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Abstract 
The ARPES of high-Tc cuprates and theoretical results of low-Fermi energy band structure fluctuation 
for different groups of superconductors indicate that electron coupling to pertinent phonon modes 
drive system from adiabatic into antiadiabatic state ( FE>ω ). At these circumstances, not only 
Migdal-Eliashberg approximation is not valid, but basic adiabatic Born-Oppenheimer approximation 
(BOA) does not hold. At these circumstances, electronic structure has to be studied as explicitly 
dependent on instantaneous nuclear coordinates Q as well as on instantaneous nuclear momenta P.  
In the present paper – part I, it has been shown that Q,P-dependent modification of the BOA for 
ground electronic state can be derived by sequence of canonical transformations of the basis functions. 
The effect of nuclear coordinates and momenta on electronic structure is presented in the form of 
corrections to zero, one and two-particle terms of clamped nuclear Hamiltonian. In the antiadiabatic 
state, correction to electronic ground state energy (zero-particle term correction) is negative and 
system can be stabilized in the antiadiabatic state at distorted geometry with respect to adiabatic 
equilibrium structure and gap in one-particle spectrum of quasi-continuum states at Fermi level can be 
opened. Stabilization effect is solely the consequence of nuclear dynamics (P) that is crucial in 
antiadiabatic state. It has been shown that nuclear dynamics also increases electron correlation until 
system at nuclear motion remains in a bound state. Corresponding corrections to electronic wave 
function are also specified.  
On the other hand, when system remains at vibration motion of nuclei in adiabatic state, the influence 
of nuclear dynamics (P-dependence) is negligible. In this case, all basic effects are covered through 
nuclear coordinates (Q-dependence) within the adiabatic BOA and standard results of solid state (or 
molecular) physics are recovered.   
The electronic ground state of superconductors is studied in the subsequent part - II. 
 
 
 
 
PACS number(s): 71.10.-w, 74.25.Jb, 74.20.Mn, 74.72.-h  
Keywords: A. superconductors; C. ab initio calculations; D. electronic structure; lattice dynamics 
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I. Introduction 
      High value of critical temperature (Tc) in the group of cuprate superconductors [1,2] is a 
serious challenge for theory even 20 years since discovery of this group of materials. The high 
value of Tc should be related to corresponding high value of electron-phonon (EP) coupling 
constant, λ ≥ 1. The standard, generally accepted EP-based theories of superconductivity, 
BCS or BCS-like theories [3-5], assume validity of the Migdal theorem and Eliashberg 
restriction [4,5] (ME approximation). The first is related to validity of the condition ωλ ⁄ EF

 

<< 1 and the second one restricts the validity only for λ ≤ 1. Expressed explicitly, BCS-like 
theories are valid only for adiabatic systems that obey the Born–Oppenheimer approximation 
(BOA): ω / EF << 1. Only at these circumstances, separation of electronic and nuclear motion 
is well justified and one can study electrons and nuclei as two statistically independent fields 
with mutual interaction that corrects the electronic energy and renormalizes the phonon 
frequencies. However, it has been shown [6] by parameter-free estimate for high-Tc cuprates 
and also for fullerides and MgB2 that Fermi energy (EF) of this group of materials is on the 
same energy scale as it corresponds to the energy of the relevant optical phonon modes, EF ≈ 
ω. Problems with EP interactions within the ME scenario gave rise to variety of non-phonon 
coupling models with stress focused on the role of electron correlations at the transition to 
superconducting (SC) state. The EP interactions, which have been accepted to be responsible 
for electron pairing that drive transition into superconducting state for classical low-Tc 
superconductors, have became nearly abandoned and considered to be rather harmful for 
superconductivity in high-Tc cuprates [7]. Some aspects of d – wave superconductivity can be 
described within the models of strongly correlated electrons, e.g. Hubbard – like or t – J 
models (e.g. [8-11]), without explicit account for EP interactions (see also variation theory 
[12]). The underlying light motive behind the electron correlation treatments has been to 
understand the phase diagram of high-Tc cuprates, i.e. the doping process. Introduction of 
charge carriers (holes or electrons) into the parent antiferomagnetic insulator that causes 
transition to superconductor (or metal) has been generally accepted to be a universal feature 
of high-Tc cuprates and believed to be a matter intimately related to microscopic mechanism 
of superconductivity. Recent results of high-resolution ARPES study [13,14] of the wide 
family of different high-Tc cuprates have brought surprising direct experimental evidence that 
it is not doping but an abrupt change (decrease) of the electron velocity near Fermi level, at 
about 50-80 meV, that is the universal feature common to high-Tc cuprates. Even more 
important in this respect is formation of T-dependent giant kink on momentum distribution 
curve close to Fermi level that is present at and below Tc. It has been recorded [15] in the off-
nodal direction of Bi2223.  
     These results along with the results of neutron scattering [16,17] indicate that also for high-
Tc cuprates EP coupling has to be considered as a crucial element of microscopic mechanism 
of SC state transition. As soon as low-Fermi energy situation occurs ( FE≤ω ) one can expect 
important contribution of nonadiabatic vertex corrections at SC state transition. It is beyond 
the standard ME approximation and this problem has been studied within the nonadiabatic 
theory of superconductivity [18a,b, 30]. On the other hand, as the ARPES results indicate, 
electron kinetic energy is decreased and importance of proper treatment of electron-electron 
Coulomb interactions is increased. The competition between Coulomb vs. EP interactions has 
been intensively studied within the Holstein – Hubbard models [19-23] with both interactions 
introduced as short-range order. The obtained results are not satisfactory since heavy-mass 
polarons are formed that yields low values of Tc. It has been improved within the Frohlich – 
Coulomb model [24a] that introduces long-range order repulsion between charge-carriers and 
also long-range order EP interactions. The results show that there is a narrow window of 
parameters of Coulomb repulsion Vc and EP interactions EP (Vc / EP) resulting in the light-
mass bipolarons formation. In this case, according to bipolaron theory of superconductivity 
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[24b,c,d], coherent motion of bipolarons represents the supercarrier motion and high Tc can be 
reached.       
       Theoretical studies [25-29] of the dependence of band structure of MgB2 on electron 
coupling to the E2g phonon mode ( 066.0

2
≈

gEω  eV) have revealed even more important new 
aspect that seems to be crucial for microscopic theory of electronic ground state of 
superconductors. It has been shown that vibration motion of B-B atoms in the E2g phonon 
mode induces periodic fluctuation of the top (analytic critical point - ACP) of one of the 
σ band across Fermi level in the Γ point of 1st BZ. Fermi level crossing occurs at nuclear 
displacement that corresponds to root-mean-square (rms) displacement of vibration zero-point 
energy [28,29]. It means, that due to EP interactions, the Fermi energy (chemical potential of 
σ band electrons) is considerably reduced (from initial value EF ≈ 0.5 eV) and at the moment 
when the ACP of the band touches Fermi level, the Fermi energy is reduced to zero, 0→FE . 
From the physical stand-point it represents transition of the system from adiabatic FE≤ω  
into intrinsic nonadiabatic FE>ω , or even to strong antiadiabatic state with FE>>ω . This 
effect has crucial theoretical impact. At these circumstances, not only ME approximation is 
not valid (including impossibility to calculate nonadiabatic vertex corrections [30] that 
represent off-diagonal corrections to adiabatic ground state), but adiabatic BOA itself does not 
hold. Low-Fermi energy periodic fluctuation of band structure has been recently reported [31] 
also for high-Tc cuprate YBa2Cu3O7. This effect is absent in respective nonsuperconducting 
analogs, e.g. AlB2 and YBa2Cu3O6 [28,31]. 
    Transition from adiabatic ( FE<<ω ) into antiadiabatic ( FE>>ω ) state due to EP 
interactions, seems to be the basic physical effect that is common for superconductors. It 
means, however, breakdown of the adiabatic BOA, i.e. breakdown of the approximation that 
is the very basic starting point of many-body theory of solids, including BCS theory as well as 
models of strongly correlated electrons in case of superconductors. Formulation of self-
consistent theory that will be able to account for breakdown of the BOA has been recently 
declared [32] to be the most challenging line in research of superconductivity.  
   On the level of the BOA, the motion of the electrons is a function of the instantaneous 
nuclear coordinates (usually only parametric dependence is considered), but is not dependent 
on the instantaneous nuclear momenta (velocities). Nuclear coordinate-dependence modifies 
nuclear potential energy by so called diagonal BO correction (DBOC) that reflects an 
influence of small nuclear displacements out-of the equilibrium positions and corrects the 
electronic energy of clamped nuclear structure. The DBOC enters directly into the potential 
energy term of nuclear motion (but leaves unchanged the nuclear kinetic energy) and in this 
way modifies vibration frequencies. The off-diagonal terms of the nuclear part of system 
Hamiltonian that mix electronic and nuclear motion through the nuclear kinetic energy 
operator term are neglected and it enables independent diagonalization of electronic and 
nuclear motion (adiabatic approximation). Neglecting the off-diagonal terms is justified only 
if these are very small - adiabatic conditions, i.e. if the energy scales of electron and nuclear 
motion are very different and when it holds ω/Ε << 1. If necessary, small contribution of the 
off-diagonal terms can be calculated by perturbation methods as so called nonadiabatic 
(vertex) correction to the adiabatic ground state.  
    Situation for superconductors seems to be substantially different. There is considerable 
reduction of electron kinetic energy, which for antiadiabatic state results even for dominance 
of nuclear dynamics ( FE>>ω ) in some region of k-space. In this case, it is necessary to 
study electronic motion as explicitly dependent on the operators of instantaneous nuclear 
coordinates Q as well as on operators of instantaneous nuclear momenta P. It is a new aspect 
for many-body theory. 
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       In the present paper – part I, theoretical background of nonadiabatic P-dependent 
modification of the adiabatic BOA is presented along with corresponding sequence of 
canonical transformations of general nonrelativistic form of system Hamiltonian (molecular 
or solid state system). It is related to our original formulation of molecular electron-vibration 
theory on the Hartree-Fock SCF (HF-SCF) level [33]. Solution of the final nonadiabatic form 
that has been obtained in real space orbital representation is transformed into quasi-
momentum k, q space representation of solids. As there are some differences in details of 
Hartree-Fock treatment in solid state theory and in molecular physics, in section II. 
(Preliminaries) the quasi-particle form of general molecular Hamiltonian on crude-adiabatic 
and adiabatic level within the HF-SCF solution is presented. In section III, theoretical 
background of canonical - base transformations of clamped nuclear (crude-adiabatic) 
Hamiltonian and electronic wave function to adiabatic Q-dependent level and to nonadiabatic 
Q,P-dependent level (nonadiabatic modification of the BOA) are presented. The results in the 
following sections are expressed in real space orbital representations as well in quasi-
momentum space representation of solids. Dependence of electronic energy terms, i.e. 
corrections to zero-particle term (ground state energy), to one-particle term, including gap 
opening and to two-particle term, on nuclear coordinates and momenta are presented in 
section IV. There is supplementary part, Appendix A – C, that presents details to the 
particular parts in the main text. Electronic ground state of superconductors is studied in the 
subsequent paper that is the part II to the present theoretical formulation. 
 

II. Preliminaries  
     General form of nonrelativistic Hamiltonian of molecular or solid state system can be 
written in second quantization formalism as an explicit function of electron ( )aa ,+  and 
nuclear ( )bb ,+  creation and annihilation operators, 

( ) ( ) ( ) ( ) =++++= RERrVrVrTTH NNeNeeeN ,    

( ) ( ) ( ) RSQP
PQRS

PQRSQP
PQ

PQNNN aaaavaaQhQEPT +++ ∑∑ +++= 0

2
1                                                    (1) 

The nuclear potential energy ENN and one-electron core term hPQ (electron kinetic energy plus 

electron-nuclear coulomb attraction term) are functions of the nuclear coordinate rQ operators 
(normal modes nuclear displacements out-of fixed nuclear geometry R0) and nuclear kinetic 
energy TN is a quadratic function of the corresponding nuclear momenta operators rP .The 
letters Q, P which stand for nuclear coordinate and momentum operators and R, r that denote 
nuclear and electron coordinates should be distinguished from subscripts in matrix elements 
where these letters indicate index of the orbitals (e.g. PQQP AA =ϕϕ , 0

PQRSν ,…) and phonon 
mode r (ωr, Qr,..), respectively.  In order to keep open possibility of application for real as 
well for complex wave functions, it is assumed that besides vibration mode r there is also 
corresponding mode r(  ( rr (ωω = ) to which in quasi-momentum space of solids corresponds 
wave vectors q and (-q). In case of molecular systems with real wave functions holds rr (≡ . 
For solids, in electronic quasi-momentum k-space representation, it is assumed that to 
spinorbital ( )σϕ ,kR  corresponds complex conjugate spinorbital ( )σϕ ±− ,kR

( . Also in this case, 
for real wave functions of molecular systems RR ϕϕ ≡( .  
For nuclear coordinate and momentum operators hold:  

( )++= rrr bbQ ( , ( )++= rrr bbQ (( , ( ) rrrr QbbQ (( =+= ++  
( )+−= rrr bbP ( , ( )+−= rrr bbP (( , ( ) rrrr PbbP (( −=−= ++  
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The Q-dependence of terms ( )QENN  and ( )QhPQ  in (1) can be expressed through the Taylor’s 
expansion at fixed nuclear configuration R0, 

( ) ( ) ( ) ( )∑
∞

=

+=
1

0
0

j

j
NNNNNN QEREQE

    
( ) ( ) ( ) ( )∑

∞

=

+=
1

0
0

i

i
PQPQPQ QuRhQh                                        (2)

 
Term ( )0

0 RENN  represents potential energy at fixed nuclear configuration R0, ( )0
0 RhPQ  is one–

electron core term at fixed nuclear configuration R0 and terms{ ( ) ( )Qu i
PQ } are related to matrix 

elements of electron – vibration (phonon) coupling ( ( )i
PQu ), i.e. 

( ) ( )
r

r
PQr

r

PQr
PQ QuQ

Q
Qh

Qu =
∂

∂
= ;      ( ) ( )

sr
sr

PQsr
sr

PQsr
PQ QQuQQ

QQ
Qh

Qu ......
...

