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Abstract
The ARPES of high-T, cuprates and theoretical results of low-Fermi energy band structure fluctuation
for different groups of superconductors indicate that electron coupling to pertinent phonon modes

drive system from adiabatic into antiadiabatic state (@ > E). At these circumstances, not only

Migdal-Eliashberg approximation is not valid, but basic adiabatic Born-Oppenheimer approximation
(BOA) does not hold. At these circumstances, electronic structure has to be studied as explicitly
dependent on instantaneous nuclear coordinates Q as well as on instantaneous nuclear momenta P.

In the present paper — part |, it has been shown that Q,P-dependent modification of the BOA for
ground electronic state can be derived by sequence of canonical transformations of the basis functions.
The effect of nuclear coordinates and momenta on electronic structure is presented in the form of
corrections to zero, one and two-particle terms of clamped nuclear Hamiltonian. In the antiadiabatic
state, correction to electronic ground state energy (zero-particle term correction) is negative and
system can be stabilized in the antiadiabatic state at distorted geometry with respect to adiabatic
equilibrium structure and gap in one-particle spectrum of quasi-continuum states at Fermi level can be
opened. Stabilization effect is solely the consequence of nuclear dynamics (P) that is crucial in
antiadiabatic state. It has been shown that nuclear dynamics also increases electron correlation until
system at nuclear motion remains in a bound state. Corresponding corrections to electronic wave
function are also specified.

On the other hand, when system remains at vibration motion of nuclei in adiabatic state, the influence
of nuclear dynamics (P-dependence) is negligible. In this case, all basic effects are covered through
nuclear coordinates (Q-dependence) within the adiabatic BOA and standard results of solid state (or
molecular) physics are recovered.

The electronic ground state of superconductors is studied in the subsequent part - I1.

PACS number(s): 71.10.-w, 74.25.Jb, 74.20.Mn, 74.72.-h
Keywords: A. superconductors; C. ab initio calculations; D. electronic structure; lattice dynamics



I. Introduction

High value of critical temperature (T.) in the group of cuprate superconductors [1,2] is a
serious challenge for theory even 20 years since discovery of this group of materials. The high
value of T, should be related to corresponding high value of electron-phonon (EP) coupling
constant, A > 1. The standard, generally accepted EP-based theories of superconductivity,
BCS or BCS-like theories [3-5], assume validity of the Migdal theorem and Eliashberg
restriction [4,5] (ME approximation). The first is related to validity of the condition A / Er
<< 1 and the second one restricts the validity only for A < 1. Expressed explicitly, BCS-like
theories are valid only for adiabatic systems that obey the Born—Oppenheimer approximation
(BOA): o / Er << 1. Only at these circumstances, separation of electronic and nuclear motion
is well justified and one can study electrons and nuclei as two statistically independent fields
with mutual interaction that corrects the electronic energy and renormalizes the phonon
frequencies. However, it has been shown [6] by parameter-free estimate for high-T. cuprates
and also for fullerides and MgB, that Fermi energy (Ef) of this group of materials is on the
same energy scale as it corresponds to the energy of the relevant optical phonon modes, Er ~
®. Problems with EP interactions within the ME scenario gave rise to variety of non-phonon
coupling models with stress focused on the role of electron correlations at the transition to
superconducting (SC) state. The EP interactions, which have been accepted to be responsible
for electron pairing that drive transition into superconducting state for classical low-T,
superconductors, have became nearly abandoned and considered to be rather harmful for
superconductivity in high-T. cuprates [7]. Some aspects of d — wave superconductivity can be
described within the models of strongly correlated electrons, e.g. Hubbard — like or t — J
models (e.g. [8-11]), without explicit account for EP interactions (see also variation theory
[12]). The underlying light motive behind the electron correlation treatments has been to
understand the phase diagram of high-T. cuprates, i.e. the doping process. Introduction of
charge carriers (holes or electrons) into the parent antiferomagnetic insulator that causes
transition to superconductor (or metal) has been generally accepted to be a universal feature
of high-T, cuprates and believed to be a matter intimately related to microscopic mechanism
of superconductivity. Recent results of high-resolution ARPES study [13,14] of the wide
family of different high-T, cuprates have brought surprising direct experimental evidence that
it is not doping but an abrupt change (decrease) of the electron velocity near Fermi level, at
about 50-80 meV, that is the universal feature common to high-T. cuprates. Even more
important in this respect is formation of T-dependent giant kink on momentum distribution
curve close to Fermi level that is present at and below T.. It has been recorded [15] in the off-
nodal direction of Bi2223.

These results along with the results of neutron scattering [16,17] indicate that also for high-
T, cuprates EP coupling has to be considered as a crucial element of microscopic mechanism
of SC state transition. As soon as low-Fermi energy situation occurs (@ < E.) one can expect

important contribution of nonadiabatic vertex corrections at SC state transition. It is beyond
the standard ME approximation and this problem has been studied within the nonadiabatic
theory of superconductivity [18a,b, 30]. On the other hand, as the ARPES results indicate,
electron kinetic energy is decreased and importance of proper treatment of electron-electron
Coulomb interactions is increased. The competition between Coulomb vs. EP interactions has
been intensively studied within the Holstein — Hubbard models [19-23] with both interactions
introduced as short-range order. The obtained results are not satisfactory since heavy-mass
polarons are formed that yields low values of T.. It has been improved within the Frohlich —
Coulomb model [24a] that introduces long-range order repulsion between charge-carriers and
also long-range order EP interactions. The results show that there is a narrow window of
parameters of Coulomb repulsion V. and EP interactions Ep (V. / Ep) resulting in the light-
mass bipolarons formation. In this case, according to bipolaron theory of superconductivity



[24b,c,d], coherent motion of bipolarons represents the supercarrier motion and high T, can be
reached.

Theoretical studies [25-29] of the dependence of band structure of MgB, on electron
coupling to the Exq phonon mode (a)EZg ~ 0.066 eV) have revealed even more important new

aspect that seems to be crucial for microscopic theory of electronic ground state of
superconductors. It has been shown that vibration motion of B-B atoms in the Eyy phonon
mode induces periodic fluctuation of the top (analytic critical point - ACP) of one of the
o band across Fermi level in the T point of 1% BZ. Fermi level crossing occurs at nuclear
displacement that corresponds to root-mean-square (rms) displacement of vibration zero-point
energy [28,29]. It means, that due to EP interactions, the Fermi energy (chemical potential of
o band electrons) is considerably reduced (from initial value Er ~ 0.5 eV) and at the moment
when the ACP of the band touches Fermi level, the Fermi energy is reduced to zero, E. — 0.

From the physical stand-point it represents transition of the system from adiabatic o < E
into intrinsic nonadiabatic @ > E, or even to strong antiadiabatic state with@ >> E . This

effect has crucial theoretical impact. At these circumstances, not only ME approximation is
not valid (including impossibility to calculate nonadiabatic vertex corrections [30] that
represent off-diagonal corrections to adiabatic ground state), but adiabatic BOA itself does not
hold. Low-Fermi energy periodic fluctuation of band structure has been recently reported [31]
also for high-T, cuprate YBa,CuzO;. This effect is absent in respective nonsuperconducting
analogs, e.g. AlB; and YBa,Cu3;0g [28,31].

Transition from adiabatic (@ << E;) into antiadiabatic (@ >>E.) state due to EP

interactions, seems to be the basic physical effect that is common for superconductors. It
means, however, breakdown of the adiabatic BOA, i.e. breakdown of the approximation that
is the very basic starting point of many-body theory of solids, including BCS theory as well as
models of strongly correlated electrons in case of superconductors. Formulation of self-
consistent theory that will be able to account for breakdown of the BOA has been recently
declared [32] to be the most challenging line in research of superconductivity.

On the level of the BOA, the motion of the electrons is a function of the instantaneous
nuclear coordinates (usually only parametric dependence is considered), but is not dependent
on the instantaneous nuclear momenta (velocities). Nuclear coordinate-dependence modifies
nuclear potential energy by so called diagonal BO correction (DBOC) that reflects an
influence of small nuclear displacements out-of the equilibrium positions and corrects the
electronic energy of clamped nuclear structure. The DBOC enters directly into the potential
energy term of nuclear motion (but leaves unchanged the nuclear kinetic energy) and in this
way modifies vibration frequencies. The off-diagonal terms of the nuclear part of system
Hamiltonian that mix electronic and nuclear motion through the nuclear kinetic energy
operator term are neglected and it enables independent diagonalization of electronic and
nuclear motion (adiabatic approximation). Neglecting the off-diagonal terms is justified only
if these are very small - adiabatic conditions, i.e. if the energy scales of electron and nuclear
motion are very different and when it holds w/E << 1. If necessary, small contribution of the
off-diagonal terms can be calculated by perturbation methods as so called nonadiabatic
(vertex) correction to the adiabatic ground state.

Situation for superconductors seems to be substantially different. There is considerable
reduction of electron kinetic energy, which for antiadiabatic state results even for dominance
of nuclear dynamics (@ >> E;) in some region of k-space. In this case, it is necessary to

study electronic motion as explicitly dependent on the operators of instantaneous nuclear
coordinates Q as well as on operators of instantaneous nuclear momenta P. It is a new aspect
for many-body theory.



