic graph of elementary operations, called the model DAG in what follows. The
Forward-Backward Propagation on DAGs (FBPD) algorithm is used to compute
and improve enclosures of the ranges of all nodes in the DAG. Let N be a node
that has k children {Ci}k

i=1, denoting its input variables. The elementary operation
represented by N is a function g : Dg → R, where Dg ⊆ Rk denotes the domain of
definition of g. Hence, the relationship between N and its children can be written as
N = g(C1, . . . ,Ck). Let [g] be an inclusion function of g. The forward evaluation at
node N using the inclusion function [g] is defined as

FE(N, [g])≡ {D(N) := D(N)∩ [g]} , (1.9)

where D(M) denotes the currently best known enclosure for node M. This forward
evaluation computes the enclosure of the range of a node based on the enclosures
of the ranges of its children (its input variables) using an inclusion function of the
elementary operation representing that node.

The backward propagation prunes the enclosures associated with children based
on the constraint range of their parent. In other words, for each child Ci the back-
ward propagation evaluates the i-th projection of the relation N = g(C1, . . . ,Ck) on
the input variable represented by Ci. We call it the i-th backward propagation at
N and denote it by BP(N,Ci). We define the following sequence as the backward
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propagation at node N
BP(N) = {BP(N,Ci)}k

i=1. (1.10)

Although the exact projection of relations is expensive in general, an evaluation
of the exact projection of elementary operations can be obtained at low cost. Indeed,
assume that from the relation N = g(C1, . . . ,Ck) one can infer an equivalent relation
Ci = hi(N,{C j}k

j=1) for some i ∈ {1, . . . ,k}, where hi is a function from Rk to R.
Let [hi] be an inclusion function of hi. The i-th backward propagation can then be
obtained as follows

BP(N,Ci)≡
{

D(Ci) := D(Ci)∩ [hi]
(
D(N),{D(C j)}k

j=1

)}
. (1.11)

The FBPD algorithm coordinates forward and backward steps through the model
DAG by a proper ordering of the nodes. The overall scheme is independent of the
type of enclosure chosen at each node. Most usual are interval enclosures of the
range, but interval sets, affine enclosures, and centered-form enclosures, as well
as combinations of them are also possible. The complete algorithm can be found
in [36].

The PAID propagator can also be used for bound and monotonicity tests, es-
pecially if it is combined with the Karush-John generator which computes a DAG
representation of the first order optimality conditions. This is very efficient for gen-
eral nonlinear problems with equality and inequality constraints. However, in the
case of nonlinear least squares problems, the efficiency is limited, and for the pa-
rameter estimation problem considered the overall solution time is actually about
30% higher if PAID is enabled for checking the first order optimality conditions.

1.3.2 Exclusion and Inclusion Boxes

Close to a global minimizer it is usually difficult to remove subboxes generated
during the splitting phase. In [10], it was shown that avoiding the cluster effect
requires at least second-order methods. For very flat problems, such as nonlinear
least-squares problems, close to global minimizers second order information is usu-
ally not enough. Based on [32], we have developed in [31] a third-order method
that computes large exclusion boxes for optimization problems. For coco gop ex
we have implemented the special case for unconstrained problems, which can be
applied for optima in the interior of [x]0.

Let z be an approximate local solution of (1.5) in the interior of [x]0. We compute
the preconditioning matrix C ≈ (∇2 f (z))−1 as the inverse of the point Hessian at
z∈ [x] for some box [x]⊆ [x]0. Using this we compute the following estimates (using
directed rounding and interval arithmetic)
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b≥ |C∇ f (z)|, B0 ≥ |C∇
2 f (z)− I|,

Bi jk ≥ 1
2

∣∣∣∣∑
l

Cil∇
3
l jk f ([x])

∣∣∣∣,
as tightly as feasible, where | · | denotes the componentwise absolute value. Choose
some v ∈ Rn with v > 0 and set w := (I−B0)v, ai := ∑ j,k v jBi jkvk. If D j = w2

j −
4a jb j > 0 for all j, define

λ
e
j :=

w j +
√

D j

2a j
, λ

i
j :=

b j

a jλ
e
j
, λ

e := min
j

λ
e
j , λ

i := max
j

λ
i
j.

