AROUND KING’S RANK-ONE THEOREMS: FLOWS AND
7"-ACTIONS

ELISE JANVRESSE, THIERRY DE LA RUE, AND VALERY RYZHIKOV

ABSTRACT. We study the generalizations of Jonathan King’s rank-one theo-
rems (Weak-Closure Theorem and rigidity of factors) to the case of rank-one
R-actions (flows) and rank-one Z"-actions. We prove that these results remain
valid in the case of rank-one flows. In the case of rank-one Z" actions, where
counterexamples have already been given, we prove partial Weak-Closure The-
orem and partial rigidity of factors.

1. INTRODUCTION

Very important examples in ergodic theory have been constructed in the class of
rank-one transformations, which is closely connected to the notion of transforma-
tions with fast cyclic approximation [3]: If the rate of approximation is sufficiently
fast, then the transformation will be inside the rank-one class. The notion of rank-
one transformations has been defined in [8], where mixing examples have appeared.
Later, Daniel Rudolph used them for a machinery of counterexamples [12].

Jonathan King contributed to the theory of rank-one transformations by several
deep and interesting facts. His Weak-Closure-Theorem (WCT) [4] is now a clas-
sical result with applications even out of the range of Z-actions (see for example
[16]). He also proved the minimal-self-joining (MSJ) property for rank-one mixing
automorphisms (see [5]), the rigidity of non-trivial factors [4], and the weak closure
property for all joinings for flat-roof rank-one transformations [6].

A natural question is whether the corresponding assertions remain true for flows
(R-actions) and for Z™-actions. We show that for flows the situation is quite similar:
The joining proof of the Weak-Closure Theorem given in [13] (see also [15]) can
be adapted to the situation of a rank-one R-action (Theorem 5.2). We also give
in the same spirit a proof of the rigidity of non-trivial factors of rank-one flows
(Theorem 6.2) which, with some simplification, provides a new proof of King’s result
in the case of Z-actions. We prove a flat-roof flow version as well (Theorem 7.1).
Note that a proof of the Weak-Closure Theorem for rank-one flows had already
been published in [17]. Unfortunately it relies on the erroneous assumption that
if (T})ter is a rank-one flow, then there exists a real number ¢y such that T}, is a
rank-one transformation (see beginning of Section 3.2 in [17]).

Concerning multidimensional rank-one actions, the situation is quite different.
The Weak-Closure Theorem is no more true [1], and factors may be non-rigid [2].
Rank-one partially mixing Z-actions have MSJ [7], however it is proved in [2] that
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for Z2-actions this is generally not true. We remark that it was an answer for
Z2-action to Jean-Paul Thouvenot’s question: Whether a mildly mixing rank-one
action possesses MSJ, though this interesting problem remains open for Z-actions.
Regardless these surprising results, there are some partial versions of WCT: Com-
muting automorphisms can be partially approximated by elements of the action
(Corollary 8.4), and non-trivial factors must be partially rigid (Corollary 8.5). We
present these results as consequences of A. Pavlova’s theorem (Theorem 8.3, see
also [14]) .

2. PRELIMINARIES AND NOTATIONS

Weak convergence of probability measures. We are interested in groups of
automorphisms of a Lebesgue space (X, o7, u), where u is a continuous probability
measure. The properties of these group actions are independent of the choice of
the underlying space X, and for practical reasons we will assume that X = {0, 1}%,
equipped with the product topology and the Borel o-algebra. This o-algebra is
generated by the cylinder sets, that is sets obtained by fixing a finite number of
coordinates. On the set .7 (X) of Borel probability measures on X, we will consider
the topology of weak convergence, which is characterized by
Vp ——— v <= for all cylinder set C, v,(C) — v(C),

n—oo n— oo

and turns . (X) into a compact metrizable space.

We will often consider probability measures on X x X, with the same topology of
weak convergence. We will use the following observation: If v, and v in .Z; (X x X)
have their marginals absolutely continuous with respect to our reference measure
1, with bounded density, then the weak convergence of v, to v ensures that for all
measurable sets A and B in &7, v, (A x B) — V(A X B).

Self-joinings. Let T' = (T};)4ec be an action of the Abelian group G by automor-
phism of the Lebesgue space (X, &7, ). A self-joining of T is any probability mea-
sure on X x X with both marginals equal to  and invariant by TxT = (TyxTy)gec-
For any automorphism S commuting with 7', we will denote by Ag the self-joining
concentrated on the graph of S~!, defined by

VA,B € of, Ag(A x B) := (AN SB).

