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Abstract

A proper vertex-colouring of a graph G is said to be locally identifying if for any pair
u,v of adjacent vertices with distinct closed neighbourhoods, the sets of colours in the closed
neighbourhoods of v and v are different. We show that any graph G has a locally identifying
colouring with 2A% — 3A + 3 colours, where A is the maximum degree of G, answering in
a positive way a question asked by Esperet et al. We also provide similar results for locally
identifying colourings which have the property that the colours in the neighbourhood of each
vertex are all different and apply our method to the class of chordal graphs.
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1 Introduction

Let G = (V,E) be a simple undirected finite graph. Let ¢ : V' — N be a colouring of the
vertices of G. For a subset S of V, we denote by ¢(S) the set of colours that appear in S:
c(S) = {c(u) | uw € S} and we denote by N[u] (resp. N(u)) the closed (resp. open) neighbourhood
of u: Nju]={v eV |d(u,v) <1} (resp. N(u) ={v eV | d(u,v) =1}).

The colouring ¢ is a locally identifying colouring (lid-colouring for short) if it is a proper colouring
(no two adjacent vertices have the same colour) such that for each pair of adjacent vertices u,v
with N[u] # N[v], we have ¢(N[u]) # ¢(N[v]). A colour belonging to the symmetric difference of
¢(N[u]) and ¢(Nv]) is said to separate u from v. An edge uv is said to be bad if N[u] # N[v] and
¢(Nu]) = ¢(Nv]). So a locally identifying colouring is a proper vertex colouring without any bad
edge. The locally identifying chromatic number of G, x1i4(G), is the minimum number of colours
required in any locally identifying colouring of G.

Locally identifying colourings have been introduced in [7] and are related to identifying codes
[8,[10], distinguishing colourings [l 4 6] and locating-colourings [5]. An open question asked in [7]
was to know whether one can find a locally identifying colouring of a graph G' with O(A?) colours,
where A is the maximum degree of G. Examples using the projective plane provide graphs G with
X1id(G) = A% — A+1 (see [7]). In this note, we show that we always have x;4(G) < 2A% —3A +3,
answering in a positive way the question asked in [7]. The result is effective: we give a construction
for a locally identifying colouring with 2A2 — 3A + 3 colours. This construction can be slightly
modified, using 2A2 — A+1 colours to provide a locally identifying colouring which has the property
that the colours in the neighbourhood of each vertex are all distinct. We finally consider the class
of chordal graphs, for which it is conjectured in [7] that x;;4(G) < 2x(G), for any chordal graph
G. We give a bound for this class in terms of A and Yy, in the direction of the previous conjecture.
For terminology and notations of graph theory, we refer to the book [2].
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2 Upper bound in terms of the maximum degree

The following lemma shows that, given a locally identifying colouring, we can change the colour of
a single vertex in a number of ways, without sacrificing the property that the colouring is locally
identifying.

Lemma 1 (Recolouring Lemma). Let G be a graph with mazimum degree A > 3. Let v be
a verter of degree d. Assume that G has a locally identifying colouring c with strictly more than
2d(A — 1) colours. Then, there is a list L of colours of size at most 2d(A — 1) such that if we
change the colour of v to a colour not in L, the colouring remains locally identifying.

Proof. Let vy, ...,vq4 be the neighbours of v. For each vertex v;, let u; 1, ..., u; 5, be the neighbours
of v; that are not neighbours of v, see Figure[[l For 1 < i < d, we construct a list L; of colours
with at most 2(A — 1) colours. We first put c(v;) in L;.

Figure 1: Neighbourhood of a vertex v

If there is a vertex u; ; such that c¢(Nu;;]) = ¢(N[v;] \ {v}), we say that v; is of type A and
we add to L; all the colours of ¢(N[v;]\ {v}). We add at this point at most A — 1 colours because
c(v;) is already in L;. Then, for all vertices u; j such that ¢(N[u; j/]) \ ¢(N[v;]\ {v}) is not empty,
we add an arbitrary colour of ¢(N[u; j]) \ ¢(N[v;] \ {v}) to L;. In this step, we add at most A —2
colours because j' # j. Therefore, in the end |L;| < 2(A —1).

Otherwise, we say that v; is of type B and for each neighbour u # v of v;, if ¢(N[u])\e(N[vi]\{v})
is not empty, we add one colour of this set to L;. Note that u can be some other vertex v; or some
vertex u; j, but there are at most A — 1 such vertices. If ¢(N[v;]) \ ¢(N[v]) is not empty, we add
one colour of this set to L;. In the end, |L;| < A+ 1.

