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ABSTRACT: 242 

Background 

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant 

disorder predisposing humans to cutaneous and uterine leiomyomas; in 20% of affected 

families, type 2 papillary renal cell cancers (PRCCII) also occur with aggressive course and 

poor prognosis. HLRCC results from heterozygous germline mutations in the tumor 

suppressor fumarate hydratase (FH) gene.  

Methods 

As part of the French National Cancer Institute (INCa) “Inherited predispositions to kidney 

cancer” network, we performed sequence analysis and a functional study of FH in 56 

families with clinically proven or suspected HLRCC and in 23 patients with isolated 

PRCCII (5 familial and 18 sporadic).  

Results 

We identified 32 different germline FH mutations (15 missense, six frameshifts, four 

nonsense, one deletion/insertion, five splice site and one complete deletion) in 40/56 

(71.4%) families with proven or suspected HLRCC and in 4/23 (17.4%) probands with 

PRCCII alone, including 2 sporadic cases. Twenty-one of these were novel and all were 

demonstrated as deleterious by significant reduction of FH enzymatic activity. In addition, 

five asymptomatic parents in three families were confirmed as carrying disease-causing 

mutations.  

Conclusions 

This study identified and characterized 21 novel FH mutations and demonstrated that 

PRCCII can be the only one manifestation of HLRCC. Due to the incomplete penetrance of 

HLRCC, we propose to extend the FH mutation analysis to every patient with PRCCII 
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occurring before 40 yrs of age or when renal tumor harbors characteristic histologic 

features, in order to discover previously ignored HLRCC-affected families.  
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INTRODUCTION 

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC, OMIM 605839) is an 

autosomal dominant familial disorder characterized by the development of cutaneous and 

uterine (fibroid) leiomyomas, renal cell carcinoma (RCC), and rarely uterine 

leiomyosarcomas.[1, 2] HLRCC was previously called multiple cutaneous and uterine 

leiomyomatosis (MCUL, OMIM 150800), as the association between skin and uterine 

leiomyomas was described before the discovery of RCC predisposition. Cutaneous 

leiomyomas occur in 76% of individuals at a mean age of 25 years (range: 10-47 years) but 

40% percent of individuals have mild cutaneous manifestations with five or fewer lesions. 

[3,4] Uterine leiomyomas are present in almost all women with a mean age at diagnosis of 

30 yrs (range: 18-52 years). [3-5] RCC occurrence is relatively low (20%, 29/144 families 

worldwide) and differs between and within families affected by HLRCC.[1, 3, 4, 6-24] 

RCCs predominantly affect young (< 40 years) adults with a mean age at diagnosis of 46 

yrs (range: 17-75 years). [25] They are usually solitary, unilateral, and highly aggressive 

with rapid dissemination. The main histological RCC subtype is type 2 papillary RCC 

(PRCCII), a variety of renal cancer characterized by large tumor cells with eosinophilic 

cytoplasm and pseudostratified nuclei.[17, 25, 26] Less frequently, collecting duct RCC 

may also be observed in patients with HLRCC.[4, 25]  

MCUL/HLRCC is associated with heterozygous germline mutations in the fumarate 

hydratase (or fumarase, FH) gene located at 1q42.3-q43.[2, 3, 6] Interestingly, homozygous 

and compound heterozygous FH mutations have been first identified in fumarase 

deficiency, a rare autosomal recessive disorder characterized by neurological impairment 

and death in the first decade of life (FHD; MIM 136850, OMIM 606812). [27-29] FH 

spans 22 kb, contains 10 exons, and encodes two fumarase isozymes, mitochondrial and 

cytosolic. The active form of FH is a homotetramer in which three of the four chains 

combine to form the enzymatic active site.[7, 30, 31] FH catalyzes the conversion of 

fumarate to malate in the mitochondrial matrix as part of the tri-carboxylic acid (TCA) 
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cycle. Thus, FH deficiencies result in chronic accumulation of fumarate and altered levels 

of other TCA intermediates.  