Theorem 1. Let all estimates above be satisfied for the box [x]. If now D j > 0 for all
j and λ e > λ i then there exists a unique critical point x∗ for (1.5) in the inclusion
region [x]i := [z− λ iv,z + λ iv]∩ [x]. This is the only critical point of (1.5) in the
interior of the exclusion region [x]e := [z−λ ev,z+λ ev]∩ [x].

Proof. Only a general idea of the proof is provided here, see [31] for more details.
The result follows from [32, Theorem 4.3] if we set f = ∇ f (x).

In [8] and [34] it was shown that existence and uniqueness of a zero of a C1-
function f : Rn→ Rn in the box [x] may be proved using the Krawczyk operator

K0([x],z) := z−Cf(z)− (C∇f([x])− I)([x]− z),

where I is the identify matrix and C is some arbitrary matrix. More precisely, if
K0([x],z) ⊆ [x] then [x] contains a zero of f. If K0([x],z) ⊆ int([x]) then there is a
unique zero in [x].

Instead of K0 we can consider the second-order Krawczyk-type operator [31]

K([x],z) := z−Cf−

(
C∇f(z)− I+

n

∑
k=1

([x]k− zk)T
∇

2f([x])::k

)
([x]− z). (1.12)

Then K has the same properties as K0 with regard to proving existence and unique-
ness of zeros of f.

A critical point x∗ for f in (1.5) satisfies ∇ f (x∗) = 0, so we set f = ∇ f (x).
Then we prove that for every z ∈ [x] and every critical point x∗ ∈ [x] the deviation
s := |x∗− z| satisfies

0≤ s≤
(

B0 +∑skB::k(x)
)

s+b.

This is then used to prove that for u ∈ Rn, u > 0, with(
B0 +∑ukB::k

)
u+b < u (1.13)

the set {x ∈ [x] | |x− z| ≤ u} contains a unique critical point of f. Finally, to find
such an u we choose an arbitrary v ∈ Rn, v > 0 and set u := λv. Equation (1.13)
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then leads to a quadratic equation in λ for every component of u, which in turn
proves the theorem. �

The Krawczyk-type operator (1.12) takes for f = ∇ f the form

K([y],z) = z−C∇ f (z)− (C∇
2 f (z)− I+

n

∑
k=1

([y]k− zk)T
∇

3
::k f ([y]))([y]− z).

This operator can be used after computing the inclusion/exclusion box pair in the
third-order iteration [y]k+1 := K([y]k,mid([y]k))∩ [y]k with [y]0 = [x]i to further
shrink the size of the inclusion box. Usually, this contracts the inclusion box in a
few iterations to the limit accuracy of floating point computations. Since third-order
information is used in the iteration, on the final inclusion box the enclosure of the
global minimum can be computed by the third order centered form

Vf ([x])⊆ f (z)+
(
∇ f (z)T + 1

2 ([x]− z)T (
∇

2 f (z)

+ 1
3 ∑

i
∇

3
i:: f ([x])([x]i− zi)

))
([x]− z).

1.3.3 Methods requiring an explicit expression for the cost function

Overestimation is a serious problem when solving nonlinear least-squares problems.
In many cases the interval range enclosures overestimate the true range by several
orders of magnitude due to the structure of the functions ym(x, ti) in (1.6) and the
severe numerical cancellation in evaluating ym(x, ti)− yi if x is close to a global
minimizer.

Things get even more difficult if the evaluation of ym itself is already hampered
by numerical cancellation. This usually is the case if ym is a linear combination of
exponentials, as when the ODE (1.1) is linear in the state z.

To increase the efficiency of the solution process, therefore, it is necessary to find
an expression for ym that causes as little cancellation as possible. If it, e.g., can be
tweaked a little bit by factoring out such that it ends up as a product of univariate
functions (even if they are fairly complicated and depend on more complicated pa-
rameters) then numerical cancellation will be significantly smaller, and the interval
evaluations will produce less overestimation.