Let L = U;=1,. qLi. Because A > 3, |L| < 2d(A — 1). We define a new colouring ¢’ of G by
just changing the colour of v to a colour not in L. We will prove that ¢’ is locally identifying.
First, ¢’ is a proper colouring because L contains all the colours ¢(v1),...,c(vg). Let now z,y be a
pair of adjacent vertices, with N[z] # N[y]. We will show that ¢/(N[z]) # ¢/(N[y]). If neither z
nor y are in N[v] then the colours in their respective neighbourhoods did not change and we have
¢ (Nz]) # ¢ (N[y]). So we can assume, without loss of generality, that x = v;.

Suppose first that y = v. Let us also assume that there exists a colour ¢ € ¢(Nv1]) \ ¢(N[v]),
then ¢y # c(v). If vy is of type A, ¢o € L and then ¢ € ¢/(N[v1]) \ ¢(N[v]). Hence ¢ is
still separating v from wvy. If vy is of type B, at least one colour of ¢(N[vi]) \ ¢(N[v]) is in L (not
necessarily ¢g), and is separating vy from v. Now, assume that ¢(N[v1])\ e(N[v]) is empty. Because
¢(N[v1]) # ¢(N[v]), there is a colour ¢y € ¢(N[v]) \ ¢(N[v1]). We have ¢y # ¢(v), so cgp € L and ¢
is still separating v from v;.

Assume now that y = v;, with j # 1 and v;,v; adjacent. Then without loss of generality we
can assume that there exists co € c¢(N[v1]) \ ¢(N[vj]), co # c(v). If vy is of type A, then ¢ is not
the new colour ¢/(v) of v because ¢y € L. Otherwise, v is of type B and then there is one colour
of ¢(N[v1]) \ e(Nv;]) in L (not necessarily c¢o) that is separating vy from v.

Finally, we can assume without loss of generality that y = uy,1. If ¢(N[u1,1]) = e¢(N[v1] \ {v})
then v; is of type A and so ¢(Nuy1]) C L. Hence, the new colour of v, ¢(v), is not in ¢(Nuq 1])



and is separating vy from wuq1. If there is a colour in ¢(N[vi] \ {v}) \ ¢(N[u1,1]) then it is still
separating v1 from wy ;. Otherwise ¢(Nuq 1))\ ¢(N[v1]\ {v}) is necessarily nonempty, and so there
is a colour of L that is separating w1 from v;. O

Let d be an integer. A graph G is d-degenerate if each induced subgraph of G has a vertex of
degree at most d (see [9] for reference).

Proposition 2. Let G be a d-degenerate graph with mazimum degree A > 3 and d < A. Then:
Xud(G) < 2(A — 1)2 +d.

Proof. Let A be fixed. We prove the claim by induction on the number of vertices in G. The claim
is clearly true for graphs with few vertices. Assume that the claim is true for every d-degenerate
graph with fewer than n vertices and maximum degree at most A. Let G be a d-degenerate graph
with n vertices and maximum degree at most A.

Let v be one vertex of minimum possible degree t < d in G. Let H = G\ {v}. The graph H is
also d-degenerate and by the induction hypothesis, there is a locally identifying colouring ¢ of H
with 2(A —1)? +d colours. As in the previous lemma, we denote the ¢ neighbours of v by v1,...,0¢,
(if v has no neighbours the claim is trivial) and for each i € {1,...,t}, we denote by w; 1,...,u; s,
the neighbours of v; that are not neighbours of v (see Figure[ll). We construct a list L’ of size at
most d containing, for each ¢ € {1,..,¢}, the colour c¢(u; 1) if u; 1 exists. Each vertex v; has degree
at most A — 1 in H. Using Lemma [Il we can recolour each vertex v; with a colour that is not in
L’: indeed, there are 2(A — 1)? forbidden colours from the lemma applied to v; and d colours in
L', but the colours c(u; 1), if u; 1 exists, is counted twice, so there are at most 2(A — 1)2 +d — 1
forbidden colours and at least one colour is free.