Fumarate accumulation has been shown to induce activation of hypoxia-inducible factor 

(HIF) and its target genes.[32] HIF plays a major role in the tissue response to hypoxia by 

inducing expression of multiple genes involved in cell survival and proliferation. In renal 

cancers and fibroids from HLRCC patients, alpha subunits of HIF (HIF1a and 2a) are 

overexpressed.[32, 33] Moreover, mice with inactive Fh1 in the kidney developed 

proliferative renal cysts overexpressing HIF alpha subunits and hypoxia pathway 

factors.[34] FH alteration induces fumarate accumulation and the production of reactive 

oxygen species, leading to activation of the HIF alpha subunits through inhibition of prolyl 

hydroxylase (PHD2), triggering the VHL-dependent degradation of HIF alpha subunits 

under normoxia.[35] Therefore, FH inactivation seems to be implicated in inappropriate 

activation of oncogenic hypoxia pathways, similar to the manner in which VHL germline 

mutations result in von Hippel-Lindau disease, the main cause of hereditary clear cell RCC 

(CCRCC). However, in contrast to the frequent observation of somatic VHL mutations in 

sporadic CCRCCs, to date no FH mutations have been detected in sporadic PRCCIIs.[36] 

To date, four complete deletions of FH, one exon deletion, one exon duplication, and 81 

different FH germline point mutations have been reported in 144 MCUL/HLRCC families 

(Supplementary Table S1).[1, 3, 4, 6-24] [37, 38] There is no obvious relationship between 

genotype and the aggressiveness of the disease. All these mutations lead to the loss of FH 

enzymatic activity; the remaining functional allele is lost in most cutaneous, uterine, and 

renal tumors arising in patients carrying FH germline heterozygous mutations.[6, 7] The 

function of FH is then consistent with the function of tumor suppressor genes.[6] 
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As part of the French National Cancer Institute (INCa) “Inherited predispositions to kidney 

cancer” network, we performed the first comprehensive genetic and functional analysis of 

FH in a large series of patients with phenotypes highly suggestive of MCUL/HLRCC 

disease and in patients with only PRCCII. These analyses enhance our knowledge of the 

FH germline mutational spectrum and expand the group of phenotypic features associated 

with these FH mutations.  

 

MATERIALS AND METHODS 

Patient selection 

Families were selected for inclusion in the study through two clinical approaches. 

Dermatology departments identified and recruited 56 families with clinical histories 

demonstrative (N = 44) or suggestive (N = 12) of MCUL/HLRCC. We defined a family as 

clinically affected if at least one member had more than 10 skin lesions clinically 

compatible with leiomyomas including a minimum of 1 lesion histologically confirmed. 

Patients with single cutaneous leiomyoma, isolated or associated with personal or familial 

uterine leiomyomas or RCC were classified as suggestive of potential MCUL/HLRCC. All 

alive patients had a detailed examination of the skin. Uterine fibroids and renal tumours 

were documented by history and review of medical records. Renal ultrasound or MRI was 

performed in all adult patients. A transvaginal ultrasound was also performed in all women 

who still had a uterus. In addition, urology departments recruited 18 patients with apparent 

sporadic PRCCII and five patients with familial PRCCII.  

All patients were monitored by French physicians, with the exception of six families who 

were followed by international colleagues (Singapore, Australia, Belgium, Canada, and 
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New Zealand). This study was approved by the Ethical Committee of Le Kremlin-Bicêtre 

University Hospital, France. All patients had previously provided informed consent for 

genetic testing and use of their DNA for further investigation. Blood samples from 180 

unaffected French Caucasian individuals were used as controls to estimate the frequency of 

SNP and missense variants not available from the HapMap Project. For probands carrying 

the FH mutation, targeted sequencing of FH was extended to relatives (58 additional 

patients).  