In particular, for any g € G' we will denote by AY the self-joining Az,. In the
special case where S = T = Id, we will note simply A instead of A® or Arg-

If .Z is a factor (a sub-o-algebra invariant under the action (7})), we denote by
1 Qg pthe relatively independent joining above %, defined by

pEs p(Ax B)i= [ Bl14lF) Bl1el 7] d
X
Recall that 1 ® & 1 coincides with A on the o-algebra . ® 7.

Flows. A flow is a continuous family (7}):cr of automorphisms of the Lebesgue
space (X, o/, ), with Ty o Ty = Tiys for all t,s € R, and such that (¢,z) —
T;(x) is measurable. We recall that the measurability condition implies that for all
measurable set A, (A A T;A) P 0.
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Lemma 2.1. Let (Ti):er be an ergodic flow on (X, , ). Let Q be a dense
subgroup of R, and A be an invariant probability measure for the action of (T})ieq.
Assume further that A < p, with g—ﬁ bounded by some constant C'. Then \ = p.

Proof. Let t € R, and let (¢,,) be a sequence in Q) converging to ¢. For any measur-
able set A, we have

)\(TtA A TtnA) < C;L(TtA A TtnA) ——0.

Hence \(T}A) = lim, A(T}, A) = A(A). This proves that X is Tj-invariant for each
t € R. Since pu is ergodic under the action of (7%):cr, we get A = p. O

3. RANK-ONE FLOWS

Definition 3.1. A flow (T})er is of rank one if there exists a sequence (€;) of
partitions of the form

hj—1
& =19 Ej, T, E;, T2E;, ..., T/ 'E;, X\ | | TiE;
1=0

such that &; converges to the partition into points (that is, for every measurable
set A and every j, we can find a {;-measurable set A; in such a way that u(A A
A;) ——0), s;/s;j+1 are integers, s; — 0 and s;h; — oo.

J—o0

Several authors have generalized the notion of a rank-one transformation to an
R-action using continuous Rokhlin towers (see e.g. [10]). One can show that the
above definition includes all earlier definitions of rank-one flows with continuous
Rokhlin towers. The above definition without the requirement that s;/s;11 be
integers was given by the third author in [13].

Lemma 3.2. Let (T});er be a rank-one flow. Then the sequences (s;) and (h;) in
the definition can be chosen so that
s?hj — 00.
J—o0
Proof. Let (s;) and (h;) be given as in the definition. Recall that hjs; — oo.
For each j, let n; > j be a large enough integer such that s;js,;h,, > j. Define
;= 8j/sn, € Zy. We consider the new partition

) h;—1
§ =S B, T, By, T B, X\ | | TLE;
=0
where
0—1
Ej:= | | TI, En,
i=0
and hj := [hy, /¢;]. One can easily check that &; still converges to the partition into
points. Moreover we have sfﬁj = 55 [, 5n; /53] = 0. O

Lemma 3.3 (Choice Lemma for flows, abstract setting). Let (T}):cr be an arbi-
trary flow, and let v be an ergodic invariant measure under the action of (T}):er.

Let a family of measures (ujk) satisfy the conditions:
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o There exist sequences (d;) and (s;) of positive numbers with d; —— 0,
J—0o0
sj/s;+1 is an integer for all j, and s; —— 0, such that for all measurable
J—00

set A and all k, j

(1) |I/JI<€(TSJ.A> 71/]’?(/1)| < sjd;;
e There exists a family of positive numbers (af) with ), a? =1 for all j,
such that
@ St

Then there is a sequence (k;) such that vy,
) joeo

Proof. Given a cylinder set B, an integer j > 1 and € > 0, we consider the sets K
of all integers k such that

v(B) — VJI-C(B) > €.
Suppose that the (sub)sequence K; satisfies the condition

Za§2a>0.

keK;

Let A be a limit point for the sequence of measures (ZkeKj af)*l ZkeKj a?yj’?.
Then A # v since A(B) < v(B) — ¢, but by (2), we have A < v, and d\/dv < 1/a.
Moreover, the measure A is invariant by T’ for all p. Indeed, for j > p, since s, /s;
is an integer, we get from (1) that

}I/Jk (T,,A) - l/Jk(A)| < spd; —>me 0.

By Lemma 2.1, it follows that A = v. The contradiction shows that

Za§—>0.

keK;

Thus, for all large enough j, most of the measures I/Jk satisfy
|VJ]»€(B) —v(B)| <e.