In the present paper — part I, theoretical background of nonadiabatic P-dependent
modification of the adiabatic BOA is presented along with corresponding sequence of
canonical transformations of general nonrelativistic form of system Hamiltonian (molecular
or solid state system). It is related to our original formulation of molecular electron-vibration
theory on the Hartree-Fock SCF (HF-SCF) level [33]. Solution of the final nonadiabatic form
that has been obtained in real space orbital representation is transformed into quasi-
momentum Kk, g space representation of solids. As there are some differences in details of
Hartree-Fock treatment in solid state theory and in molecular physics, in section II.
(Preliminaries) the quasi-particle form of general molecular Hamiltonian on crude-adiabatic
and adiabatic level within the HF-SCF solution is presented. In section Ill, theoretical
background of canonical - base transformations of clamped nuclear (crude-adiabatic)
Hamiltonian and electronic wave function to adiabatic Q-dependent level and to nonadiabatic
Q,P-dependent level (nonadiabatic modification of the BOA) are presented. The results in the
following sections are expressed in real space orbital representations as well in quasi-
momentum space representation of solids. Dependence of electronic energy terms, i.e.
corrections to zero-particle term (ground state energy), to one-particle term, including gap
opening and to two-particle term, on nuclear coordinates and momenta are presented in
section IV. There is supplementary part, Appendix A — C, that presents details to the
particular parts in the main text. Electronic ground state of superconductors is studied in the
subsequent paper that is the part 1l to the present theoretical formulation.

Il. Preliminaries
General form of nonrelativistic Hamiltonian of molecular or solid state system can be

written in second quantization formalism as an explicit function of electron (a*,a) and
nuclear (b*,b) creation and annihilation operators,
H :TN +Te(r)+vee(r)+VeN (r’R)+ ENN (R):

+ 1 +at
= TN (P)+ ENN (Q)+ ZhPQ (QhPaQ +§ ZVgQRSaPaQaS ag (1)
PQ

PQRS
The nuclear potential energy Exy and one-electron core term hpq (electron kinetic energy plus
electron-nuclear coulomb attraction term) are functions of the nuclear coordinate Q, operators
(normal modes nuclear displacements out-of fixed nuclear geometry Ro) and nuclear kinetic
energy Ty is a quadratic function of the corresponding nuclear momenta operators P. . The
letters Q, P which stand for nuclear coordinate and momentum operators and R, r that denote
nuclear and electron coordinates should be distinguished from subscripts in matrix elements

where these letters indicate index of the orbitals (e.g. ((pp |A‘¢Q> = Ang ,vSQRS ,...) and phonon
mode r (o, Qr,..), respectively. In order to keep open possibility of application for real as
well for complex wave functions, it is assumed that besides vibration mode r there is also
corresponding mode r (@, = w, ) to which in quasi-momentum space of solids corresponds
wave vectors g and (-g). In case of molecular systems with real wave functions holdsI =T .
For solids, in electronic quasi-momentum k-space representation, it is assumed that to
spinorbital ¢, (k,o) corresponds complex conjugate spinorbital ¢, (— k,+c). Also in this case,
for real wave functions of molecular systems ¢, = ¢;.

For nuclear coordinate and momentum operators hold:

Q. =, +b;), Q =, +b;), @ =(b7 +b,)=0Q,

P.=(b, -b;), P =(b, -b7), P =(b; —b, )=—P,

r



The Q-dependence of terms E, (Q) andh,,(Q) in (1) can be expressed through the Taylor’s
expansion at fixed nuclear configuration R,

(@)= B (R)+ ZEW(Q) Neo(Q)=hio(Ro)+ 2082 Q) @

Term E, (R 0) represents potential energy at fixed nuclear configuration Ry, hSQ(RO) iS one—
electron core term at fixed nuclear configuration Ry and terms{ugg (Q)} are related to matrix

elements of electron — vibration (phonon) coupling (ug()? ), i.e.

6hp r r.s yres
uge(Q)= aé(Q)Qr =uLQ; Uk (Q)= Q. (a%) Q,..Q, =urQ,..Q, 3)

Two-electron terms ngRS (electron-electron coulomb repulsion and exchange integrals) do

not depend explicitly on the nuclear operators.
It is obvious that the following symmetry relations have to hold,

0 0* 0 0 0 0 0* 0* 0 0
heg =hge »  Npg = th v Vegrs = Vapsk = Vsrgp = Vrsrq + Vegrs = Vgspg 4)
For coefficients of the Taylor’s expansions up to second order, the following identities are
required to hold,

r r* rs sr rs* Sr* rs sr rs* Sr*
Enw =Ew » Env =Exn =B =Eqn uPQ _uQP _uQP’ Upg =Upg =Ugp =Ugp (%)

There are several possibilities of approximate solution of this many-body problem.
Assumption of validity of the Born-Oppenheimer approximation (BOA) is the basis of these
treatments. Since the term BOA and subsequent applications are often understood in a
simplistic way, some aspects of the BOA should be specified.

Solution of the Schrddinger equation of many-body system composed of n. electrons and

N, nuclei (total system),
H¥(r,R)=E"™¥(r,R) (6)
with the Hamiltonian (1) and wave function ¥(r,R), which is a general function of the sets of
electron {r} and nuclear {R}coordinates, is possible in the assumption of validity of the
BOA. It was originally formulated [34] by power expansion of potential surface for nuclear
motion at equilibrium geometry with respect to displacement and electron/nuclear mass ratio
(me/M;)Y* and reformulated later by Born (see e.g. appendix in [35]) in a more practical form.
According to it, the crucial point of the BOA is that the wave function of the total system (6)
can be expressed in the factorized form,

=3 2RI, () )

It is a linear combination of known adiabatic electronic wave functions {®,(r,R)} that are
the eigenfunctions of clamped nuclear electronic Schrodinger equation,

H.@,(r,R)=E;®,(rR) ®
The electronic Hamiltonian in (8) corresponds to fixed nuclear configuration R,
He =Te +Vee(r)+VeN (r’R) (9)

Expansion coefficients {7, (R)} in (7), regarded as unknown, are nuclear wave functions for

nuclear configuration R with the electronic subsystem in particular adiabatic electronic
state @, (r,R).

The Schrédinger equation of the total system (6) for electronic state @ (r, R) with respect to
wave function (7) can be written in the form,

T+ EXRI-E* R}(R)- DA R @ 0



with the rhs term A, (R),

Awm(R)= A (R) =B,y (R)= D —fCD rR) (rR)dr—-

i

-[o n(r,RTrN( )<Dm(r,R)dr (12)
Term E*in (10),
Ex (R)= (E5(R)+ Ew (R) (12)
is total adiabatic electronic energy, i.e. adiabatic electronic energy plus nuclear Coulomb
repulsion at nuclear configuration R. Until the Born approach (7) is valid, equation (10) is

exact and it still describes coupled motion of electrons and nuclei through the term (11) -
A,.(R), which represents possibility of transitions between different adiabatic electronic

states @ (r,R)«> @, (r,R), due to nuclear motion (R — dependence). If such transitions are

forbidden from the symmetry reasons, or if there is physically reasonably justified assumption
that contributions of such transitions are negligibly small, then one can omit the rhs term and
equation (10) can be written in the diagonal form,

T +(EFR)+ B, (R)-EE(R)}z,.(R)=0 (13)

Since A= 0, the only non-zero diagonal contribution of the A term in (13) is By,

R)= [ (r,R)F, (R}, (r,R)dr = (rR)r =
n2 (oo (r,R)) (o®
:% 2Mnj( aR(na )J ( aR( )]dr w (14)

Term By, is the mean-value of the nuclear kinetic energy for adiabatic electronic state
(Dn(r, R) at instantaneous nuclear configuration R and represents so called adiabatic diagonal

Born-Oppenheimer (DBOC) correction to the total adiabatic electronic energy E*(R). The

equation (13) is then the equation of motion of nuclei and it has the form of Schrédinger
equation with Hamiltonian,

Hy(R)=T, +ERX(R) (15)
The effective-adiabatic potential for nuclear motion EST (R),
B (R)=EF(R)+ B, (R) (16)

is represented by the total electronic energy (12) which is corrected by mean-value of the
nuclear kingtic energy (DBOC) for the particular adiabatic electronic state @, (r,R) - (14). At

these circumstances the motion of electrons and nuclei is effectively decoupled and it is
possible to realize an independent diagonalization of the electronic Schrodinger equation (8)
and nuclear Schrodinger equation (13). In this case, electrons and nuclei of the system behave
like two statistically independent sets.

Contribution of the rhs term of equation (10) is assumed to be small and it can be calculated
by some approximate way, usually by perturbation theory. Then, problem with the
Hamiltonian,

H(R)=H’(R)+H'(R) (17)
is studied. Unperturbed part is,

H'(R)=H,(R)+ Hy(R)={(9)+ Eyy(R)}+ (15) (18)
Perturbation is represented by the off- diagonal terms,

H'(R)=Am(R): ( Hp(R)=[ 20, (RIA L (R, (R)IR) s men (19)



In practice, physical and/or chemical properties of a many-body system in its ground
electronic state qbo(r,R) are of the prime interest. In this case, the Born approach (7) is

usually restricted to the single term and the total wave function of system is a simple product
of the ground state adiabatic electronic wave function ®,(r,R)and corresponding nuclear

wave function,

\Po(r’R)zlo,v(R)@o(r'R) : (20)
The Born approach in the form (20) is generally called the adiabatic approximation. In a
common sense, what is usually understand as the Born-Oppenheimer approximation (or
crude-adiabatic) is the adiabatic approximation where the contribution of the DBOC (i.e.
Boo(R) term in (16)) is also neglected and wave function (20) is rather of the form,

lPo(r!R):7(0,1/(R)(I)0(F’Req) (21)

Contributions of the off-diagonal terms AOm(R) - (19) that are calculated as a small

perturbation to the Hamiltonian (17) represent a nonadiabatic correction to the unperturbed
adiabatic ground state (see e.g. [36]). The conditions at which the nonadiabatic correction can
be expected to be small and the BOA (20, and in general 7) is valid, can be estimated by

analysis of the second order contributions to the energy of the total system, E;® (R) which are
small providing that,

| [ 26, (R (R)z,, (R)IR [<<| ES3(R)-ET,(R) | (22)
By expansion, at least up to the quadratic term in a displacement Q of the effective nuclear
potential (V& (R)= EZ(R)) at equilibrium nuclear geometry Reg, it can be derived that (22)
holds and the BOA (20, 7) is valid if the inequality
[Ef (R )- E2(Ryy | >> 0, (23)

is fulfilled for electronic and vibration (phonon) energy spectrum of a system. The meaning of
(23) is clear, the electronic frequency spectrum, i.e. the differences between the total
electronic energies of the excited electronic states and the ground state energy has to be much
greater than vibration (phonon) energy spectrum of the system.