 

Genomic rearrangement screening 

DNA was extracted from peripheral blood leukocytes according to standard procedures 

using the QIAamp DNA Blood Midi Kit (Qiagen, Valencia, CA).Quantitative real-time 

PCR based on SYBR-Green fluorescence technology was used to detect genomic 

rearrangements (large deletions or duplications of one exon or more). PCR was performed 

with the QuantiFast SYBR Green PCR Kit (Qiagen) on an ABI 7700 Sequence Detection 

System (Applied Biosystems). Primers designed for sequencing analysis were used at a 

concentration of 300 nM. A total of 20 ng DNA was used in a 25 µL reaction volume. The 

BRCA1 gene was used as an internal reference. The copy number was determined using the 

2–ΔCT method where ΔCT = CTFH amplicon – CTreference gene .[39] 
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Sequencing analysis 

Mutations in FH gene were screened by genomic DNA amplification of each exon and 

splice junction (primer sequences and PCR conditions available upon request). PCR 

products from genomic rearrangement screening were first purified using the ExoSAP-IT 

PCR purification kit (USB) and then sequenced with the Big Dye Terminator v.3.1 kit 

(Applied Biosystems). Resin Sephadex G50 superfine (Amersham) was used for 

purification. Sequencing was performed on an ABI3730 automatic DNA sequencer 

(Applied Biosystems) in 96-well plates. Variants and mutations were identified by visual 

inspection of the sequence with Seqscape 2.5 software (Applied Biosystems).  

 

Measurement of FH enzyme activity  

Lymphoblastoid cell lines (LCL) were generated by Epstein-Barr virus transformation of 

leukocytes from 20 patients with novel missense or splice mutations and eight wild-type 

controls. Peripheral blood lymphocytes (PBL) were isolated on Ficoll cushion. LCL and 

PBL were homogenized in a lyses buffer (50 Mm Tris-HCl pH 7.2 containing 10% Triton 

X100, 2mM Phenylmethylsulfonyl fluoride and 0.02% of 2-mercaptoethanol) and subjected 

to brief sonication. Samples were centrifuged at 10.000 g for 20 mn at 4°C and the 

supernatants were used for the enzyme assay. FH enzymatic activity was measured 

spectrophotometrically according to standard procedures. [40, 41] Briefly the assay 

monitors the increase in absorbance at 250 nm due to fumarate production from malate, 

with a final reaction medium consisting of 50 mM malate, 50 mM phosphate buffer pH 7.8, 

The FH activity was reported as the amount of fumarate generated per min per milligram of 
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protein, or in a ratio to the corresponding citrate synthase activity, final results are then 

expressed as percentage of control activity. 

 

RESULTS  

Mutation analysis   

FH genotyping was carried out on germline DNA and sequencing of the entire gene 

(coding sequence and exon/intron junctions) revealed 31 different sequence variations in 

40/56 families (71.4 %) with clinically proven or suspected HLRCC and in 4/23 patients 

(17.4%) with only PRCCII (2/18 sporadic and 2/5 familial) including the first Chinese 

origin family described (family F44). The identified mutations included 15 missense, six 

frameshifts, four nonsense, one deletion/insertion and five splice site mutations. Country of 

origin of families, molecular results and references are summarized in Table 1. 

We completed the FH mutational spectrum by exploring large deletion or duplication 

events and identified one patient with a complete FH deletion (proband of family F1, Table 

1 and Figure 1).  

Twenty-one of the identified mutations have never been described previously (noted “this 

report” in Table 1), and none of these mutations was found in control DNA samples (0/360 

alleles sequenced). These novel mutations included seven missense (p.Leu168Pro, 

p.His192Arg, p.Gln211Arg, p.Phe269Ser, p.Leu272Pro, p.Asn330Asp, p.Gln343Arg), two 

nonsense (p.Glu270X, p.Trp457X), six frameshifts (c.127_128delGA, c.47delT, c.298delA, 

c.666delC, c.810delA, c.994delA), one insertion-deletion (p.Leu374_His375insdelTyr) and 

five splice site (138+1_138+10del10, 247_249+1delGAGGinsA, 250-2A>G,426+1G>A, 
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1108-2A>G). Another mutation (p.Ala274Val) was identified by our group during the 

study but was published as a case report. [42] Four novel mutations were found in unrelated 

French families (F9 and F10; F11, F12 and F13; F24 and F25; F32 and F33, respectively) 

from different areas and there was no evidence of common ancestors. Interestingly, 3 out of 

4 mutations identified in probands with isolated PRCCII were also novel (Table 1). 