Let {Bi1, Ba, ...} be the countable family of all cylinder sets. Using the diagonal
method we find a sequence k; such that for each n

kj
|

v; (Bn) — v(By)] —>j_>OO 0,

pe. v Y sy, O
J Jj—o0

Columns and fat diagonals in X x X. Assume that (7})er is a rank-one flow

defined on X, with a sequence (&;) of partitions as in Definition 3.1. For all j and

|k| < hj — 1, we define the sets le_c € X x X, called columns:

k._ T L.

cri= || TIE;xT.E;
0<r<hj—1

r—0=k
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Given 0 < 6 < 1, we consider the set

[0h;]

8 k
Dj = |_| CJ .
k=—[h;]

(See Figure 1.)

h;—1
TV E;

N <
4 N / ~
N
N N ! ~

N / h]—l
T,

FI1GURE 1. Columns and fat diagonals in X x X

4. APPROXIMATION THEOREM

Recall from Section 2 that, given a flow (7})ier, A? stands for the self-joining
supported by the graph of T_;.

Lemma 4.1. Let v be an ergodic joining of the rank-one flow (T})¢cr. Let 0 < § < 1
be such that

(3) 05 = lim v(D3) > 0.



6 ELISE JANVRESSE, THIERRY DE LA RUE, AND VALERY RYZHIKOV

Then there exists a sequence (k;) with —0h; < k; < §h; such that
Akisi ORIy 2y,
J Jj—o0
Proof. Our strategy is the following: First we prove that the joining v can be
approximated by sums of parts of off-diagonal measures, then applying the Choice
Lemma we find a sequence of parts tending to v.
By definition of D?, we have

C
v(D] & (T, x T,)D]) < =
J
It follows that for any fixed p, the sets D? are asymptotically T, x T -invariant:

Indeed, since T, = Tssf /% where sp/s; is an integer when j > p, we get

C
u(Dé A (Ty, x T, )Dé) <z 9
J P P J Sj h,j Jj—o0

(recall that s;h; — 00).

Let A be a limit measure of v(-| D?). Then X is T, x T, -invariant for each
p, by (3), A is absolutely continuous with respect to v, and Z—i < % < 0. By
Lemma 2.1, it follows that A = v. Hence we have
(4) v(-| DY) ——v.

]*}OO

We now prove that

[0h;]
(5) > u(CEHDYHAR(-|CF) .
J—00
k=—[6h;]

For arbitrary measurable sets A, B we can find {;-measurable sets A;, B; such
that
= ,u(A A AJ) +,U(B A Bj) — 0.
We have
> v(CFID)AR (A x B|CY) = v(A x B) = My + My + M + My,
k

where
M,y = Z (CFIDY) (AF1 (A x BICY) — AMi(A; x B;|C))),

My = Z (C*|D)A* (A; x B;|C¥) — v(A; x B;|DY),
k

Ms == v(A; x B;j|D?) — v(A x B|DY),
My = v(A x B|Dj) — v(A x B).
The density of the projections of the measure AF%i(. |C’Jk) with respect to u is

bounded by (1 —§)~!. Hence M; <¢e;/(1— ).
Since A, B; are {;-measurable,

Z/(Aj X B]|Cjk> = Aksj (AJ X BJ|C]k),
and we get My = 0.
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The absolute value of the third term M3 can be bounded above as follows
5y—1 &g
M| < v(D?) y((Aj x Bj) A (A x B)) < o 0.
The last term My goes to zero as j — oo by (4), and this ends the proof of (5).
To apply the Choice Lemma for the measures v¥ = Aksf(~|C]’?) and a;? =

j
u(CﬂD?), it remains to check the first hypothesis of the lemma. By construc-

tion of the columns C]’?, we have for any measurable subset A € X x X and all

c
(6) | AR (T, x Ty, AICT) = AR (AICT)] < o=
J
: : : C
where C' is a constant. We get the desired result by setting d; := e
S5y
The Choice Lemma then gives a sequence (k;) with —0h; < k; < 6h; such that
Akssi (O8) b, O
j—o0

Theorem 4.2. Let a flow T = (T})1er be of rank-one and v be an ergodic self-
joining of (T})icr. Then there is a sequence (k;) such that AFisi —“— %l/ + %u’
]*}OO
for some self-joining v': For all measurable sets A, B
1 1
W(ANTY B) — 5y(A x B) + 5u’(A X B).
Proof. For any 1/2 < § < 1, we have
. 5 o
jlggol/(Dj)>1—2(1—5)f2571>0.
Hence we can apply Lemma 4.1 for any 1/2 < § < 1. By a diagonal argument, we
get the existence of (k;) and (§;) \, 3 with —&;h; < k; < §;h; such that
Akisi ( |C’ka) — .
j‘)OO
Let us decompose A¥i% as

AFisi = ARsS; ( |cff) AR3% (CI) 4 A% ( X % X\ cff) (1— Ak (Ch)

Since lim inf j_ o, AFi%s (C]I-Cj ) > 1/2, we get the existence of some self-joining v’ such

that
Akisi 2, l1/ + lu’.
Jj—o0 2 2

O

Corollary 4.3. A mixing rank-one flow has minimal self-joinings of order two.