Hierarchy of approximations
I1.1. Crude- adiabatic approximation

Providing that phonon and electronic energy spectrum are well separated and (23) holds
for relevant configuration space R near to Req, crude-adiabatic (clamped nuclear) treatment is
justified. In this case, electronic and nuclear part of the Hamiltonian (1) is treated as
statistically independent sets.

Electronic Hamiltonian is only parametrically dependent on nuclear configuration, i.e.
nuclear geometry is fixed at nuclear configuration R,

e 1 atate 5
H, = El(\)lN (RO)+Zth(ROFP a, +§ ZVgQRSaP dydsag (24)
PQ

PQRS
Application of the Wick’s theorem to the product of creation and annihilation operators yields
for particular terms the normal product form (N[...]) with corresponding contractions,

0occ

0 m+7 0 Sty 0
D heodsd, =Zh,,QN[aP aQ]+Zh,, (25)
PQ PQ !
0 0 (0 0 0 0
T S+ta+ts & =+
ZVPQRSaPa dsag = ZVPQRSN[aPaQaSaR]+Z Z(VPIQI +Vipo —Veig _VIPQI) N[ap aQ]+
PQRS PQRS PQ\ I

0cC

0 0
+ Z(VIJIJ —Vi )
E



At the Wick’s theorem application, the renormalized Fermi vacuum®; is introduced and the
total set of orthonormal base orbitals ((pp,goQ,..) is divided on two distinct groups; the set of

occupied (¢, , ¢, ,..)and set of unoccupied (@,,@;,..) spinorbitals.

At this moment, the electronic Hamiltonian (24) can be written in a quasi-particle form as a
sum of zero, one and-two particle terms,

He=Hpg+Hgy+Hp = (El(\)lN + He0)+ Hy+Hp = Eq (R,)+ H(cad)(Ro)+ H: )(Ro) (26)

cad

a/ The scalar quantity, H? = H(iad)(Ro), i.e. zero-particle term inH g, is the result of the
operators contractions and has the form,

0cC

0cC 1
Heo :<®O|He|¢)o>:zh|0| +§Z(V|OJ|J _VloaJl): ESOCF (Ro) (27)
| 1

This term represents ground state electronic energy calculated by the Hartree-Fock SCF (HF-
SCF) procedure at fixed nuclear configuration Ro. Electronic ground state is represented by
renormalized Fermi vacuumd,. It is an antisymmetric electronic wave function that is

expressed in the form of single Slater determinant constituted by lowest laying occupied
spinorbitals {p, } of complete orthonormal base {p; |},

®,(r,R,)= |q0l ......... (p,| (28)
b/ The one-particle term H, = H.(R, ) of the electronic Hamiltonian (26) has the form,
Hpy) = Z FeoN [55 ao] (29)

PQ
The elements Fpq are calculated as matrix elements of the Hartree-Fock one-particle operator
F(R,)=h°(R,)+ 3 (3 ~Ko) (29)
Q

Diagonalization of (29), F,, = ¢35, i.e. solution of electronic Hartree-Fock equations by

HF-SCF procedure,

PQ

F(R)¢P (r7RO):Z€PQ¢Q(r’ Ro) (29b)
Q
yields set of eigenvalues, i.e. HF-orbital energies
gp =hgp + Z(VSQPQ _V(F)’QQP) (29¢)
Q

and corresponding set of eigenfunctions {qop} - the orthonormal set of optimized spinorbitals.

It means that one-particle term (29) can always be written in diagonal form and represents set
of eigenenergies of sTstem, ie.

H(l) = z&'gN[gggp
P

In an approximate way, the one-particle Hamiltonian H,, represents complete electronic

spectrum expressed over occupied and unoccupied - virtual spinorbitals, which are calculated

for electronic ground state (Do(r,Ro) by the HF-SCF procedure. In particular, n-electron

“excited” state wave function @, , can be constructed by promotion of n electrons from n

occupied spinorbitals to n unoccupied spinorbitals (i.e. the same number n of holes (h,) and
particles (pn) are created). Electronic energy of such excited state can be calculated through
HF-eigenenergies that correspond to optimized spinorbitals of the ground state. However,
exact treatment of excited states is different and it will be mentioned shortly in section 11.2.

In terms of the orbital energies (29c¢), for total electronic ground state energy Ege(RO) holds,

(29d)



E(;e(Ro ) = Er(\)IN (Ro)+ ESCF (R El(\)lN (Z hi _Z(VIOJIJ - V?JJI )j =
K
(30)

0occ

~Ef(R)+, 2 (e +h)

|
For closed-shell electronic systems within restricted HF approximation, spinorbitals are
expressed over spatial orbitals whereas each spatial orbital can be occupied by two electrons
with opposite spins, i.e. spinorbitals ¢, and ¢, are replaced by the same spatial orbital with
different spin parts, ¢,.« and ¢,.£5. In this case, the HF operator (29a), HF-orbital energies
(29c) and electronic energy (27,30) are correspondingly modified,

F(Ro):hO(Ro)+Z(ZJQ_KQ) (31)
Q
p = hgp +Z(2VSQPQ _VSQQP) (31a)
Q
HS = <CD0 |He|®o> = ZZhﬂ +Z(2VE]IJ _VE]JI ): ESCF (Ro) (31b)
1 13

0cc

E(;e(Ro): El(\)lN (Ro)+ ESCF (Ro): El(\)lN (RO)+(ZZhIOI + Z(Z‘/lom _VIOJJI )j 3
[ K

0ocC

= Er(\)JN(Ro)""Z(glO +h|0|)

|
Total electronic ground state energy of the system reaches the minimum at some equilibrium
nuclear configurationR, = R,,. Corresponding Slater determinant (28) represents wave

function of the electronic ground state at equilibrium nuclear configuration.
¢/ The third term of the electronic Hamiltonian (26), i.e. two-particle term has the form,

H(z) - cad) ZVPQRS [a+a+a a ] (32)

PQRS
It formally looks like standard coulomb electron-electron interaction term in (24). With
respect to the fact that after application of the Wick’s theorem (25) the renormalized Fermi
vacuum®,, has been introduced and zero-particle (scalar) quantity (27) represents electronic
energy of the ground state @ that accounts also for coulomb electron-electron interactions
(see (27)) and one-particle term is diagonal (29d) and represents unperturbed HF-orbital
energies {&p }of the system (one-electron energy spectrum), then two-particle term (32)
represents perturbation part of the electronic Hamiltonian (26). It is related to unbalanced
treatment of electrons with parallel and antiparallel spins within one-electron approximations.
Since perturbation (32) contains only electron-electron interaction term, contributions of this
term represent electron correlation energy of the system in its ground electronic state. In this
respect, electron correlation energy is treated as a perturbation. Calculation of the electron
correlation energy up to higher order of perturbation theory is usually done by diagrammatic
many-body perturbation theory. For correlation energy in second order of perturbation theory,
analytic expression for closed-shell system can be derived in a simple form,

(31c)

£ ~ H( ~ 0CC UNOCC (2VIOJAB _V?JBA) (32a)

corr — T (hhypip,) T et L (5|0 +g§) _82 _Eg)
From the fact that with respect to Fermi level, for energies of unoccupied states hold {&} >
0 and for energies of occupied states hold { &/ } < 0, follows that E_,,, is negative, i.e. it



decreases electronic energy of the ground state (this contribution corrects total electronic
energy of the system (30, 31c)). It holds for arbitrary nuclear geometry Ry until system
remains in a bound state.

Each eigenfunction ¢, in Slater determinant (28) can be expressed as a linear

combination of the atomic orbital (AO) basis functions{x}, ¢, = c, |x), that are fixed at
u

the positions of the particular nuclei in frozen nuclear configuration Ro. It represents fixed
basis set{z(x,0)}.

In second quantization, with single-bar a*being creation operator of the crude-adiabatic
electron, it can be written with respect to Fermi vacuum |O> as,

#(x,0)=a; (x,0)0) (33)
and,
2o (%.0)=D"c 0| u(x,0)) =D c »a; (x,0)0) = a; (x,0)0) (33a)

For solids, in electronic quasi-momentum k-space, the basis functions are Bloch-periodic
orbitals {x (k X 0)}

u(k,x,0)= Ze'“R X —tR) (33b)

In (33D), tR is translatlon vector and u(x—tR)=p(x). The set of {u(x)} is fixed basis
set{(x,0)} in frozen nuclear configuration Ry (Q = 0): An eigenfunction ¢, is then crystal
orbital CO -¢, (bandg,), which is a linear combination of the Bloch-periodic basis
functions {z(k, x,0)}.