...... =
∂∂

∂
=                      (3)                          

Two-electron terms 0
PQRSv  (electron-electron coulomb repulsion and exchange integrals) do 

not depend explicitly on the nuclear operators.  
It is obvious that the following symmetry relations have to hold, 

*00
QPPQ hh =  ,    00

PQPQ hh ((=  ,   *0*000
RSPQSRQPQPSRPQRS νννν ===  ,      00

QPSRPQRS ((((νν =                          (4) 
For coefficients of the Taylor’s expansions up to second order, the following identities are 
required to hold, 

*r
NN

r
NN EE

(

=  , ** rs
NN

sr
NN

sr
NN

rs
NN EEEE

((((

=== ,    r
PQ

r
QP

r
PQ uuu ((

(

== * ,  ** rs
QP

sr
QP

sr
PQ

rs
PQ uuuu

((((

===            (5) 
      There are several possibilities of approximate solution of this many-body problem. 
Assumption of validity of the Born-Oppenheimer approximation (BOA) is the basis of these 
treatments. Since the term BOA and subsequent applications are often understood in a 
simplistic way, some aspects of the BOA should be specified. 
      Solution of the Schrödinger equation of many-body system composed of ne electrons and 
Nn nuclei (total system), 

( ) ( )RrERrH TS ,, Ψ=Ψ                                                                                                             (6) 
with the Hamiltonian (1) and wave function ( )Rr,Ψ , which is a general function of the sets of 
electron {r} and nuclear {R}coordinates, is possible in the assumption of  validity of the 
BOA. It was originally formulated [34] by power expansion of potential surface for nuclear 
motion at equilibrium geometry with respect to displacement and electron/nuclear mass ratio 
(me/Mn)1/4 and reformulated later by Born (see e.g. appendix in [35]) in a more practical form. 
According to it, the crucial point of the BOA is that the wave function of the total system (6) 
can be expressed in the factorized form, 
( ) ( ) ( )RrRRr m

m
m ,, Φ=Ψ ∑χ                                                                                                     (7) 

It is a linear combination of known adiabatic electronic wave functions { ( )Rrm ,Φ } that are 
the eigenfunctions of clamped nuclear electronic Schrödinger equation, 

( ) ( )RrERrH m
e
mme ,, Φ=Φ                                                                                                       (8) 

The electronic Hamiltonian in (8) corresponds to fixed nuclear configuration R,  
( ) ( )RrVrVTH eNeeee ,++=                                                                                                      (9) 

Expansion coefficients ( ){ }Rmχ  in (7), regarded as unknown, are nuclear wave functions for 
nuclear configuration R with the electronic subsystem in particular adiabatic electronic 
state ( )Rrm ,Φ . 
The Schrödinger equation of the total system (6) for electronic state ( )Rrn ,Φ  with respect to 
wave function (7) can be written in the form, 

( ) ( ){ } ( ) ( ) ( )RRRRERET m
m

nmn
TSte

nN χχ ∑Λ=−+                                                                   (10) 
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with the rhs term ( )RnmΛ , 

( ) ( ) ( ) ( ) ( )
j

jm
j

jn
j j

nmnmnm R
drRr

R
Rr

M
RBRAR

∂
∂

Φ
∂
∂

Φ=−=Λ ∫∑ .,,*
2h  -  

                                               - ( ) ( ) ( )drRrRTRr mNn ,,* ΦΦ∫                                                  (11) 

Term te
nE in (10),  

( ) =RE te
n ( ) ( )( )RERE NN

e
n +                                                                                                    (12) 

is total adiabatic electronic energy, i.e. adiabatic electronic energy plus nuclear Coulomb  
repulsion at nuclear configuration R. Until the Born approach (7) is valid, equation (10) is 
exact and it still describes coupled motion of electrons and nuclei through the term (11) - 

( )RnmΛ , which represents possibility of transitions between different adiabatic electronic 
states ( ) ( )RrRr mn ,, Φ↔Φ , due to nuclear motion (R – dependence). If such transitions are 
forbidden from the symmetry reasons, or if there is physically reasonably justified assumption 
that contributions of such transitions are negligibly small, then one can omit the rhs term and 
equation (10) can be written in the diagonal form, 

( ) ( )( ) ( ){ } ( ) 0,, =−++ RRERBRET n
TS
nnn

te
nN νν χ                                                                         (13) 

Since Ann= 0, the only non-zero diagonal contribution of the Λ term in (13) is Bnn, 

( ) =RBnn ( ) ( ) ( )drRrRTRr nNn ,ˆ,* ΦΦ∫  = ( ) ( )drRrRr
M nnn

N

n n

,,
2

2*
2

Φ∇Φ− ∫∑ h  = 

            =
( ) ( )

dr
R

Rr
R

Rr
M n

n

n

n

n n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
Φ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
Φ∂

∫∑
ααα

rr
h ,,

2

*2

⏐[R]                                                             (14)  

Term Bnn is the mean-value of the nuclear kinetic energy for adiabatic electronic state 
( )Rrn ,Φ  at instantaneous nuclear configuration R and represents so called adiabatic diagonal 

Born-Oppenheimer (DBOC) correction to the total adiabatic electronic energy ( )RE te
n . The 

equation (13) is then the equation of motion of nuclei and it has the form of Schrödinger 
equation with Hamiltonian,  

( ) ( )RETRH eff
NNNN +=                                                                                                            (15) 

The effective-adiabatic potential for nuclear motion ( )REeff
NN , 

( ) ( ) ( )RBRERE nn
te
n

eff
NN +=                                                                                                        (16) 

is represented by the total electronic energy (12) which is corrected by mean-value of the 
nuclear kinetic energy (DBOC) for the particular adiabatic electronic state ( )Rrn ,Φ  - (14). At 
these circumstances the motion of electrons and nuclei is effectively decoupled and it is 
possible to realize an independent diagonalization of the electronic Schrödinger equation (8) 
and nuclear Schrödinger equation (13). In this case, electrons and nuclei of the system behave 
like two statistically independent sets.  
Contribution of the rhs term of equation (10) is assumed to be small and it can be calculated 
by some approximate way, usually by perturbation theory. Then, problem with the 
Hamiltonian, 
( ) ( ) ( )RHRHRH '0 +=                                                                                                           (17) 

is studied. Unperturbed part is,  
( ) ( ) ( ) ( ) ( ){ } ( )1590 ++=+= RERHRHRH NNNte                                                                     (18) 

Perturbation is represented by the off-diagonal terms, 
( ) ( )RRH mnΛ= ˆ'  ;  ( ( ) ( ) ( ) ( )dRRRRRH nmnmmn νµ χχ Λ= ∫ ˆ*' ) ; m≠n                                     (19) 
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In practice, physical and/or chemical properties of a many-body system in its ground 
electronic state ( )Rr,0Φ  are of the prime interest. In this case, the Born approach (7) is 
usually restricted to the single term and the total wave function of system is a simple product 
of the ground state adiabatic electronic wave function ( )Rr,0Φ and corresponding nuclear 
wave function, 

( ) ( ) ( )RrRRr ,, 0,00 Φ=Ψ νχ  ;                                                                                                  (20) 
The Born approach in the form (20) is generally called the adiabatic approximation. In a 
common sense, what is usually understand as the Born-Oppenheimer approximation (or 
crude-adiabatic) is the adiabatic approximation where the contribution of the DBOC (i.e. 
B00(R) term in (16)) is also neglected and wave function (20) is rather of the form, 

( ) ( ) ( )eqRrRRr ,, 0,00 Φ=Ψ νχ                                                                                                   (21) 

Contributions of the off-diagonal terms ( )Rm0Λ̂  - (19) that are calculated as a small 
perturbation to the Hamiltonian (17) represent a nonadiabatic correction to the unperturbed 
adiabatic ground state (see e.g. [36]). The conditions at which the nonadiabatic correction can 
be expected to be small and the BOA (20, and in general 7) is valid, can be estimated by 
analysis of the second order contributions to the energy of the total system, ( )RETS

0 , which are 
small providing that, 
⏐ ( ) ( ) ( )dRRRR mm µν χχ ,0

*
,0 Λ̂∫  ⏐<<⏐ ( ) ( )RERE TS

n
TS

µν ,,0 − ⏐                                                     (22) 
By expansion, at least up to the quadratic term in a displacement Q of the effective nuclear 
potential ( ( ) =RV eff

NN ( )RE te
0 ) at equilibrium nuclear geometry Req, it can be derived that (22) 

holds and the BOA (20, 7) is valid if the inequality 
( ) ( ) seq

te
neq

te RERE ωh>>−0                                                                                                     (23) 
is fulfilled for electronic and vibration (phonon) energy spectrum of a system. The meaning of 
(23) is clear, the electronic frequency spectrum, i.e. the differences between the total 
electronic energies of the excited electronic states and the ground state energy has to be much 
greater than vibration (phonon) energy spectrum of the system. 
 
Hierarchy of approximations 
II.1. Crude- adiabatic approximation 
       Providing that phonon and electronic energy spectrum are well separated and (23) holds 
for relevant configuration space R near to Req , crude-adiabatic (clamped nuclear) treatment is 
justified. In this case, electronic and nuclear part of the Hamiltonian (1) is treated as 
statistically independent sets.  
       Electronic Hamiltonian is only parametrically dependent on nuclear configuration, i.e. 
nuclear geometry is fixed at nuclear configuration R0,  

( ) ( ) RSQP
PQRS

PQRSQP
PQ

PQNNe aaaavaaRhREH +++ ∑∑ ++= 0
0

0
0

0

2
1                                                      (24)  

Application of the Wick’s theorem to the product of creation and annihilation operators yields 
for particular terms the normal product form (N[…]) with corresponding contractions, 

[ ] ∑∑∑ += ++
occ

I
II

PQ
QPPQ

PQ
QPPQ haaNhaah 000                                                                                            (25) 

[ ] ( ) [ ]

( )∑

∑ ∑∑∑

−+

+⎟
⎠

⎞
⎜
⎝

⎛
−−++= +++++

occ

IJ
IJJIIJIJ

QP
PQ

occ

I
IPQIPIIQIPIQPIQIRSQP

PQRS
PQRSRSQP

PQRS
PQRS aaNaaaaNvaaaav

00

000000

νν

νννν
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At the Wick’s theorem application, the renormalized Fermi vacuum 0Φ is introduced and the 
total set of orthonormal base orbitals ( ),..,´ QP ϕϕ  is divided on two distinct groups; the set of 
occupied ( ),.., JI ϕϕ and set of unoccupied ( ),.., BA ϕϕ  spinorbitals. 
At this moment, the electronic Hamiltonian (24) can be written in a quasi-particle form as a 
sum of zero, one and-two particle terms, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )000021
00

210 RHRHREHHHEHHHH cadcad
te

eNNe ′′+′+=+++=++=       (26)                        

   a/ The scalar quantity, ( ) ( )0
00 RHH cade = , i.e. zero-particle term in ( )0H , is the result of the 

operators contractions and has the form, 

( ) ( )0
0000

00
0

2
1 REhHH SCF

occ

IJ
IJJIIJIJ

occ

I
IIee =−+=ΦΦ= ∑∑ νν                                                   (27) 

This term represents ground state electronic energy calculated by the Hartree-Fock SCF (HF-
SCF) procedure at fixed nuclear configuration R0. Electronic ground state is represented by 
renormalized Fermi vacuum 0Φ . It is an antisymmetric electronic wave function that is 
expressed in the form of single Slater determinant constituted by lowest laying occupied 
spinorbitals { }Iϕ  of complete orthonormal base{ }Pϕ , 

( ) IRr ϕϕ ........., 100 =Φ                                                                                                           (28) 

    b/ The one-particle term ( ) ( ) ( )0
'

1 RHH cad=  of the electronic Hamiltonian (26) has the form, 

( ) [ ]∑ +=
PQ

QPPQ aaNFH 1                                                                                                            (29) 

The elements FPQ are calculated as matrix elements of the Hartree-Fock one-particle operator 
( ) ( ) ( )∑ −+=

Q
QQ KJRhRF 0

0
0                                                                                             (29a) 

Diagonalization of (29), PQPPQF δε 0= , i.e. solution of electronic Hartree-Fock equations by 
HF-SCF procedure, 
( ) ( ) ( )∑=

Q
QPQP RrRrRF 00 ,, ϕεϕ                                                                                          (29b)                        

yields set of eigenvalues, i.e. HF-orbital energies 
( )∑ −+=

Q
PQQPPQPQPPP h 0000 ννε                                                                                                (29c) 

and corresponding set of eigenfunctions { }Pϕ  - the orthonormal set of optimized spinorbitals. 
It means that one-particle term (29) can always be written in diagonal form and represents set 
of eigenenergies of system, i.e. 

( ) [ ]∑ +=
P

PPP aaNH 0
1 ε                                                                                                            (29d) 

In an approximate way, the one-particle Hamiltonian ( )1H  represents complete electronic 
spectrum expressed over occupied and unoccupied - virtual spinorbitals, which are calculated 
for electronic ground state ( )00 , RrΦ  by the HF-SCF procedure. In particular, n-electron 
“excited” state wave function 

nn phΦ  can be constructed by promotion of n electrons from n 
occupied spinorbitals to n unoccupied spinorbitals (i.e. the same number n of holes (hn) and 
particles (pn) are created). Electronic energy of such excited state can be calculated through 
HF-eigenenergies that correspond to optimized spinorbitals of the ground state. However, 
exact treatment of excited states is different and it will be mentioned shortly in section II.2. 
In terms of the orbital energies (29c), for total electronic ground state energy ( )00 REte  holds, 
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( ) ( ) ( ) ( ) ( )

( ) ( )∑

∑ ∑

++=

=⎟
⎠

⎞
⎜
⎝

⎛
−++=+=

occ

I
IIINN

occ

I

occ

IJ
IJJIIJIJIINNSCFNN

te

hRE

hRERERERE

00
0

0

000
0

0
0

0
0

0
00

2
1

2
1

ε

νν
                         (30) 

For closed-shell electronic systems within restricted HF approximation, spinorbitals are 
expressed over spatial orbitals whereas each spatial orbital can be occupied by two electrons 
with opposite spins, i.e. spinorbitals Pϕ and 1+Pϕ  are replaced by the same spatial orbital with 
different spin parts, αϕ .P  and βϕ .P . In this case, the HF operator (29a), HF-orbital energies 
(29c) and electronic energy (27,30) are correspondingly modified, 
( ) ( ) ( )∑ −+=

Q
QQ KJRhRF 20

0
0                                                                                            (31) 

( )∑ −+=
Q

PQQPPQPQPPP h 0000 2 ννε                                                                                              (31a) 

( ) ( )0
0000

00
0 22 REhHH SCF

occ

IJ
IJJIIJIJ

occ

I
IIee =−+=ΦΦ= ∑∑ νν                                                (31b) 

( ) ( ) ( ) ( ) ( )

( ) ( )∑

∑ ∑

++=

=⎟
⎠

⎞
⎜
⎝

⎛
−++=+=

occ

I
IIINN

occ

I

occ

IJ
IJJIIJIJIINNSCFNN

te

hRE

hRERERERE

00
0

0

000
0

0
0

0
0

0
00 22

ε

νν
                       (31c) 

Total electronic ground state energy of the system reaches the minimum at some equilibrium 
nuclear configuration eqRR =0 . Corresponding Slater determinant (28) represents wave 
function of the electronic ground state at equilibrium nuclear configuration. 
     c/ The third term of the electronic Hamiltonian (26), i.e. two-particle term has the form, 

( ) ( ) ( ) [ ]RSQP
PQRS

PQRScad aaaaNvRHH ++∑== 0
0

''
2 2

1                                                                         (32) 

It formally looks like standard coulomb electron-electron interaction term in (24). With 
respect to the fact that after application of the Wick’s theorem (25) the renormalized Fermi 
vacuum 0Φ has been introduced and zero-particle (scalar) quantity (27) represents electronic 
energy of the ground state 0Φ that accounts also for coulomb electron-electron interactions 
(see (27)) and one-particle term is diagonal (29d) and represents unperturbed  HF-orbital 
energies { 0

Pε }of the system (one-electron energy spectrum), then two-particle term (32) 
represents perturbation part of the electronic Hamiltonian (26). It is related to unbalanced 
treatment of electrons with parallel and antiparallel spins within one-electron approximations. 
Since perturbation (32) contains only electron-electron interaction term, contributions of this 
term represent electron correlation energy of the system in its ground electronic state. In this 
respect, electron correlation energy is treated as a perturbation. Calculation of the electron 
correlation energy up to higher order of perturbation theory is usually done by diagrammatic 
many-body perturbation theory. For correlation energy in second order of perturbation theory, 
analytic expression for closed-shell system can be derived in a simple form, 

( )
( )

( )∑ ∑ −−+
−

==
occ

IJ

unocc

AB BAJI

IJBAIJAB
pphhcorr

v
HE 0000

002
2121 εεεε

ν
                                                                     (32a) 

From the fact that with respect to Fermi level, for energies of unoccupied states hold { 0
Aε } > 

0 and for energies of occupied states hold { 0
Iε } < 0, follows that corrE  is negative, i.e. it 
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decreases electronic energy of the ground state (this contribution corrects total electronic 
energy of the system (30, 31c)). It holds for arbitrary nuclear geometry R0 until system 
remains in a bound state.  
       Each eigenfunction Jϕ  in Slater determinant (28) can be expressed as a linear 
combination of the atomic orbital (AO) basis functions{ }µ , µϕ

µ
µ∑= P

cP , that are fixed at 

the positions of the particular nuclei in frozen nuclear configuration R0. It represents fixed 
basis set ( ){ }0,xµ . 
In second quantization, with single-bar +a being creation operator of the crude-adiabatic 
electron, it can be written with respect to Fermi vacuum 0  as, 

( ) ( ) 00,0, xax += µµ                                                                                                                 (33) 
and,  

( ) ( ) ( ) 0)0,(00,0,0, xaxacxcx PPPP
++ === ∑∑

µ
µµ

µ
µ µϕ                                                    (33a) 

For solids, in electronic quasi-momentum k-space, the basis functions are Bloch-periodic 
orbitals ( ){ }0,, xkµ , 

( ) ( )tRxe
N

xk
N

tR

tRik −= ∑ ⋅ µµ 10,,                                                                                          (33b) 

In (33b), tR is translation vector and ( )tRx −µ = ( )xµ . The set of { ( )xµ } is fixed basis 
set ( ){ }0,xµ  in frozen nuclear configuration R0 (Q = 0). An eigenfunction Pϕ is then crystal 
orbital CO - Pϕ  (band Pϕ ), which is a linear combination of the Bloch-periodic basis 
functions ( ){ }0,, xkµ .  
In second quantization it has the form, 

( ) ( ) 00,10,, . xae
N

xk
N

tR

tRik +∑= µµ                                                                                         (33c) 

and, 

( ) ( ) ( ) ( ) ( )

( ) 00,,1

00,10,,0,,

.