We then performed an in silico analysis of the putative functional consequences of the 

missense mutations. As shown in Figure 2, all FH missense mutations identified in the 

present study affect residues that have been highly conserved throughout evolution.  

 

Functional characterization of novel mutations 

In order to demonstrate the functional consequences of germline FH mutations, we 

measured the enzymatic activity of endogenous FH in peripheral blood lymphocytes or 

lymphoblastoid cells derived from patients. We tested 30 patients carrying an FH mutation 

(including 15 unpublished mutations, of which eight are novel missense mutations) and 

eight samples of the wild-type FH gene. Reduction of enzymatic activity by at least 50% 

was observed for all mutations tested (Table 1). We did not notice a major difference in the 

enzymatic activities of missense mutations (from 34.6% to 54.7% activity compared to a 

wild-type control, mean activity 45%) and total loss-of-function mutations such as 

deletions, nonsense mutations, or splice site mutations (from 39.5% to 60.8%, mean 

activity 50.1%). 

  



Family Origin Nucleotide change Aminoacid change 
(HGVS) 

Location FH 
activity 

(%) 

First 
description 

Families with demonstrative manifestations of HLRCC 

F1 France c.1-?_1404+?del p.Met1-?_X468+?del NA 41.3 [6, 7, 38] 
F2 France c.127_128delGA p.Glu43fs Exon 2 42* This report 
F3 Portugal c.138+1_138+10del10 Splice site  Intron 2 50* This report 
F4 France c.147delT p.Ile50fs Exon 3 39.5 This report 
F5 Australia  c.172C>T p.Arg58X Exon 3 NA [4, 6, 14, 

24] 
F6 France c.220G>C p.Ala74Pro Exon 3 NA [6] 
F7 New 

Zealand 
c.220G>C p.Ala74Pro Exon 3 NA [6] 

F8 France c.220G>C p.Ala74Pro Exon 3 NA [6] 
F9 France c.247_249+1 

delGAGGinsA 
Splice site Exon 3 NA This report 

F10 France c.247_249+1 
delGAGGinsA 

Splice site Exon 3 57.2 This report 

F11 France c.250-2A>G Splice site Intron 3 49.2 This report 
F12 France c.250-2A>G Splice site Intron 3 42.8 This report 
F13 France c.250-2A>G Splice site Intron 3 NA This report 
F14 Cambodia c.298delA p.Thr100fs Exon 4 45* This report 
F15 France c.410A>G p.His137Arg Exon 4 44* [6] 
F16 Maroc c.503T>C p.Leu168Pro Exon 5 52* This report 
F17 Espagne c.568C>T p.Arg190Cys Exon 5 42.5 [4, 43] 
F18 France c.568C>T p.Arg190Cys Exon 5 NA [4, 43] 
F19 France c.568C>T p.Arg190Cys Exon 5 NA [4, 43] 
F20 France c.575A>G p.His192Arg Exon 5 44 This report 
F21 Espagne c.632A>G p.Gln211Arg Exon 6 34.6 This report 
F22 France c.666delC p.Met223fs Exon 6 49* This report 
F23 Belgium c.806T>C p.Phe269Ser Exon 7 36 This report 
F24 France c.808G>T p.Glu270X Exon 7 56.1 This report 
F25 France c.808G>T p.Glu270X Exon 7 NA This report 
F26 Canada c.810delA p.Ala271fs Exon 7 NA This report 
F27 France c.815T>C p.Leu272Pro Exon 7 44.4 This report 
F28 France c.821C>T p.Ala274Val Exon 7 45.1 Detailed in 

[42] 
F29 Portugal c.869G>A p.Cys290Tyr Exon 7 40 [18] 
F30 France c.898C>T p.Arg300X Exon7 66.7 [6] 
F31 Spain c.989A>G p.Asn330Ser Exon 8 38.7 [6] 
F32 France c.1028A>G p.Gln343Arg Exon 8 47.2* This report 
F33 France c.1028A>G p.Gln343Arg Exon 8 NA This report 
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Table 1: FH germline mutations identified in the study. (1) FH activity in percentage 
compared to wild type controls. The activity was determined on lymphoblastoid cell line or 
(*) on peripheral blood lymphocytes.  