In second quantization it has the form,

u(k,x,0)= Ze'“R - (x,0)0) (33c)

and,

(pp(k,x,O)zgcfl@W(k,xO) ZC#F,\/_Ze”“R_+ (x,0)0) =

= %ie'k “a, (k,x,0)0)
tR

In this case, occupancy of the band is not distinguished by the index of the band (P) itself but
it is determined by the value of k-vector of particular band dispersion &, (k) with respect to

the energy of Fermi level £2.

The electronic Hartree-Fock equations (29b) are solved for different displaced but fixed
nuclear configurations {Rq} at Req and potential energy (hyper)surface (PES) can be
calculated. It can be done by gradient technique where nuclear force constants are calculated
in an analytic way by minimization of the total electronic energy (30) as a function of nuclear
coordinates R (see e.g.[37]). Knowledge of the PES enables calculation of the force constants
of vibration motion and subsequently it enables to solve nuclear Schrédinger equation,

(33d)

T +EFR)-EZ (R)jz,,(R)=0 (34)
with nuclear Hamiltonian,
H.(R)=T, +E&(R) (34a)

i.e. to solve the problem of nuclear motion quantization,
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mod mod

Hy = Hg = > ho,(b6,b, +1/2)=Y hw.(n, +12) (34b)

with nuclear vibration wave function,
mod mod 1 /—. \n
R:|| R:”_b*fo 35
Z() r)(r,n() r\/n—rl(r)|> (35)

Creation and annihilation operators of crude-adiabatic phonon modes are also written as
single-bare operators, b,",b,. The operator of nuclear displacements out of fixed nuclear
geometry Ry (R o« Ry +Q) for the crude-adiabatic normal mode r, is Q, =(5,+ +5r) and
corresponding momentum operator is P. = (Br —5;).

If the influence of the nuclear displacements out of fixed nuclear geometry Ry on the

electronic ground state wave function and electronic energy is assumed to be negligible
(crude-adiabatic BOA, i.e. Q-independent), the wave function of the total system is,

‘Po(r’R)ZZ(R)(Do(riRo) (36)

or in terms of nuclear motion,

¥, (r,Q)= 2(Q),(r.0) (362)

Energy of the total system in the ground electronic state is,

Eo*(Ry)=Eg (Ry)+ D 1, (n, +1/2) (36b)

For fermion and boson creation and annihilation operators, the standard anti-commutation and
commutation relations hold,

{EP,EQ}:O, {EP,ES}:épQ @37
lb..b,]=0, |p,.b;|=5, (372)
“Independence” of fermions and bosons, i.e. possibility of simultaneous diagonalization of
electronic and nuclear part of system Hamiltonian, requires also validity of the following
commutation relations,
la..b,|=0, [&..b|=0 (37b)
If it is necessary, the effect of electron-vibration (phonon) coupling on the electronic
energy and vibration (phonon) spectra are usually calculated by perturbation theory as the

corrections to the crude adiabatic ground electronic state and phonons renormalization. On the
crude-BOA level these corrections are neglected, however.

I1.2. Adiabatic approximation
In case the of crude-adiabatic approximation, electrons “see” the nuclei at theirs

instantaneous positions at rest and nuclei do not “feel” internal dynamics of electrons. Within
the spirit of the BOA it would be correct if the electrons follow nuclear motion
instantaneously, i.e. electronic state has to dependent explicitly on instantaneous nuclear
positions. In this case, the wave function of the system, instead of the form (36a) with Q-
independent electronic part should be replaced by Q-dependent form, i.e.
¥, (r,Q) = 2(Q),(r,Q) (38)
For molecular systems an analytic derivative method is used. The nuclear force constants are
calculated by diagonalization of the Hartree-Fock equations that are now functions of nuclear
coordinates. It results in solution of the Coupled Perturbed Hartree-Fock (CPHF) equations
(see e.g. [38,39]).

Alternative treatment to this problem, denoted as quasi-particle transformation technique,
has been proposed and elaborated by Svrcek [40]. In this treatment, the requirement that
electrons follow the nuclear motion adiabatically has been expressed through the fermion and

11



boson creation and annihilation operators. In [41] it has been shown that solution of the
adiabatic problem by quasi-particle transformation technique is equivalent to the results of the
CPHF method. Seemingly it means that there is no extra profit of this treatment. In the present
paper it is shown, however, that physical background behind the quasi-particle transformation
technique is substantial. It can be effectively generalized that justifies and allows application

to more complicated situation when the BOA is not valid, i.e. to study antiadiabatic
state‘Ege(R)— = (Req] <haw,.

n

To keep the present paper compact, the main points of the original formulation of the
adiabatic quasi-particle transformation technique [40] are presented in Appendix A.

Some aspects of different treatments of electron-vibration (phonon) coupling should also be
mentioned. Standard solid-state treatment of electron-phonon interaction is based on
perturbation theory. Starting Hamiltonian is,

H:H°+Hep. (39)
The unperturbed part (to be consistent with crude-adiabatic notation, the single-bare operators
are used) has the form,

HO =Y ¢la)a, + ho,bb, +1/2) (39a)
ko q

The perturbation HamiltonianH ,, instead of A-perturbation term (11, 19), is represented by

an electron-phonon (EP) interaction term. The simplest form of this term is,
H,, = kZuq(bq b BB = kZquqﬁk:qﬁk,g (39b)
\q,0 .0

It can be derived in the assumption of small perturbation of rigid-periodic lattice potential due
to vibration displacements of nuclei out-of equilibrium positions. Within the notation used in
the present paper, term (39b) corresponds basically to the first order contribution of Taylor’s
expansion of the core Hamiltonian hy, (Q) (see 1, 2), with respect to nuclear displacement Q
on the crude-adiabatic level. This is evident from eq. (A19b), when at equilibrium geometry
for potential energy of nuclear motion holds Ey,, = 0. The unperturbed Hamiltonian (39a) is
represented by the terms (29d) and (34b).

Due to the form of EP interactionH, (39b), the first order perturbation correction to the

¥,)=0.
All interesting physics is then related to higher-order contributions with participation of
excited electronic states, i.e. the first possible non-zero contributions are in the second order
of perturbation theory, i.e. terms of the form(‘Ifo‘Hep Y, H,, ‘Pn)/(EgS — Erfs). These off-
diagonal contributions represent, in this treatment, nonadiabatic corrections to the adiabatic
ground state energy AE; that is associated with renormalization of the normal mode
frequenciesAw, . In solids it is calculated as corrections to dispersion of electronic bands
Ag, (k) and corrections to phonon dispersion A, (q).

Exact treatment of nonadiabatic corrections calculation assumes independent calculation of
electronic excited states energies {E§(¢o)(R)}, however. It would require new optimization of

electronic ground state dy, i.e. the diagonal perturbation term equals zero: (‘I’O‘Hep

excited state wave functions®_ (r,R). It should be extremely complicated since excited state

wave functions have to be orthogonal to the ground state wave function. At practical
calculations, an approach is used (see Il.1) which is based on the orthonormal orbitals
(bands) {goa}already optimized for the ground state electronic wave function <I)0(r, Req). By

promotion of electron(s) from occupied orbital(s) {l, J,..} to virtual — unoccupied orbital(s)

12



{AB,...}, excited state configurations {® ,} can be constructed as a linear combination of
corresponding Slater determinants {®, ,}. It can be shown that, e.g. single-electron
excitations yield (for closed-shell system) two excited state electronic configurations — lowest
lying excited state that is singly excited triplet state3CDA(HA), and singly excited singlet
state' @ an-a) - Differences in the electronic energies of these excited state configurations with
respect to the electronic energy of the ground state are;

3EZ(|—>A)(R)_ES(R)Zgg(R)_g?(R)_‘]lA (40)
for singly excited triplet state and,
lEZ(HA)(R)_ES(R)ZE,&(R)_SF(R)_JM+2K|A (41)

for singly excited singlet state.

For approximations that do not consider explicitly for two-electron terms, the differences in
energies of singly excited triplet and singlet states with respect to the ground state energy are
the same and equal to the difference of the energies of involved orbitals, i.e.

Efusn (R)-Eg(R)=(R)-&/(R) (42)
Multiple electronic excitations can be calculated in a similar way, by generation of Slater
determinants of p-particle, h(= p)-hole states in notation of particle-hole formalism.

In this way, without an explicit calculation of electronic excited state wave functions, the
nonadiabatic corrections to (crude-)adiabatic electronic ground state are calculated through
optimized eigenfunctions (i.e. occupied (¢, ) and unoccupied - virtual (¢, ) orbitals) of single

Slater determinant of the electronic ground state <I)0(r, Ry )

Condition for save application of the BOA, expressed in the terms of the ground state orbital
energies, is of the form,

l2/(R)- 22 (R)] >> o, (43)
It has to be valid for relevant configuration space R at Req and for the couple of frontier
orbitals, i.e. highest occupied ¢, =@, o, and lowest unoccupied ¢, =@, Orbitals. In

case of solids, with quasi-continuum of states in complex k-space representation this
inequality can be rewritten inthe form,

‘83 (k,)-&l ‘Req >> ho, (44)

This relation has to hold over the relevant configuration space R at Req for energies of all
bands (S) of multiband system in analytic critical points k. (ACP - absolute or local maxima,

minima and saddle points) of 1% BZ, with respect to the energy of the Fermi level £

In molecular quantum theory, different treatment of electron-vibration interaction has
also been elaborated. It is related to direct calculation of the correction to the ground state

total electronic energy AEféd)that corrects potential energy of nuclear motion on the adiabatic

level. In 1997, Kutzelnigg [42] has proved in a rigorous way that so called Born-Handy ansatz
[43,44], is physically correct. The Born-Handy ansatz assumes that the diagonal Born-
Oppenheimer correction (DBOC) to adiabatic electronic state - B,, (A10) can be calculated
directly in laboratory Cartesian coordinate system. The proof [42] is very crucial result, since
it eliminates complicated problem with separation of center-off-mass (COM) motion, which
arises at introduction of relative coordinates in a molecule-fixed frame system at practical
calculations.