We can now assume that c is a locally identifying colouring of H such that no vertex v; has
a colour in L'. We now assign to v a new colour, ¢(v), never used in ¢ originally. We will prove
that this colouring of G is locally identifying. It is clearly a proper colouring, and the only pair
of adjacent vertices that is not clearly separated is the pair {v,v;}. If v; has a neighbour w; i,
then ¢(u;1) € L and ¢(Nv]) is not containing c¢(u; 1), so they are separated. Otherwise, we have
Nlv;] € N[v]. But v has minimum degree, so necessarily N[v;] = N[v] and the two vertices do not
need to be separated.

Finally, we obtain a lid-colouring of G using 2(A —1)2+d+1 > 2(A —1)? + 2 colours, but the
colour of v is used only once. By the recolouring lemma there are at least two colours that we can
use for recolouring v, and at least one of them is not the colour of v. Therefore, we can change the
colour of v to a colour already used, and we thus obtain a lid-colouring of G using 2(A — 1)? +d
colours. O

Corollary 3. Let G be a graph with mazimum degree A > 3. Then:
xiia(G) < 2A% —3A + 3.

Proof. If G is not connected, we colour the components independently. So we can assume that G
is connected.

If G is not A-regular, then G is (A — 1)-degenerate. Indeed, if we take any proper subset V' of
vertices, and consider the subgraph induced by V’, then if every vertex in this induced subgraph
had degree A, there would be no edges between V' and V(G) \ V', and therefore G would not be
connected. So in this case we can directly apply Proposition [2] and the result is clear.

Assume now that G is A-regular. Let v be any vertex of G. As before, the graph G \ {v} is
(A — 1)-degenerate and so, by Proposition 2 it has a lid-colouring with 2A% — 3A + 1 colours. As
before, we can recolour all the neighbours of v in such a way that the colouring remains locally
identifying and such that if a neighbour of v has not the same closed neighbourhood as v, it has
a neighbour with a colour different from all the colours of N(v). For this step, there could be
2A? — 3A + 1 forbidden colours, so we finally obtain a colouring of G \ {v} with 2A2 — 3A + 2
colours. Then we assign a new colour to v and as before we can show that the colouring is locally
identifying, leading to a locally identifying colouring with 2A2 — 3A + 3 colours. o

We now study the case A = 2:



Proposition 4. Let n > 4 be an integer. Let C,, be the cycle of order n. Then:
e X1id(Cn) =3 if n =0mod 4,
e 1id(Cn)=5ifn=5orT,
e x1id(Cpn) = 4 otherwise.

As a consequence, any graph with mazimum degree 2 has a locally identifying colouring with
five colours.

Proof. Let vo,..., v,—1 be the vertices of C,,. We clearly have x;;4(C,) > 3.
We colour C,, with four colours using the following family of sequences described by the following
word:
[124341232][42](1232)*

for n > 4 and n # 5,7. A sequence in bracket, [M], means that we can take or not take the
sequence M, the sequence (M)* means that we can repeat sequence M as many times as we need
(or not use it at all). One can check that if we colour vertices of C,, with one of the sequences
described by the previous word, we obtain a locally identifying colouring with three colours if
n = 0 mod 4 and with four colours otherwise.

If n # 0 mod 4, then there is no locally identifying colouring with three colours. Indeed, if we
try to colour the vertices of C,, with three colours there is no choice to do it and we must colour,
without loss of generality: ¢(v;) with colour 1 if ¢ = 0 mod 4, with colour 2 if ¢ = 1,3 mod 4 and
with colour 3 if 7 = 2 mod 4. But v,,_1 must have colour 2, and v,,_o must have colour 3. Then
n—2=2mod 4 and so n = 0 mod 4, a contradiction.

A case analysis shows that x;;4(Cs) = x1:4(C7) = 5.

For the last part of the proposition, if G has maximum degree 2 then it is composed of connected
components that are cycles or paths. One can easily check that a path has always a locally
identifying colouring with four colours, and so we can colour each connected component of G
independently with at most five colours. O

One can notice that in the locally identifying colourings of the cycle provided in the proof, only
three colours are used an unbounded number of times, whereas the other colours are used at most
three times. In some sense, we can say that C,, has almost a locally identifying colouring with three
colours.

3 Strong locally identifying colourings

In this section, we consider a variation of locally identifying colourings by adding a strong constraint
to the definition. Our technique can still be applied in this context in order to get a bound in the
same asymptotic order. We also extend our method to the class of chordal graphs, in relation with
a conjecture of [7].