.

xkae
N

xae
N

cxkcxk

Pk

N

tR

tRik

N

tR

tRikk
P

k
PP

+

+

∑

∑∑∑

=

=== µ
µ

µ
µ

µ µϕ
.                                        (33d)   

In this case, occupancy of the band is not distinguished by the index of the band (P) itself but 
it is determined by the value of k-vector of particular band dispersion ( )kP

0ε  with respect to 
the energy of Fermi level 0

Fε . 
     The electronic Hartree-Fock equations (29b) are solved for different displaced but fixed 
nuclear configurations {Rd} at Req and potential energy (hyper)surface (PES) can be 
calculated. It can be done by gradient technique where nuclear force constants are calculated 
in an analytic way by minimization of the total electronic energy (30) as a function of nuclear 
coordinates R (see e.g.[37]).  Knowledge of the PES enables calculation of the force constants 
of vibration motion and subsequently it enables to solve nuclear Schrödinger equation, 

( ) ( ){ } ( ) 0,0,00 =−+ RRERET TSte
N νν χ                                                                                          (34) 

with nuclear Hamiltonian, 
( ) ( )RETRH te

NN 0+=                                                                                                            (34a) 
 i.e. to solve the problem of nuclear motion quantization, 
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( ) ( )∑∑ +=+=→ +
modmod

2121
r

rr
r

rrrQN nbbHH ωω hh (                                                           (34b) 

with nuclear vibration wave function, 

( ) ( ) ( ) 0
!

1modmod

,
rn

r
r rr

nr b
n

RR +∏∏ == χχ                                                                                  (35) 

Creation and annihilation operators of crude-adiabatic phonon modes are also written as 
single-bare operators, rr bb ,+ . The operator of nuclear displacements out of fixed nuclear 
geometry R0 (R ∝ R0 +Q) for the crude-adiabatic normal mode r, is ( )rrr bbQ (+= +  and 
corresponding momentum operator is ( )+−= rrr bbP ( . 
    If the influence of the nuclear displacements out of fixed nuclear geometry R0 on the 
electronic ground state wave function and electronic energy is assumed to be negligible 
(crude-adiabatic BOA, i.e. Q-independent), the wave function of the total system is, 

( ) ( ) ( )000 ,, RrRRr Φ=Ψ χ                                                                                                      (36) 
or in terms of nuclear motion,  

( ) ( ) ( )0,, 00 rQQr Φ=Ψ χ                                                                                                       (36a) 
Energy of the total system in the ground electronic state is, 

( ) ( ) ( )210000 ++= ∑ r
r

r
teTS nRERE ωh                                                                                   (36b) 

For fermion and boson creation and annihilation operators, the standard anti-commutation and 
commutation relations hold, 
{ } 0, =QP aa ,  { } PQQP aa δ=+,                                                                                                   (37) 

[ ] 0, =sr bb ,    [ ] rssr bb δ=+,                                                                                                    (37a) 
“Independence” of fermions and bosons, i.e. possibility of simultaneous diagonalization of 
electronic and nuclear part of system Hamiltonian, requires also validity of the following 
commutation relations, 
[ ] 0, =rP ba ,  [ ] 0, =+

rP ba                                                                                                      (37b) 
      If it is necessary, the effect of electron-vibration (phonon) coupling on the electronic 
energy and vibration (phonon) spectra are usually calculated by perturbation theory as the 
corrections to the crude adiabatic ground electronic state and phonons renormalization. On the 
crude-BOA level these corrections are neglected, however. 
 
II.2. Adiabatic approximation  
       In case the of crude-adiabatic approximation, electrons “see” the nuclei at theirs 
instantaneous positions at rest and nuclei do not “feel” internal dynamics of electrons. Within 
the spirit of the BOA it would be correct if the electrons follow nuclear motion 
instantaneously, i.e. electronic state has to dependent explicitly on instantaneous nuclear 
positions. In this case, the wave function of the system, instead of the form (36a) with Q-
independent electronic part should be replaced by Q-dependent form, i.e. 

( ) ( ) ( )QrQQr ,, 00 Φ=Ψ χ                                                                                                        (38) 
For molecular systems an analytic derivative method is used. The nuclear force constants are 
calculated by diagonalization of the Hartree-Fock equations that are now functions of nuclear 
coordinates. It results in solution of the Coupled Perturbed Hartree-Fock (CPHF) equations 
(see e.g. [38,39]). 
     Alternative treatment to this problem, denoted as quasi-particle transformation technique, 
has been proposed and elaborated by Svrček [40]. In this treatment, the requirement that 
electrons follow the nuclear motion adiabatically has been expressed through the fermion and 
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boson creation and annihilation operators. In [41] it has been shown that solution of the 
adiabatic problem by quasi-particle transformation technique is equivalent to the results of the 
CPHF method. Seemingly it means that there is no extra profit of this treatment. In the present 
paper it is shown, however, that physical background behind the quasi-particle transformation 
technique is substantial. It can be effectively generalized that justifies and allows application 
to more complicated situation when the BOA is not valid, i.e. to study antiadiabatic 
state ( ) ( ) νωh<− eq

te
n

te RERE0 .  
    To keep the present paper compact, the main points of the original formulation of the 
adiabatic quasi-particle transformation technique [40] are presented in Appendix A.  
    Some aspects of different treatments of electron-vibration (phonon) coupling should also be 
mentioned. Standard solid-state treatment of electron-phonon interaction is based on 
perturbation theory. Starting Hamiltonian is, 
 epHHH += 0 .                                                                                                                      (39) 
The unperturbed part (to be consistent with crude-adiabatic notation, the single-bare operators 
are used) has the form, 

( )∑∑ ++= +
−

+

q
qqqkk

k
k bbaaH 2100 ωε σσ

σ

h                                                                              (39a) 

The perturbation Hamiltonian epH , instead of Λ-perturbation term (11, 19), is represented by 
an electron-phonon (EP) interaction term. The simplest form of this term is, 

( ) σσ
σσ

σσ ,,
.,,,

,, kqkq
qk

q

qk
kqkqq

q
ep aaQuaabbuH +

+
+
+

+
− ∑∑ =+=                                                           (39b) 

It can be derived in the assumption of small perturbation of rigid-periodic lattice potential due 
to vibration displacements of nuclei out-of equilibrium positions. Within the notation used in 
the present paper, term (39b) corresponds basically to the first order contribution of Taylor’s 
expansion of the core Hamiltonian ( )QhPQ , (see 1, 2), with respect to nuclear displacement Q 
on the crude-adiabatic level. This is evident from eq. (A19b), when at equilibrium geometry 
for potential energy of nuclear motion holds 0=r

NNE . The unperturbed Hamiltonian (39a) is 
represented by the terms (29d) and (34b).  
Due to the form of EP interaction epH (39b), the first order perturbation correction to the 

electronic ground state Φ0, i.e. the diagonal perturbation term equals zero: 000 =〉ΨΨ〈 epH . 

All interesting physics is then related to higher-order contributions with participation of 
excited electronic states, i.e. the first possible non-zero contributions are in the second order 
of perturbation theory, i.e. terms of the form ( )TS

n
TS

nepnnep EEHH −〉ΨΨ〉〈ΨΨ〈 00 / . These off-

diagonal contributions represent, in this treatment, nonadiabatic corrections to the adiabatic 
ground state energy teE0∆  that is associated with renormalization of the normal mode 
frequencies rω∆ . In solids it is calculated as corrections to dispersion of electronic bands 

( )kPε∆  and corrections to phonon dispersion ( )qrω∆ .  
       Exact treatment of nonadiabatic corrections calculation assumes independent calculation of 
electronic excited states energies ( ) ( ){ }RE e

n 0≠ , however. It would require new optimization of 
excited state wave functions ( )Rrm ,Φ . It should be extremely complicated since excited state 
wave functions have to be orthogonal to the ground state wave function. At practical 
calculations, an approach is used (see II.1) which is based on the orthonormal orbitals 
(bands){ }aϕ already optimized for the ground state electronic wave function ( )eqRr,0Φ . By 
promotion of electron(s) from occupied orbital(s) {I, J,..} to virtual – unoccupied orbital(s) 
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{A,B,...}, excited state configurations { AΦ } can be constructed as a linear combination of 
corresponding Slater determinants { }AI→Φ . It can be shown that, e.g. single-electron 
excitations yield (for closed-shell system) two excited state electronic configurations – lowest 
lying excited state that is singly excited triplet state )(

3
AIA →Φ , and singly excited singlet 

state )(
1

AIA →Φ . Differences in the electronic energies of these excited state configurations with 
respect to the electronic energy of the ground state are; 

( ) ( ) ( ) ( ) IAIA
ee

AIA JRRRERE −−=−→
00

0)(
3 εε                                                                              (40) 
for singly excited triplet state and, 

( ) ( ) ( ) ( ) IAIAIA
ee

AIA KJRRRERE 200
0)(

1 +−−=−→ εε                                                                 (41) 
for singly excited singlet state. 
For approximations that do not consider explicitly for two-electron terms, the differences in 
energies of singly excited triplet and singlet states with respect to the ground state energy are 
the same and equal to the difference of the energies of involved orbitals, i.e. 

( ) ( ) ( ) ( )RRRERE IA
ee

AIA
00

0)( εε −=−→                                                                                       (42)                        
Multiple electronic excitations can be calculated in a similar way, by generation of Slater 
determinants of p-particle, h( p≡ )-hole states in notation of particle-hole formalism. 
In this way, without an explicit calculation of electronic excited state wave functions, the 
nonadiabatic corrections to (crude-)adiabatic electronic ground state are calculated through 
optimized eigenfunctions (i.e. occupied ( Iϕ ) and unoccupied - virtual ( Aϕ ) orbitals) of single 
Slater determinant of the electronic ground state ( )eqRr,0Φ .  
Condition for save application of the BOA, expressed in the terms of the ground state orbital 
energies, is of the form, 

( ) ( ) rAI RR ωεε h>>− 00                                                                                                            (43)                        
It has to be valid for relevant configuration space R at Req and for the couple of frontier 
orbitals, i.e. highest occupied HOMOI ϕϕ ≡  and lowest unoccupied LUMOA ϕϕ ≡  orbitals.  In 
case of solids, with quasi-continuum of states in complex k-space representation this 
inequality can be rewritten in the form, 

( ) rRFcS
eq

k ωεε h>>− 00                                                                                                           (44) 

This relation has to hold over the relevant configuration space R at Req for energies of all 
bands (S) of multiband system in analytic critical points kc (ACP - absolute or local maxima, 
minima and saddle points) of 1st BZ, with respect to the energy of the Fermi level 0

Fε .  
       In molecular quantum theory, different treatment of electron-vibration interaction has 
also been elaborated. It is related to direct calculation of the correction to the ground state 
total electronic energy ( )

0
ádE∆ that corrects potential energy of nuclear motion on the adiabatic 

level. In 1997, Kutzelnigg [42] has proved in a rigorous way that so called Born-Handy ansatz 
[43,44], is physically correct. The Born-Handy ansatz assumes that the diagonal Born-
Oppenheimer correction (DBOC) to adiabatic electronic state - Bnn (A10) can be calculated 
directly in laboratory Cartesian coordinate system. The proof [42] is very crucial result, since 
it eliminates complicated problem with separation of center-off-mass (COM) motion, which 
arises at introduction of relative coordinates in a molecule-fixed frame system at practical 
calculations.   
Accordingly, the exact adiabatic correction to the total electronic ground state energy is B00 
(14), i.e. 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )∑

∑

=Λ=
∂
Φ∂

∂
Φ∂

=

=Φ∇Φ−=ΦΦ=∆

α ααi Riii

Ri
i i

RNad

B
R

Rr
R

Rr
M

RrRr
M

RrTRrRE

0000
00

2

0
2

0

2

000
0

0

00

,,
2

,,
2

,,

rr
h

rrhrr

                    (45)                     

The derivatives of the ground state Slater determinant 0Φ  in the bracket of (45) are performed 
with respect to the αiR , i.e. with respect to the Cartesian component α of the   ith nucleus. 
In 1999 it has been shown [41] that this correction is equal to adiabatic correction (A30a) to 
the total electronic energy of the ground state 0Φ , calculated through the expansion 
coefficients ( )QcPQ of the quasi-particle transformation (A2), i.e. 

( ) ( ) ( ) ( ) ∑=ΦΦ=∆
rAI

r
AIrŔNad cRrTRrRE

2

000
0

0

,, ωh
rr

                                                           (46) 

In (46), r
AIc  stand for the first derivative of expansion coefficients (A2) of the quasi-particle 

transformation with respect to coordinate Qr of particular normal mode r,   

r

AIr
AI Q

cc
∂
∂

=                                                                                                                               (47) 

Within the single Slater determinant representation of the ground electronic state, this relation 
is exact since the eigenfunctions – spinorbitals ( ){ }RQϕ  of the Hartree-Fock equations (29b) 
are orthonormal and form complete basis set, i.e. closure property holds, 

( ) ( ) 1,, =∑
Q

QQ RrRr ϕϕ                                                                                                      (48) 

It means that both sub-sets, i.e. occupied ( ){ }RrI ,ϕ  and unoccupied ( ){ }RrA ,ϕ  orbitals are 
included at calculation of (46). As it is seen from (46), electronic ground state energy 
correction is due to virtual transitions between occupied ( ){ }RrI ,ϕ  and unoccupied orbitals 

( ){ }RrA ,ϕ  at nuclear vibration motion. In this respect, even ( )
0
ádE∆ represents exactly DBOC, 

it covers basically  “nonadiabatic” (off-diagonal) corrections in the sense as these are 
calculated in second-order of perturbation theory when excited electronic states are 
approximated through virtual orbitals optimized for electronic ground state ( )eqRr,0Φ  and 
perturbation is an electron-vibration coupling epH , as it has been discussed above. It can be 
seen very clearly from the expression for correction to frequency of normal modes (A36a) 
that is identical to the one derived by perturbation theory (A36b). 
Correctness of eq. (45) and (46) has been verified by high precision calculation of H2, HD, D2 
molecules [41] with respect to the exact results for H2 published by Kolos and Wolniewicz 
[45,46].  This treatment can be used for complex molecular systems and it should be effective 
also in case of solids.    
       An important conclusion can be made at this place. Electron-vibration (phonon) 
interactions on the adiabatic level do not stabilize total electronic energy of the ground state. 
The adiabatic correction ( )

0
ádE∆ to the ground state total electronic energy (without correlation 

energy contribution) is small but always positive, (45, 46). More over, correction to the 
energy of the total system TSE∆ , which is composed of the electronic ( )

0
adE∆  correction and 

corrections rω∆ to vibration (phonon) modes (A36a), is also positive with dominant 
contribution of the electronic correction, 
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( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−

−=∆ ∑ 00

2 21
IA

r

rAI

r
AIr

TS cE
εε
ω

ω
h

h                                                                                       (49) 

The only possible stabilization contribution to the ground state electronic energy on the 
adiabatic level can arise from the correction to electron correlation energy (see part II). 
      This conclusion does not contradict the Jahn-Teller effect, or Peierls distortion in solids. 
In these cases, decrease of the total electronic energy connected to nuclear displacements 
from high symmetry to lower symmetry nuclear arrangement appears already on the crude-
adiabatic level within the clamped nuclear Hamiltonian approximation and it is related to 
removing of degeneracy of occupied and unoccupied states (asymmetry in population of 
degenerate states). Degeneracy that is present at high symmetry nuclear geometry is not 
present at lower symmetry structure, which in fact represents actual equilibrium nuclear 
configuration Req with lower total electronic energy as it corresponds to the structure with 
higher symmetry. 
    In what follows, a connection of the adiabatic treatment, as presented above and in the 
Appendix A, to canonical transformations and to introduction of new dynamical variables of 
the system Hamiltonian is shown. The established link is then extended toward solution of 
more general problem, when adiabatic condition (43, or 44) is not valid and system is in the  
intrinsic nonadiabatic (or antiadiabatic) state, i.e. when instead of (43, 44) holds 

( ) ( ) rAI RR ωεε h<− 00 , or ( ) rRFcS
eq

k ωεε h<− 00  in case of solids. 