Accordingly, the exact adiabatic correction to the total electronic ground state energy is Bgo
(14), i.e.

13



AE () (Ry) = (@ (1, R)T | @ (r.R)) =—Z%<®o(rﬁ)\vf\®o(hﬁ)>R =

o0, r,R)| 00, (1, R) )

— Z hz o\ _ A _ B
ia 2M i aRioz aRioz R ® ”
The derivatives of the ground state Slater determinant®, in the bracket of (45) are performed

with respect to the R, , , i.e. with respect to the Cartesian component « of the i™ nucleus.

In 1999 it has been shown [41] that this correction is equal to adiabatic correction (A30a) to
the total electronic energy of the ground stated,, calculated through the expansion

coefficientsc,, ((3 )of the quasi-particle transformation (A2), i.e.
AE(Oad)(RO)z <®O(r, ﬁ)‘TN ‘(Do(r’ I§)>R - Zha)r
o rAl

In (46), c}, stand for the first derivative of expansion coefficients (A2) of the quasi-particle
transformation with respect to coordinate Q, of particular normal mode r,
C/rxl = aC_AI

0Q,
Within the single Slater determinant representation of the ground electronic state, this relation
is exact since the eigenfunctions — spinorbitals {(pQ(R)} of the Hartree-Fock equations (29b)

are orthonormal and form complete basis set, i.e. closure property holds,

;‘% (r.R)){pq (r,R)[=1 (48)

2

(46)

r
CAI

(47)

It means that both sub-sets, i.e. occupied {g, (r,R)} and unoccupied {p,(r,R)} orbitals are
included at calculation of (46). As it is seen from (46), electronic ground state energy
correction is due to virtual transitions between occupied {g, (r,R)} and unoccupied orbitals
{94 (r,R)} at nuclear vibration motion. In this respect, even AE(,, represents exactly DBOC,
it covers basically “nonadiabatic” (off-diagonal) corrections in the sense as these are
calculated in second-order of perturbation theory when excited electronic states are
approximated through virtual orbitals optimized for electronic ground state CDO(r, Req) and

perturbation is an electron-vibration couplingH,,, as it has been discussed above. It can be

seen very clearly from the expression for correction to frequency of normal modes (A36a)
that is identical to the one derived by perturbation theory (A36b).
Correctness of eq. (45) and (46) has been verified by high precision calculation of H,, HD, D,
molecules [41] with respect to the exact results for H, published by Kolos and Wolniewicz
[45,46]. This treatment can be used for complex molecular systems and it should be effective
also in case of solids.

An important conclusion can be made at this place. Electron-vibration (phonon)
interactions on the adiabatic level do not stabilize total electronic energy of the ground state.

The adiabatic correction AE(Oéld yto the ground state total electronic energy (without correlation

energy contribution) is small but always positive, (45, 46). More over, correction to the
energy of the total system AE™ , which is composed of the electronic AE&,) correction and

corrections Awm,to vibration (phonon) modes (A36a), is also positive with dominant
contribution of the electronic correction,

14
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The only possible stabilization contribution to the ground state electronic energy on the
adiabatic level can arise from the correction to electron correlation energy (see part I1).

This conclusion does not contradict the Jahn-Teller effect, or Peierls distortion in solids.
In these cases, decrease of the total electronic energy connected to nuclear displacements
from high symmetry to lower symmetry nuclear arrangement appears already on the crude-
adiabatic level within the clamped nuclear Hamiltonian approximation and it is related to
removing of degeneracy of occupied and unoccupied states (asymmetry in population of
degenerate states). Degeneracy that is present at high symmetry nuclear geometry is not
present at lower symmetry structure, which in fact represents actual equilibrium nuclear
configuration Req with lower total electronic energy as it corresponds to the structure with
higher symmetry.

In what follows, a connection of the adiabatic treatment, as presented above and in the
Appendix A, to canonical transformations and to introduction of new dynamical variables of
the system Hamiltonian is shown. The established link is then extended toward solution of
more general problem, when adiabatic condition (43, or 44) is not valid and system is in the
intrinsic nonadiabatic (or antiadiabatic) state, i.e. when instead of (43, 44) holds
‘e,O(R)—gfi(R)‘ <hw,,or ‘gg(kc)—gﬁ _ <h, in case of solids.

eq

I11. Base transformation — introduction of new dynamical variables
I11.1. Q-dependent adiabatic transformation
Adiabatic, nuclear displacement Q-dependent electronic wave functionCDO(r,Q)in (38)

assumes existence of complete orthonormal basis set{p; (x,Q)}, i.e. validity of the following
relations,

<¢R (xE]gos (x,3)> =0 Ton (x,3)><¢R (xE)\ -1 (50)

Now, electron creation and annihilation operators that correspond to the Q-dependent moving

=4 =

base are denoted as double-bar operators (a ,a). Also the boson operators related to the Q-
dependent moving base are written as double-bar operators; 6, = (E: +Erj, |:3r =(br —b:j.
Then,

ax(%.0]0)=Jpalx Q) . anx.Q)ux.0) =0 (51)

Since adiabatic electrons remain fermions, the operators have to obey standard fermion
anticommutation relations,

{ZR,Z§}=5RS . Br.as =0 (52)

Shorthand notation, ZR EZR XS)Z; EZ;( 6) has been used in (52).
Crude-adiabatic electronic wave function ®(r,0) that does not depend on the nuclear
displacements Q is expanded over fixed basis set functions {p,(x,0)} that are eigenfunctions

of clamped nuclear electronic Hartree-Fock equations (29b). This is complete and
orthonormal base,

<¢’R (X’O](/’s (X,0)> = Ogs ZR] Pr (X'0)><(0R (X'0)| =1 (53)
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Crude-adiabatic fermion creation and annihilation operators that correspond to the fixed basis
set are written as single-bar operators (a*,a), i.e.
a; (x,0)0) =[x (x,0)) , @ (x,0)px(x,0))=0) (54)
Also in this case, the standard anticommutation relations (37, 37a,b) hold and also in this case
shorthand notation has been used, @, = a,(x,0), & =a, (x,0).

Due to properties (50, 53), the two bases are interconnected by the base transformation of

the following form,
ou(0) - X )

|9x(x,0)) = ZS: Ps (X,3)><<os (XE) @5 (X,3)> (55)

Then, for fermion operators of second quantization one can write

= Yowlhs . 3 ~2leale) )
S S
Elements ¢(Q)of the Q-dependent transformation matrix C(Q) in (55, 56) are,

Crs (6): <¢R (X’O)|¢s (X,S» (57)
Since,
Crs (6): <(Ps (X,S) Pr (X’O» ' (58)

then due to closure property and orthonormality (50, 53) of the bases, it can be derived that
base transformation matrix C(Q)is an unitary matrix,

ZCRTC;T = Ogs ZZC;RCTS , C7 Z(CT)* =C™ (59)
T T

It can be shown that the base transformation is identical with canonical transformation of
operators that satisfy anti-commutation relations (37, 52).
There are two basic possibilities of canonical transformations;
The standard [47], most frequently used canonical transformation works with the same set of
dynamical variables (A,), i.e.

T:H(A,)=A(A,)=H(A, )= HU(A)AU(A)) (60)
A, =U"(A)AU(A)=f(A) (60a)

Canonical transformation (60) is usually used in an effort to make original Hamiltonian
diagonal or “more” diagonal, i.e. to remove off-diagonal interaction matrix elements in a
system Hamiltonian. Then, for system Hamiltonian H =H,+H,, at the canonical

transformation, the anti-hermitean operator S of unitary matrix U = exp(S) is “constructed” in

the form that eliminates presence of interaction term in transformed Hamiltonian completely
or at least up to the first order of commutator expansion, i.e. the condition has to be fulfilled,
[Ho,S]+H,, =0 (61)
This transformation change the form of the Hamiltonian but preserves original system
variables.

The other possibility is that by canonical transformation of operators a set of new dynamical
variables (A’ )is introduced,

A=A (A)=U"(A)AU(A) (62)
Then Hamiltonian is not transformed itself, it remains of the original form, but its variables
(A,) are replaced by new variables(A! ),

H(A,)=HU"(A)AU(A) (63)
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The Hamiltonian written in new variables is,
H(A,(A)=H(A) (64)
Since at this transformation, there is not any requirement for fulfillment of condition like (61),
the transformation does not make Hamiltonian “more” diagonal, but very often it discloses
physical aspects of the problem that are not obvious from non-transformed form of the
original variables of system Hamiltonian. Beside the other aspects, appearance of the
attractive effective electron-electron interaction term at this transformation will be shown at
the other place — part II.