Proof. Let v be an ergodic self-joining of a mixing rank-one flow (T3):er. Let (k)
be the sequence given by Theorem 4.2. If |k;s;| — oo, since T' is mixing we have
Akj S5 w
ﬁ—m> X,

hence pux p = %u—i— %V’ for some self-joining /. The ergodicity of i x p then implies

that u x = v. Otherwise, along some subsequence we have k;s; — s for some real
number s. Then A® = %y + %u’ for some self-joining v/, and again the ergodicity
of A® yields v = A®. Thus T has minimal self-joinings of order two.. O
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5. WEAK CLOSURE THEOREM FOR RANK-ONE FLOWS

Lemma 5.1 (Weak Closure Lemma). If the automorphism S commutes with the
rank-one flow (T})¢cr, then there exist 1/2 < d < 1, a sequence (k;) of integers and
a sequence of measurable sets (Y;) such that, for all measurable sets A, B

WANTEBNY;) = du(ANSB),
where Y; has the form

d— ._ ' A+ . _ i
vi = || TLE or Y= || 7iE;.
0<i<dh; (1—d)h;<i<h,
Proof. This lemma is a consequence of the proof of Theorem 4.2, when the joining v
is equal to Ag. Given a sequence (6;) N\ %, the proof provides a sequence (k;) where

—d,;hj < kj < §;hj, such that Akisf(-|ij) — Ag, and Akﬂ'sf(C]]-cj) converges
j—o00

to some number d > 1/2. Let ijj be the projection on the first coordinate of Cj]-cj ,
that is

kj _
ij =

L2y TEE;  if k>0

LIZss T By if ky < 0.
We then have AFisi (. |C;€j) = Akfsf(-|ijj x X), and ,u(ijj) = AFisi (Cj]-cj) — d.
This yields, for all measurable sets A, B,

WANTEBAYY) » du(ANSB).

If there exist infinitely many j’s such that k; > 0, then along this subsequence, we
have
L (Y'jkj A Y*jd,—i—) —0,
Jj—o0
since (h; — k;)/h; — d. A similar result holds along the subsequence of j’s such
that k; < 0, with Y/** replaced by Y;"~. O

Theorem 5.2 (Weak Closure Theorem for rank-one flows). If the automorphism S
commutes with the rank-one flow (T})icr, then there exists a sequence of integers
(kj) such that A*i%i — Ag: For all measurable sets A, B,

p(ANTY B) = p(ANSB).

Proof. We fix T and consider the set of real numbers d for which the conclusion in
the statement of Lemma 5.1 holds. It is easy to show by a diagonal argument that
this set is closed. Hence we consider its maximal element, which we still denote by
d. (If d = 1, the theorem is proved.)

So we start from the following statement: We have a sequence of sets {Y;}, of
the form given in Lemma 5.1, such that for all measurable A, B

WANTEBNY;) = du(AN SB).

Then a similar statement holds when Y; is replaced by SYj: Indeed, since S com-
mutes with 7" and p is invariant by S, we have

WANTEBNSY;) = p(STTANTESTIBNY))
——du(ST'TANSST'B) =du(An SB).

j—o0
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Let A be a limit point for the sequence of probability measures {v;} defined on
X x X by

vi(Ax B) = ! )M(AﬁTfjfBﬂ(YjUSYj)).

u(Y; U SY;
Then A <2 Ag. Moreover, the measure A is invariant by T x T’ for all p. Indeed,
for 7 > p, we have

W(TY) B8 Y)) = (T3 Y, 8 Y)

which is of order ;Z.’ hence vanishes as j — oo. Since Ag is an ergodic measure

for the flow {T; x T;}, we can apply Lemma 2.1, which gives A = Ag. We obtain

" (AmTf;Bm (v; usyj)) — up(AN SB),

where u := lim; p(Y; U SY;) (if the limit does not exist, then we consider some
subsequence of {j}).

