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Abstract. We study the generalizations of Jonathan King’s rank-one theo-
rems (Weak-Closure Theorem and rigidity of factors) to the case of rank-one
R-actions (flows) and rank-one Z

n-actions. We prove that these results remain
valid in the case of rank-one flows. In the case of rank-one Z

n actions, where
counterexamples have already been given, we prove partial Weak-Closure The-
orem and partial rigidity of factors.

1. Introduction

Very important examples in ergodic theory have been constructed in the class of
rank-one transformations, which is closely connected to the notion of transforma-
tions with fast cyclic approximation [3]: If the rate of approximation is sufficiently
fast, then the transformation will be inside the rank-one class. The notion of rank-
one transformations has been defined in [8], where mixing examples have appeared.
Later, Daniel Rudolph used them for a machinery of counterexamples [11].

Jonathan King contributed to the theory of rank-one transformations by several
deep and interesting facts. His Weak-Closure-Theorem (WCT) [4] is now a clas-
sical result with applications even out of the range of Z-actions (see for example
[15]). He also proved the minimal-self-joining (MSJ) property for rank-one mixing
automorphisms (see [5]), the rigidity of non-trivial factors [4], and the weak closure
property for all joinings for flat-roof rank-one transformations [6].

A natural question is whether the corresponding assertions remain true for flows
(R-actions) and for Zn-actions. We show that for flows the situation is quite similar:
The joining proof of the Weak-Closure Theorem given in [12] (see also [14]) can
be adapted to the situation of a rank-one R-action (Theorem 5.2). We also give
in the same spirit a proof of the rigidity of non-trivial factors of rank-one flows
(theorem 6.2) which, with some simplification, provides a new proof of King’s result
in the case of Z-actions. We prove a flat-roof flow version as well (Theorem 7.1).

Concerning multidimensional rank-one actions, the situation is quite different.
The Weak-Closure Theorem is no more true [1], and factors may be non-rigid [2].
Rank-one partially mixing Z-actions have MSJ [7], however it is proved in [2] that
for Z

2-actions this is generally not true. We remark that it was an answer for
Z
2-action to Jean-Paul Thouvenot’s question: Whether a mildly mixing rank-one

action possesses MSJ, though this interesting problem remains open for Z-actions.
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Regardless these surprising results, there are some partial versions of WCT: Com-
muting automorphisms can be partially approximated by elements of the action
(Corollary 8.4), and non-trivial factors must be partially rigid (Corollary 8.5). We
present these results as consequences of A. Pavlova’s theorem (Theorem 8.3, see
also [13]) .

2. Preliminaries and notations

Weak convergence of probability measures. We are interested in groups of
automorphisms of a Lebesgue space (X,A , µ), where µ is a continuous probability
measure. The properties of these group actions are independent of the choice of
the underlying space X , and for practical reasons we will assume that X = {0, 1}Z,
equipped with the product topology and the Borel σ-algebra. This σ-algebra is
generated by the cylinder sets, that is sets obtained by fixing a finite number of
coordinates. On the set M1(X) of Borel probability measures onX , we will consider
the topology of weak convergence, which is characterized by

νn
w

−−−−→
n→∞

ν ⇐⇒ for all cylinder set C, νn(C) −−−−→
n→∞

ν(C),

and turns M1(X) into a compact metrizable space.
We will often consider probability measures on X×X , with the same topology of

weak convergence. We will use the following observation: If νn and ν in M1(X×X)
have their marginals absolutely continuous with respect to our reference measure
µ, with bounded density, then the weak convergence of νn to ν ensures that for all
measurable sets A and B in A , νn(A×B) −−−−→

n→∞
ν(A×B).

Self-joinings. Let T = (Tg)g∈G be an action of the Abelian group G by automor-
phism of the Lebesgue space (X,A , µ). A self-joining of T is any probability mea-
sure onX×X with both marginals equal to µ and invariant by T×T = (Tg×Tg)g∈G.
For any automorphism S commuting with T , we will denote by ∆S the self-joining
concentrated on the graph of S−1, defined by

∀A,B ∈ A , ∆S(A×B) := µ(A ∩ SB).

In particular, for any g ∈ G we will denote by ∆g the self-joining ∆Tg
. In the

special case where S = T0 = Id, we will note simply ∆ instead of ∆0 or ∆Id.

Flows. A flow is a continuous family (Tt)t∈R of automorphisms of the Lebesgue
space (X,A , µ), with Tt ◦ Ts = Tt+s for all t, s ∈ R, and such that (t, x) 7→
Tt(x) is measurable. We recall that the measurability condition implies that for all
measurable set A, µ(A △ TtA) −−−→

t→0
0.

Lemma 2.1. Let (Tt)t∈R be an ergodic flow on (X,A , µ). Let Q be a dense
subgroup of R, and λ be an invariant probability measure for the action of (Tt)t∈Q.

Assume further that λ ≪ µ, with dλ
dµ bounded by some constant C. Then λ = µ.

Proof. Let t ∈ R, and let (tn) be a sequence in Q converging to t. For any measur-
able set A, we have

λ
(

TtA △ TtnA
)

≤ Cµ
(

TtA △ TtnA
)

−−−−→
n→∞

0.