 

Clinical findings  

Clinical data could be recovered for 151 relatives belonging to the 44 families with a FH 

mutation and are summarized in Table 2. Briefly, cutaneous leiomyomas occurred in 37/44 

(84.1%) FH mutation-positive families that were clinically evaluated by a dermatologist 

and in 102/151 (67.5%) gene-carriers. They were multiple in the 65 patients for which 

detailed data were available, with the exception of a 76 years-old woman who had only a 

single leiomyoma without any other clinical manifestation. In 8 patients without familial 

history of MCUL/HLRCC, cutaneous leiomyomas was the only one clinical manifestation. 

Uterine leiomyomas occurred in 32/44 (72.7%) FH mutation-positive families and in 76/93 

(81.7%) affected women and usually were of early onset. In most cases, uterine 

leiomyomas were multiple, symptomatic and led to hysterectomy before age of 40 years but 

medical records were obtained only for a few patients. 

F34 France c.1060G>A p.Gly354Arg Exon 8 46.7 [7, 20, 24, 
38] 

F35 France c.1060G>A p.Gly354Arg Exon 8 51.8 [7, 20, 24, 
38] 

F36 France c.1060G>A p.Gly354Arg Exon 8 NA [7, 20, 24, 
38] 

F37 Tunisia c.1108-2A>G Splice site Intron 8 50.9 This report 
F38 Colombia c.1121-1123 delTAC p.Leu374_His375delinsTyr Exon 9 NA This report 
F39 Canada c.1265A>G p.Tyr422Cys Exon 10 NA [3, 14] 
F40 Israel c.1371G>A p.Trp457X Exon 10 NA This report 

Sporadic and familial type 2 papillary renal cell cancers 

F41 France c.220G>C p.Ala74Pro Exon 3 41.3* [6] 
F42 Mali c.426+1G>A Splice site Intron 4 58.2* This report 
F43 Morocco c.988A>G p.Asn330Asp  Exon 8 46* This report 
F44 China c.994delA p.Thr332fs Exon 8 NA This report 
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Renal tumors occurred in 15/44 (34%) of families with FH mutation and in 27/151 (17.9%) 

of affected members. There were 19 men and 8 women affected with RCC and the age at 

diagnosis of RCC, known for 21 patients, was an average of 43 years (range: 28-70). In all 

these patients, RCC was revealed by clinical symptoms (mainly hematuria, abdominal, 

lumbar or bony pains) and to date no renal tumor was detected in other gene-carriers. 

Pathological analysis of RCC demonstrated 16 PRCCII (including one sarcomatoid), 2 

collecting duct RCC and one sarcomatoid clear-cell RCC. Data were missing for the 8 last 

patients. Twenty patients (74.1%) died because of metastatic RCC and the mean age, 

known for 14 patients, was 44 years (range: 17-66). In four families there was no other 

clinical manifestation including two families with 4 cases of RCC each and two index cases 

presenting as sporadic PRCCII. In addition, one patient (family F37), aged 31 years had 

bilateral atypical renal cysts on CT-scan but no tumor. 

The clinical history of the patient with p.Ala274Val mutation was detailed in a very recent 

paper because of the unique association of cutaneous leiomyomatosis with cutis verticis 

gyrata, disseminated collagenoma and Charcot-Marie-Tooth’s disease. [40] 

There was no clear genotype-phenotype correlation specially regarding the occurrence of 

renal tumors. On the other hand, we observed an intrafamilial phenotypic heterogeneity as 

illustrated in figure 3. Moreover, genetic testing was positive in five asymptomatic (20-65 

years) relatives in which detailed clinical investigations demonstrated no manifestation 

(figure 3). 
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Family Mutation Patients Cutaneous 
leiomyomas 

Uterine 
leiomyomas* 

 

Renal Cell Carcinoma 

 (RCC) 