We say that a colouring ¢ is a strong locally identifying colouring (slid-colouring for short) if
it is a locally identifying colouring and if for each vertex wu, all the colours in N[u] are different
(the colouring is locally injective). In other words, a slid-colouring is a proper distance-two vertex-
colouring (two vertices at distance at most 2 from each other have different colours) without bad
edges.

We denote by xsia(G) the minimum number of colours required in any slid-colouring of G.
Clearly, x1:4(G) < xs1a(G) and x2(G) < xs1d(G), where x2(G) denotes the minimum number
of colours in a distance-two vertex-colouring of G. In a graph G with maximum degree A, each
vertex has at most A? vertices at distance at most 2, and so x2(G) < A% + 1.

We will adapt the proof of the previous section to show that merging the locally-identifying
constraint with the distance-two colouring constraint does not increase the asymptotic order of
both bounds.

Lemma 5 (Recolouring lemma 2). Let v be a vertex of degree di of a graph G. Assume that v
has dy vertices at distance exactly 2 and let ¢ be a slid-colouring c with strictly more than di + 2ds
colours. Then, there is a list L of colours of size at most dy + 2ds such that if we change the colour
of v to a colour not in L, the colouring remains a slid-colouring.



Proof. In this case we also need to put in L all the colours of vertices at distance 2 of v. We keep
the same notations as before and we construct L as follows:

1. For each vertex v;, add colour ¢(v;) to L (at most d; colours are added).
2. For each vertex u; ;, add colour ¢(u; ;) to L (at most ds colours are added).

3. For each vertex u; j, if there is some colour in ¢(NV]u; ;]), but not already in L, add one of
them to L. At this step we add at most ds colours.

In the end, L contains at most di 4+ 2ds colours. If we consider a new colouring ¢’ from ¢ where
we change the colour of v to a colour not in L then clearly ¢’ is still a distance-two colouring.
Furthermore, no edge becomes bad. Indeed, the only edges that could become bad would be of the
form v;u; ;. There are two cases depending on whether ¢(N[u; ;]) is included in ¢(Nv;]) or not.

If ¢(N[ui ;1) C ¢(Nv;]), then there is a colour ¢y € ¢(Nv;]) \ ¢(N[ui ]). If co was the colour
¢(v), because ¢ (v) ¢ ¢(N[u;;]) C ¢(N[v;]), we have ¢/ (v) € ¢ (N[v]) \ ¢ (N[ ;]). Otherwise, we
still have ¢y € ¢/(N{vi]) \ ¢/ (Nus 5]).

Otherwise ¢(Nu; ;]) \ ¢(N[v;]) is not empty and during the construction of L, one colour of
¢(Nu; 4]) \ e(N[v;]) has been added to L, still separating v; from w; ;. O

Note that Recolouring lemma 2 can also be applied in the locally identifying colouring case,
leading in some cases to a better bound than the one of Recolouring lemma [I1

As before, we can use this lemma to construct a slid-colouring of a graph G by induction. We
first colour G when it is d-degenerate:

Proposition 6. Let G be a d-degenerate graph with mazimum degree A > 2 and d < A. Then:
Xs1id(G) < (A = 1)(2A — 1) +2d — 1.

Proof. The idea of the proof is similar to the proof of Proposition 2l We construct the colouring
by induction. We choose a vertex v with minimum possible degree t < d. Then G \ {v} has a
slid-colouring with (A — 1)(2A — 1) + 2d — 1 colours. For each neighbour v; of v which has a
neighbour w; 1 at distance 2 of v, we put the colour of u; 1 in a list L'. We recolour each neighbour
v; of v in such a way that all the neighbours of v have different colours and none of them has a
colour in L. To recolour v;, there are at most (A — 1)(2A — 1) forbidden colours from the lemma,
at most d — 1 colours from the other neighbours of v and at most d — 1 forbidden colours from
L’ (if v; has a neighbour wuj ; then the colour of uy is already forbidden for v; in the lemma).
Therefore, at most (A — 1)(2A — 1) 4 2d — 2 are forbidden but we have (A —1)(2A —1)+2d—1
colours, so at least one colour is free. After that, we give a completely new colour to v, obtaining
a slid-colouring with (A — 1)(2A — 1) + 2d colours, and by Lemma[Bl we can change the colour of
v to a colour already used. We thus obtain a slid-colouring with (A —1)(2A — 1) +2d — 1 colours
(for this last step, at least two colours are free so one of them is not the colour of v and we can
change the colour of v to a colour already used). o

Corollary 7. Let G be a graph with mazimum degree A. Then:
Xsiid(G) < 2A% — A+ 1.