Within this transformation method, for canonical transformation of fermion operators can be
written,

3, =U"a:U, a’ =U awU (65)

The unitary matrix (U* =U ™) is of exponential form U =e® and anti-hermitean operator S
(S" = - S) is of the bilinear form,

S:ZyRS(SFRES \ Vs = Vs (66)
RS
The y(Q) matrix is Q-dependent. For canonical transformation (65) then holds,
4, —eage’ —an +— [aR s] L [[ZR,S]SLEHIZR,SIS]SL ........ (67)
il 2! 3

Due to fermion anti-commutation relations (52), the commutation expansion (67) can be
summed up in a closed form,

- :z(em@}zs 68)

S
In this way, for creation operator can be derived

ay :Z(em(Q)J as (68a)
S

Comparing (68, 68a) with relations (56), one can see that the base transformation of wave
functions is identical with canonical transformation of fermion operators. More over it is
identical also with quasi-particle transformation as it is postulated in Appendix A. The
exponential form of canonical transformation (67) legitimates also Taylor’s expansion of the
matrix elements of quasi-particle transformation coefficients (A4, 56), or what is equivalent,
the Taylor’s expansion of base transformation coefficients, i.e.

crolQ)- IED IR (69)

M- T
The form of transformation relations for boson operators of system Hamiltonian is fully
dictated by the factorized form of the total system wave function (38). It expresses possibility
of simultaneous — independent diagonalization of electron and boson subsystems. It means
that transformed fermion and transformed boson operators obey not only standard
anticommutation and commutation relations within the individual subsystems,

Br.aq|=0, {Ep a;} wor brobi]=0, [E,EZ}:&W (70)

but transformed operators of both subsystems have to commute mutually like the original
operators, i.e. also the following commutation relations have to hold,

Il

2 b |=0, [EP,B*}o (71)
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With respect to the fermion transformation relations (56), the form of transformation relations
for boson operators that fully respects commutation relations (71) is (A3, A10), i.e.

b, =b, +Zdrpo(Q§ao . b= b++2( rPQ()) asa, (72)

For matrix elements d @)of transformation matrix D(Q), the Taylor’ expansion is defined,

A - 1 8.8 ~
drPQ (Q): Z k! Zdré’Qk Qsl"'st (72&)
k=0 S;..5k
The relation that holds, with respect to (71), between elements d(a) and c(a)of

transformation matrices is specified in Appendix A — (A6, A7).
It can be shown that adiabatic transformation preserves total number of electrons, and nuclear
coordinate operator is invariant under transformation, i.e.

N=Yaa, =Y a7, =N, C=2r=(31+3rj=(55+5f)=5r (73)
P P

Up to first order of Taylor’s expansion, the momentum operator P, = (Br — 5;) is transformed
as,

(br—b )+2ZchapaQ _Pr+2ZcPQ525Q (74)
The term Pr Z(br J in (74) is nuclear momentum operator on adiabatic level.

For adiabatic Q-dependent spinorbitals ¢P(x,3)>, which are the basis functions of the

adiabatic Q-dependent electronic wave function of the ground state d)o(r,Q), expressed over
crude-adiabatic orbitals can be derived;

o (x,3)> (@0 (a; —;céﬁ,a; +0(32D|0> -
:|¢,P(X,o)>_%C;R3,|¢R(x,o)>+ ..... =|¢P(x,o)>—%c;@m(x,o)w

As it is seen from (75), adiabatic wave function is modulated by the instantaneous nuclear
coordinates {Q} of particular vibration (phonon) modes {r} with the weight proportional to

transformation coefficients c., (coefficients of transformation matrix in the first order of

Taylor’s expansion). In Appendix C it is shown that c., covers the strength of electron-

vibration (phonon) coupling up to the first order of Taylor’s expansion. From (46) it is seen
that these coefficients fully determine also exact adiabatic correction to the electronic energy

of the ground state AE(}; .

(75)

I11.2. P-dependent nonadiabatic transformation
Save application of the adiabatic BOA requires the inequality ‘Ege(R)— Eff(R] >> ho, 10

hold not only at Req but also over relevant configuration space R=R¢q#4R near to Reg.
Relevant configuration space is represented at least by amplitudes of pertaining vibration
(phonon) modes of the system. Let as consider situation when this inequality is valid for Req
but it does not hold for R=R¢,#Q. Within single Slater determinant approximation of the
ground electronic state it can be written as,

60 (R )-8 Ry | >> o, 0 [el(R,, £ _Q) £3(Ry Q) <11y, (76)
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Corresponding relation holds for solids,
‘gé’(kc)— & ‘R >>ho, °— ‘gg(kc)— &

<ho, (77)

Reg £Q
The inequalities on the rhs of (76, 77) indicate that system at vibration motion is in intrinsic
nonadiabatic (or antiadiabatic) state. At these circumstances the BOA in the standard Q-
dependent form (38) is not valid. The A term (11) that couples electronic and nuclear motion
through nuclear kinetic energy operator can be large and can not be treated as a perturbation.
It indicates that at the instantaneous nuclear configuration (Req#Q), instantaneous nuclear

kinetic energy (momenta) has been significantly changed, i.e. <TN ) - <ﬂ, > . Electrons at these

circumstances are not able to follow nuclear motion adiabatically. It means that electronic
wave function, in order to respect this fact, should be dependent not only on instantaneous
nuclear coordinates Q but it should also be an explicit function of the instantaneous nuclear
momenta P, i.e.®, = ®,(r,Q,P).

Let us assume that wave function of total system can be found in the following factorized
form,

¥(r,Q,P)=> 7.(Q.P),(r.Q,P) (78)

The form of the wave function (78) is basically P-dependent modification of the original Q-
dependent BOA - (7).
Like in adiabatic case, solution of the problem will be restricted to electronic ground state, i.e.

¥, (r.Q.P)=7,(Q.P)a,(r.Q,P) (79)
It means that effect of nuclear momenta will be covered only in the form of Q,P-dependent
diagonal correction A (Q,P)=(®,(r,Q, P)|fN|d)0(r,Q,P)), i.e. in a similar way as it has
been covered the effect of instantaneous nuclear coordinates Q on the adiabatic level (45), i.e.
Q-dependent adiabatic DBOC, A, (6): <d)o(r,3)TN ‘Do(VEb-

Solution of this problem is similar to the transition from crude-adiabatic to adiabatic level,
as presented above. Now, however, the transition from adiabatic to antiadiabatic level is
established.

Nonadiabatic, nuclear displacement and momentum (Q,P)-dependent electronic wave
function®,(r,Q, P)in (79) assumes existence of complete orthonormal basis set {p, (x,Q, P)},

i.e. validity of the following relations,

(0 (x.Q, P)s (x:Q, P)) = 5, ;m (x,Q,P))(¢s(x.Q,P)| =1 (80)

Electron creation and annihilation operators that correspond to the (Q,P)-dependent moving
base are written as bar-less operators (a*,a). Boson operators related to the (Q,P)-dependent

moving base are denoted also as bar-less operators, Q, = (b,+ + bf) and P, =(br -b; ) Then,

a;(x,Q,P)0) =|¢:(x.Q.P)) , a(x.Q,P):(x,Q.P)) =[0) (81)
Since nonadiabatic electrons remain fermions, the operators obey standard fermion
anticommutation relations,

{aR7a;}:5RS 1 {aR’aS}:O (82)
In (82), shorthand notation is used, a, = a,(x,Q,P) anda; =a;(x,Q,P).

Since adiabatic Q-dependent moving base derived by adiabatic transformation is complete

and orthonormal (50), then due to (80), the base transformation to nonadiabatic (Q,P)-
dependent moving base can be established over the base transformation relation,
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9s(x,.Q,P)) (83)

e £.Q) = X (0. P (x.0. Py [x. 0 = X 6s (P
For fermion osperators of second quantization follow,S

ar = 3w (PR ar = ICHUEH (84)
Elements of the P-dependent transformation matrix é(P) are,

Gus (P)= {0k Qo (P . cis (P)= (s (1,0, Pl 6. Q) )
The P-dependent transformation matrix é(P) is also unitary matrix, i.e. the relations hold,

ZGRTG;T = Opg = é‘:RéTS , C' = (CT) =C™ (85a)
T T

The form of transformation relations for boson operators of system Hamiltonian is fully
dictated now by the factorized form of the total system wave function (79). Also in this case,
it expresses possibility of simultaneous, independent diagonalization of electron and boson
subsystems. It means that transformed-nonadiabatic fermion and transformed nonadiabatic
boson operators obey not only standard anticommutation and commutation relations within
the individual subsystems,

{aP’aQ}: 0’ {aP'aa}:é‘PQ' [br’bs]zo’ [br'b;]:é‘rs’ (86)
but, like the original and adiabatic operators, transformed nonadiabatic operators of both
subsystems have to commute mutually, i.e. also commutation relations have to hold,
[a,.b,]=0, [a,.b/]=0 (87)
With respect to the fermion transformation relations (84), the form of transformation relations
for boson operators that fully respects conditions (87) is,

b =b, +qu“<§erQ(P)a;aQ . be =b; +%(&,FQ(P))+a;aQ (88)

At this moment, the canonical transformation can be realized. The new nonadiabatic, bar-
less operators (84,88), replace adiabatic double-bar operators in the adiabatic form of system
Hamiltonian (B20a-20e). More details of this transformation, relation between d(P) and ¢(P)
elements of transformation matrices and treatment of the resulting nonadiabatic system

Hamiltonian is presented in [33a] and in the Appendix B.
It can be shown that also this transformation preserve total number of particles, i.e.