 
III. Base transformation – introduction of new dynamical variables 

III.1. Q-dependent adiabatic transformation 
    Adiabatic, nuclear displacement Q-dependent electronic wave function ( )Qr,0Φ in (38) 
assumes existence of complete orthonormal basis set ( ){ }QxR ,ϕ , i.e. validity of the following 
relations, 

( ) ( ) RSSR QxQx δϕϕ =,, ,  ( ) ( ) 1,, =∑ QxQx R
R

R ϕϕ                                                            (50) 

Now, electron creation and annihilation operators that correspond to the Q-dependent moving 

base are denoted as double-bar operators ( aa ,
+

). Also the boson operators related to the Q-

dependent moving base are written  as double-bar operators; ⎟
⎠
⎞

⎜
⎝
⎛ +=

+

rrr bbQ ( , ⎟
⎠
⎞

⎜
⎝
⎛ −=

+

rrr bbP ( . 

Then, 

( ) ( )QxQxa RR ,0, ϕ=
+

 , ( ) ( ) 0,, =QxQxa RR ϕ                                                                     (51) 

Since adiabatic electrons remain fermions, the operators have to obey standard fermion 
anticommutation relations, 

RSSR aa δ=
⎭
⎬
⎫

⎩
⎨
⎧ +

,   , { } 0, =SR aa                                                                                             (52) 

Shorthand notation, ( )Qxaa RR ,≡ , ( )Qxaa RR ,
++

≡  has been used in (52). 
   Crude-adiabatic electronic wave function ( )0,0 rΦ  that does not depend on the nuclear 
displacements Q is expanded over fixed basis set functions ( ){ }0,xRϕ  that are eigenfunctions 
of clamped nuclear electronic Hartree-Fock equations (29b). This is complete and 
orthonormal base, 

( ) ( ) RSSR xx δϕϕ =0,0,  ,  ( ) ( ) 10,0, =∑ xx R
R

R ϕϕ                                                               (53) 
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Crude-adiabatic fermion creation and annihilation operators that correspond to the fixed basis 
set are written as single-bar operators ( aa ,+ ), i.e. 

( ) ( )0,00, xxa RR ϕ=+  , ( ) ( ) 00,0, =xxa RR ϕ                                                                      (54) 
Also in this case, the standard anticommutation relations (37, 37a,b) hold and also in this case 
shorthand notation has been used, ( )0,xaa RR ≡ , ( )0,xaa RR

++ ≡ .   
   Due to properties (50, 53), the two bases are interconnected by the base transformation of 
the following form, 

( ) ( ) ( ) ( ) ( )( ) ( )∑∑
+

==
S

SRSRS
S

SR QxQcxQxQxx ,0,,,0, ϕϕϕϕϕ                                       (55) 

Then, for fermion operators of second quantization one can write 

( ) S
S

RSR aQca ∑=   ,  ( )( ) ++
+ ∑= S

S
RSR aQca                                                                               (56) 

Elements ( )Qc of the Q-dependent transformation matrix ( )QC  in (55, 56) are, 

( ) ( ) ( )QxxQc SRRS ,0, ϕϕ=                                                                                                     (57) 

Since, 

( ) ( ) ( )0,,* xQxQc RSRS ϕϕ= ,                                                                                                   (58) 

then due to closure property and orthonormality (50, 53) of the bases, it can be derived that 
base transformation matrix ( )QC is an unitary matrix, 

∑ ∑==
T T

TSTRRSSTRT cccc ** δ ,  ( ) 1* −+ == CCC T                                                                    (59) 

      It can be shown that the base transformation is identical with canonical transformation of 
operators that satisfy anti-commutation relations (37, 52).  
There are two basic possibilities of canonical transformations; 
The standard [47], most frequently used canonical transformation works with the same set of 
dynamical variables (Aν), i.e. 

( ) ( ) ( ) ( ) ( )( )νµνµµµ AUAAUHAHAHAHT +==≡
~~:                                                              (60) 

( ) ( ) ( )ννµνµ AfAUAAUA == +~                                                                                             (60a) 
Canonical transformation (60) is usually used in an effort to make original Hamiltonian 
diagonal or “more” diagonal, i.e. to remove off-diagonal interaction matrix elements in a 
system Hamiltonian. Then, for system Hamiltonian int0 HHH +=  at the canonical 
transformation, the anti-hermitean operator S of unitary matrix ( )SU exp=  is “constructed” in 
the form that eliminates presence of interaction term in transformed Hamiltonian completely 
or at least up to the first order of commutator expansion, i.e. the condition has to be fulfilled, 
[ ] 0, int0 =+ HSH                                                                                                                    (61)                        
This transformation change the form of the Hamiltonian but preserves original system 
variables.  
The other possibility is that by canonical transformation of operators a set of new dynamical 
variables ( )νA′ is introduced,  

( ) ( ) ( )ννννµµ AUAAUAAA ′′′=′≡ +                                                                                            (62) 
Then Hamiltonian is not transformed itself, it remains of the original form, but its variables 
(Aν) are replaced by new variables ( )νA′ , 
( ) ( ) ( )( )νννµ AUAAUHAH ′′′≡ +                                                                                                 (63) 
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The Hamiltonian written in new variables is, 
( )( ) ( )ννµ AHAAH ′≡′ ~                                                                                                                (64) 

Since at this transformation, there is not any requirement for fulfillment of condition like (61), 
the transformation does not make Hamiltonian “more” diagonal, but very often it discloses 
physical aspects of the problem that are not obvious from non-transformed form of the 
original variables of system Hamiltonian. Beside the other aspects, appearance of the 
attractive effective electron-electron interaction term at this transformation will be shown at 
the other place – part II.   
   Within this transformation method, for canonical transformation of fermion operators can be 
written, 

UaUa RR
+= ,  UaUa RR

++
+ =                                                                                                  (65)  

The unitary matrix ( 1−+ =UU ) is of exponential form SeU =  and anti-hermitean operator S 
(S+ = - S) is of the bilinear form, 

( ) SR
RS

RS aaQS
+

∑= γ    , SRRS γγ −=*                                                                                          (66) 

The γ(Q) matrix is Q-dependent. For canonical transformation (65) then holds, 

[ ] [ ][ ] [ ][ ][ ] ........,,,
!3

1,,
!2

1,
!1

1
++++== − SSSaSSaSaaeaea RRRR

S
R

S
R                                  (67) 

Due to fermion anti-commutation relations (52), the commutation expansion (67) can be 
summed up in a closed form, 

S
S

Q

R aea
RS

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛γ

                                                                                                               (68) 

In this way, for creation operator can be derived 
+

+
⎟
⎠
⎞

⎜
⎝
⎛

+ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= S

S

Q

R aea
RSγ

                                                                                                          (68a) 

Comparing (68, 68a) with relations (56), one can see that the base transformation of wave 
functions is identical with canonical transformation of fermion operators. More over it is 
identical also with quasi-particle transformation as it is postulated in Appendix A. The 
exponential form of canonical transformation (67) legitimates also Taylor’s expansion of the 
matrix elements of quasi-particle transformation coefficients (A4, 56), or what is equivalent, 
the Taylor’s expansion of base transformation coefficients, i.e. 

( ) ∑ ∑
∞

=

=
0 ..

..

1

1

1 ...
!

1
k rr

rr
rr

PQPQ
k

k

k QQc
k

Qc                                                                                             (69) 

    The form of transformation relations for boson operators of system Hamiltonian is fully 
dictated by the factorized form of the total system wave function (38). It expresses possibility 
of simultaneous – independent diagonalization of electron and boson subsystems. It means 
that transformed fermion and transformed boson operators obey not only standard 
anticommutation and commutation relations within the individual subsystems, 

 { } 0, =QP aa ,  PQQP aa δ=
⎭
⎬
⎫

⎩
⎨
⎧ +

, ,   [ ] 0, =sr bb ,   rssr bb δ=⎥⎦
⎤

⎢⎣
⎡ +

, ,                                            (70) 

but transformed operators of both subsystems have to commute mutually like the original 
operators, i.e. also the following commutation relations have to hold, 
                                                                                             

[ ] 0, =rP ba ,  0, =⎥⎦
⎤

⎢⎣
⎡ +

rP ba                                                                                                      (71) 
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With respect to the fermion transformation relations (56), the form of transformation relations 
for boson operators that fully respects commutation relations (71) is (A3, A10), i.e. 

( ) QP
PQ

rPQrr aaQdbb +∑+=  ,   ( )( ) QP
PQ

rPQrr aaQdbb +
+

++ ∑+=                                                  (72) 

For matrix elements ( )Qd of transformation matrix ( )QD , the Taylor’ expansion is defined, 

( ) ∑ ∑
∞

=

=
0 ..

..

1

1

1 ...
!

1
k ss

ss
ss

rPQrPQ
k

k

k QQd
k

Qd                                                                                         (72a) 

The relation that holds, with respect to (71), between elements ( )Qd  and ( )Qc of 
transformation matrices is specified in Appendix A – (A6, A7). 
It can be shown that adiabatic transformation preserves total number of electrons, and nuclear 
coordinate operator is invariant under transformation, i.e. 

NaaaaN P
P

PP
P

P === ∑∑ ++ ,   ( ) rrrrrr QbbbbQ =+=⎟
⎠
⎞

⎜
⎝
⎛ += +

+
((                                        (73) 

Up to first order of Taylor’s expansion, the momentum operator ( )+−= rrr bbP (  is transformed 
as, 

QP
PQ

r
PQrQP

PQ

r
PQrrr aacPaacbbP

+++

∑∑ +=+⎟
⎠
⎞

⎜
⎝
⎛ −=

((
( 22                                                             (74) 

The term ⎟
⎠
⎞

⎜
⎝
⎛ −=

+

rrr bbP (  in (74) is nuclear momentum operator on adiabatic level.  

   For adiabatic Q-dependent spinorbitals ( )QxP ,ϕ , which are the basis functions of the 

adiabatic Q-dependent electronic wave function of the ground state ( )Qr,0Φ , expressed over 
crude-adiabatic orbitals can be derived; 

( ) ( )
( ) ( ) ( ) ( ) ....0,0,.....0,0,

00,,
2

+−=+−=

=⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−==

∑∑

∑ ++
+

rR
Rr

r
PRP

rR
Rr

r
PRP

rR
Rr

r
PRPPP

xQcxxQcx

QOaQcaQxaQx

ϕϕϕϕ

ϕ
                         (75)                         

As it is seen from (75), adiabatic wave function is modulated by the instantaneous nuclear 
coordinates {Qr} of particular vibration (phonon) modes {r} with the weight proportional to 
transformation coefficients r

PRc (coefficients of transformation matrix in the first order of 
Taylor’s expansion). In Appendix C it is shown that r

PRc  covers the strength of electron-
vibration (phonon) coupling up to the first order of Taylor’s expansion. From (46) it is seen 
that these coefficients fully determine also exact adiabatic correction to the electronic energy 
of the ground state ( )

0
adE∆ . 

    
III.2. P-dependent nonadiabatic transformation 
   Save application of the adiabatic BOA requires the inequality ( ) ( ) r

te
n

te RERE ωh>>−0  to 

hold not only at Req but also over relevant configuration space R=Req±∆R near to Req. 
Relevant configuration space is represented at least by amplitudes of pertaining vibration 
(phonon) modes of the system. Let as consider situation when this inequality is valid for Req 
but it does not hold for R=Req±Q. Within single Slater determinant approximation of the 
ground electronic state it can be written as, 

( ) ( ) reqAeqI RR ωεε h>>− 00   →Q   ( ) ( ) reqAeqI QRQR ωεε h<±−± 00                                       (76) 
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Corresponding relation holds for solids,  
( ) rRFcS

eq
k ωεε h>>− 00    →Q     ( ) rQRFcS

eq
k ωεε h<−

±

00                                                      (77) 

The inequalities on the rhs of (76, 77) indicate that system at vibration motion is in intrinsic 
nonadiabatic (or antiadiabatic) state. At these circumstances the BOA in the standard Q-
dependent form (38) is not valid. The Λ term (11) that couples electronic and nuclear motion 
through nuclear kinetic energy operator can be large and can not be treated as a perturbation. 
It indicates that at the instantaneous nuclear configuration (Req±Q), instantaneous nuclear 
kinetic energy (momenta) has been significantly changed, i.e. NN TT ~→ . Electrons at these 

circumstances are not able to follow nuclear motion adiabatically. It means that electronic 
wave function, in order to respect this fact, should be dependent not only on instantaneous 
nuclear coordinates Q but it should also be an explicit function of the instantaneous nuclear 
momenta P, i.e. ( )PQr ,,00 Φ≡Φ .  
Let us assume that wave function of total system can be found in the following factorized 
form, 
( ) ( ) ( )PQrPQPQr m

m
m ,,,,, Φ=Ψ ∑χ                                                                                      (78) 

The form of the wave function (78) is basically P-dependent modification of the original Q-
dependent BOA - (7). 
Like in adiabatic case, solution of the problem will be restricted to electronic ground state, i.e. 

( ) ( ) ( )PQrPQPQr ,,,,, 000 Φ=Ψ χ                                                                                          (79) 
It means that effect of nuclear momenta will be covered only in the form of Q,P-dependent 
diagonal correction ( ) ( ) ( )PQrTPQrPQ N ,,~,,, 0000 ΦΦ=Λ , i.e. in a similar way as it has 
been covered the effect of instantaneous nuclear coordinates Q on the adiabatic level (45), i.e. 

Q-dependent adiabatic DBOC, ( ) ( ) ( )QrTQrQ N ,, 0000 ΦΦ=Λ . 