Proof. As before, we can assume that G is connected. If G has a vertex of degree d < A, then it is
(A — 1)-degenerate and we have xg;a(G) < 2A% — A — 2. Otherwise, G is A-regular. If we remove
one vertex v then G \ {v} is (A — 1)-degenerate and there is a slid-colouring with 2A% — A — 2
colours. We recolour the neighbours of v as before, but here there are A neighbours so we will
need (A —1)(2A — 1) +2A — 2+ 1 = 2A? — A colours. We complete the colouring by giving a
completely new colour to v, thus obtaining a slid-colouring with 2A2 — A + 1 colours. o

We then consider the case of the cycle:

Proposition 8. Let n > 4 be an integer. Let C,, be the cycle of order n. Then:



e Xs1id(Crn) =4 if n =0mod 4,
o xs1id(Cn) =6 if n =16 or 11,
® Xsia(C7) =7,

(Cn)

e Ysid(Crn) = 5 otherwise.

As a consequence, any graph with mazimum degree 2 has a slid-colouring with seven colours.

Proof. A colouring of C,, is a slid-colouring if and only if every four consecutive vertices have
different colours. Then it is clear that xs1:4(Cr) = 4 if and only if n = 0 mod 4, xs14(Cé) = 6 and
Xstid(C7) = 7.

If n = imod4 (i # 0), then xs;4(Cn) = 5 using the colouring described by the word
(12345)%(1234)*, if n > 5i (M® means that we repeat the pattern M i times). It remains to
consider the case n = 11. There is no slid-colouring of C;; with five colours, otherwise one colour
would appear three times, and so two occurrences of it will be at distance less than 4. Moreover,
12345123456 is a slid-colouring of Ci1.

Clearly, a path has a slid-colouring with four colours and so any graph with maximum degree
2 has a slid-colouring with seven colours. O

Finally, we consider the class of chordal graphs. Chordal graphs are graphs where each induced
cycle has size at most three. They belong to the class of perfect graphs. One of their properties
(see [3]) is to admit a simplicial order of elimination for vertices: if G is a chordal graph, there is a
vertex v whose neighbourhood is a clique (a simplicial vertez), and then G\ {v} is still a chordal
graph. For chordal graphs, we have w(G) = x(G) where w(G) is the clique number of G, i.e. the
maximum size of a clique of G (see [3]). In [7], it is conjectured that x;4(G) < 2w(G), for any
chordal graph GG. We give the first nontrivial bound on x4, and so on x4, in terms of parameters
A and w for chordal graphs, in the direction of the previous conjecture.

Proposition 9. Let G be a chordal graph and let w = w(G). Ifw < % + 1, then:
Xs1id(G) < 2Aw — 2w? + 5w — 2A — 2.

Otherwise:
A(A+1)

2

Proof. Let w = w(G) and A be fixed. Let M(w,A) = maxi<g<w—1{d(2A — 2d + 1)}. The
function d — 2(2A — 2d + 1) is maximized for d = 5. Using this fact, M(w,A) is equal to

2Aw — 202 + 5w — 2A — 3 if w — 1 < & and to 25 otherwise. If w —1 > &,
w < 2w? — Tw + 6. Hence it is enough to prove that xsiq(G) < M(w, A) + 1.

We prove by induction on the number of vertices that any chordal graph with clique number at
most w and maximum degree at most A has a slid-colouring with M (w, A)+1 colours. It is clearly
true for small graphs. Let G be a chordal graph with clique number at most w and maximum degree
at most A. Let v be a simplicial vertex of G. By induction, let ¢ be a slid-colouring of G\ {v} with
M (w, A)+1 colours. Necessarily, all the vertices of N (v) have different colours, and all the vertices
at distance 2 of v have colours different from colours of N(v) because they are at distance at most
2 of any vertex of N(v). Let ¢’ be the colouring of G extending ¢ and giving to v a completely new
colour. Then ¢ is a slid-colouring of G with M (w, A) + 2 colours. Let d < w — 1 be the degree
of v. Then v has at most d(A — d) vertices at distance 2, and d 4+ 2d(A — d) < M(w,A). By
Lemma[f] we can recolour the vertex v with a colour already used and thus obtain a slid-colouring
with M (w, A) + 1 colours. O

Xstid(G) < +1<20 —Tw+T.

we clearly have
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