     Number Sex Age RCC type 

Families with demonstrative manifestations of HLRCC 

F1 c.1-?_1404+?del 5 5 1/2 0    

F2 c.127_128delGA 1 1 0/0 0    

F3 c.138+1_138+10d
el10 

2 2 2/2 0    

F4 c.147delT 1 1 0/0 0    

F5 c.172C>T 4 3 2/4 0    

F6 c.220G>C 2 2 1/1 0    

F7 c.220G>C 1 1 NA 0    

F8 c.220G>C 1 1 0/1 0    

F9 c.247_249+1 
delGAGGinsA 

1 1 1/1 1 F 43 PRCCII 

F10 c.247_249+1 
delGAGGinsA 

9 6 3/4 2 M 
M 

35 
52 

CD RCC    
PRCCII 

F11 c.250-2A>G 3 2 1/1 1 M 34 PRCCII 

F12 c.250-2A>G 1 1 1/1 0    

F13 c.250-2A>G 2 1 2/2 0    

F14 c.298delA 2 1 2/2 0    

F15 c.410A>G 3 2 2/2 2 M 
F 

65 
30 

NA 
SR-

PRCCII 

F16 c.503T>C 4 4 2/2 0    

F17 c.568C>T 7 3 7/7 0    
F18 c.568C>T 5 4 1/2 1 M NA NA 

F19 c.568C>T 2 1 2/2 0    

F20 c.575A>G 3 3 2/2 0    

F21 c.632A>G 2 1 2/2 0    

F22 c.666delC 4 1 3/4 0    

F23 c.806T>C 1 1 1/1 0    

F24 c.808G>T 3 2 0/1 0    

F25 c.808G>T 1 1 0/1 0    

F26 c.810delA 3 2 2/2 1 M 49 NA 
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F27 c.815T>C 4 3 3/3 0    

F28 c.821C>T 6 4 2/3 0    

F29 c.869G>A 4 1 4/4 0    

F30 c.898C>T 6 3 6/6 0    

F31 c.989A>G 4 3 2/2 0    

F32 c.1028A>G 2 2 1/1 0    

F33 c.1028A>G 6 5 3/3 1 F 34 PRCCII 

F34 c.1060G>A 7 5 3/4 3 M 
M 
M 

59     
57     
NA 

PRCCII  
PRCCII    

  NA 

F35 c.1060G>A 4 3 3/4 2 F 
F 

50 
52 

SR RCC    
PRCCII 

F36 c.1060G>A 5 5 0/2 0    

F37 c.1108-2A>G 1 1 0/0 0    

F38 c.1121-1123 
delAC 

5 NA 3/4 2 M 
F 

40 
28 

NA       
 PRCCII 

F39 c.1265A>G 1 1 1/1 0    

F40 c.1371G>A 17 16 5/5 1 M 36 CD RCC 

Sporadic or familial type 2 papillary renal cell cancers  

F41 c.220G>C 1 0 0 1 M 34 Sp 
PRCCII 

F42 c.426+1G>A 1 0 0 1 M 37 Sp 
PRCCII 

F43 c.988A>G 4 0 0 4 M     
M     
F     
M 

31     
40     
59     
70 

PRCCII 
PRCCII 
PRCCII 
PRCCII 

F44 c.994delA 4 0 0/1 4 M     
M     
M     
F 

17     
34     
45     
69 

PRCCII  
PRCCII    
PRCCII 
PRCCII 

Table 2: Clinical manifestations observed in patients with identified FH mutation. * in 
women, M: male, F: female, NA: data not available, PRCCII: type 2 papillary renal cell 
cancers, SR: sarcomatoid, CD: collecting duct, Sp: sporadic.  
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DISCUSSION  

The present study reports the identification and analysis of FH mutations, including 

21novel, in 40 families with MCUL/HLRCC and, for the first time, in 4 patients with 

isolated PRCCII. The mutations identified in our series include, at the protein level, 23 

(52.3%) missense mutations, seven (15.9%) frameshifts, five (11.4%) nonsense mutations, 

one (2.3%) micro deletion/insertion, and eight (18.2%) sequence variations affecting splice 

sites. These results are comparable to the FH mutation database; missense mutations are the 

most common type of germline FH mutation in MCUL/HLRCC families (64%), followed 

by frameshifts (14.6%) and nonsense (12.5%) mutations. [21] Additionally, we have 

doubled the number of known splice site mutations (identified in 8 families (18.2%) in the 

present study versus seven (4.9%) previously described worldwide), emphasizing the 

importance of careful analysis of non-coding sequences surrounding splice sites. We found 

only one family with large deletion thus confirming that germline copy loss of FH is a rare 

genetic event (only four large deletions and one deletion of exon 1 in 144 HLRCC families 

described). [6] 