     Solution of this problem is similar to the transition from crude-adiabatic to adiabatic level, 
as presented above. Now, however, the transition from adiabatic to antiadiabatic level is 
established.  
Nonadiabatic, nuclear displacement and momentum (Q,P)-dependent electronic wave 
function ( )PQr ,,0Φ in (79) assumes existence of complete orthonormal basis set ( ){ }PQxR ,,ϕ , 
i.e. validity of the following relations, 

( ) ( ) RSSR PQxPQx δϕϕ =,,,, ,  ( ) ( ) 1,,,, =∑ PQxPQx R
R

R ϕϕ                                          (80) 

Electron creation and annihilation operators that correspond to the (Q,P)-dependent moving 
base are written as bar-less operators ( aa ,+ ). Boson operators related to the (Q,P)-dependent 
moving base are denoted also  as bar-less operators, ( )rrr bbQ (+= +  and ( )+−= rrr bbP ( . Then, 

( ) ( )PQxPQxa RR ,,0,, ϕ=+  , ( ) ( ) 0,,,, =PQxPQxa RR ϕ                                                (81) 
Since nonadiabatic electrons remain fermions, the operators obey standard fermion 
anticommutation relations, 
{ } RSSR aa δ=+,   , { } 0, =SR aa                                                                                                   (82) 
In (82), shorthand notation is used, ( )PQxaa RR ,,≡  and ( )PQxaa RR ,,++ ≡ . 
Since adiabatic Q-dependent moving base derived by adiabatic transformation is complete 
and orthonormal (50), then due to (80), the base transformation to nonadiabatic (Q,P)-
dependent moving base can be established over the base transformation relation, 
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( ) ( ) ( ) ( ) ( )( ) ( )∑∑ +==
S

SRSRS
S

SR PQxPcQxPQxPQxQx ,,ˆ,,,,,, ϕϕϕϕϕ                      (83) 

For fermion operators of second quantization follow, 

( ) S
S

RSR aPca ∑= ˆ   ,  ( )( ) ++
+

∑= S
S

RSR aPca ˆ                                                                              (84) 

Elements of the P-dependent transformation matrix ( )PĈ  are, 

( ) ( ) ( )PQxQxPc SRRS ,,,ˆ ϕϕ=  , ( ) ( ) ( )QxPQxPc RSRS ,,,* ϕϕ=                                           (85)              

The P-dependent transformation matrix ( )PĈ  is also unitary matrix, i.e. the relations hold, 

∑ ∑==
T T

TSTRRSSTRT cccc ˆˆˆˆ ** δ ,  ( ) 1* ˆˆˆ −+ == CCC T                                                                  (85a) 

    The form of transformation relations for boson operators of system Hamiltonian is fully 
dictated now by the factorized form of the total system wave function (79). Also in this case, 
it expresses possibility of simultaneous, independent diagonalization of electron and boson 
subsystems. It means that transformed-nonadiabatic fermion and transformed nonadiabatic 
boson operators obey not only standard anticommutation and commutation relations within 
the individual subsystems, 
 { } 0, =QP aa ,  { } PQQP aa δ=+, ,   [ ] 0, =sr bb ,   [ ] rssr bb δ=+, ,                                                  (86) 
but, like the original and adiabatic operators, transformed nonadiabatic operators of both 
subsystems have to commute mutually, i.e. also commutation relations have to hold,                                         
[ ] 0, =rP ba ,  [ ] 0, =+

rP ba                                                                                                        (87) 
With respect to the fermion transformation relations (84), the form of transformation relations 
for boson operators that fully respects conditions (87) is, 

( ) QP
PQ

rPQrr aaPdbb +∑+= ˆ  ,   ( )( ) QP
PQ

rPQrr aaPdbb +++
+

∑+= ˆ                                                    (88) 

    At this moment, the canonical transformation can be realized. The new nonadiabatic, bar-
less operators (84,88), replace adiabatic double-bar operators in the adiabatic form of system 
Hamiltonian (B20a-20e). More details of this transformation, relation between ( )Pd̂  and ( )Pĉ  
elements of transformation matrices and treatment of the resulting nonadiabatic system 
Hamiltonian is presented in [33a] and in the Appendix B.  
It can be shown that also this transformation preserve total number of particles, i.e. 

NaaaaNaaN P
P

PP
P

P
P

PP ===== ∑∑∑ +++                                                                        (89) 

Invariant of transformation is now momentum operator, 

( ) ( )++
+ −=≠⎟

⎠
⎞

⎜
⎝
⎛ −==−= rrrrrrrr bbPbbPbbP (((  ,  rrr PPP ≠=                                           (90) 

However, coordinate operator is transformed up to first order of Taylor’s expansion, as, 

( ) ( ) ( )

( ) QP
PQ

r
PQr

QP
PQ

r
PQrQP

PQ

r
PQrrrrr

aaPcQ

aaPcQaaPcbbbbQ

+

++
+

+

∑

∑∑
−=

=−=−⎟
⎠
⎞

⎜
⎝
⎛ +=+=

(

((
((

ˆ2

ˆ2ˆ2
                             (91) 

i.e. 

rrr QQQ ≠=                                                                                                                        (91a) 
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    For nonadiabatic (Q,P)-dependent spinorbitals ( )PQxP ,,ϕ , which are the basis functions 
of the nonadiabatic (Q,P)-dependent electronic wave function of the ground state ( )PQr ,,0Φ , 
expressed over crude-adiabatic orbitals can be derived; 

( ) ( ) ( )
( ) ( ) ( ) ......0,0,0,0,0,0,

0,,0,,,, 22

+−−=

=⎟
⎠

⎞
⎜
⎝

⎛
+−−==

∑∑

∑ ∑ ++++

Rr
Rr

r
PR

rR
Rr

r
PRP

rR Rr
Rr

r
PRRr

r
PRPPP

xPcxQcx

PPQQOaPcaQcaPQxaPQx

(
(

(
(

)

)

ϕϕϕ

ϕ
    (92) 

Nonadiabatic wave function (92) in contrast to adiabatic wave function (75) is modulated not 
only by the instantaneous nuclear coordinates { }rQ of particular vibration (phonon) modes {r} 
but modulation is also over corresponding instantaneous nuclear momenta { }rP( . The weight 
of momentum modulation is proportional to the P-dependent transformation coefficients r

PRc) . 
It represents first derivative of PRĉ  matrix element with respect to nuclear momentum Pr 
(coefficient of transformation matrix in first order of Taylor’s expansion), 

( )
r

PRr
PR P

Pcc
∂

∂
=

ˆˆ  

From Appendix C, it is obvious that these coefficients reflect not only strength of electron-
vibration (phonon) coupling but mainly magnitude of nonadiabaticity. For nonadiabatic 
situation, i.e. antiadiabatic state ( ) ( ) rAI RR ωεε h<− 00 , the weight of such P-modulated state 
can be considerably large. 
 

IV. Dependence of electronic energy on nuclear vibration displacements and momenta 
       Nuclear Q,P-dependent form of the transformed electronic Hamiltonian (Appendix B)  
and approximate solution of the coefficients of transformation matrices (Appendix C) allow 
straightforward derivation of approximate analytic forms of the electronic energy corrections. 
These corrections are calculated with respect to electronic energy terms that are obtained on 
crude-adiabatic level at particular fixed nuclear configuration R0.  
 
IV.1. Correction to electronic ground state energy – zero-particle term correction 
      With respect to the solution (C2a,b) of approximate GCPHF equations (C1a,b), correction 
to the electronic ground state energy, i.e. zero-particle term correction (B10a) is, 

( ) ( ) ( )∑∑ ∑∑∑∑ Ω=
−−

=⎟
⎠
⎞⎜

⎝
⎛ −=∆

unocc

A

occ

I

unocc

A

occ

I
AI

rIA

r

r

r
AI

rAI

r
AI

r
AIrna uccE

2200

2220 ˆ
ωεε

ω
ω

h

h
h              (93)                        

The Ω matrix is a symmetric matrix of the form, 

( ) ( )2200

222
ˆ

rQP

r

r

r
PQ

r

r
PQ

r
PQrPQ ucc

ωεε

ω
ω

h

h
h

−−
=⎟

⎠
⎞⎜

⎝
⎛ −=Ω ∑∑                                            (93a) 

       As it seen from (93), for standard adiabatic Q-dependent state, the electronic ground state 
energy correction ( )

é
naE∆ is reduced to the adiabatic DBOC ( )

é
adE∆ (A30a, 46) which is always 

positive. In the extreme case (C3a) of strong adiabatic limit 0/ 00 →− QPr εεωh , the correction 
is basically zero, 

 ( ) ( )
0200

220 →
−

=⎟
⎠
⎞⎜

⎝
⎛=∆ ∑∑

IA

r

rAI

r
AI

rAI

r
AIrsad ucE

εε

ω
ω

h
h                                                            (93b) 

      For an antiadiabatic state when inequality ( ) ( ) rAI RR ωεε h<− 00 holds, correction to 
electronic ground state energy (93) is negative and represents stabilization contribution to the 
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electronic ground state energy. This contribution can be considerably large and reach the 
extreme negative value for left-hand side limit toward singular point in (93). Singular point 
itself is excluded (Appendix C). The correction is always negative for the extreme case (C3b) 
of strong nonadiabatic limit, ∞→− 00/ QPr εεωh . However, the contribution in this case does 
not represent the largest possible negative value and it is equal to, 

 ( ) ∑∑ −=⎟
⎠
⎞⎜

⎝
⎛−=∆

rAI r

r
AI

rAI

r
AIrsna

u
cE

ω
ω

h
h

2
20 ˆ                                                                                (93c) 

     For quasi-momentum k,q-space representation of multiband solids, the corresponding 
equation for correction to electronic ground state energy can be derived straightforwardly 
from (93). It is based on the correspondence relations for boson and fermion quantities in real 
space and complex quasi-momentum space representations. In particular, the following 
transcription relations are used; 
normal modes: qr →  ,  qr −→(  
occupied spinorbital: σ,RkI → - with σ spin and occupation factor kf  that obey Fermi-Dirac  
                                   statistics (for T=0 K, kf =1, i.e. occupied state below Fermi level),  
unoccupied spinorbital: ',' σSkA →  - with occupation factor ( )'1 kf−  that obey Fermi-Dirac  
                                       statistics (for T=0 K, 'kf =0, i.e. unoccupied state above Fermi level) 
one-electron HF-orbital energies: occupied states below Fermi level, 00

RkI εε →  
                                                      unoccupied states above Fermi level, 0

'
0

SkA εε →       
matrix element of electron-vibration(phonon) coupling with quasi-momentum conservation: 

kkqq
kk

r
AI uuuu −==→ '

'  
        Then, with respect to (k;-k) symmetry, the temperature dependent form of energy 
correction to electronic ground state (93) in quasi-momentum space representation has the 
form, 

( ) ( )
( ) ( )( ) ( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
−=∆ ∑ ∑

−

−

><

−

',
2

'
200

'

'
'

2

',

'0 12
kSkR kkkk

kk
kk

kkkk

kk
na ffuE

FF ωεε

ω

h

h
 , 'SkRk ϕϕ ≠ ,               (94) 

Summations in (94) are over all bands { SR ϕϕ , } and k points of 1st BZ of multiband system, 
including intraband contributions, i.e. ', RkRk ϕϕ  , 'kk ≠ ,  while Fk εε <0 ; Fk εε >0

' . 
For T=0 K, relation (94) is reduced to, 

( ) ( ) ( )( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
=∆ ∑ ∑

−

−−

',
2

'
200

'

'2

'

'0 2
kSkR kkkk

kk

kk

kk
na uE

ωεε

ω

h

h
                                                       (94a) 

In (94a), the wave vector k corresponds to states fully occupied below Fermi level ( )1=kf , 
and wave vector k’ corresponds to empty – virtual states above Fermi-level ( )0' =kf . 
 
IV.2. Corrections to one-particle term 
       Nonadiabatic form of one-particle pure fermion part of the Hamiltonian (boson 
excitations independent) has the form (B11). There is also boson excitations dependent part, 
which is represented in Appendix B by the expression valid for boson vacuum (B14b). The 
Q,P-dependent corrections are represented by terms that follow after the first crude-adiabatic 
term in (B11) and by all terms of (B14b). Restriction to first order of electron-
vibration(phonon) coupling allows to neglect first summation in (B14b) and for equilibrium 
geometry the second term in (B11) equals zero. The terms that are the products of electron-
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vibration(phonon) coupling and coulomb two-electron interactions can be expected to be 
negligible comparing to electron-vibration(phonon) coupling terms and can also be neglected 
(fifth sum in B11 and third and forth sum in B14b). In solids, due to translation symmetry, the 
forth sum in (B11) equals zero. Then, one-particle correction has the form, 

( ) ( ) [ ]

( ) ( ) [ ]PP
rPR

r
PR

r
PRr

r
PR

r
PRRP

QP
rPQ A I

r
QI

r
PI

r
QI

r
PI

r
QA

r
PA

r
QA

r
PArep

aaNcccc

aaNccccccccH

+

+

∑

∑ ∑ ∑

⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ +−+

+⎟
⎠

⎞
⎜
⎝

⎛
−−−=∆

*2200

****'

ˆRe2ˆ

ˆˆˆˆ

ωεε

ω

h

h

                                 (95) 

 
IV.2.1. Nonadiabatic polarons 
          The diagonal form of the one-particle correction (95) is, 

( ) [ ]

( ) ( ) [ ]PP
rPR

r
PR

r
PRr

r
PR

r
PRRP

PP
rP A I

r
PI

r
PI

r
PA

r
PArep

aaNcccc

aaNccccdgH

+

+

∑

∑ ∑ ∑

⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ +−+

+⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −=∆

*2200

2222'

ˆRe2ˆ

ˆˆ

ωεε

ω

h

h

                              (96) 

Substitution for transformation coefficients (C2a,b) yields simple expression for electron-
vibration(phonon) interaction part of the Hamiltonian, 

( ) [ ]PP
rP PA PI rIP

r
PI

rAP

r
PA

ep aaN
uu

dgH +

≠ ≠
∑ ∑ ∑

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+−
+

−−
=∆

ωεεωεε hh 00

2

00

2

'                                         (96a) 

It can be rearranged into the form that is more convenient for solid state interpretation, 

( )
( ) ( ) [ ]

( ) ( ) ( )
[ ]PP

rIP

r

IPrPI

r
PI

PP
rRPRPrPR

r
PRep

aaNu

aaNudgH

+

≠

+

≠

−−
−

−
−−

=∆

∑

∑

2200

2

00

2'

2

1

ωεε

ω
ωεε

h

h

h
                                                              (96b) 

Transcription of (96b) to quasi-momentum k,q-space of multiband solids is based on the 
following correspondence: qr → ; σ,PkP → ; σ,qRkR −→ ; σ,qSkI −→  (occupation 
factor qkf − ); 00

kP εε → ; 00
qkR −→ εε ; 00

qkI −→ εε .  The resulting form is, 

( ) ( ) [ ]

( ) ( )
[ ]∑ ∑

∑ ∑

−

+

−

−

−

+

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−
=∆

qSkPk
kk

qqkk

q
qk

qk

q

qRkPk
kk

qqkkqk

q
ep

aaNfu

aaNudgH

,
,,2200

2

,
,,00

2'

2

1

σσ
σ

σσ
σ

ωεε

ω

ωεε

h

h

h
                                              (96c) 

Expression (96c) represents total one-electron energy correction on the general Q,P-
dependent level due to electron-vibration(phonon) interactions. The first term of (96c) is 
standard adiabatic (Q-dependent) polaron as it can be derived from Fröhlich Hamiltonian by 
the Lee-Low-Pines transformation [48]. The second term of (96c) is the correction to polaron 
energy that arises due to dependence of electronic motion not only on nuclear coordinates but 
also on the nuclear momenta P (nonadiabatic modification of the BOA). This term can be 
interpreted as a correction to the energy of individual polaron by an effective field created by 
all other polarons of the system. 
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IV.2.2. Correction to orbital energies of occupied and unoccupied states. Energy gap opening  
             in one-particle spectrum of quasi-degenerate states at Fermi level 
      The expression (96) for correction to one-particle term covers contributions of boson 
excitation independent part (first sum) as well of boson excitations dependent part (second 
sum). At finite temperature, due to boson excitations, contribution of the second term in (96) 
will be reproduced as multiples of this term, which by itself represents contribution at boson 
vacuum (0 K). Since second sum runs over all states, occupied and unoccupied, this 
contribution does not change character of one-electron spectrum (i.e. position of energy levels 
with respect to Fermi level), only population of states is changed. More over, for quasi-
continuum of states at Fermi level contribution of this term can be negligibly small since the 
term is odd function of ( )00