Our aim is to show that w = 1, which will end the proof of the theorem. Let us
introduce

W; = |_| T! E; | \Y;.
0<i<h,

Assume that v < 1, then (denoting by Y¢ the complementary of Y C X)
lim Ag(W; x W) = lim u(W; N SW;) = limp(Y; NSY) =1—u>0.
J J J

Let us consider the case where Y; has the form de’* = [_|0§i<dhj Tsi], E;. Then

W; = Udhjgighj T;,Ej, and we define for any 0<1—-d
Wj(5l) = |_| T;J_Ej C Wj.

(1—6’)hj<i§hj
In the same way, if Y; has the form de’+ = Ua—ayn,<i<n, Ts, Ej, weset for 8’ < 1—d
w;(d) = || TLE; cWw;
0<i<8'h;

In both cases, note that
As (W5 % W) \ (W3(8) x W3(8))) < 21— d = ).
Thus, for ¢’ close enough to 1 — d, we get

lim sup AS(Wj(é') X Wj((s')) >1-u—2(1—d—4)>0.
J

Since W;(¢") x W;(d") C D?/, this ensures that
lim sup AS(Dgl) > 0.
Lemma 4.1 then provides a sequence (k:;) with —¢’h; < k; < ¢§’h;, such that

/o k"
K () s A,
J—o0
K, K, . )
and the projections ;7 of C;” on the first coordinate satisfy

limp(Y;?) > 18 >d,
J
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which contradicts the maximality of d. Hence u = 1. 0

6. RIGIDITY OF FACTORS OF RANK-ONE FLOWS

Lemma 6.1. Let .7 be a non-trivial factor of a rank-one flow (T;)ter. Then there
exist 1/2 < d < 1, a sequence of integers (k;) with |kjs;| - 0 and a sequence of
measurable sets (Y;) such that, for all measurable sets A, B € #

pANTEBNY;) = dp(ANB),
where Y; has the form

d,— .__ 0 . d+ % .
vi o= || TLE or Y= || 71.E;.
0<i<dh; (1—d)h;<i<h;

Proof. We start with the relatively independent joining above the factor 7 (see
Section 2). Since .Z is a non-trivial factor, y ® # u # A, hence we can consider an
ergodic component v such that v({(z,z),z € X}) = 0. Observe however that for
any sets A, B € %, we have v(A x B) = u(AnN B).

We repeat the proof of Lemma 5.1 with v in place of Ag. This provides sequences
(k;) and (Y;) and a real number 1/2 < d < 1, such that for all measurable sets
A, B

pANTEBNY;) = dv(A x B).
If we had kjs; — 0, then the left-hand side would converge to d p(A N B), which
would give v(A x B) = u(AN B) for all A, B € &, and this would contradict the
hypothesis that v gives measure 0 to the diagonal. (I

Theorem 6.2. Let # be a non-trivial factor of a rank-one flow (T})ier. Then there
exists a sequence of integers (k;) with |k;s;| — oo such that, for all measurable sets
A Be %

p(ANTL B) = p(AN B).

Proof. Again we fix some ergodic component v such that v({(z,z),z € X}) = 0.
We consider the maximal number d for which the statement of Lemma 6.1 is true.
We thus have a sequence of sets {Y}}, of the form given in Lemma 6.1, such that

1
(7) VA, B € F, —)E# |:]]-A]]- kj ]].y]:| — u(ANB).

,u(Y] T} B

In the above equation, one can replace 1y, by ¢;(z) := E, [Ly, (2)|x]: Indeed, since

v coincides with A on .# ® F, we have 14(2') = L1a(z) and 1_s; (2/) =1_»; _(2)
< i

v-a.s. Hence,

EH |:]].A]].T:;B]]_yj:| = EV |:]1A(x)1T:JJB($)]lYJ (,1'/):| = EH |:]].A(.T)]].T:JJB($)¢](.T):| .
We note that

1
0 By 165~ 65 0T, < (¥ 8 7,%) =0 ().
J
For any € > 0, let
U :={x: ¢j(x) > e}.
We would like to prove that (7) remains valid with 1y, replaced by ]lU; for € small
enough. To this end, we need almost-invariance of U; under T, which does not
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seem to be guaranteed for arbitrary €. Therefore, we use the following technical
argument to find a sequence (g;) for which the desired result holds.

Fix & > 0 small enough so that p(U5) > u(Y;)/2 for all large j. By Lemma 3.2,
we can assume that s3h; — co. Let §; = o(s;) such that (d;h;)"" = o(s;). We
divide the interval [¢/2,¢] into €/(46;) disjoint subintervals of length 2,;. One of
these subintervals, called I, satisfy

44,
(9) p(f{z: (@) € ;}) < —.