Hence λ(TtA) = limn λ(TtnA) = λ(A). This proves that λ is Tt-invariant for each
t ∈ R. Since µ is ergodic under the action of (Tt)t∈R, we get λ = µ. �
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3. Rank-one flows

Definition 3.1. A flow (Tt)t∈R is of rank one if there exists a sequence (ξj) of
partitions of the form

ξj =







Ej , TsjEj , T 2
sjEj , . . . , T hj−1

sj Ej , X \

hj−1
⊔

i=0

T i
sjEj







such that ξj converges to the partition onto points (that is, for every measurable
set A and every j, we can find a ξj-measurable set Aj in such a way that µ(A △

Aj) −−−→
j→∞

0), sj/sj+1 are integers, sj → 0 and sjhj → ∞.

Several authors have generalized the notion of a rank-one transformation to an
R-action using continuous Rokhlin towers (see e.g. [10]). One can show that the
above definition includes all earlier definitions of rank-one flows with continuous
Rokhlin towers. The above definition without the requirement that sj/sj+1 be
integers was given by the third author in [12].

Lemma 3.2. Let (Tt)t∈R be a rank-one flow. Then the sequences (sj) and (hj) in
the definition can be chosen so that

s2jhj −−−→
j→∞

∞.

Proof. Let (sj) and (hj) be given as in the definition. Recall that hjsj → ∞.
For each j, let nj > j be a large enough integer such that sjsnj

hnj
> j. Define

ℓj := sj/snj
∈ Z+. We consider the new partition

ξ̃j :=







Ẽj , Tsj Ẽj , · · · , T
h̃j−1
sj Ẽj , X \

h̃j−1
⊔

i=0

T i
sj Ẽj







where

Ẽj :=

ℓj−1
⊔

i=0

T i
snj

Enj

and h̃j := [hnj
/ℓj]. One can easily check that ξ̃j still converges to the partition

onto points. Moreover we have s2j h̃j = s2j [hnj
snj

/sj] → ∞. �

We assume here that sj/sj+1 is an integer, and that sj −−−→
j→∞

0.

Lemma 3.3 (Choice Lemma for flows, abstract setting). Let ν be an ergodic in-
variant measure under the action of the flow (Tt)t∈R. Let a family of measures (νkj )
satisfy the conditions:

• There exists a sequence (dj) of positive numbers with dj −−−→
j→∞

0, such that

for all measurable set A and all k, j

(1)
∣

∣νkj (TsjA)− νkj (A)
∣

∣ < sj dj ;

• There exists a family of positive numbers (akj ) with
∑

k a
k
j = 1 for all j,

such that

(2)
∑

k

akj ν
k
j

w
−−−→
j→∞

ν.
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Then there is a sequence (kj) such that ν
kj

j
w

−−−→
j→∞

ν.

Proof. Given a cylinder set B, an integer j ≥ 1 and ε > 0, we consider the sets Kj

of all integers k such that

ν(B)− νkj (B) > ε.

Suppose that the (sub)sequence Kj satisfies the condition

∑

k∈Kj

akj ≥ a > 0.

Let λ be a limit point for the sequence of measures (
∑

k∈Kj
akj )

−1
∑

k∈Kj
akj ν

k
j .

Then λ 6= ν since λ(B) ≤ ν(B) − ε, but by (2), we have λ ≪ ν, and dλ/dν ≤ 1/a.
Moreover, the measure λ is invariant by Tsp for all p. Indeed, for j ≥ p, since sp/sj
is an integer, we get from (1) that

∣

∣νkj (TspA)− νkj (A)
∣

∣ < sp dj −−−→
j→∞

0.

By Lemma 2.1, it follows that λ = ν. The contradiction shows that

∑

k∈Kj

akj → 0.

Thus, for all large enough j, most of the measures νkj satisfy

|νkj (B)− ν(B)| < ε.

Let {B1, B2, . . . } be the countable family of all cylinder sets. Using the diagonal
method we find a sequence kj such that for each n

|ν
kj

j (Bn)− ν(Bn)| −−−→
j→∞

0,

i.e. ν
kj

j
w

−−−→
j→∞

ν. �

Columns and fat diagonals in X ×X. Assume that (Tt)t∈R is a rank-one flow
defined on X , with a sequence (ξj) of partitions as in Definition 3.1. For all j and
|k| < hj − 1, we define the sets Ck

j ∈ X ×X , called columns :

Ck
j :=

⊔

0≤r,ℓ≤hj−1
r−ℓ=k

T r
sjEj × T ℓ

sjEj .

Given 0 < δ < 1, we consider the set

Dδ
j :=

[δhj ]
⊔

k=−[δhj ]

Ck
j .

(See Figure 1.)
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TsjEj T
hj−1
sj Ej

C3
j

Ej

T
hj−1
sj Ej

Ej

TsjEj

δhj
Dδ

j

Figure 1. Columns and fat diagonals in X ×X

4. Approximation theorem

Lemma 4.1. Let ν be an ergodic joining of the rank-one flow (Tt)t∈R. Let 0 < δ < 1
be such that

(3) ℓδ := lim
j

ν(Dδ
j ) > 0.

Then there exists a sequence (kj) with −δhj ≤ kj ≤ δhj such that

∆kjsj ( · |C
kj

j )
w

−−−→
j→∞

ν.

Proof. Our strategy is the following: First we prove that the joining ν can be
approximated by sums of parts of off-diagonal measures, then applying the Choice
Lemma we find a sequence of parts tending to ν.