RP εε −  and contributions from occupied and unoccupied states will 
tend to cancel mutually. On the other hand, character of one-particle spectrum can be changed 
through contribution of the first term due to separate summations that run separately over 
occupied and unoccupied states. More-over, magnitude of the change in orbital positions is 
temperature dependent through the temperature dependence of the population of states.  
        At these circumstances, for investigation of possible changes in the character of one-
electron spectrum of system due to electron-vibration(phonon) interactions on Q,P-dependent 
level, the first term of (96) is crucial. For correction to orbital energy Pε∆ of particular state 

0
Pε follows, 

⎟
⎠

⎞
⎜
⎝

⎛
Ω−Ω=⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −=∆ ∑ ∑∑ ∑ ∑

unocc

A

occ

I
PIPA

r A I

r
PI

r
PI

r
PA

r
PArP cccc

2222
ˆˆωε h                    (97)                        

Final, corrected orbital energy is, 
PPP εεε ∆+= 0                                                                                                                       (97a) 

Let us consider only the couple of quasi-degenerate states at Fermi level, occupied state 0
Iε and 

unoccupied state 0
Aε , a situation that can characterize couple of states in antiadiabatic state, 

( ) ( ) rIA RR ωεε h<<− 00 . From (97) and from the structure of Ω matrix (93a) follows directly, 

( ) 00 >Ω−=−=∆ AIAAA εεε  ,  0<Ω=Ω=∆ IAIAIε , AI εε ∆−=∆                                     (98) 
It means that orbital energy of unoccupied state has been increased, 0

AA εε > , and orbital 
energy of the occupied state has been decreased, 0

II εε < . The same results follow also from 
(96a). It confirms the dominant role of the first term in (96) for one-particle spectrum 
correction. This analysis can be generalized for a set of quasi-degenerate occupied { }J and 
unoccupied { }B states (quasi-continuum of states) at Fermi level. Then, with respect to the 
fact that for antiadiabatic state correction to the ground electronic state (93) is 
negative 0<Ω∑

AI
AI , the following relations can be derived, 

∑ ∑ ≥Ω−Ω=∆
unocc

A

occ

I
BIBAB 0ε  ,  ∑ ∑ ≤Ω−Ω=∆

unocc

A

occ

I
JIJAJ 0ε ,                                               (98a) 

In particular, 

( ) ( ) ( ) ( )2200

2

2200

2

rIB

r

r

occ

I

r
BI

rAB

r

r

unocc

A

r
BAB uu

ωεε

ω

ωεε

ω
ε

h

h

h

h

−−
−

−−
=∆ ∑∑∑∑                            (98b)                               

 
( ) ( ) ( ) ( )2200

2

2200

2

rIJ

r

r

occ

I

r
JI

rAJ

r

r

unocc

A

r
JAJ uu

ωεε

ω

ωεε

ω
ε

h

h

h

h

−−
−

−−
=∆ ∑∑∑∑                          (98c)  
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At finite temperature T, for a correction Pε∆ to an arbitrary state 0
Pε , from the set of quasi-

degenerate occupied and unoccupied states at Fermi level can be written, 
( ) ( )∑ −Ω=∆

Q
QPQP fT 21ε  , { }Q - set of quasi-degenerate states at Fermi level                   (99) 

The occupation factor Qf  obeys Fermi-Dirac statistics, 
1

1exp
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

Tk
f

B

Q
Q

µε
,  QQQ εεε ∆+= 0                                                                         (99a) 

It is evident that for temperature 0 K, expression (99) reduces to (97). 
From (99), temperature dependence of energy gap that is open in one-particle spectrum at 
Fermi level can be derived [33b] in the form, 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
∆=∆

Tk
TtghT
B4

0                                                                                                        (100) 

The gap is defined as the energy difference of lowest lying corrected unoccupied state ( )LUMOBε  
and highest lying corrected occupied state ( )HOMOJε . At temperature 0 K holds, 

( ) ( ) ( )( )HOMOJLUMOB εε +=∆ 0                                                                                               (100a) 
Factor 4 in the denominator of the argument of tgh in (100) follows from the assumption that 
at Fermi level density of quasi-degenerate occupied{ }0

Jε and unoccupied{ }0
Bε states of the band 

with gap opening is the same and consequently ( ) ( )HOMOJLUMOB εε = . This factor can be larger 
or smaller than 4, depending on the actual difference in the density of states.  
       It is trivial to show that the corrections to orbital energies are negligibly small (basically 
zero) for a system in adiabatic state when .0 ωε >>∆  
 
IV.3. Two-particle term correction. Correction to electron correlation energy   
      Nonadiabatic form of two-particle pure fermion part of the Hamiltonian (boson excitations 
independent) has the form (B12). Boson excitations dependent part is represented in the  
Appendix B by the expression valid for boson vacuum (B14c). The Q,P-dependent 
corrections are represented by terms that follow in (B12) after the first crude-adiabatic term 
(electron correlation energy on crude-adiabatic level for fixed nuclear configuration R0 – see 
32, 32a) and by all terms of (B14c). Like in the case of treatment of the one-particle term 
correction, the terms that are the products of electron-vibration(phonon) coupling and 
coulomb two-electron interactions can be expected to be negligible comparing to electron-
vibration(phonon) coupling terms, and can  be neglected (i.e. all terms in B14c and fourth, 
fifth, sixth and seventh sum in B12). In solids, due to translation symmetry, the third sum in 
(B12) equals zero. Then the correction to electron correlation energy due to dependence of 
electronic motion on nuclear vibration displacements and momenta reduces to a single term, 

( ) [ ]RSQP
rPQRS

r
SQ

r
PR

r
SQ

r
PRrep aaaaNccccH ++∑ −=′′∆ ** ˆˆωh                                                                    (101) 

Substitution for transformation coefficients (C2a,b) yields, 

( )

( )( ) ( )( )
( ) ( )( )( ) ( )( ) [ ]RSQP

rQSrRP

rQSRPr

SQRPrPQRS

r
SQ

r
PRep aaaaNuuH ++

≠≠ −−−−

−−−
=∆ ∑ 22002200

20000

,

*''

ωεεωεε

ωεεεεω

hh

hh
              (101a) 

Transcription of (101a) to quasi-momentum k,q-space representation of solids is based on the 
following correspondence: qr → ; σ,qkP +→ ; ',' σkQ →  ; σ,kR →  ; ',' σqkS +→ . 
Resulting final form is, 
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( )

( )( ) ( )( )
( ) ( )( )( ) ( )( ) [ ]

( ) ( )
∑ ∑ +

++
+

++

++

≠ −−−−

−−−
=∆

'
,','',',220

'
0
'

2200

20
'

0
'

00

0''

2''

kSkR
kqkkqk

qkqkqkqk

qkqkkqkq

qqkk

q
ep aaaaNuH σσσσ

σσ ωεεωεε

ωεεεεω

hh

hh

(101b) 
 
 

V. Conclusion 
     It has been shown that Q,P-dependent modification of the BOA for ground electronic state can be 
derived by sequence of canonical transformations of the basis set functions. The effect of nuclear 
coordinates Q and momenta P on electronic structure is presented in the form of corrections to zero, 
one and two-particle terms of clumped nuclear Hamiltonian.  
    The nuclear dynamics dependence (P-dependent modification of the BOA) is crucial for a system 
that in the ground electronic state undergoes transition from adiabatic (ω << EF) into antiadiabatic (ω > 
EF) state at vibration motion of nuclei. In the antiadiabatic state, correction to electronic ground state 
energy (zero-particle correction) is negative and system can be stabilized in antiadiabatic state at 
distorted geometry with respect to the adiabatic equilibrium structure. Stabilization effect is solely the 
consequence of nuclear dynamics (P), which is crucial in antiadiabatic state. 
    One-particle term correction represents correction to polaron energy and corrects also one-particle 
spectrum of the system. In antiadiabatic state, the gap in one-particle spectrum of quasi-degenerate 
states (quasi-continuum) at Fermi level can be opened.  
    Two-particle term correction represents correction to electron correlation energy. It has been shown 
that nuclear dynamics always increases electron correlation until system, at nuclear motion, remains in 
a bound state. 
     In case when system remains at vibration motion of nuclei in adiabatic state, the influence of 
nuclear dynamics (P-dependence) is negligible. In this case, all basic effects are covered through 
nuclear coordinates (Q-dependence) within the adiabatic BOA and standard results of solid state (or 
molecular) physics are recovered.   
    Corresponding corrections to electronic wave function are also specified. It has been shown that 
electronic wave function in the antiadiabatic state is strongly modulated by momenta P of nuclei in the 
phonon mode that induces transition from adiabatic into antiadiabatic state.  
   Study of the electronic ground state of superconductors from the stand-point of Q,P-
dependent modification of the BOA is the subject of the following paper - part II. 
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Appendix A:  Adiabatic quasi-particle transformation 
In the general form of the electron-vibration Hamiltonian,  

( ) ( ) ( ) RSQP
PQRS

PQRSQP
PQ

PQNNN aaaavaaQhQEPTH +++ ∑∑ +++= 0

2
1 ,                                          (A1) 

the crude-adiabatic fermion ( )aa ,+ and boson ( )bb ,+  creation and annihilation operators are 
replaced by the new quasi-particle operators, adiabatic fermion and boson creation and 

annihilation operators – ( aa ,
+

) , ( bb ,
+

), 

( ) Q
Q

PQP aQca .∑= ,   ( )( ) +++ ∑= Q
Q

PQP aQca .                                                                           (A2) 

( ) QP
PQ

rPQrr aaQdbb +∑+=  ,   ( )( ) QP
PQ

rPQrr aaQdbb ++++ ∑+=                                                 (A3) 
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The expansion coefficients rPQPQ dc , – i.e. operators of the quasi-particle transformation (A2, 

A3), are defined as functions of the nuclear coordinate operators Q over the Taylor’ series, 

( ) ∑ ∑
∞

=

=
0 ..

..

1

1

1 ...
!

1
k rr

rr
rr

PQPQ
k

k

k QQc
k

Qc ,  ( ) ∑ ∑
∞

=

=
0 ..

..

1

1

1 ...
!

1
k ss

ss
ss

rPQrPQ
k

k

k QQd
k

Qd                                     (A4) 

Requirement that the new quasi-particles, ( aa ,
+

) , ( bb ,
+

), have to obey the same anti-
commutation an commutation relations as the original crude-adiabatic electrons and phonons 
(37, 37a,b), results in condition of unitarity for transformation operators ( )QcPQ , 

PQQR
R

PRcc δ=+∑                                                                                                                     (A5) 

and in the following relation between  ( )QcPQ  and ( )QdrPQ  transformation operators, 

[ ]∑ +=
R

RQrRPrPQ cbcd ,   and 0=+ +
QPrrPQ dd (                                                                          (A6) 

Expansion of (A4) up to the second order, which fully cover harmonic vibration, generates the 
other important relations, 

PQPQc δ=0  , 0* =+ r
QP

r
PQ cc

(

, ( )∑ +−=+
R

r
QR

s
PR

s
QR

r
PR

sr
QP

rs
PQ cccccc *** ((((

 

r
PQrPQ cd
(

=0  , r
RQ

R

s
RP

sr
PQ

s
rPQ cccd

(((

∑+= *                                                                                      (A7) 

It can be shown that transformations (A2, A3) preserve the total number of fermions and 
nuclear coordinate operator is invariant of transformation, 

NaaaaN P
P

PP
P

P === ∑∑ ++ ,      rr QQ =                                                                           (A8) 

The transformations (A2, A3) form a transformation group, i.e. for inverse transformations 
hold, 

( ) Q
Q

PQP aQca .∑= ,   ( )( ) +
+

+ ∑= Q
Q

PQP aQca .                                                                           (A 9)                         

( ) QP
PQ

rPQrr aaQdbb +∑+=  ,   ( )( ) QP
PQ

rPQrr aaQdbb +
+

++ ∑+=                                               (A10) 

whereas, 
( ) ( ) ( )( )+== QcQcQc QPPQPQ                                                                                                (A11) 

( ) ( ) ( ) ( ) ( )( )+∑−== QcQdQcQdQd QSrRS
RS

PRrPQrPQ                                                                (A12) 

The crucial point at the solution of this problem is quantization of the nuclear part of the 
Hamiltonian (A1),  

∑ ⎟
⎠
⎞

⎜
⎝
⎛ +=→ +

mod

2
1

r
rrrBN bbHH (hω                                                                                         (A13) 

In general, this part can be written as the sum of nuclear kinetic and nuclear potential energy, 
( ) ( )QEPEH potkinB +=                                                                                                       (A14) 

whereas, 
( ) ( ) ( ) ( ) ( )QVQEQE NNNpot

22 +=                                                                                                (A15) 

The standard, quadratic, part of the nuclear potential energy ( ) ( )QENN
2  is corrected now by 

some, yet unknown, potential energy term ( ) ( )QVN
2  that is also quadratic function of 

coordinate operators. This correction originates from the interaction of vibrating nuclei with 
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electrons. In general, kinetic energy of vibration motion can also be corrected by some, yet 
unknown quadratic function of nuclear momenta operators ( )PWN

)2( , i.e. 
( ) ( ) ( ) ( )PWPTPE NNkin

2+=                                                                                                   (A16) 
On the adiabatic level, however, kinetic energy correction is negligibly small and it is 
neglected. It becomes important only when the Born-Oppenheimer approximation is 
broken, ( ) ( ) νωh≤− eq

te
n

te RERE0 , i.e. in the case when electrons due to theirs final mass are 
not able to follow nuclear motion adiabatically. This correction is not present in [40] and in 
what follows it has been introduced just with respect to subsequent nonadiabatic 
transformation as it is specified in the present work. 
The Hamiltonian (A1) can now be formally written as the sum of two parts, electronic HA and 
nuclear part HB, 
H = HA+HB                                                                                                                          (A17) 
The nuclear part is specified by eqs. (A13-16), and HA is, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RSQP
PQRS

PQRSQP
PQ

PQNNNNNNA aaaavaaQhPWQVQEQEH +++ ∑∑ ++−−−= 0222

2
1     (A18) 

For particular orders of the Taylor’s expansion, the electronic part (A18) has the form,  

( ) ( ) ( )∑ ∑ +++ ++=
PQ

RSQP
PQRS

PQRSQPPQNNA aaaavaaRhREH 0
0

0
0

0
0,00 2

1                                          (A19a) 

( ) QPr
RQr

r
PQ

r
r

r
NNA aaQuQEH +∑∑ +=0,11                                                                                (A19b) 

( ) QPsr
PQrs

rs
PQsr

rs

rs
NA aaQQuQQVH +∑∑ +−=

2
1

2
1

0,22                                                               (A19c) 

( ) sr
rs

rs
NA PPWH ∑−=

2
1

2,02                                                                                                   (A19d) 

In the notation used, ( )kjiAH , , i stands for the order of Taylor’ series expansion in crude 

adiabatic representation, whereas j stands for the order of the coordinate operator Q and k 
stands for the order of momentum operator P within the given order i of the Taylor’s 
expansion. 
The adiabatic quasi-particle transformations (A2, A3, A9, A10), up to the second order of 
Taylor’s expansion (A4), generate the terms 

( )kjiA
H

,
 and 

( )kjiB
H

,
whereas i, j, k in ),( kji  

stand now for the i-th order of Taylor’ series expansion in adiabatic representation, the j-th 
order of the coordinate operator Q and the k-th order of momentum operator P  within the 
given order of the Taylor’s expansion. 
Up to the 2nd order expansion in Q, P and in 2nd order expansion of the operators of quasi-
particle transformation ( rPQPQ dc , ), the particular terms (A19a-d) and (A13) transform as, 

( ) ( ) ( ) ( )0,220,110,000,00 AAAA HHHH ++→                                                                              (A20a) 

( ) ( ) ( )0,220,110,11 AAA HHH +→                                                                                              (A20b) 

 
( ) ( )0,220,22 AA HH →                                                                                                             (A20c) 

 
( ) ( )2,022,02 AA HH →                                                                                                             (A20d) 
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( ) ( ) ( ) ( ) ( )0,021,121,010,000,00 BBBBBB HHHHHH +++→=                                                      (A20e)  

The form of transformed terms is, 

( )
( ) ( ) RSQP

PQRS
PQRSQP

PQ
PQNNA

aaaavaaRhREH
+++

∑∑ ++= 0
0

0
0

0

0,00 2
1                                        (A21) 

( )
( )

( ) RSQPr
PQRSTr

r
TPTQRS

r
TRPQTS

QPr
PQr R

r
RPRQ

r
RQPQ

r
PQr

r

r
NNA

aaaaQcc

aaQchchuQEH

++

+

∑

∑ ∑∑

++

+⎥
⎦

⎤
⎢
⎣

⎡
+++=

*00

*00

0,11

(

(

νν
                                   (A22) 

( )

{ ( )[ ] }

RSQPsr

K

s
KR

r
TPTQSKTQKS

s
KQ

r
TPTKRS

s
KS

r
TRPQTK

PQRSTrs

sr
TPTQRS

rs
TRPQTS

QPsr
PQrs R RS

s
SQ

r
RPRS

s
RP

r
RQ

s
RQ

r
PR

sr
RPRQ

rs
RQPR

rs
PQ

sr
rs

rs
NA

aaaaQQ

cccccccc

aaQQcchcucuchchu

QQVH

++

+

∑∑

∑ ∑ ∑

∑

−+++++

+⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +++++

+−=

.