Let us call €; the center of the interval I;. Observe that
p (U7 AT, U ) < p({x:]¢5(x) — g5 < 1) +n ({2 |¢5(x) — 05(Ts, ()] > 05}) -
By (9) and (8), we get that

Ej Ej 1
(10) p (U7 o T,U7) :O(éj—i_ﬁ) =o(s;).

Taking a subsequence if necessary, we can assume that the sequence of probability
measures \;, defined by

1
VA,B€ o/, MN(AxB)i=—FE, |14l s 1 |,
]( ) u((78]> H|: A k :|

J
converges to some probability measure A, which is invariant by 7, x T, for all
p by (10). Recall that M(U;j) > pu(Y;)/2 and that 1, < ¢;/e;. Then, since

gj > ¢/2, we have A gz < §A|g®y. Since A|zg.# is an ergodic measure for the
flow {T} x T} }| 7o .2, we can apply Lemma 2.1, which gives M| g2 = A|#g.. This
means that (7) remains valid with 1y, replaced by 1<;.

The analogue of (7) is also valid when we replace J]ly]. by 1 : Indeed, we

v;uU;?
also have the almost-invariance property
1 (Y, UUP) 8 T, (¥ UUP)) = ofsy)
and ]l.l/qujEj <1y, + ]].U;j. We conclude by a similar argument.
Since € can be taken arbitrarily small, we can now use a diagonal argument
to show that (7) remains valid with 1y, replaced by 1, =i where the sequence
i

€;) now satisfies £; — 0. Hence, taking a subsequence if necessary to ensure that
J J
w(Y; U U;j) converges to some number u, we get

VA,B € .7, E# []].A]].T:;B]lyqu;j

] — up(ANB).

It now remains to prove that v = 1, which we do by repeating the end of the proof
of Theorem 5.2. Assume that u < 1. Let us introduce

W= | || TLE; | \Y;
0<i<h,
We have
limp(W; x W;) = limp(Y§ x YF) = limE, {13/;(1 - @-)} .
J J J



12 ELISE JANVRESSE, THIERRY DE LA RUE, AND VALERY RYZHIKOV

Observe that (1 —¢;) > 1 — ¢;. Hence

(U;7)e
limy(W; x W;) > ImE, {Mc]l(U;j)c} =1-u>0.

Let us consider thg case where Y; has the form de’_ = [_|0§i<dhj T;jEj. Then
Wi = Uan,<i<n, Ts, Ej, and we define for any 6’ <1—d

Wj((;/) = |_| TsijEj c Wj.
(1—6/)h]'<7:§hj
In the same way, if Y; has the form de’+ = Ug—ayn,<i<n, Ts, Ej, weset for 8’ < 1—d
w;(d) = || TLE;cw;
0<i<d’h,
In both cases, note that
v (W5 x W) \ (W5 (8) < W;(8))) <201 —d - 3).

thus, for &’ close enough to 1 — d, we get

1im§upu(Wj(5’) X Wj((s/)) >1—-u—-2(1-d-4d")>0.

J
Since W;(6") x W;(d") C D?,, this ensures that
lim sup I/(D?l) > 0.

Lemma 4.1 then provides a sequence (k}) with —§'h; <k} < ¢’hy, such that

AKsss (L |Cky 2y,
J j—o0

. ” K} . _— K} K’
In particular, AFi% (- ICi) | zes — Al zg#. Since the projections Y7 of C)Y
J—00

on the first coordinate satisfy
limp(Y;") > 18 >d,
j

this contradicts the maximality of d. Hence u = 1. O

7. KING’S THEOREM FOR FLAT-ROOF RANK-ONE FLOW

We consider a rank-one flow (T3):er. We say that (T3)ier has flat roof if we
can choose the sequence & = {E;,T,,Ej, ... ,Tshf_lEj,X \ |_|Z]:61 TskjEj} in the
definition such that

u (T E; o By)

1(E;) j—o0

0.

Theorem 7.1. Let (T3):er be a flat-roof rank-one flow, and v be an ergodic self-

joining of (T;)ier. Then there exists a sequence (k;) such that AkFisi —“— p.
j—oo
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Proof. Let us defined, for 0 <k < h; — 1
af i=v (TEE; x B;) and b i=v (B x Tl E;).

We claim that the flat-roof property implies
hj—1

(11) ]Z|akfb]|—>0
k=1

Indeed, by invariance ai =v (Tshf E; x Tshf_kEj). Hence

0 =Vl < v (T B, 6 B) % ThE,)
and
hj—1
Z lal, —bl| <v ((Tfjﬂ'Ej A Ej) x X) =p ((Tfijj A Ej>) :

The claim follows since u(E;) ~ 1/h;.

k—h,
G

h;—k
TV B,

.