By definition of Dδ
j , we have

ν
(

Dδ
j △ (Tsj × Tsj )D

δ
j

)

≤
C

hj
.
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It follows that for any fixed p, the sets Dδ
j are asymptotically Tsp × Tsp -invariant:

Indeed, since Tsp = T
sp/sj
sj where sp/sj is an integer when j ≥ p, we get

ν
(

Dδ
j △ (Tsp × Tsp)D

δ
j

)

≤
sp
sj

C

hj
−−−→
j→∞

0

(recall that sjhj → ∞).
Let λ be a limit measure of ν( · | Dδ

j ). Then λ is Tsp × Tsp -invariant for each

p, by (3), λ is absolutely continuous with respect to ν, and dλ
dν ≤ 1

ℓδ
< ∞. By

Lemma 2.1, it follows that λ = ν. Hence we have

(4) ν( · | Dδ
j )

w
−−−→
j→∞

ν.

We now prove that

(5)

[δhj]
∑

k=−[δhj ]

ν(Ck
j |D

δ
j )∆

ksj ( · |Ck
j )

w
−−−→
j→∞

ν.

For arbitrary measurable sets A,B we can find ξj -measurable sets Aj , Bj such
that

εj := µ(A △ Aj) + µ(B △ Bj) → 0.

We have
∑

k

ν(Ck
j |D

δ
j )∆

ksj (A×B|Ck
j )− ν(A ×B) = M1 +M2 +M3 +M4,

where

M1 :=
∑

k

ν(Ck
j |D

δ
j )

(

∆ksj (A×B|Ck
j )−∆ksj (Aj ×Bj |C

k
j )
)

,

M2 :=
∑

k

ν(Ck
j |D

δ
j )∆

ksj (Aj ×Bj |C
k
j )− ν(Aj ×Bj |D

δ
j ),

M3 := ν(Aj ×Bj |D
δ
j )− ν(A×B|Dδ

j ),

M4 := ν(A×B|Dδ
j )− ν(A×B).

The density of the projections of the measure ∆ksj ( · |Ck
j ) with respect to µ is

bounded by (1− δ)−1. Hence M1 ≤ εj/(1− δ).
Since Aj , Bj are ξj -measurable,

ν(Aj ×Bj |C
k
j ) = ∆ksj (Aj ×Bj |C

k
j ),

and we get M2 = 0.
The absolute value of the third term M3 can be bounded above as follows

|M3| ≤ ν(Dδ
j )

−1ν
(

(Aj ×Bj) △ (A×B)
)

≤
εj

ν(Dδ
j )

→ 0.

The last term M4 goes to zero as j → ∞ by (4), and this ends the proof of (5).
To apply the Choice Lemma for the measures νkj = ∆ksj ( · |Ck

j ) and akj =

ν(Ck
j |D

δ
j ), it remains to check the first hypothesis of the lemma. By construc-

tion of the columns Ck
j , we have for any measurable subset A ∈ X × X and all

k ∈ {−[δhj], . . . , [δhj]},

(6)
∣

∣∆ksj (Tsj × TsjA|C
k
j )−∆ksj (A|Ck

j )
∣

∣ <
C

hj
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where C is a constant. We get the desired result by setting dj :=
C

sjhj
.

The Choice Lemma then gives a sequence (kj) with −δhj ≤ kj ≤ δhj such that

∆kjsj ( · |C
kj

j )
w

−−−→
j→∞

ν. �

Theorem 4.2. Let a flow T = (Tt)t∈R be of rank-one and ν be an ergodic self-

joining of (Tt)t∈R. Then there is a sequence (kj) such that ∆kjsj w
−−−→
j→∞

1
2ν + 1

2ν
′

for some self-joining ν′: For all measurable sets A,B

µ(A ∩ T kj
sj B) →

1

2
ν(A ×B) +

1

2
ν′(A×B).

Proof. For any 1/2 < δ < 1, we have

lim
j→∞

ν(Dδ
j ) > 1− 2(1− δ) = 2δ − 1 > 0.

Hence we can apply Lemma 4.1 for any 1/2 < δ < 1. By a diagonal argument, we
get the existence of (kj) and (δj) ց

1
2 with −δjhj ≤ kj ≤ δjhj such that

∆kjsj
(

· |C
kj

j

)

w
−−−→
j→∞

ν.

Let us decompose ∆kjsj as

∆kjsj = ∆kjsj
(

· |C
kj

j

)

∆kjsj (C
kj

j ) + ∆kjsj
(

· |X ×X \ C
kj

j

)

(

1−∆kjsj (Ck
j )
)

.

Since lim infj→∞ ∆kjsj (C
kj

j ) ≥ 1/2, we get the existence of some self-joining ν′ such
that

∆kjsj w
−−−→
j→∞

1

2
ν +

1

2
ν′.

�

Corollary 4.3. A mixing rank-one flow has minimal self-joinings of order two.