 In order to evaluate the potential deleterious effect of novel nucleotide variations 

identified in the FH gene, we measured the enzymatic activity of endogenous fumarate 

hydratase in lymphoblastoid cells derived from patients. Reduction of, at least, 50% of the 

enzymatic activity was observed for all mutations tested thus supporting a model of loss of 

function and haploinsufficiency. Mutant FH proteins have been postulated to exert a 

dominant negative effect based on FH enzymatic activity [4, 6, 7]; this hypothesis is 

supported by in vitro over-expression experiments in which the R190H FH mutant induced 

60% inhibition of the endogenous enzymatic activity.[44] As the active FH enzyme is a 
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homotetramer, it is theoretically possible that missense mutations may affect FH activity 

more drastically than nonsense mutations; these mutations could disrupt the formation of 

nearly all wild-type homotetramers, leaving only one in 16 (1/24) tetramers composed of 

exclusively wild-type subunits. Therefore, a missense variant behaving as a strong 

dominant negative could dramatically reduce enzymatic activity of heterotetrameric FH. 

Such molecular behavior has never been described, and we did not notice a major 

difference in the enzymatic activities of missense mutations versus total loss-of-function 

mutations. Therefore, we conclude that the missense allele products do not exert a strong 

dominant negative effect in vivo.   

Genotype-phenotype relationships between the FH mutational spectrum and HLRCC 

manifestations have been previously proposed. For example, p.Arg58X FH mutations have 

been associated with a high frequency of kidney cancers [4], but the carrier of this mutation 

in our series did not develop RCC by the age of 62 years. The p.Gly354Arg mutation has 

been reported to predispose patients exclusively to fibroids [7, 45], but we found this 

mutation in families that displayed various phenotypes of skin lesions and renal cancers. In 

addition, several mutations that have been described in families with RCCs (p.Arg190Cys, 

p.Arg300X, p.Asn330Ser) or without RCCs (p.His137Arg) were associated with the 

opposite phenotype in our study. Phenotype heterogeneity is also observed within families 

(Figure 3). Therefore, there is to date no convincing evidence of a relationship between the 

type of FH mutation and the resulting disease phenotype.  

We observed FH mutations in only 71.4% (40/56) of the MCUL/HLRCC families included 

in our study, a lower ratio compared with previous reports. This difference may be due to 

the recruitment of probands who not fulfill all clinical criteria of the HLRCC disease 
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(specially patients with isolated cutaneous leiomyomas or patients with uterine leiomyomas 

and RCC). On the other hand, these broad inclusion criteria allowed us to identify seven 

new families with HLRCC that would have not been detected otherwise. Indeed, the 

recruitment of patients by urologists allowed us to revise the percentage of families with 

RCC to 40% from the previously reported 20% (29/144 families). Concerning the 

percentage of all individuals with an FH mutation, we observed an RCC incidence of 

17.9%, a figure similar to the 10-16% incidence previously described.[3]  

In addition, we describe FH germline mutations in two families with history of PRCCII 

only (no documented history of leiomyomatosis) and, for the fist time, in two patients with 

apparent sporadic PRCCII. The p.Ala74Pro mutation (family F41) has been previously 

reported in the context of HLRCC without RCC [6]; however the splice site mutation 

c.426+1G>A (family F42), the p.Thr332fs mutation (family F44), and the p.Asn330Asp 

mutation (family F43) are novel. Interestingly, the unaffected father of family F44 

proband’s can be considered an obligate carrier, knowing that his mother and two of his 

brothers developed PRCCII. Consequently, we expanded the FH genotyping to relatives of 

the patients diagnosed with an FH mutation (58 more family members). As a result, we 

identified 5 patients with FH germline mutations who lacked any manifestation of the 

disease similarly to families described in [4].  