In view of this effect, and partially motivated by the present study, the CO-
CONUT environment provides special tools for the optimal interval evaluations, i.e.
evaluations with no overestimation, of one-dimensional functions and their higher-
order derivatives, see [1, 27] and Section 1.4.1.4. User defined one-dimensional
functions are represented as individual nodes in the model DAGs (see Section 1.3.1).
If the necessary analytic properties of the functions are supplied (domain of defini-
tion, explicit derivatives up to the specified order, limit points and values, extremal
points and the associated extrema, inflexion points, poles, etc.), then optimal inter-
val evaluations can be obtained. Furthermore, inverse function evaluations on such



1 Verified global optimization for parameter estimation 11

one-dimensional nodes (i.e., the evaluation of an enclosure of all x values for which
f (x) ∈ [r] holds for a fixed [r]) can also be performed using a one-dimensional root
finding method. Inverse function evaluations are key ingredients needed by the con-
straint propagation method in Section 1.3.1.

Alternatively, the COCONUT system can autodetect complex univariate func-
tions using a symbolic analysis on the DAG and can compute the required infor-
mation by automatic curve tracing and algorithmic differentiation [30]. However,
the enclosures computed by automatic curve tracing are only approximately fully
optimal. They are computed by univariate validated root finding of derivatives and
evaluation of the functions on the enclosures of their zeros. The enclosures of the
optima produced by that method are usually a few factors of the machine epsilon
wide.

An example of proper reformulation of a model is provided in Section 1.4.1.

1.3.4 Without explicit expression for the cost function

Apart from the evaluation of the set of values taken by the cost f over some box [x],
the algorithms presented in Sections 1.2.3, 1.3.1, and 1.3.2 require the evaluation of
the range of derivatives of the cost up to the third order with respect to the parame-
ters. This section shows the way these quantities may be obtained when no explicit
expression of cost function is available for the case of models described by ODEs
such as (1.1).

1.3.4.1 Getting derivatives of the cost function

Assume, for the sake of simplicity that the cost function is given by (1.6). In this
case, its gradient is

∇ f (x) = 2
N

∑
i=1

(ym (x, ti)− yi)
∂ym (x, ti)

∂x
, (1.14)

and its Hessian matrix is

∇
2 f (x) = 2

N

∑
i=1

(
∂ 2ym (x, ti)

∂x
∂xT +(ym (x, ti)− yi)

∂ym (x, ti)
∂x

∂ym (x, ti)
∂xT

)
. (1.15)

The gradient thus can be computed via the evaluation of the first-order sensitivity
function of the output of the model with respect to the parameters

sy (x, ti) =
∂ym (x, ti)

∂x
, (1.16)
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while the Hessian matrix requires also the evaluation of the second-order sensitivity
function

s2
y (x, ti) =

∂ 2ym (x, ti)
∂x∂xT . (1.17)

Assume that the model is described by (1.1) with an output at time ti given by
ym (x, ti) = h(z,x, ti), then

∂ym (x, ti)
∂x

=
∂zT (x, ti)

∂x
∂h(z,x, ti)

∂z
+

∂h(z,x, ti)
∂x

, (1.18)

where the main difficulty comes from the evaluation of the first-order sensitivity of
the state vector z with respect to x

Sz (x, ti) =
∂zT (x, ti)

∂x
. (1.19)

Similarly, the evaluation of the Hessian matrix requires first and second-order sen-
sitivity functions of z with respect to x.

1.3.4.2 Sensitivity functions

When the model is described by ODEs such as (1.1), the sensitivity functions of z
with respect to x are obtained easily by evaluating the partial derivatives of (1.1)
with respect to x, and inverting the order of derivation to get

dSz (x, t)
dt

=
∂gT (z,x, t)

∂x
(1.20)

and

Sz (x, t0) =
∂zT

0 (x)
∂x

. (1.21)

Obtaining the first-order sensitivity functions of z with respect to x thus requires
solving a coupled system of ODEs consisting of (1.1) supplemented with (1.20) and
(1.21) {

dz
dt = g(z,x, t)
dSz(x,t)

dt = ∂gT(z,x,t)
∂x

with

{
z(t0) = z0 (x)
Sz (x, t0) = ∂z0(x)

∂x .
(1.22)

If the dimension of the initial system of ODEs is nz, the dimension of the coupled
system of ODEs (1.22) is nz +nznx.