Proof. Let ν be an ergodic self-joining of a mixing rank-one flow (Tt)t∈R. Let (kj)
be the sequence given by Theorem 4.2. If |kjsj | → ∞, since T is mixing we have

∆kjsj w
−−−→
j→∞

µ× µ,

hence µ×µ = 1
2ν+

1
2ν

′ for some self-joining ν′. The ergodicity of µ×µ then implies
that µ×µ = ν. Otherwise, along some subsequence we have kjsj → s for some real
number s. Then ∆s = 1

2ν + 1
2ν

′ for some self-joining ν′, and again the ergodicity
of ∆s yields ν = ∆s. Thus T has minimal self-joinings of order two.. �

5. Weak Closure Theorem for rank-one flows

Lemma 5.1 (Weak Closure Lemma). If the automorphism S commutes with the
rank-one flow (Tt)t∈R, then there exist 1/2 ≤ d ≤ 1, a sequence (kj) of integers and
a sequence of measurable sets (Yj) such that, for all measurable sets A,B

µ(A ∩ T kj
sj B ∩ Yj) → dµ(A ∩ SB),

where Yj has the form

Y d,−
j :=

⊔

0≤i<dhj

T i
sjEj or Y d,+

j :=
⊔

(1−d)hj<i≤hj

T i
sjEj .
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Proof. This lemma is a consequence of the proof of Theorem 4.2, when the joining ν
is equal to ∆S . Given a sequence (δj) ց

1
2 , the proof provides a sequence (kj) where

−δjhj ≤ kj ≤ δjhj, such that ∆kjsj ( · |C
kj

j )
w

−−−→
j→∞

∆S , and ∆kjsj (C
kj

j ) converges

to some number d ≥ 1/2. Let Y
kj

j be the projection on the first coordinate of C
kj

j ,
that is

Y
kj

j =

{

⊔hj

i=kj
T i
sjEj if kj ≥ 0

⊔hj+kj

i=0 T i
sjEj if kj < 0.

We then have ∆kjsj ( · |C
kj

j ) = ∆kjsj ( · |Y
kj

j × X), and µ(Y
kj

j ) = ∆kjsj (C
kj

j ) → d.

Since the marginals of ∆kjsj ( · |C
kj

j ) are absolutely continuous with respect to µ,
with bounded density, this yields, for all measurable sets A,B,

µ(A ∩ T kj
sj B ∩ Y

kj

j ) → dµ(A ∩ SB).

If there exist infinitely many j’s such that kj ≥ 0, then along this subsequence, we
have

µ
(

Y
kj

j △ Y d,+
j

)

−−−→
j→∞

0,

since (hj − kj)/hj → d. A similar result holds along the subsequence of j’s such

that kj < 0, with Y d,+
j replaced by Y d,−

j . �

Theorem 5.2 (Weak Closure Theorem for rank-one flows). If the automorphism S
commutes with the rank-one flow (Tt)t∈R, then there exists a sequence of integers
(kj) such that ∆kjsj → ∆S : For all measurable sets A,B,

µ(A ∩ T kjsjB) → µ(A ∩ SB).

Proof. We fix T and consider the maximal number d for which the statement of
Lemma 5.1 is true. (If d = 1, the theorem is proved.)

So we start from the following statement: We have a sequence of sets {Yj}, of
the form given in Lemma 5.1, such that for all measurable A,B

µ(A ∩ T kj
sj B ∩ Yj) → dµ(A ∩ SB).

Then a similar statement holds when Yj is replaced by SYj : Indeed, since S com-
mutes with T and µ is invariant by S, we have

µ(A ∩ T kj
sj B ∩ SYj) = µ(S−1A ∩ T kj

sj S
−1B ∩ Yj)

−−−→
j→∞

dµ(S−1A ∩ SS−1B) = dµ(A ∩ SB).

Let λ be a limit point for the sequence of probability measures {νj} defined on
X ×X by

νj(A×B) :=
1

µ(Yj ∪ SYj)
µ
(

A ∩ T kj
sj B ∩ (Yj ∪ SYj)

)

.

Then λ ≤ 4 d∆S. Moreover, the measure λ is invariant by Tsp × Tsp for all p.
Indeed, for j ≥ p, we have

µ(TspYj △ Yj) = µ(T sp/sj
sj Yj △ Yj)

which is of order
sp

sjhj
, hence vanishes as j → ∞. Since ∆S is an ergodic measure

for the flow {Tt × Tt}, we can apply Lemma 2.1, which gives λ = ∆S . We obtain

µ
(

A ∩ T kj
sj B ∩ (Yj ∪ SYj)

)

→ uµ(A ∩ SB),
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where u := limj µ(Yj ∪ SYj) (if the limit does not exist, then we consider some
subsequence of {j}).

Our aim is to show that u = 1, which will end the proof of the theorem. Let us
introduce

Wj :=





⊔

0≤i≤hj

T i
sjEj



 \ Yj .

Assume that u < 1, then (denoting by Y c the complementary of Y ⊂ X)

lim
j

∆S(Wj ×Wj) = lim
j

µ(Wj ∩ SWj) = lim
j

µ(Y c
j ∩ SY c

j ) = 1− u > 0.

Let us consider the case where Yj has the form Y d,−
j =

⊔

0≤i<dhj
T i
sjEj . Then

Wj =
⊔

dhj≤i≤hj
T i
sjEj , and we define for any δ′ < 1− d

Wj(δ
′) :=

⊔

(1−δ′)hj<i≤hj

T i
sjEj ⊂ Wj .

In the same way, if Yj has the form Y d,+
j =

⊔

(1−d)hj<i≤hj
T i
sjEj , we set for δ

′ < 1−d

Wj(δ
′) :=

⊔

0<i<δ′hj

T i
sjEj ⊂ Wj .

In both cases, note that

∆S

(

(Wj ×Wj) \ (Wj(δ
′)×Wj(δ

′))
)

≤ 2(1− d− δ′).

Thus, for δ′ close enough to 1− d, we get

lim sup
j

∆S

(

Wj(δ
′)×Wj(δ

′)
)

≥ 1− u− 2(1− d− δ′) > 0.