. J
E; ay,

E; TY E;

FIGURE 2. The union of C¥ and C} " is denoted by G.

13

We gather the columns Ck in pairs, defining for 1 <k < h;—1, Gk CkI_ICkch
See Figure 2.) We also set GO = CY. Note that v(G¥) = (h;—k)a +ka Observe
( g ) k

also that
hj71 hjfl h].,l
v |G =v| || TEE x | | TEE | — 1.

j—o0
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Hence,
k k w

We claim that, using the flat-roof property, we can in the above equation replace
v(- |G§) by AFi. Let A and B be ;-measurable sets, which are unions of Tsij E;
(0 <i < h; —1). We denote by ry (respectively £) the number of elementary cells
of the form 7! F; x T;2E; which are contained in A x B and which belong to the

column C]l€ (respectively C]]-thj ). We have
(13) V(A x B|GE)w(GY) = 4b], + real.
Moreover, we will show that the flat-roof property ensures the existence of a se-

quence (g;) with ¢; —— 0 such that
J—00

b + 1k

J
Indeed, let us cut A into A1 == AN y<;<p—y T3, Ej and Az == AN yc;cp, 1 T4 Ej-
We have

(14) AFsi(A x B) —

S Ej.

Aksj (A2 X B) = TkM(Ej)7
and
ARSI (Ay x B) = A (B x TR E;) 4+ Ak ((A1 x B)\ les—hj) _

k

Recalling that AR (E; x Tshjr E;) = u(E; N T:jj E;), we get

(15) A™(Ax B) = (rp+L)u(Ej) — e p(Bj\TL Ej) + A ((A1 x B)\ C]’?*hﬂ') _

The second term of the right-hand side is bounded by h;u(E; ATShjj E;), which goes
to 0 by the flat-roof property. To treat the last term, we consider the particular
case A = B =[], <i<hy—1 Tsij Ej;, for which this last term is maximized. We have
then

kS]‘ % .
1-AFi(AxB)<2u|X\ || T.E —0
0<i<h;—1
On the other hand, (15) gives
Ak (A1 x BY\C} ™) = A (A x B) — hyu(Ey) + bu(E; \ T2 E).
Since hypu(E;) — 1, and ku(E; \ To? E;) < hju(E;ATY E;) — 0, we get that the
last term of (15) goes to 0 uniformly with respect to k, A and B. It follows that

|AR* (A % B) = (b + ri)u(Ej)| —— 0,

j—o0

uniformly with respect to k, A and B. This concludes the proof of (14).
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Equations (14) and (13) give

hj—1
3 ‘V(A x B|GY) — A (A x B))‘V(G;?)
k=0
hj—1
> lag — bl
k=0

hj—1

hy > lag —bil +e;
k=0

k
b, — — (¢
k hj(kJer)

IN

+€j

IN

which goes to 0 as j — oo by (11).
Recalling (12), we obtain

hj—1
E V(G?)Aksi — .

It remains to apply the Choice Lemma to conclude the proof of the theorem. [

8. Z™-RANK-ONE ACTION

We consider now an action of Z" (n > 1). For k € Z™, we denote by k(1), ..., k(n)
its coordinates.

Definition 8.1. A Z"-action {T} }rez~ is of rank one if there exists a sequence (&;)
of partitions converging to the partition into points, where &; is of the form

§ = {(TkEj)keRj aX\UTkEj} ,

k

and R; is a rectangular set of indices:
R; ={0,...,hj(1) =1} x --- x{0,...,hj(n) — 1}.

Note that the above definition corresponds to so-called R-rank one actions de-
fined in [11] with the additional condition that the shapes in the sequence R be
rectangles. The sequence (¢;) in the above definition being fixed, we define as for
the rank-one flows the notions of columns and fat diagonals: For any k € Z", we
set

C¥:= || T.E; x TuE;,
rlER;
r—{=k

and given 0 < 6 < 1,
o . k
D) = | ] Cy.
ke TT (hy (8) = |k (0) ) 2 (1=08) TT; Ry (4)
Lemma 8.2. For any self-joining v of the rank-one action {T}}reczn, for any § >
1—1/2", we have
liminfu(D?) > 0.