.2
2
1

2
1

2
1

2
1

2
1

*00**00*00

*0**00

0,22

(((((

((((

νννννν

 

                                                                                                                                            (A23) 

( )
sr

rs

rs
NA

PPWH ∑−=
2
1

2,02
                                                                                                 (A24) 

( ) ( ) ∑ ⎟
⎠
⎞

⎜
⎝
⎛ +==

+

r
rrrBB

bbHH
2
1

0,000,00
ωh                                                                              (A25) 

( )
QPr

rPQ
PQrrB

aaPdH
+

∑−= 0

1,01
(hω                                                                                           (A26) 

( )
( ) QPrssr

rsPQ

s
PQrrB

aaPQQPdH
+

+−= ∑ (hω
2
1

1,12
                                                                   (A27) 

( )
RSQP

PQRSr
rQSPRrrQP

PQRr
rRQPRrrB

aaaaddaaddH
+++

∑∑ −−= 0000

0,02
(( hh ωω                                        (A28) 

  
Since quasi-particle transformations preserve total number of fermions, the Wick’s theorem 
can be applied to all terms with fermion operators resulting in the normal product form and 
corresponding contractions. It enables SCF solution of the electron-vibration problem. It 
should be noticed that after application of Wick’s theorem, general set of all spinorbitals (P, 
Q, R, S) is divided on two distinct groups, occupied spinorbitals (I,J,..) and unoccupied 
spinorbitals (A,B,..). Treatment of the particular transformed terms and solution of the 
problem is described in [40].  
The main points of the solution are: 
The pure fermion part of the Hamiltonian (Wick’s theorem is applied to all terms with 
fermion operators, but pure fermion part is represented only by terms without boson 
operators) is sum of three terms, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )000
0

0 RHRHRHRH adFadFadFadF ′′+′+=                                                             (A29) 
a/ The ground state adiabatic total electronic energy is represented by zero-particle term (i.e. 
scalar quantity, contribution of contractions of fermion operators), 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ∑++=∆+=
rAI

r
AIrSCFNNád

te
cadadF cREREERERH

2

0
0

0
00

000
0 ωh                           (A30) 

As it is seen from (A30), the ground state crude-adiabatic total electronic energy ( )( )00 REte
cad  at 

fixed nuclear geometry R0 is due to electron-vibration (phonon) coupling on the adiabatic 
level corrected by the term, 

( ) ∑=∆
rAI

r
AIrád cE

20 ωh                                                                                                        (A30a) 

This correction is contribution of contractions of the one and two-particle terms of (A28). In 
(A30a), summation runs over all normal modes (r), the unoccupied orbitals (A) and occupied 
orbitals (I). 
b/ The one-particle term covers adiabatic correction to the crude-adiabatic HF orbital 
energies, 

( ) ( ) ( ) ( ) [ ] ⎥⎦
⎤

⎢⎣
⎡⎟

⎠

⎞
⎜
⎝

⎛
−+=′

+
+ ∑ ∑ ∑∑ QP

rPQ A I

r
QI

r
PI

r
QA

r
PArPP

P
cadPadF aaNccccaaNRRH **

0
0

0 ωε h                 (A31)   

In (A31), {P, Q} stands for total set of orbitals, whereas {A} represents the subset of 
unoccupied orbitals and {I} represents the subset of occupied orbitals. 
c/ The two-particle term covers adiabatic correction to the crude-adiabatic electron correlation 
energy, 

( ) ( ) ( ) [ ] ( ) ⎥⎦
⎤

⎢⎣
⎡+=′′

++
++ ∑∑ RSQP

rPQRS

r
SQ

r
PRr

PQRS
RSQPcadPQRSadF aaaaNccaaaaNvRH *0

0 2
1 ωh                     (A32) 

    The terms of the Hamiltonian that contain after the transformation and Wick’s theorem 
application the fermion and boson operators, result in the analog of the CPHF equations and 
in the equation for the nuclear potential energy correction rs

NV , 
( ) ( ) ( )[ ] PQ

r
P

AI

r
IAIAIQPAQI

r
AIPIAQPIQA

r
PQQP

r
PQ cccu δεννννεε =−−−+−+ ∑ 000000                             (A33) 

and 
( )∑∑ ++=

AI

r
AI

s
IA

s
AI

r
IA

I

rs
II

rs
N cucuuV                                                                                       (A34) 

Diagonalization of (A33) yields transformation coefficients ( r
PQc ). It enables to calculate all 

corrections on the adiabatic level (see, [40, 41]). Knowledge of the nuclear potential energy 
correction rs

NV enables to solve secular equations of nuclear motion, 

04 2
2 =⎟

⎠

⎞
⎜
⎝

⎛
+∑ ∑ tu

t s
rtu

ts
pot

sr
kin EE αδω

((

h
                                                                                    (A35) 

with the normalization condition for eigenvectrors α, 

tstrt
rs

sr
potE ωαα

2
* h(

=∑                                                                                                           (A35a) 

Solution of the electron-vibration problem on the adiabatic level is then an iterative SCF 
procedure of coupled electronic, CPHF and nuclear equations. If  contribution of the 
differences in two-electron coulomb terms in (A33), i.e. the third lhs-term in (A33), can be 
neglected  with respect to ( )00

QP εε −  differences, then formal analytic expression for corrected 
normal mode frequencies on adiabatic level can be written in the analytic form, 

( ) ( ) ( )( )200
2 12 r

AI
AI IA

rradr c∑ −
−=

εε
ωωω hhh                                                                         (A36) 

The normal mode energy correction, 
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( ) ( )( )200
2 12 r

AI
AI IA

rr c∑ −
−=∆

εε
ωω h                                                                                    (A36a) 

is due to adiabatic correction ( rs
NV ) to nuclear potential energy ( )2

NNE .  
The normal mode energy correction (A36a) is identical to the normal mode energy correction 
that can be obtained as nonadiabatic correction in second order of perturbation theory 
assuming single boson excitation processes (see expression C2a for r

AIc ), 

( ) ( )
( ) ( )[ ]∑

−−

−
−=∆

AI
rIA

IAr
AIrr u 22200

00222
ωεε

εε
ωω

h
h                                                                (A36b) 

 
The term nonadiabatic is related to the fact that contributions to the correction arise due to 
virtual transitions between occupied {I} and unoccupied {A} states.  In this case, the 
unperturbed part of the Hamiltonian is represented by the terms A21, A25 and term A26 
represents perturbation.   
 
Appendix B:  Nonadiabatic, P-dependent transformation of adiabatic Q-dependent variables. 
                        Q, P- dependent form of electronic Hamiltonian 

Transformation of adiabatic variables ⎟
⎠
⎞

⎜
⎝
⎛ +

aa , , ⎟
⎠
⎞

⎜
⎝
⎛ +

bb ,  to nonadiabatic variables ( )aa ,+ , ( )bb ,+  

has been introduced in Section III.2. In particular, 

( ) S
S

RSR aPca ∑= ˆ ,  ( )( ) ++
+

∑= S
S

RSR aPca ˆ ,   ( ) S
S

RSR aPca ∑= ˆ ,  ( )( ) ++
+ ∑= S

S
RSR aPca ˆ          (B1) 

and, 

( ) QP
PQ

rPQrr aaPdbb +∑+= ˆ  ,   ( )( ) QP
PQ

rPQrr aaPdbb +++
+

∑+= ˆ                                                 (B1a) 

( ) QP
PQ

rPQrr aaPdbb
+

∑+= ˆ  ,   ( )( ) QP
PQ

rPQrr aaPdbb
+++

+ ∑+= ˆ                                                (B1b) 

Since transformation matrix ( )PĈ  is unitary matrix (85a) and anticommutation and 
commutations relations (86,87) have to hold, then following relation between matrix elements 

PQĉ  and rPQd̂  of corresponding transformation matrices can be derived, 

( ) [ ]RQr
R

RPrPQ cbcd ˆ,ˆˆ ∑ +=                                                                                                       (B2) 

It also holds,  
( ) 0ˆ =− +

QPrrPQ dd (                                                                                                                 (B3) 
and, 

( ) ( )( )+= PcPc QPPQ ˆˆ ,  ( ) ( ) ( ) ( )( )+∑−= PcPdPcPd QSrRS
RS

PRrPQ ˆˆˆˆ  

It should be reminded that invariant of the transformation is beside the total number of 
particles (89) also momentum operator (90), i.e. PP = . 
Transformation coefficients rPQPQ dc ˆ,ˆ – i.e. operators of the transformations (B1), are defined 
as functions of the nuclear momenta operators P through the Taylor’ series, 

( ) ∑ ∑
∞

=

=
0 ..

..

1

1

1 ...ˆ
!

1ˆ
k rr

rr
rr

PQPQ
k

k

k PPc
k

Pc ,  ( ) ∑ ∑
∞

=

=
0 ..

..

1

1

1 ...ˆ
!

1ˆ
k ss

ss
ss

rPQrPQ
k

k

k PPd
k

Pd                                      (B4) 

Up to second order of Taylor’s expansion then holds, 
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PQPQc δ=0ˆ , 0ˆˆ * =− r
QP

r
PQ cc

(

,  ( )∑ +=+
R

r
QR

s
PR

s
QR

r
PR

sr
QP

rs
PQ cccccc *** ˆˆˆˆˆˆ

((((

                                            (B5) 

r
PQrPQ cd
(

ˆˆ 0 −=  ,  r
RQ

R

s
RP

sr
PQ

s
rPQ cccd

(((
ˆˆˆˆ *∑+−=                                                                               (B6) 

Nonadiabatic, bar-less, variables (B1) are now introduced into the adiabatic form of the 
Hamiltonian (A20a-A20e) instead of adiabatic double-bar variables. The particular terms, up 
to second order of Taylor’s expansion in boson operators, transform as 

( ) ( ) ( ) ( )2,021,010,000,00 AAAA
HHHH ++→                                                                                 (B7a) 

( ) ( ) ( ) ( )0,021,120,110,11 AAAA
HHHH ++→                                                                                   (B7b) 

( ) ( )0,220,22 AA
HH →                                                                                                                (B7c) 

( ) ( )2,022,02 AA
HH →                                                                                                                (B7d) 

( ) ( ) ( ) ( ) ( )0,021,120,110,000,00 BBBBB
HHHHH +++→                                                                  (B7e) 

( ) ( ) ( )2,021,011,01 BBB
HHH +→                                                                                                  (B7f) 

( ) ( )1,121,12 BB
HH →                                                                                                                  (B7g) 

( ) ( )0,020,02 BB
HH →                                                                                                                (B7h) 

In terms (B7a-h), subscripts ( )kji ,  stand now for the i-th order of Taylor’ series expansion in 
nonadiabatic representation, while j is the order of the coordinate operator Q and the k is the 
order of momentum operator P  within the given order of the Taylor’s expansion. 
The form of particular terms is, 

( ) ( ) ( ) RSQP
PQRS

PQRSQP
PQ

PQNNA aaaavaaRhREH +++ ∑∑ ++= 0
0

0
0

0
0,0 2

1                                               (B8a) 

( ) ( )

( ) RSQPr
PQRSTr

r
TPTQRS

r
TRPQTS

QPr
PQr R

r
RPRQ

r
RQPQ

r
PQr

r

r
NNA

aaaaQcc

aaQchchuQEH

++

+

∑

∑ ∑∑
++

+⎥
⎦

⎤
⎢
⎣

⎡
+++=

*00

*00
0,11

(

(

νν
                                       (B8b)         

( ) ( ) ( ) RSQPr
rPQRST

r
TPTQRS

r
TRPQTSQP

rPQR
r

r
RPRQ

r
RQPRA aaaaPccaaPchchH +++ ∑∑ −+−= *00*00

1,01 ˆˆˆˆ
((

νν                  (B8c) 

( ) ( ) ( )[ ]
( )

( ) ( ) ( )( )[ ]
( ) RSQPrssr

rsPQRSTU

s
TP

r
UR

s
UR

r
TRTQSUTQUS

s
UP

r
TUTQRS

r
TQTURS

s
UQ

r
TSPQTU

r
TUPQTS

QPrssr

rsPQR S

s
SP

r
RSRQ

r
RQSR

s
SQ

r
RPRS

r
RSPR

s
RP

r
RQ

s
RQ

r
PQA

aaaaQPPQ

cccccccccc

aaQPPQ

cchchcchchcucuH

++

+

+

−−+−+−+

++
⎭
⎬
⎫

⎩
⎨
⎧

+−++−=

∑

∑ ∑

.

.ˆˆ.ˆˆ
2
1

.

.ˆˆˆˆ
2
1

**00**0*000

**00*00*
1,12

(((((

((((

νννννν

                                                                                                                                (B8d) 
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( )

{ ( )[ ] }

RSQPsr

U

s
UR

r
TPTQSUTQUS

s
UQ

r
TPTURS

s
US

r
TRPQTU

rsPQRST

sr
TPTQRS

rs
TRPQTS

QPsr
PQrs R RS

s
SQ

r
RPRS

s
RP

r
RQ

s
RQ

r
PR

sr
RPRQ

rs
RQPR

rs
PQ

sr
rs

rs
NA

aaaaQQ

cccccccc

aaQQcchcucuchchu

QQVH

++

+

∑∑

∑ ∑ ∑

∑

−+++++

+⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +++++

+−=

.

.2
2
1

2
1

2
1

2
1

2
1

*00**00*00

*0**00

0,22

(((((

((((

νννννν

 

                                                                                                                                          (B8e) 

( )

{ ( )[ ] }

RSQPsr

U

s
UR

r
TPTQUSTQSU

s
UQ

r
TPTURS

s
US

r
TRPQTU

rsPQRST

sr
TPTQRS

rs
TRPQTS

QPsr
rsPQR S

s
SQ

r
RPRS

sr
RPRQ

rs
RQPRsr

rs

rs
NA

aaaaPP

cccccccc

aaPPcchchchPPWH

++

+

∑∑

∑ ∑∑

−+++++

+⎟
⎠

⎞
⎜
⎝

⎛
−++−=

.