Since Wj(δ
′)×Wj(δ

′) ⊂ Dδ′

j , this ensures that

lim sup∆S(D
δ′

j ) > 0.

Lemma 4.1 then provides a sequence (k′j) with −δ′hj ≤ k′j ≤ δ′hj , such that

∆k′

jsj ( · |C
k′

j

j )
w

−−−→
j→∞

∆S ,

and the projections Y
k′

j

j of C
k′

j

j on the first coordinate satisfy

lim
j

µ(Y
k′

j

j ) ≥ 1− δ′ > d,

which contradicts the maximality of d. Hence u = 1. �

6. Rigidity of factors of rank-one flows

Lemma 6.1. Let F be a non-trivial factor of a rank-one flow (Tt)t∈R. Then there
exist 1/2 ≤ d ≤ 1, a sequence of integers (kj) with |kjsj | 9 0 and a sequence of
measurable sets (Yj) such that, for all measurable sets A,B ∈ F

µ(A ∩ T kjsjB ∩ Yj) → dµ(A ∩B),

where Yj has the form

Y d,−
j :=

⊔

0≤i<dhj

T i
sjEj or Y d,+

j :=
⊔

(1−d)hj<i≤hj

T i
sjEj .
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Proof. We start with the relatively independent joining above the factor F and
consider an ergodic component ν such that ν({(x, x), x ∈ X}) = 0. Observe that
for any sets A,B ∈ F , we have ν(A × B) = µ(A ∩ B). We repeat the proof of
Lemma 5.1 with ν in place of ∆S . This provides the sequences (kj) and (Yj) such
that for all measurable sets A,B

µ(A ∩ T kjsjB ∩ Yj) → dν(A×B).

If we had kjsj → 0, then ν(A × B) = µ(A ∩ B), which would contradict the
hypothesis that ν gives measure 0 to the diagonal. �

Theorem 6.2. Let F be a non-trivial factor of a rank-one flow (Tt)t∈R. Then there
exists a sequence of integers (kj) with |kjsj | → ∞ such that, for all measurable sets
A,B ∈ F

µ(A ∩ T kjsjB) → µ(A ∩B).

Proof. Again we fix some ergodic component ν such that ν({(x, x), x ∈ X}) = 0.
We consider the maximal number d for which the statement of Lemma 6.1 is true.
We thus have a sequence of sets {Yj}, of the form given in Lemma 6.1, such that

(7) ∀A,B ∈ F ,
1

µ(Yj)
Eµ

[1A1
T

kj
sj

B
1Yj

]

→ µ(A ∩B).

In the above equation, one can replace 1Yj
by φj(x) := Eν [1Yj

(x′)|x]: Indeed, since
ν coincides with ∆ on F ⊗F , we have 1A(x

′) = 1A(x) and 1
T

kj
sj

B
(x′) = 1

T
kj
sj

B
(x)

ν-a.s. Hence,

Eµ

[1A1
T

kj
sj

B
1Yj

]

= Eν

[1A(x)1
T

kj
sj

B
(x)1Yj

(x′)

]

= Eµ

[1A(x)1
T

kj
sj

B
(x)φj(x)

]

.

We note that

(8) Eµ

[

|φj − φj ◦ Tsj |
]

≤ µ(Yj △ TsjYj) = O

(

1

hj

)

.

For any ε > 0, let

Uε
j := {x : φj(x) > ε} .

We would like to prove that (7) remains valid with 1Yj
replaced by 1Uε

j
for ε small

enough. To this end, we need almost-invariance of Uε
j under Tsj , which does not

seem to be guaranteed for arbitrary ε. Therefore, we use the following technical
argument to find a sequence (εj) for which the desired result holds.

Fix ε > 0 small enough so that µ(Uε
j ) > µ(Yj)/2 for all large j. By Lemma 3.2,

we can assume that s2jhj → ∞. Let δj = o(sj) such that (δjhj)
−1 = o(sj). We

divide the interval [ε/2, ε] into ε/(4δj) disjoint subintervals of length 2δj. One of
these subintervals, called Ij , satisfy

(9) µ ({x : φj(x) ∈ Ij}) ≤
4δj
ε

.

Let us call εj the center of the interval Ij . Observe that

µ
(

U
εj
j △ TsjU

εj
j

)

≤ µ ({x : |φj(x)− εj | < δj})+µ
(

{x : |φj(x) − φj(Tsj (x))| ≥ δj}
)

.

By (9) and (8), we get that

(10) µ
(

U
εj
j △ TsjU

εj
j

)

= O

(

δj +
1

δjhj

)

= o(sj).
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Taking a subsequence if necessary, we can assume that the sequence of probability
measures λj , defined by

∀A,B ∈ A , λj(A×B) :=
1

µ(U
εj
j )

Eµ

[1A1T
kj
sj

B
1
U

εj
j

]

,

converges to some probability measure λ, which is invariant by Tsp × Tsp for all

p by (10). Recall that µ(U
εj
j ) > µ(Yj)/2 and that 1

U
εj
j

≤ φj/εj. Then, since

εj > ε/2, we have λ|F⊗F ≤ 4
ε∆|F⊗F . Since ∆|F⊗F is an ergodic measure for the

flow {Tt×Tt}|F⊗F , we can apply Lemma 2.1, which gives λ|F⊗F = ∆|F⊗F . This
means that (7) remains valid with 1Yj

replaced by 1
U

εj
j

.