This question of incomplete penetrance is also raised for the parents of child carriers of 

homozygous/compound heterozygous FH germline mutations, who are obligate 

heterozygous FH mutation carriers. These observations suggest low penetrance but need 

confirmation by analyzing a larger family set. As accumulation of fumarate subsequent to 

FH activity loss may contribute to the pathology [33], incomplete penetrance could thus be 
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due to individual variation in FH enzymatic activity in relation with other host factors. 

Therefore, we compared the FH enzymatic activity of cells from patients of the same 

family exhibiting severe phenotypes or no to very mild phenotypes. We obtained 

comparable results with the same loss of FH activity in the asymptomatic patients 

(Supplementary Table 2).  

Taken together, these results demonstrate that the phenotypic spectrum of FH carriers is 

broader than expected, extending from asymptomatic to severe disease with multiple 

tumors including RCC. Additional genetic or environmental modifying factors may play an 

important role in the development of the disease. Fine mapping and haplotype analysis 

surrounding the FH gene failed to identify a genetic modifier for RCC risk in HLRCC 

families (probands of families F11 and F34) [24], and a differential transcriptional study of 

asymptomatic versus symptomatic patients showed no significant differences (families F10, 

F11, and F41, data not shown). It could be interesting to perform a metabolomic study in 

patients with low clinical affection to investigate whether they have developed alternative 

pathways to compensate for the FH mutation. Hence, due to the incomplete penetrance of 

HLRCC, genetic testing of FH should be conducted more widely, and should be applied to 

patients with apparent sporadic PRCCII when the patient is less than 40 years old at 

diagnosis or when the histology is characteristics of HLRCC as recently defined by Merino 

et al. (large nucleus with proeminent oriangiophilic or eosinophilic nucleolus surrounded by 

a clear halo). [25] This expanded testing regimen could allow the discovery of previously 

undiagnosed HLRCC families, leading to appropriate clinical management including 

dermatological surveillance and gynecological examination in women at potential risk for 

early hysterectomy. Indeed, careful skin examination of the proband of family F41 
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(affected with an apparent sporadic PRCCII) was performed after FH mutation 

identification and revealed a small cutaneous leiomyoma. 

 In addition to the potential implications for presymptomatic diagnosis, identification of 

patients with FH germline mutations could also be critical for the determination of the 

appropriate treatment of advanced PRCCII. Indeed, as hereditary PRCCIIs are 

characterized by HIF overexpression and activation of angiogenesis [32], it would be useful 

to explore the efficacy of anti-angiogenic drugs in patients affected by such tumors. 

Recently, prolonged progression-free survival times were reported in 2/12 patients with 

apparent sporadic PRCCII treated by sunitinib, a novel tyrosine kinase inhibitor. [46] 

Further investigation is needed, but preliminary observation showed that one of these two 

patients presented cutaneous leiomyomas and is certainly a carrier of a germline FH 

mutation. Thus, it would be of great interest to explore the potential predictive role of FH 

mutations in therapy response.  
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LEGENDS OF FIGURES 
 

Figure 1. Genomic rearrangement study. A: Amplification plots obtained by real-time PCR 

for exon 2 of FH and for the control gene (exon 11 of BRCA1) in proband of family F1. B: 

Gene copy number for all FH exons detected in control DNA and in patient’s DNA. 

 

Figure 2. Alignment of FH protein across ten species using the Multalin interface. 

(http://bioinfo.genopole-toulouse.prd.fr/multalin/). From top to bottom: Homo sapiens, 

macaque, rat, mouse, dog, chicken, chimpanzee, Caenorhabditis elegans, Saccharomyces 

cerevisiae, and Escherichia coli. High-consensus residues (90% conservation) are 

represented as white font on a red background; low-consensus residues (50% conservation) 

are in red font; non-conserved residues are in black font. Missense mutations identified in 

this study are indicated, and underlines highlight novel mutations 

 

Figure 3. Pedigrees of representative families with HLRCC illustrating phenotypic 

heterogeneity. Solid symbols represent affected family members, and a slash indicate 

deceased family members. Probands are identified by an arrow. The result of the genetic 

testing is indicated: + (mutated) or WT (wild type). 

 