.ˆˆ2ˆˆˆˆˆˆ
2
1

.ˆˆˆ
2
1ˆ

2
1

2
1

*00**00*00

*0*00
2,02

(((((

(((

νννννν  

                                                                                                                                           (B8f) 

( )

( ) ( )

( )

( ) ( ) ( )( )[ ]
( ) STURQPrRU

rPQRSTUV

r
VPVQST

r
VSPQVTRSQP

rPQRSTU
rPT

r
URrUR

r
TPTQSUTQUSrPU

r
TQTURS

r
TUTQRSrUQ

r
TSPQTU

r
TUPQTS

RS
rPQR

QPrQS
T

r
TPTR

r
TRPT

r
PR

QP
rPQR

rPR
S

r
SRSQ

r
SQRS

r
RQrRQ

S

r
SPSR

r
SRPS

r
PR

QP
rPQ

rPQ
r
NNA

aaaaaadccaaaa

dcdcdccdcc

aaaadchchu

aadchchudchchu

aadEH

+++++

++

+

+

∑

∑

∑ ∑

∑ ∑∑

∑

++

+−+−+−+

+⎥
⎦

⎤
⎢
⎣

⎡
+++

+
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+++⎥

⎦

⎤
⎢
⎣

⎡
+++

+=

.ˆ.2.

.ˆˆˆ.ˆ.

ˆ2

.ˆˆ

ˆ2

0*00

00*000*0*0000

0*00

0*000*00

0
0,02

(

(((

(

((

νν

νννννν

                                                                                                                                             (B8g) 
 

( ) ∑ ⎟
⎠
⎞

⎜
⎝
⎛ += +

r
rrrB bbH

2
1

0,00 ωh                                                                                                (B8h) 

( ) QPrPQr
rPQ

rB aaQdH +∑= 0
0,11

ˆ (hω                                                                                                (B8i) 

( ) QPrPQr
rPQ

rB aaPdH +∑−= 0
1,01

ˆ (hω                                                                                              (B8j) 

( ) ( )( ) QPrssr
rsPQ

r
PQss

s
PQrrB aaQPPQddH

+

+−= ∑ (( hh ωω ˆ
2
1

1,12                                                      (B8k) 

( ) 00,22 =BH                                                                                                                           (B8l) 

( ) ( ) QPsr
rsPQR

s
RPRQr

s
RQPRrrB aaPPcdcdH +∑ −−= *00

2,02 ˆˆ
(

((hω                                                                (B8m) 

( ) ( ) ( ) RSQP
PQRSr

rQSPRrrQSPRrrQP
PQRr

rRQPRrrRQPRrrB aaaaddddaaddddH +++ ∑∑ −+−= 00000000
0,02

ˆˆˆˆ (((( hh ωω      (B8n) 

 
Nonadiabatic transformations (B1) preserve the total number of fermions (89) and Wick’s 
theorem can be applied to all nonadiabatic terms with fermion operators. The result is normal 
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product form with corresponding contractions. It enables SCF solution of the electron-
vibration problem. Also in this case after application of Wick’s theorem, general set of all 
spinorbitals (P, Q, R, S) is divided on two groups, occupied spinorbitals (I,J) and unoccupied 
spinorbitals (A,B).  Treatment of the particular transformed terms and solution of the problem 
is tedious but straightforward [33a].  
     Also in this case, the pure fermion part of the Hamiltonian (Wick’s theorem is applied to 
all terms with fermion operators, but pure fermion part is represented only by terms without 
boson operators, i.e. B8a, B8g, B8n) is sum of three terms, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )000
0

0 RHRHRHRH naFnaFnaFnaF ′′+′+=                                                               (B9) 
a/ The ground state nonadiabatic total electronic energy is represented by zero-particle term 
(i.e. scalar quantity - contribution of contractions of fermion operators), 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ∑ ⎟
⎠
⎞⎜

⎝
⎛ −++=∆+=

rAI
AI

r
AIrSCFNNna

te
cadnaF ccREREERERH 22

0
0

0
00

000
0 ˆωh              (B10) 

As it is seen from (B10), the ground state crude-adiabatic total electronic energy ( ) ( )00 RE te
cad  at 

fixed nuclear geometry R0 (contractions of B8a) is due to electron-vibration (phonon) 
coupling on the nonadiabatic level corrected by the difference of two terms, 

( ) ∑∑∑ ⎟
⎠
⎞⎜

⎝
⎛ −=⎟

⎠
⎞⎜

⎝
⎛ ++−=∆

rAI

r
AI

r
AIr

rAI

r
AI

r
AIr

rAI

r
AIrna cccccE

222220 ˆˆˆ2 ωωω hhh                       (B10a)                         

This correction arises as contribution of the contractions of one and two-particle terms of 
(B8g) and (B8n). The form of (B10a) indicates that in principle, electronic ground state 
energy correction on nonadiabatic level ( ) ( )0

0 RE na∆  can also be negative, in contrast to 

electronic ground state energy correction on adiabatic level (46, A30a), ( ) ( )0
0 RE ad∆ , that is 

always positive. It depends on the value of nonadiabatic contributions r
AIĉ , i.e. on an extent of 

participation of the nuclear kinetic effect on electronic motion. In (B10a), summation runs 
over all normal modes (r), the unoccupied orbitals (A) and occupied orbitals (I). 
 
b/ The one-particle term has the form, 

( )( ) ( )( ) [ ] [ ]

( ) ( ) [ ]
( ) ( )( ) ( ) ( )( )( ) [ ]

( ) ( )( ) [ ]QP
rPQAI

r
AI

r
PAIQ

r
PAQI

r
IA

r
PIAQ

r
PIQA

QP
r
PQ

rPQ

r
Q

r
P

QP
rPQ A I

r
QI

r
PI

r
QI

r
PI

r
QA

r
PA

r
QA

r
PAr

QP
rPQ

r
PQ

r
PP

P
cadPnaF

aaNcc

aaNcQpQhPpPh

aaNcccccccc

aaNcEaaNRRH

+

+

+

++

∑

∑

∑ ∑ ∑

∑∑

−+−−

−−+−+

+⎟
⎠

⎞
⎜
⎝

⎛
−−−+

+−=′

.ˆ.ˆ.

.ˆ.

ˆˆˆˆ

ˆ2

**

**

****

*
0

0
0

νννν

εε

ω

ε

h
                                          (B11) 

In (B11) shorthand notation has been used, 
 

( )∑ −−+=
T

r
QTPTRS

r
PTTQRS

r
TSPQRT

r
TRPQTS

r
PQRS cccc 0000 ννννν  

For symbols h, p, holds; h(A)=0, h(I)=1, p(A)=1, p(I)=0. 
As it is seen from (B11), this part represents electronic spectrum of the system corrected (all 
terms following after the first, crude adiabatic, term) by nonadiabatic electron-
vibration(phonon) interactions. 
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c/ The two-particle fermion part of the Hamiltonian has the form, 

( )( ) ( ) [ ]
( ) [ ]

[ ]
( )[ ] [ ]
( )[ ] [ ]−−+−+

+−+−+

+−

−−+

+=′′

++

++

++

++

++

∑ ∑

∑ ∑

∑

∑

∑

RSQP
r
IP

rPQRST I

r
TRIQSTIQTS

r
ITTQRS

r
QTTIRS

RSQP
r
RI

rPQRST I

r
PTTQISTQSI

r
TSPQTI

r
TIPQTS

PSQP
r
SQ

rPQS

r
P

RSQP
rPQRS

r
SQ

r
PR

r
SQ

r
PRr

PQRS
RSQPcadPQRSnaF

aaaaNcccc

aaaaNcccc

aaaaNc

aaaaNcccc

aaaaNvRH

*0000

*0000

*

**

0
0

ˆ.

ˆ.

ˆ2

ˆˆ

2
1

νννν

νννν

ε

ωh

 

( )[ ] [ ]
( )[ ] [ ]RSQP

r
AP

rPQRST A

r
TRAQSTAQTS

r
ATTQRS

r
QTTARS

RSQP
r
RA

rPQRST A

r
PTTQASTQSA

r
TSPQTA

r
TAPQTS

aaaaNcccc

aaaaNcccc

++

++

∑ ∑

∑ ∑
−+−−

−−+−−

*0000

*0000

ˆ.

ˆ.

νννν

νννν                             (B12) 

 
This two-particle term represents electron correlation energy corrected (all terms following 
after the first, crude adiabatic, term) by nonadiabatic electron-vibration(phonon) interactions. 
    The pure fermion part of the Hamiltonian (B9, B10, B11, B12) does not depend on boson 
operators. It means that this part of the Hamiltonian is invariant of vibration (phonon) 
excitations. However, besides the terms B8a,g,n that constitute pure fermion part, all other 
terms, i.e. B8b,c,d,e,f,h,i,j,k,m depend on boson operators. These terms constitute an effective 
fermion Hamiltonian that depends on boson excitations. For boson vacuum 0 , the effective 
part is written as FH , 

08888888880 mBjBiBhBfBeBdBcBbBH F ++++++++=                              (B13) 
Integration over boson operators and application of Wick’s theorem on fermion operators 
divides (B13) on the sum of three terms, 

''''0
FFFF HHHH ++=                                                                                                   (B14) 

a/ Effective zero-particle term represents vibration zero-point energy, i.e. 

∑=
r

rFH ωh
2
10                                                                                                                 (B14a) 

This term and term B(10) represent total energy of the system that account for nonadiabatic 
electron-vibration(phonon) interactions in its electronic ground state at boson vacuum. 
b/ Effective one-particle term has the form, 
 

[ ]

( ) ( ) [ ]+⎟
⎠
⎞⎜

⎝
⎛ −⎟
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⎝
⎛ +−+

+=

+

+

∑

∑

PP
rPR

r
PR

r
PRr

r
PR

r
PRRP
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*2200
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ωεε h

 

( )( ) ( )( ) [ ]
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IRPRAPPRPA
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⎜
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νννν
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c/ Form of the effective two-particle term is, 

( ) ( )( ) [ ]

( ) ( )( )
( )( ) [ ]RSQP

rPQRST U
r
RU

r
PT

r
PR

r
PTTQUSTQSU

r
UQ

r
PT

r
UQ

r
PTTURS

r
SU

r
TR

r
SU

r
TRPQTU

RSQP
rPQRST

rr
TP

rr
TPTQRS

rr
TR

rr
TRPQTSF

aaaaN
cccc

cccccccc

aaaaNccccH
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∑ ∑

∑

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−+
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ˆˆ2

ˆˆˆˆ
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ˆˆ
2
1

νν

νν

νν
((((

         (B14c) 

    The equations that hold for coefficients of transformation matrices C  and Ĉ can be 
derived from one-particle terms in first order of Taylor’s expansion in boson operators, i.e. 
from terms B8b,c,i and B8j after Wick’s theorem application. Diagonalization imposed on 
these terms, i.e. 

( ) [ ]PPr
rP

r
P aaNQH +∑= ε'

0,11   ,   ( ) [ ]∑ +=
rP

PPr
r
P aaNPH ε̂'

1,01                                                      (B15) 

results in coupled equations for transformation coefficients r
PQc  and r

PQĉ ; 

( ) ( ) ( )[ ] PQ
r
P

r
PQr

AI

r
IAPAIQPAQI

r
AIPIAQPIQA

r
PQQP

r
PQ ccccu δεωννννεε =−−−−+−+ ∑ ˆ000000 h            (B16a) 

( ) ( ) ( )[ ] PQ
r
P

r
PQr

AI

r
IAPAIQPAQI

r
AIPIAQPIQA

r
PQQP cccc δεωννννεε ˆˆˆˆ 000000 =−−−−+− ∑ h                     (B16b) 

Solution of diagonalization equations yields off-diagonal adiabatic transformation coefficients 
r
PQc  and off-diagonal nonadiabatic transformation coefficients r

PQĉ , P≠Q. For diagonal 

elements holds 0ˆ == r
PP

r
PP cc  (see A7, B5; PQPQPQ cc δ== 00 ˆ ). In adiabatic limit when 0ˆ =c , 

and 00
QPr εεω −<<h , eq. B16b can be omitted and adiabatic CPHF equations (A33) are 

recovered. In this context, coupled set of equations (B16a, B16b) represents generalized 
CPHF (GCPHF) equations. 
     From zero-particle terms (these arise as contractions after Wick’s theorem application) in 
second-order of Taylor’s expansion in Q (B8e, B8l) or in P (B8f, B8m) respectively, for 
corrections to potential energy rs

NV  and for corrections to nuclear kinetic energy rs
NW  can be 

derived, 
( ) ( )[ ]∑∑ ++++=

AI

r
AI

s
IAr

s
IA

s
AI

r
IAr

r
IA

I

rs
II

rs
N ccuccuuV ˆˆ ωω hh                                                    (B17a) 

∑=
AI

s
IA

r
AIr

rs
N ccW ˆ2 ωh                                                                                                          (B17b) 

These corrections modify nuclear potential and nuclear kinetic energy, 
i.e. ( ) ( ) ( ) ( ) ( )QVQEQE NNNpot

22 += , ( ) ( ) ( ) ( )PWPTPE NNkin
2+=  that are used at solution of secular 

equations of nuclear motion – see (A35). In the adiabatic limit 0ˆ =c , correction to potential 
energy is reduced to adiabatic expression (A34) and kinetic energy correction equals zero. 
Term rs

NW is different from zero only if nonadiabatic effect cannot be neglected, i.e. in case 

when system is in antiadiabatic state and inequality ( ) ( ) rAI RR ωεε h≤− 00 holds. 
 
 
Appendix C: Approximate solution of GCPHF equations 
Knowledge of the matrix elements c  and ĉ of transformation matrices enables calculation of 
all corrections to nonadiabatic Q,P-dependent form of electronic Hamiltonian that are 
consequence of electron-vibration (phonon) interactions. The exact treatment requires 
iterative solution of diagonalization equations that are represented by coupled set of GCPHF 
equations (B16a,b) and secular equations of nuclear motion (A35) for particular fixed nuclear 
configuration R0. If it is accepted that electron-vibration(phonon) interactions influence 
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system Hamiltonian mainly over one-electron term, as it is general treatment in solid-state 
theory (see the form of interaction term (39b) and also (1) in the present paper), then an 
approximate solution of GCPHF equations (B16a,b) can be obtained. In this case, it is 
reasonable to neglect contributions of two-electron terms in GCPHF equations (B16a,b). The 
diagonalization equations are then of the approximate form (C1a,b), 
 

( ) PQ
r
P

r
PQr

r
PQQP

r
PQ ccu δεωεε =−−+ ˆ00 h                                                                                  (C1a) 

( ) PQ
r
P

r
PQr

r
PQQP cc δεωεε ˆˆ00 =−− h                                                                                           (C1b) 

With respect to calibration for diagonal matrix elements, 0ˆ == r
PP

r
PP cc , solution of 

approximate diagonalization equations (C1a,b) for off-diagonal matrix elements can be 
derived in the analytic form, 

 
( )

( ) ( )2002

00

QPr

QPr
PQ

r
PQ uc

εεω

εε

−−

−
=

h
;  P≠Q                                                                                (C2a) 

 
( ) ( )2002

ˆ
QPr

rr
PQ

r
PQ uc

εεω

ω

−−
=

h

h ;  P≠Q                                                                                (C2b) 

Two extreme limits are interesting; 
a/ strong adiabatic regime, 0/ 00 →− QPr εεωh . In this case,  

( )00
PQ

r
PQr

PQ

u
c

εε −
= , and 0ˆ =r

PQc                                                                                              (C3a)                         

b/ strong nonadiabatic regime, ∞→− 00/ QPr εεωh .  In this case,  

0=r
PQc , and 

r

r
PQr

PQ

u
c

ωh
=ˆ                                                                                                      (C3b) 

For an intermediate regime, both transformation coefficients contribute to energy corrections. 
The limit, 1/ 00 →− QPr εεωh , would result in singularities of (C2a,b) but this case can be 

excluded since for transformation coefficients have to hold r
PQ

r
PQ cc ˆ1 ><  with respect to 

validity of the Taylor’ series expansions (A4, B4).  
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