The analogue of (7) is also valid when we replace 1Yj
by 1

Yj∪U
εj
j

: Indeed, we

also have the almost-invariance property

µ
(

(Yj ∪ U
εj
j ) △ Tsj (Yj ∪ U

εj
j )

)

= o(sj)

and 1
Yj∪U

εj
j

≤ 1Yj
+ 1

U
εj
j

. We conclude by a similar argument.

Since ε can be taken arbitrarily small, we can now use a diagonal argument to
show that (7) remains valid with 1Yj

replaced by 1
U

εj

j

where the sequence (εj) now

satisfies εj → 0. Hence, taking a subsequence if necessary to ensure that µ(Yj∪U
εj
j )

converges to some number u, we get

∀A,B ∈ F , Eµ

[1A1T
kj
sj

B
1
Yj∪U

εj
j

]

→ uµ(A ∩B).

It now remains to prove that u = 1, which we do by repeating the end of the proof
of Theorem 5.2. Assume that u < 1. Let us introduce

Wj :=





⊔

0≤i≤hj

T i
sjEj



 \ Yj .

We have

lim
j

ν(Wj ×Wj) = lim
j

ν(Y c
j × Y c

j ) = lim
j

Eµ

[1Y c
j
(1− φj)

]

.

Observe that (1 − φj) ≥ 1
(U

εj

j )c
− εj . Hence

lim
j

ν(Wj ×Wj) ≤ lim
j

Eµ

[1Y c
j
1
(U

εj

j )c

]

= 1− u > 0.

Let us consider the case where Yj has the form Y d,−
j =

⊔

0≤i<dhj
T i
sjEj . Then

Wj =
⊔

dhj≤i≤hj
T i
sjEj , and we define for any δ′ < 1− d

Wj(δ
′) :=

⊔

(1−δ′)hj<i≤hj

T i
sjEj ⊂ Wj .

In the same way, if Yj has the form Y d,+
j =

⊔

(1−d)hj<i≤hj
T i
sjEj , we set for δ

′ < 1−d

Wj(δ
′) :=

⊔

0<i<δ′hj

T i
sjEj ⊂ Wj .

In both cases, note that

ν
(

(Wj ×Wj) \ (Wj(δ
′)×Wj(δ

′))
)

≤ 2(1− d− δ′).
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thus, for δ′ close enough to 1− d, we get

lim sup
j

ν
(

Wj(δ
′)×Wj(δ

′)
)

≥ 1− u− 2(1− d− δ′) > 0.

Since Wj(δ
′)×Wj(δ

′) ⊂ Dδ′

j , this ensures that

lim sup ν(Dδ′

j ) > 0.

Lemma 4.1 then provides a sequence (k′j) with −δ′hj ≤ k′j ≤ δ′hj , such that

∆k′

jsj ( · |C
k′

j

j )
w

−−−→
j→∞

ν.

In particular, ∆k′

jsj ( · |C
k′

j

j )|F⊗F

w
−−−→
j→∞

∆|F⊗F . Since the projections Y
k′

j

j of C
k′

j

j

on the first coordinate satisfy

lim
j

µ(Y
k′

j

j ) ≥ 1− δ′ > d,

this contradicts the maximality of d. Hence u = 1. �

7. King’s theorem for flat-roof rank-one flow

We consider a rank-one flow (Tt)t∈R. We say that (Tt)t∈R has flat roof if we

can choose the sequence ξj = {Ej , TsjEj , . . . , T
hj−1
sj Ej , X \

⊔hj−1
k=0 T k

sjEj} in the
definition such that

µ
(

T
hj
sj Ej △ Ej

)

µ(Ej)
−−−→
j→∞

0.

Theorem 7.1. Let (Tt)t∈R be a flat-roof rank-one flow, and ν be an ergodic self-

joining of (Tt)t∈R. Then there exists a sequence (kj) such that ∆kjsj w
−−−→
j→∞

ν.

Proof. Let us defined, for 0 ≤ k ≤ hj − 1

ajk := ν
(

T k
sjEj × Ej

)

and bjk := ν
(

Ej × T hj−k
sj Ej

)

.

We claim that the flat-roof property implies

(11) hj

hj−1
∑

k=1

|ajk − bjk| −−−→j→∞
0.

Indeed, by invariance ajk = ν
(

T
hj
sj Ej × T

hj−k
sj Ej

)

. Hence

|ajk − bjk| ≤ ν
(

(T hj
sj Ej △ Ej)× T hj−k

sj Ej

)

,

and
hj−1
∑

k=1

|ajk − bjk| ≤ ν
(

(T hj
sj Ej △ Ej)×X

)

= µ
(

(T hj
sj Ej △ Ej)

)

.

The claim follows, since µ(Ej) ∼ 1/hj.
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C
k−hj

j

Ck
j

T k
sjEj

ajk

T
hj−k
sj Ej bjk

Ej

Ej

Figure 2. The union of Ck
j and C

k−hj

j is denoted by Gk
j .

We gather the columns Ck
j in pairs, defining for 1 ≤ k ≤ hj−1, Gk

j := Ck
j ⊔C

k−hj

j .

(See Figure 2.) We also set G0
j := C0

j . Note that ν(G
k
j ) = (hj−k)ajk+kbjk. Observe

also that

ν





hj−1
⊔

k=0

Gk
j



 = ν





hj−1
⊔

k=0

T k
sjEj ×

hj−1
⊔

k=0

T k
sjEj



 −−−→
j→∞

1.