N=Saja, =N=Ya;a, = aa =N (89)
P P P

Invariant of transformation is now momentum operator,

Pr=(b,—b;)=3r=(Er—E:)¢5=(ﬁr—5;), P =P %P, (90)

However, coordinate operator is transformed up to first order of Taylor’s expansion, as,

Q =(b, +b;)= (Er +E§)— 2> ¢ (PhRsag = Q, - 2> ¢ (Phsag =
PQ PQ

- ) (92)
= Qr - ZZG}Z’Q (Ph;ao
PQ
i.e. B
Q =Q, #Q, (91a)
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For nonadiabatic (Q,P)-dependent spinorbitals |(pp (x,Q, P)) which are the basis functions

of the nonadiabatic (Q,P)-dependent electronic wave function of the ground state (Do(r,Q, P),
expressed over crude-adiabatic orbitals can be derived,

|¢)P(x,Q,P))=a;(x,Q,P)|O)=(E;—ZCLR@a ZCPRPrawo( QP,PZ)J|O>=

=|¢p(X,0,0))—%‘,C£R@|¢R (x,O,O))—ZcPR P @n (%,0,0) + ...

Nonadiabatic wave function (92) in contrast to adiabatic wave function (75) is modulated not
only by the instantaneous nuclear coordinates {Q }of particular vibration (phonon) modes {r}
but modulation is also over corresponding instantaneous nuclear momenta {PF}. The weight
of momentum modulation is proportional to the P-dependent transformation coefficientsc,y .
It represents first derivative of €., matrix element with respect to nuclear momentum P,
(coefficient of transformation matrix in first order of Taylor’s expansion),
o % (P)

oP,
From Appendix C, it is obvious that these coefficients reflect not only strength of electron-
vibration (phonon) coupling but mainly magnitude of nonadiabaticity. For nonadiabatic

situation, i.e. antiadiabatic state‘g,O(R)—g,i(Rj < hw, , the weight-of such P-modulated state

(92)

can be considerably large.

IV. Dependence of electronic energy on nuclear vibration displacements and momenta
Nuclear Q,P-dependent form of the transformed electronic Hamiltonian (Appendix B)
and approximate solution of the coefficients of transformation matrices (Appendix C) allow
straightforward derivation of approximate analytic forms of the electronic energy corrections.
These corrections are calculated with respect to electronic energy terms that are obtained on
crude-adiabatic level at particular fixed nuclear configuration R.

IV.1. Correction to electronic ground state energy — zero-particle term correction
With respect to the solution (C2a,b) of approximate GCPHF equations (Cla,b), correction
to the electronic ground state energy, i.e. zero-particle term correction (B10a) is,

R unocc occ h unocc occ
AELy = Yo ([enf eu]) [ DHICH (93)
TAl (82 - ) (ha)
The Q matrix is a symmetric matrix of the form,

2 2 ho

Qo = ha)r( " j => U -
A Z Zr: (gg - 88 )2 —(hw, )
As it seen from (93) for standard adiabatic Q-dependent state, the electronic ground state
energy correction AE,is reduced to the adiabatic DBOC AE¢ (a) (A30a, 46) which is always

AT

r
— CPQ

PQ

(93a)

e —gQ‘ — 0, the correction

is basically zero,
LN (93b)

AE(Zad) :%:ha)r(czl‘zjz m
A |

For an antiadiabatic state when inequality ‘g,"(R)—gﬁ(R)khwr holds, correction to

r
Al

electronic ground state energy (93) is negative and represents stabilization contribution to the
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electronic ground state energy. This contribution can be considerably large and reach the
extreme negative value for left-hand side limit toward singular point in (93). Singular point
itself is excluded (Appendix C). The correction is always negative for the extreme case (C3b)

of strong nonadiabatic limit, 7w, /|e — 58‘ — oo However, the contribution in this case does

not represent the largest possible negative value and it is equal to,

AE(osna) = _Z ha)r (

rAl

oy e lua[
) Yl (93¢)
w o,

For quasi-momentum k,q-space representation of multiband solids, the corresponding
equation for correction to electronic ground state energy can be derived straightforwardly
from (93). It is based on the correspondence relations for boson and fermion quantities in real
space and complex quasi-momentum space representations. In particular, the following
transcription relations are used;
normal modes: r - q, T —> —q

occupied spinorbital: I — Rk, o - with o spin and occupation factor f, that obey Fermi-Dirac
statistics (for T=0 K, f, =1, i.e. occupied state below Fermi level),
unoccupied spinorbital: A— Sk',o" - with occupation factor (1- f,.) that obey Fermi-Dirac
statistics (for T=0 K, f,.=0, i.e. unoccupied state above Fermi level)

Ar
CAI

one-electron HF-orbital energies: occupied states below Fermi level, e’ — &7,

unoccupied states above Fermi level, &, — &g,

matrix element of electron-vibration(phonon) coupling with quasi-momentum conservation:
ujp, —»uld =ut=u

Then, with respect to (k;-k) symmetry, the temperature dependent form of energy
correction to electronic ground state (93) in quasi-momentum space representation has the

form,

' hao,.
AE(,) =2 L A P K-k o ron o
" {R(UZS:(W)[M;L; ‘ k( ‘ }(gf. —g )2 _(ha)k'—k )2 D Prc 7 P (94)

Summations in (94) are over all bands { ¢, 9.} and k points of 1% BZ of multiband system,

including intraband contributions, i.e. g, , 0. , K =K', Whileg! <& ; & > &;.
For T=0 K, relation (94) is reduced to,

AE (1) = 2 Tl Dy (94a)
=) [R(k)z,s:(k')[%‘ ‘ (53-—53)2‘(h0)k'k)zﬂ

In (94a), the wave vector k corresponds to states fully occupied below Fermi Ievel(fk =1),
and wave vector k’ corresponds to empty — virtual states above Fermi-level (f,. =0).

IV.2. Corrections to one-particle term

Nonadiabatic form of one-particle pure fermion part of the Hamiltonian (boson
excitations independent) has the form (B11). There is also boson excitations dependent part,
which is represented in Appendix B by the expression valid for boson vacuum (B14b). The
Q,P-dependent corrections are represented by terms that follow after the first crude-adiabatic
term in (B11) and by all terms of (B14b). Restriction to first order of electron-
vibration(phonon) coupling allows to neglect first summation in (B14b) and for equilibrium
geometry the second term in (B11) equals zero. The terms that are the products of electron-
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vibration(phonon) coupling and coulomb two-electron interactions can be expected to be
negligible comparing to electron-vibration(phonon) coupling terms and can also be neglected
(fifth sum in B11 and third and forth sum in B14b). In solids, due to translation symmetry, the
forth sum in (B11) equals zero. Then, one-particle correction has the form,

= S o Slenct 6165 X et -6 ) Wi

rPQ (95)

+z((gg — e\ len | +len 2)—27@@ Re(Erycr )jN[a;aP]
rPR
IV.2.1. Nonadiabatic polarons
The diagonal form of the one-particle correction (95) is,
r 2 Ar 2 p 2 ~r |2 +
AHep dg Zfla)( UCPA‘ ~[Cpa j_Z( PIl ij[aPaP]"'
A | (96)

2

A~

CPR

#3568 -t f[etal + 6] ) - 200, Refegects N oz
rPR

Substitution for transformation coefficients (C2a,b) yields simple expression for electron-
vibration(phonon) interaction part of the Hamiltonian,

()= 3| Ty

PI
h S—&’+h
P | AzP € P g/.\_ 0) I;tng_g| + C()r

N [a;ap] (96a)

It can be rearranged into the form that is more convenient for solid state interpretation,

. 1 .
Ha(00)= eirer) | \&p — &8 ) o, Nleia, | (96h)
Y ho, .
_ 2rpl(zp;ﬁ‘ll*)|p| ‘ (gg B 8,0)2 B (ha)r )2 N [apap]

Transcription of (96b) to quasi-momentum k,g-space of multiband solids is based on the
following correspondence: r ->q; P— Pk,oc; R—>Rk—-q,0; | - Sk—q,0 (occupation

factor f,_,); ep > &5 &g = &0, & — &, Theresulting formis,

H,(dg)= > (%‘uq‘z (80 o1 N[a,:aakya]J_

k _Ek—q)_ha’q

Pk,Rk—q
h (96¢)
%)
4 f q Nla*
P““[qzkf;‘u‘ e el (o, f [akaaka]J

Expression (96c) represents total one-electron energy correction on the general Q,P-
dependent level due to electron-vibration(phonon) interactions. The first term of (96c) is
standard adiabatic (Q-dependent) polaron as it can be derived from Frohlich Hamiltonian by
the Lee-Low-Pines transformation [48]. The second term of (96c) is the correction to polaron
energy that arises due to dependence of electronic motion not only on nuclear coordinates but
also on the nuclear momenta P (nonadiabatic modification of the BOA). This term can be
interpreted as a correction to the energy of individual polaron by an effective field created by
all other polarons of the system.
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IV.2.2. Correction to orbital energies of occupied and unoccupied states. Energy gap opening
in one-particle spectrum of quasi-degenerate states at Fermi level
The expression (96) for correction to one-particle term covers contributions of boson
excitation independent part (first sum) as well of boson excitations dependent part (second
sum). At finite temperature, due to boson excitations, contribution of the second term in (96)
will be reproduced as multiples of this term, which by itself represents contribution at boson
vacuum (0 K). Since second sum runs over all states, occupied and unoccupied, this
contribution does not change character of one-electron spectrum (i.e. position of energy levels
with respect to Fermi level), only population of states is changed. More over, for quasi-
continuum of states at Fermi level contribution of this term can be negligibly small since the
term is odd function of (gg -gg) and contributions from occupied and unoccupied states will
tend to cancel mutually. On the other hand, character of one-particle spectrum can be changed
through contribution of the first term due to separate summations that run separately over
occupied and unoccupied states. More-over, magnitude of the change in orbital positions is
temperature dependent through the temperature dependence of the population of states.
At these circumstances, for investigation of possible changes in the character of one-
electron spectrum of system due to electron-vibration(phonon) interactions on Q,P-dependent
level, the first term of (96) is crucial. For correction to orbital energy Ag, of particular state