J—00
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Proof. We can find € > 0, small enough such that

1 n
Let r € Z™ be such that
1 1
Vi, <§ — €> hj(l) < T(Z) < <§ + €> hj(l)
Then, for any ¢ € R;, we have for all i: |r(i) — £(i)| < (3 +¢) h;(i). Hence

[T1(ns = 1) = ¢)1) > =8 [T s

K2

which means that for any ¢ € R;, the column C]’f*e is contained in D?. It follows
that

T,E; | x | | | TvE; | c DS,

ri Vi, |r(i)—h; (i) /2| <eh; (i) LER;
We then get
liminf v(D?) > lim inf | | T.E; | = (2¢)™.
j—o00 Jj—o0

Vi, |r(i)—h;(i)/2|<eh; (i)
O

We can now state the analogue of Theorem 4.2 for Z"-rank-one action, which
was first proved by A.A. Pavlova in [9].

Theorem 8.3. Let v be an ergodic self-joining of the Z"-rank-one action {T }kezn .

Then we can find a sequence (k;) in Z" and some self-joining v such that Ak —“—
j—o00

2%1/ + (1 - 2%) v': For all measurable sets A, B
1 1
wANTy,B) — 2—nu(A x B) + (1 - 2—n) V(A x B).

Proof. The proof follows the same lines as for Theorem 4.2. First note that
Lemma 4.1 can be easily adapted to the Z™-situation. Hence, by Lemma 8.2,

using a diagonal argument, we get the existence of (k;) and (6;) \, 1 — 5 with

2TL
C]]?j - Djj such that
AFi (|Cjk’) .
j—o0

k;

To conclude, it remains to prove that lim inf A*s (C;7) > 1/2". To this aim, we

count the number of pairs (r, ) such that T, E; x TyE; C ij . We can easily check
that these are exactly the pairs (r,¢) such that, for all 1 < i < n, there exists
m(i) € {0,...,h;(i) — 1 — |k;(4)|} with

i - J R Fm(i)m(@) i k() 2 0
( - >) {(m(z), —k; (i) + m(z)) otherwise.

Hence Akﬂ'(CJI—Cj) =TI, (hj(i) —1- |kj(z)|),u(EJ) Using the fact that C]]-Cj C D?],

we get the desired result.
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When n > 2, it is known that the Weak Closure Theorem fails (counterexamples
have been given in [1, 2]). However, as a consequence of Theorem 8.3, we get the
following:

Corollary 8.4 (Partial Weak Closure Theorem for Z"-rank-one action). Let S be
an automorphism commuting with the Z"-rank-one action {1} }rczn. Then we can
find a sequence (k;) in Z"™ and some self-joining ' such that

Moreover, if S ¢ {T}, k € Z"}, then {Ty}rezn is partially rigid: There exists a
sequence (kj) in Z™ with |kj| — oo such that for all measurable sets A and B

1
liminf g (A N Tk/B) > —u(ANB).
{—00 € 22n

Proof. The first part is a direct application of Theorem 8.3 with v = Ag. If
moreover S ¢ {I) k € Z"}, then the sequence (k;) of the theorem must satisfy
|k;| — o0o. Let us enumerate the cylinder sets as {Ag, A1,..., A4, ...}. Let (g¢) be
a sequence of positive numbers decreasing to zero. For any ¢, we can find a large
enough integer j1(¢) such that for all cylinder sets A, B € {Ao, A1, ..., A},

1 1
1 (TkwAm SB) > (27 - ge) W(SANSB) = (Q—n - ge) W(AN B).

Then, we can find a large enough integer ja(¢) with |j2(¢)| > 2|j1(¢)| such that for
all cylinder sets A, B € {Ao, A1,..., A},

1
H (Tkh(f)AmTka(f)B) = (2_n _Eé) M(Tkjl(f)AmSB)'

It follows that for all £ > 0 and all cylinder sets A, B € {Ag, 41,..., As},

2
1
/L(AﬂTka(e)_kh“)B) > (2_n —E@) /L(AQB).

This proves the result announced in the corollary when A and B are cylinder sets
with kj := kj,) — kj, (), and this extends in a standard way to all measurable
sets. (|

The counterexample given in [2] also shows that the rigidity of factors is no
more valid when n > 2. Theorem 8.3 only ensures the partial rigidity of factors of
Z"-rank-one actions.

Corollary 8.5 (Partial rigidity of factors of Z™-rank-one action). Let .% be a non-
trivial factor of the Z™-rank-one action {Ty}rezn. Then there exists a sequence
(k;) in Z™ with |k;| — oo such that, for all measurable sets A, B € F

1
liminf (A N Ty, B) > 2—n,u(A N B).

Proof. This is a direct application of Theorem 8.3 where v is an ergodic component
of the relatively independent joining above the factor .%. O
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