Hence,

(12)

hj−1
∑

k=0

ν(Gk
j ) ν( · |G

k
j )

w
−−−→
j→∞

ν.

We claim that, using the flat-roof property, we can in the above equation replace
ν( · |Gk

j ) by ∆ksj . Let A and B be ξj-measurable sets, which are unions of T i
sjEj

(0 ≤ i ≤ hj − 1). We denote by rk (respectively ℓk) the number of elementary cells
of the form T i1

sj Ej × T i2
sj Ej which are contained in A×B and which belong to the

column Ck
j (respectively C

k−hj

j ). We have

(13) ν(A×B|Gk
j )ν(G

k
j ) = ℓkb

j
k + rka

j
k.

Moreover, we will show that the flat-roof property ensures the existence of a se-
quence (εj) with εj −−−→

j→∞
0 such that

(14)

∣

∣

∣

∣

∆ksj (A×B)−
ℓk + rk

hj

∣

∣

∣

∣

≤ εj .
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Indeed, let us cut A into A1 := A∩
⊔

0≤i≤k−1 T
i
sjEj and A2 := A∩

⊔

k≤i≤hj−1 T
i
sjEj .

We have

∆ksj (A2 ×B) = rkµ(Ej),

and

∆ksj (A1 ×B) = ℓk∆
ksj (Ej × T hj−k

sj Ej) + ∆ksj
(

(A1 ×B) \ C
k−hj

j

)

.

Recalling that ∆ksj (Ej × T
hj−k
sj Ej) = µ(Ej ∩ T

hj
sj Ej), we get

(15) ∆ksj (A×B) = (rk+ℓk)µ(Ej)−ℓkµ(Ej \T
hj
sj Ej)+∆ksj

(

(A1 ×B) \ C
k−hj

j

)

.

The second term of the right-hand side is bounded by hjµ(Ej∆T
hj
sj Ej), which goes

to 0 by the flat-roof property. To treat the last term, we consider the particular
case A = B =

⊔

0≤i≤hj−1 T
i
sjEj , for which this last term is maximized. We have

then

1−∆ksj (A×B) ≤ 2µ



X \
⊔

0≤i≤hj−1

T i
sjEj



 −−−→
j→∞

0.

On the other hand, (15) gives

∆ksj
(

(A1 ×B) \ C
k−hj

j

)

= ∆ksj (A×B)− hjµ(Ej) + kµ(Ej \ T
hj
sj Ej).

Since hjµ(Ej) → 1, and kµ(Ej \ T
hj
sj Ej) ≤ hjµ(Ej∆T

hj
sj Ej) → 0, we get that the

last term of (15) goes to 0 uniformly with respect to k, A and B. It follows that

∣

∣∆ksj (A×B)− (ℓk + rk)µ(Ej)
∣

∣ −−−→
j→∞

0,

uniformly with respect to k, A and B. This concludes the proof of (14).
Equations (14) and (13) give

hj−1
∑

k=0

∣

∣

∣ν(A×B|Gk
j )−∆ksj (A×B))

∣

∣

∣ν(Gk
j )

≤

hj−1
∑

k=0

|ajk − bjk|

∣

∣

∣

∣

ℓk −
k

hj
(ℓk + rk)

∣

∣

∣

∣

+ εj

≤ hj

hj−1
∑

k=0

|ajk − bjk|+ εj

which goes to 0 as j → ∞ by (11).
Recalling (12), we obtain

hj−1
∑

k=0

ν(Gk
j )∆

ksj w
−−−→
j→∞

ν.

It remains to apply the Choice Lemma to conclude the proof of the theorem. �
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8. Z
n-Rank-one action

We consider now an action of Zn (n ≥ 1). For k ∈ Z
n, we denote by k(1), . . . , k(n)

its coordinates.

Definition 8.1. A Z
n-action {Tk}k∈Zn is of rank one if there exists a sequence (ξj)

of partitions converging to the partition onto points, where ξj is of the form

ξj =

{

(TkEj)k∈Rj
, X \

⊔

k

TkEj

}

,

and Rj is a rectangular set of indices:

Rj = {0, . . . , hj(1)− 1} × · · · × {0, . . . , hj(n)− 1}.

The sequence (ξj) in the above definition being fixed, we define as for the rank-
one flows the notions of columns and fat diagonals: For any k ∈ Z

n, we set

Ck
j :=

⊔

r,ℓ∈Rj

r−ℓ=k

TrEj × TℓEj ,

and given 0 < δ < 1,

Dδ
j :=

⊔

k:
∏

i(hj(i)−|k(i)|)≥(1−δ)
∏

i hj(i)

Ck
j .

Lemma 8.2. For any self-joining ν of the rank-one action {Tk}k∈Zn , for any δ >
1− 1/2n, we have

lim inf
j→∞

ν(Dδ
j ) > 0.

Proof. We can find ε > 0, small enough such that
(

1

2
− ε

)n

> 1− δ.

Let r ∈ Z
n be such that

∀i,

(

1

2
− ε

)

hj(i) < r(i) <

(

1

2
+ ε

)

hj(i).

Then, for any ℓ ∈ Rj , we have for all i: |r(i)− ℓ(i)| <
(

1
2 + ε

)

hj(i). Hence
∏

i

(

hj(i)− |r(i) − ℓ(i)|
)

> (1− δ)
∏

i

hj(i),

which means that for any ℓ ∈ Rj , the column Cr−ℓ
j is contained in Dδ

j . It follows
that





⊔

r: ∀i, |r(i)−hj(i)/2|<εhj(i)

TrEj



×





⊔

ℓ∈Rj

TℓEj



 ⊂ Dδ
j .