Similarly, obtaining second-order sensitivity functions of the state with respect
to the parameters requires solving systems of ODEs with nz

(
1+nx +n2

x
)

equations.
Due to the increase in complexity of the systems to be solved, higher order methods
described in Section 1.3.2 are quite difficult to apply when no explicit expression of
the output of the model is available.
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1.3.4.3 Guaranteed numerical integration

Several approaches may be considered to solve (1.22). Classical methods for the so-
lution of systems of ODEs, such as Runge-Kutta, are not able to provide the range
of the solutions at each ti, i = 1, . . . ,N when x is only known to belong to some
box [x]. Guaranteed numerical integration techniques could be employed, such as
AWA [15], VNODE [20], COSY IV [6], VSPODE [13], or ValEncIA-IVP [25,26].
The main difficulty comes from the fact that obtaining accurate enclosures for the
solutions when there are uncertain parameters, as here, and uncertain initial condi-
tions is quite difficult.

To address this issue, one may build an extended state ze =
(
zT,xT

)T, satisfying
the following extended systems of ODEs

dze
dt

=
(

g(z,x, t)
0

)
, (1.23)

if the vector of parameters is constant. The initial conditions are then

ze (t0) =
(

z0 (x)
x

)
, with x ∈ [x]. (1.24)

When only the initial conditions are undetermined, but known to belong to some
box, guaranteed ODE solvers such as COSY IV, VSPODE, or ValEncIA-IVP
perform quite well, since they are evaluating a Taylor development of the solution
with interval remainder, this development being made also with respect to the initial
condition.

Alternatively, one may enclose the solutions of (1.22) with uncertain x ∈ [x] be-
tween a coupled pair of ODEs with deterministic initial conditions using Müller’s
theorem [19], see also Chapter ?? in this book. Any guaranteed tool for solving
ODEs may then be used to solve this system.

1.4 Example

To illustrate the efficiency of the optimization techniques presented previously, we
consider the estimation of the parameters of compartmental models. These models
are widely used, e.g., in biology to study metabolisms [7].

A compartmental model consists of a finite set of homogeneous subsystems,
called compartments, which may exchange material between them and with the
outside world. The evolution of the quantity of material in the compartments is de-
scribed by a set of first-order ordinary differential equations, corresponding to con-
servation equations, usually assumed to be linear and time-invariant. These equa-
tions can be written in the form of a state equation.

Consider for example the model described by Figure 1.1. If z = (z1,z2)
T is the

vector of the quantities of material in the two compartments, its evolution is de-
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Fig. 1.1 Two-compartment model

scribed by the linear state equation{
ż1 =−(x1 + x3)z1 + x2z2,
ż2 = x1z1− x2z2.

(1.25)

Assume that the initial state is known, and such that z0 = (1,0)T, that there exists
some true parameter value x∗, and that only Compartment 2 is observed so that the
observation equation is

y(ti) = ym (x∗, t)+b(ti), i = 1, ...,N

with
ym (x, t) = z2 (x, ti)

and the b(ti)’s are some noise realizations.
To generate artificial data, a two-compartment model with x∗= (0.6,0.15,0.35)T

has been simulated. The data were then obtained by rounding the value of z2(ti) to
the nearest two-digit number for ti = i∆ t, with ∆ t = 1 s and i = 1, . . . ,15. The initial
search domain is [x]0 = [0.01,1]×3.

Parameter estimation is performed by minimizing the cost function (1.6) .

1.4.1 Using an explicit expression for the model output

1.4.1.1 Original formulation of the problem

For the two-compartment model of Figure 1.1, one may show that the model output
satisfies

ym(x, ti) =
x1√
a(x)

(eλ1(x)t − eλ2(x)t), (1.26)

where
a(x) = (x3− x2 + x1)2 +4x1x2, (1.27)

λ1(x) =−(x3 + x2 + x1−
√

a(x))/2, (1.28)

λ2(x) =−(x3 + x2 + x1 +
√

a(x))/2. (1.29)
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1.4.1.2 Reformulation of the problem

We rearrange ym(x, t) as a product of univariate functions by factoring out ym(x, t)
as

ym(x, t) =
x1√
a(x)

(
e
√

a(x)t/2− e−
√

a(x)t/2
)

e−(x3+x2+x1)t/2 (1.30)

= (x1e−x1t/2)(e−x2t/2)(e−x3t/2)

(
e
√

a(x)t/2− e−
√

a(x)t/2√
a(x)

)
. (1.31)

The exact range of a(x) and each parenthesized term in (1.31) can be evaluated
easily with interval arithmetic (except, of course, for outward rounding) over any
box in search space. Therefore, overestimation is greatly reduced when compared
to the original formulation.

In the COCONUT environment we introduced the following univariate functions,
on which optimal enclosures can be computed for all derivatives and the inverse
function needed for the constraint propagation (see Section 1.3.1).

xexp(v,c) := vecv, (1.32)

hsf(v,c) :=
e−c
√

v− ec
√

v
√

v
=− 2√

v
sinh(c

√
v). (1.33)

In addition we added the special quadratic node

asqr(v) := (v3− v2 + v1)2 +4v1v2. (1.34)

with exact range evaluations up to second order and inverse function evaluations.
This can be generalized for arbitrary quadratic functions, see [3, 4].

With these new expressions and the exponential node (denoted here by exp(v,c)=
ecv), ym(x, t) is represented as

ym(x, t) = xexp(x1,c) · exp(x2,c) · exp(x3,c) ·hsf(asqr(x),c), (1.35)

with c =−t/2.

1.4.1.3 Symmetry breaking

Note that the cost function has a x2–x3 permutation symmetry; this follows easily
from the x2–x3 symmetry of a(x) and (1.31). This symmetry was already identi-
fied in [37]. The symmetry can be broken easily to reduce the necessary compu-
tations. For this purpose we implemented a new box elimination/pruning tool in
coco gop ex just for the present problem instance: for each box [x] under pro-
cessing we eliminate subregions of it for which [x2] > [x3].
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Here, the symmetry, which translates in a lack of structural identifiability of the
model is detected easily before performing the optimization. The automatic identi-
fication and treatment of symmetries in models represented by DAGs is an ongoing
research topic in the development of the COCONUT environment.

However, if symmetries or lack of structural identifiability is not detected a pri-
ori, an a posteriori detection is possible, by looking at the set of boxes containing
the candidate global optimizers, which may consists of several disconnected com-
ponents. This is a definite advantage of these identification approaches based on
deterministic global optimization compared to local search techniques.

1.4.1.4 Results

In the present study we used coco gop ex [17], the bound-constrained interval
B&B solver of the COCONUT environment [1, 27]. The COCONUT environment
is a software platform for global optimization that provides various state-of-the-art
modules that can be combined in strategies for solving global optimization prob-
lems. For bound-constrained problems the solver coco gop ex is provided which
implements the B&B algorithm loosely described in Section 1.2.3.

For computing centered forms, etc., COCONUT provides various algorithmic
differentiation tools [28]. We computed ∇ f ([x]) by backward algorithmic differenti-
ation. Second-order derivatives are computed through Hessian times vector products
also with a backward evaluation scheme. The third-order derivatives are computed
as follows: during the problem initialization, the DAG of the Karush-John first order
necessary conditions to the problem is created; this DAG contains ∇ f as a subgraph.
To get third-order derivatives, the Hessian times vector product evaluator is applied
on this subgraph. Alternatively, there is now a new third derivative evaluator which
does not need the Karush-John conditions, but for the current test this has not yet
been used.

For local optimization, interfaces to many different local solvers are provided by
the COCONUT environment. For bound constrained problems, we use LBFGS-B
[2].

For a detailed description of coco gop ex and the ways of synchronizing the
tools used we refer to [17].

We solved the example problem on a PC with an Intel Dual-Core Mobile CPU at
1.73 GHz and with 2 GB RAM under Linux. To show how coco gop ex tackled
the problem, in Table 1.1 we introduce results for different tolerance values ε from
10−2 to 10−9. In each row of the table we gave the running time in seconds, the num-
ber of B&B iterations, the number of boxes in the result list, and the componentwise
width of the search space for which we proved that it contains all global minimizers
of the problem. (The latter information was computed as the componentwise hull of
the elements of Ri.)

Our conclusions are the following: for larger tolerance values (ε ≥ 10−3) the
problem was solved by mostly using pure splitting and first-order information. The
result obtained for ε = 10−3 with the new algorithm is similar to that of the basic
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Table 1.1 Solutions of the two-compartment model problem with different tolerance values ε . In
each row, CPU is the running time in seconds, NIT is the number of B&B iterations, NBoxes is
the number of small result boxes, and w is the componentwise width of the hull of the enclosures
of all global minimizers (rounded to 3 nonzero decimals).