We then get

lim inf
j→∞

ν(Dδ
j ) ≥ lim inf

j→∞
µ





⊔

r: ∀i, |r(i)−hj(i)/2|<εhj(i)

TrEj



 = (2ε)n.

�
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We can now state the analogue of Theorem 4.2 for Z
n-rank-one action, which

was first proved by A.A. Pavlova in [9].

Theorem 8.3. Let ν be an ergodic self-joining of the Zn-rank-one action {Tk}k∈Zn .

Then we can find a sequence (kj) in Z
n and some self-joining ν′ such that ∆kj

w
−−−→
j→∞

1
2n ν +

(

1− 1
2n

)

ν′: For all measurable sets A,B

µ(A ∩ Tkj
B) →

1

2n
ν(A×B) +

(

1−
1

2n

)

ν′(A× B).

Proof. The proof follows the same lines as for Theorem 4.2. First note that
Lemma 4.1 can be easily adapted to the Z

n-situation. Hence, by Lemma 8.2,
using a diagonal argument, we get the existence of (kj) and (δj) ց 1 − 1

2n with

C
kj

j ⊂ D
δj
j such that

∆kj

(

· |C
kj

j

)

w
−−−→
j→∞

ν.

To conclude, it remains to prove that lim inf ∆kj (C
kj

j ) ≥ 1/2n. To this aim, we

count the number of pairs (r, ℓ) such that TrEj ×TℓEj ⊂ C
kj

j . We can easily check

that these are exactly the pairs (r, ℓ) such that, for all 1 ≤ i ≤ n, there exists
m(i) ∈ {0, . . . , hj(i)− 1− |kj(i)|} with

(

r(i), ℓ(i)
)

=

{

(

kj(i) +m(i),m(i)
)

if kj(i) ≥ 0
(

m(i),−kj(i) +m(i)
)

otherwise.

Hence ∆kj (C
kj

j ) =
∏

i

(

hj(i) − 1 − |kj(i)|
)

µ(Ej). Using the fact that C
kj

j ⊂ D
δj
j ,

we get the desired result. �

When n ≥ 2, it is known that the Weak Closure Theorem fails (counterexamples
have been given in [1, 2]). However, as a consequence of Theorem 8.3, we get the
following:

Corollary 8.4 (Partial Weak Closure Theorem for Zn-rank-one action). Let S be
an automorphism commuting with the Zn-rank-one action {Tk}k∈Zn . Then we can
find a sequence (kj) in Z

n and some self-joining ν′ such that

∆kj −−−→
j→∞

1

2n
∆S +

(

1−
1

2n

)

ν′.

Moreover, if S /∈ {Tk k ∈ Z
n}, then {Tk}k∈Zn is partially rigid: There exists a

sequence (k′ℓ) in Z
n with |k′ℓ| → ∞ such that for all measurable sets A and B

lim inf
ℓ→∞

µ
(

A ∩ Tk′

ℓ
B
)

≥
1

22n
µ(A ∩B).

Proof. The first part is a direct application of Theorem 8.3 with ν = ∆S . If
moreover S /∈ {Tk k ∈ Z

n}, then the sequence (kj) of the theorem must satisfy
|kj | → ∞. Let us enumerate the cylinder sets as {A0, A1, . . . , Aℓ, . . .}. Let (εℓ) be
a sequence of positive numbers decreasing to zero. For any ℓ, we can find a large
enough integer j1(ℓ) such that for all cylinder sets A,B ∈ {A0, A1, . . . , Aℓ},

µ
(

Tkj1(ℓ)
A ∩ SB

)

≥

(

1

2n
− εℓ

)

µ(SA ∩ SB) =

(

1

2n
− εℓ

)

µ(A ∩B).
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Then, we can find a large enough integer j2(ℓ) with |j2(ℓ)| > 2|j1(ℓ)| such that for
all cylinder sets A,B ∈ {A0, A1, . . . , Aℓ},

µ
(

Tkj1(ℓ)
A ∩ Tkj2(ℓ)

B
)

≥

(

1

2n
− εℓ

)

µ(Tkj1(ℓ)
A ∩ SB).

It follows that for all ℓ ≥ 0 and all cylinder sets A,B ∈ {A0, A1, . . . , Aℓ},

µ
(

A ∩ Tkj2(ℓ)−kj1(ℓ)
B
)

≥

(

1

2n
− εℓ

)2

µ(A ∩B).

This proves the result announced in the corollary when A and B are cylinder sets
with k′ℓ := kj2(ℓ) − kj1(ℓ), and this extends in a standard way to all measurable
sets. �

The counterexample given in [2] also shows that the rigidity of factors is no
more valid when n ≥ 2. Theorem 8.3 only ensures the partial rigidity of factors of
Z
n-rank-one actions.

Corollary 8.5 (Partial rigidity of factors of Zn-rank-one action). Let F be a non-
trivial factor of the Z

n-rank-one action {Tk}k∈Zn . Then there exists a sequence
(kj) in Z

n with |kj | → ∞ such that, for all measurable sets A,B ∈ F

lim inf µ(A ∩ Tkj
B) ≥

1

2n
µ(A ∩B).

Proof. This is a direct application of Theorem 8.3 where ν is an ergodic component
of the relatively independent joining above the factor F . �
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