ε CPU NIT NBoxes w
10−2 14 1023 1191 [7.65,13.2,22.2] ·10−2

10−3 71 5680 5581 [5.62,5.89,12.8] ·10−2

10−4 176 14332 2625 [3.28,2.20,5.89] ·10−2

10−5 218 16973 1602 [7.54,5.62,15.5] ·10−3

10−6 251 18984 790 [1.50,1.22,3.12] ·10−3

10−7 278 21024 724 [4.06,2.52,6.34] ·10−4

10−8 283 21377 8 [7.79,5.48,13.4] ·10−5

10−9 284 21377 0 [3.25,2.21,6.40] ·10−12

interval B&B algorithm used in [37], for which the solution was obtained in about
3 hours (on a slightly slower computer). Nevertheless, coco gop ex provides the
solution in just over a minute, with an approximate speedup of more than 100 times.
This is due to the symbolic transformations applied to the problem (i.e., the special
handling of the univariate subexpressions) and the efficiency of constraint propa-
gation. Note that a very good approximation to the global minimum is found after
only a few hundred iterations. Therefore the bound test and the CP module can work
efficiently with it right from the beginning of the algorithm.

Second-order tools start to work efficiently for ε ≤ 10−4, when the processed
boxes reach the size of what is approximately the size of the output boxes for
10−3. For instance, we found that when solving with ε = 10−3, only around 5%
of the total amount of eliminated boxes were thrown away by the suboptimality test
using second-order centered form updates, but for ε = 10−4 this ratio was about
40%. Indeed, without using second-order information the cluster effect would have
already dominated the search even for this tolerance value: when we disabled all
second-order tools, we obtained the solution in around 12 minutes instead of 3, with
over 64 000 result boxes! With second-order information the cluster effect is clearly
avoided, as shown also by the drop in the number of output boxes from 5 600 (with
ε = 10−3) to about 2 600.

From this point the refinement of the solution with smaller and smaller tolerance
values was relatively easy, e.g., solving the problem with ε = 10−9 instead of 10−4

took only about 110 more seconds, with continuous drops in both the number and
the size of the result boxes. For ε = 10−8 and ε = 10−9 the boxes became small
enough so that the exclusion box utility also took effect. The number 0 in the NIT
column of the last row actually indicates that we have no boxes left outside the
exclusion box (the componentwise widths in column w are thus the widths of the
inclusion box belonging to that exclusion box). That is, at this point the solution
became fully specified up to the maximal possible capabilities of our algorithm. As
a summary, we found that the two-compartment example model has
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– one unique global minimizer (apart from the x2 – x3 permutation symmetry),
located in the interior of the (inclusion) box

( [0.604961728242,0.604961728246],
[0.144474180373,0.144474180376],
[0.366021184203,0.366021184210] )

(the result intervals are given outward rounded with 12 decimal digits), and
– the enclosure of the global minimum is

[6.72177710824,6.72177710827] ·10−5.

The fact that the width of the enclosure of the global minimum is of the order
of the machine epsilon shows that the algorithm has reached the maximal possible
resolution with standard double-precision floating-point computation.

For solving this example problem, we used two tools that may not be applicable
in general, namely, analytic reformulation to reduce the interval overestimation and
symmetry breaking. We also solved the example problem without these two acceler-
ation tools. Our final conclusions were precisely same as above, i.e., with tolerance
ε = 10−9 we reached the tolerance of the unique optimal solution and the global op-
timum presented above. The performance indicators were, of course, different from
those of the first run: the running time and the number or required iterations were
around 6 and 4 times larger, respectively, while maximal number of result boxes
(also peaking at ε = 10−3) was around 4 times larger than in the fully accelerated
method.

1.4.2 Without using an explicit expression for the model output

1.4.2.1 Sensitivity functions

All first-order sensitivity functions are easily derived from (1.25). These sensitivity
functions are denoted si j (x, t) = ∂ zi/∂x j in what follows. Sensitivity functions may
be obtained by pairs, for example{

ds11
dt =−z1− (x1 + x3)s11 + x2s21

ds21
dt = z1 + x1s11− x2s21

(1.36)

with s11 (0) = s21 (0) = 0. However, (1.36) cannot be solved alone, as it requires
to be coupled with (1.25). Thus, all first-order sensitivity function together with the
system output require the solution of three coupled systems of ODEs of dimension 4.
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1.4.2.2 Müller’s theorem

When outer-bounding the range of the gradient of the cost over some box [x], one
has to evaluate the set of values taken by the sensitivity functions over [x]. For that
purpose, Müller’s theorem is used to get for each coupled system of four uncertain
ODEs defined in Section 1.4.2.1, a coupled system of eight deterministic ODEs.
For example, to get enclosures of the state and of the sensitivity function of the state
with respect to x1, one has to solve the following system of ODEs

dz1
dt =−(x̄1 + x̄3)z1 + x2z2

dz2
dt = x1z1− x2z2

dz̄1
dt =−(x1 + x3) z̄1 + x̄2z̄2

dz̄2
dt = x̄1z̄1− x2z̄2

ds11
dt =−z1− (x1 + x3)s11 + x2s21

ds21
dt = z1 + x1s11− x2s21

ds̄11
dt =−z1− (x1 + x3)s11 + x̄2s̄21

ds̄21
dt = z̄1 + x̄1s̄11− x2s̄21

(1.37)

with z1 (0) = z̄1 (0) = 1, z2 (0) = z̄2 (0) = 0, and s11 (0) = s21 (0) = s̄11 (0) = s̄21 (0) =
0. At any time instant ti, when x ∈ [x], an enclosure for z1 ([x], ti) is given by
[z1 ([x], ti) ,z1 ([x], ti)], obtained by solving (1.37). Similar enclosures are obtained
for z2 ([x], ti), s12 ([x], ti), s22 ([x], ti), s13 ([x], ti), and s23 ([x], ti).

1.4.2.3 Results

Only first-order sensitivity functions have been used. Guaranteed numerical inte-
gration of systems such as (1.37) has been performed using VNODE-LP. Thus,
only basic box elimination tests using first-order derivatives were implemented. An
equivalent of the PAID contractor has been employed using centered forms for the
cost function.

For a tolerance parameter ε = 0.001, a list of boxes is obtained whose projections
onto the (x1,x2) plane and (x2,x3) plane are shown in Figure 1.2. Only boxes for
which it was not possible to prove that they do not contain any global minimizer
are represented, so this is an outer approximation. This result has been obtained in
3 h on a Pentium IV at 2 GHz. The set of boxes contains the solution provided in
Section 1.4.1.4. The cluster effect could not be avoided here due to the lack of use
of higher-order methods.

The time required to obtain the solution is much higher (more than 100 times
for ε = 0.001) than that required in Section 1.4.1.4 due to the necessity to perform
numerical integration.
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Fig. 1.2 Projection onto the (x1,x2) plane (left) and (x2,x3) plane (right) of a guaranteed outer
approximation of the set of all global minimizers (ε = 0.001)

1.5 Conclusions and perspectives

Interval analysis provides tools for the guaranteed characterization of the set of all
global minimizers of the cost function associated with parameter estimation even
when the model output is obtained via the numerical solution of a set of ordinary
differential equations. This chapter has shown that when the cost function involves
many occurrences of the parameters, as is usually the case in parameter estimation
via optimization, higher-order techniques for box reduction and elimination, as well
as reformulation of the cost function may play a very important role in reducing
complexity.

Such tools are however still very difficult to employ when no explicit expres-
sion of the cost function is available. Their adaptation to models described by ODEs
poses in principle no problem. It would for example be possible to use higher-order
Taylor models [16]. Such models would be helpful to get closed-form enclosures
of the cost function. Higher-order Taylor models have also better approximation
properties than the methods described here. However, computing times are O(nk)
in dimension n for order k. This usually takes too much time already in low di-
mensions, except if these models are used near the solution only. There, however,
we use the exclusion box trick of Section 1.3.2 which is usually sufficient and can
be performed with O(n3) effort. The combination of higher-order Taylor models
with sensitivity functions, to get closed-form enclosures for gradients and Hessian
matrices has also to be considered.
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