&p follows,
o= Zho S )3

Final, corrected orbital energy is,

gp = &p + A&, (973)
Let us consider only the couple of quasi-degenerate states at Fermi level, occupied state & and
unoccupied state £, a situation that can characterize couple of states in antiadiabatic state,
‘gﬁ(R)— g,O(R)‘ << ho, . From (97) and from the structure of Q matrix (93a) follows directly,
Ag, = (gA —82)2 -Q, >0, Ag, =Q,,=Q,, <0, Ag, =-A¢, (98)
It means that orbital energy-of unoccupied state has been increased, ¢, > ¢5, and orbital

energy of the occupied state has been decreased, ¢, < &’. The same results follow also from
(96a). It confirms the dominant role of the first term in (96) for one-particle spectrum
correction. This analysis can be generalized for a set of quasi-degenerate occupied {J}and
unoccupied {B}states (quasi-continuum of states) at Fermi level. Then, with respect to the
fact that for antiadiabatic state correction to the ground electronic state (93) is

negativeZQ A <0, the following relations can be derived,
Al

2 2

Ar
—|Cpa

'
Cpi

Ar
CPI

r
CPA

unocc occ unocc 0occ

Agg =Y Qp—=> 0y 20, A, =) 0, -0, <0, (98a)
A | A |

| ticular,

n particu f;]I;CC 2 o - : -

Ag. = ur r - up ‘ (98b)
¢ Zr: ZA:‘ > (gg - 2)2 —(ha)r )2 ZZ o (gg —5,0)2 —(ha)r )2

unocc 2 hao occ 2 ho

A _ TH r _ u” r (98C)

- Z ;‘ * (‘9? _82)2 _(ha)r )2 le ! (g? _glo)2 _(ha)r )2
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At finite temperature T, for a correction Ag,to an arbitrary stateep, from the set of quasi-

degenerate occupied and unoccupied states at Fermi level can be written,

Aeo(T)=>"Qp (-2 fQ) , {Q} - set of quasi-degenerate states at Fermi level (99)
Q

The occupation factor f, obeys Fermi-Dirac statistics,

1
fo = (exp[ gi ;ﬂJ +1J , Eq = gg +Ag, (99a)

B

It is evident that for temperature 0 K, expression (99) reduces to (97).
From (99), temperature dependence of energy gap that is open in one-particle spectrum at
Fermi level can be derived [33b] in the form,

A(T)zA(o)tgh(@j (100)

4k, T
The gap is defined as the energy difference of lowest lying corrected unoccupied state &g, o)
and highest lying corrected occupied state & ,ovo)- At temperature 0 K holds,

A(0)= (SB(LUMO) + “C"J(HOMO)‘) (100a)
Factor 4 in the denominator of the argument of tgh in (100) follows from the assumption that
at Fermi level density of quasi-degenerate occupied {gj’ and unoccupied {gg }states of the band

with gap opening is the same and consequently &g yyo) = ‘gJ(HOMO)‘. This factor can be larger

or smaller than 4, depending on the actual difference in the density of states.
It is trivial to show that the corrections to orbital energies are negligibly small (basically

zero) for a system in adiabatic state when Ag" >> .

IV.3. Two-particle term correction. Correction to electron correlation energy

Nonadiabatic form of two-particle pure fermion part of the Hamiltonian (boson excitations
independent) has the form (B12). Boson excitations dependent part is represented in the
Appendix B by the expression valid for boson vacuum (Bl4c). The Q,P-dependent
corrections are represented by terms that follow in (B12) after the first crude-adiabatic term
(electron correlation energy on crude-adiabatic level for fixed nuclear configuration R, — see
32, 32a) and by all terms of (B14c). Like in the case of treatment of the one-particle term
correction, the terms that are the products of electron-vibration(phonon) coupling and
coulomb two-electron interactions can be expected to be negligible comparing to electron-
vibration(phonon) coupling terms, and can be neglected (i.e. all terms in B1l4c and fourth,
fifth, sixth and seventh sum in B12). In solids, due to translation symmetry, the third sum in
(B12) equals zero. Then the correction to electron correlation energy due to dependence of
electronic motion on nuclear vibration displacements and momenta reduces to a single term,
AH! = > ho, (c{,chg —éPRé;;)N[a;agasaR] (101)

rPQRS

Substitution for transformation coefficients (C2a,b) yields,

AHC = ZU;RUQ; ho, ((gg —.93 ng —58)— (ha)r )2)

P eors(PIRQS) ((gg -&p )2 —(nw, )’ X(gg - 58 )2 ~(ho, )2)
Transcription of (101a) to quasi-momentum k,g-space representation of solids is based on the
following correspondence: r »>q; P—>k+0,0; Q—>k',o' ; R>k,o ; S—>k'+q,0'".
Resulting final form is,

N [a;ag asay ] (101a)
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. ho ((50 —goxgo. —50.)—(ha) )2)
AH — q 2 q k+q k k'+q k q N + +' a. '
ep R(k)S(k')kk'qaa"(qI:O) ((5';?+q B 5;? )2 B (ha)q )2 1(5£'+q B 88. )2 B (ha)q )2) [ak+q,aak o Xeigo ak,a’]
(101b)

V. Conclusion

It has been shown that Q,P-dependent modification of the BOA for ground electronic state can be
derived by sequence of canonical transformations of the basis set functions. The effect of nuclear
coordinates Q and momenta P on electronic structure is presented in the form of corrections to zero,
one and two-particle terms of clumped nuclear Hamiltonian.

The nuclear dynamics dependence (P-dependent modification of the BOA) is crucial for a system
that in the ground electronic state undergoes transition from adiabatic (o << E) into antiadiabatic (® >
Er) state at vibration motion of nuclei. In the antiadiabatic state, correction to electronic ground state
energy (zero-particle correction) is negative and system can be stabilized in antiadiabatic state at
distorted geometry with respect to the adiabatic equilibrium structure. Stabilization effect is solely the
consequence of nuclear dynamics (P), which is crucial in antiadiabatic state.

One-particle term correction represents correction to polaron energy and corrects also one-particle
spectrum of the system. In antiadiabatic state, the gap in one-particle spectrum of quasi-degenerate
states (quasi-continuum) at Fermi level can be opened.

Two-particle term correction represents correction to electron correlation energy. It has been shown
that nuclear dynamics always increases electron correlation until system, at nuclear motion, remains in
a bound state.

In case when system remains at vibration motion of nuclei in adiabatic state, the influence of
nuclear dynamics (P-dependence) is negligible. In this case, all basic effects are covered through
nuclear coordinates (Q-dependence) within the adiabatic BOA and standard results of solid state (or
molecular) physics are recovered.

Corresponding corrections to electronic wave function are also specified. It has been shown that
electronic wave function in the antiadiabatic state is strongly modulated by momenta P of nuclei in the
phonon mode that induces transition from adiabatic into antiadiabatic state.

Study of the electronic ground state of superconductors from the stand-point of Q,P-
dependent modification of the BOA is the subject of the following paper - part 1.
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Appendix A: Adiabatic quasi-particle transformation

In the general form of the electron- vibration Hamiltonian,

H T ( )+ ENN( ) ZhPQ(Qk aQ + ZVPQRSa aQaS R? (Al)
PQRS

the crude-adiabatic fermlon (a ,a)and boson (b ,b) creation and annihilation operators are

replaced by the new quasi-particle operators, adiabatic fermion and boson creation and

=t =

annihilation operators — (a ,a), (b b)

a, = ZCF’Q( )aQ ' =; = %:(CPQ (6)) a, (A2)

b, = ZdrpQ(Q)ép a, . b =b’ +Z( rPQ( )) dq (A3)
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The expansion coefficients c,,,d s, — i.e. operators of the quasi-particle transformation (A2,
A3), are defined as functions of the nuclear coordinate operators Q over the Taylor’ series,

cral@)= 21 TR, Q, 1 (@)= 30520, -2, (A4)

[ k=0 S;..Sy

=4+ = =+ =

Requirement that the new quasi-particles, (a ,a) , (b ,b), have to obey the same anti-
commutation an commutation relations as the original crude-adiabatic electrons and phonons
(37, 37a,b), results in condition of unitarity for transformation operators c,, (Q )

ZCPRC(SR = §PQ (A5)
R
and in the following relation between c,, (6 ) and d (6 ) transformation operators,
dpq :ZC;P[ RQ] and dpq +dige =0 (A6)
R

Expansion of (A4) up to the second order, which fully cover harmonic vibration, generates the
other important relations,

=8pq + Cho +Cop =0, Chiy +Chp =—Z(c;chR +c§,chR)
R
0
d pg _CPQ ’ rPQ +ZCRPCRQ (AT)

It can be shown that transformatlons (A2, A3) preserve the total number of fermions and
nuclear coordinate operator is invariant of transformation,

N=Yaia, =Y a8 =N, Q=Q (A8)
P P

The transformations (A2, A3) form a transformation group, i.e. for inverse transformations

hold, N
ZCPQUam ‘5=§(CPQ(5))+-a5 A9
b= ZdrpQ(Q a, E*=?+Pz(drpQ6))Ei (A10)
WherEas, )
Cro (6) = Cro (6) = (CQP (G)y (Al1)

(0} (@)=-T cre (@ Qecs @) (A12)

The crucial point at the solution of this problem is quantization of the nuclear part of the
Hamiltonian (A1),

mod
H, = Hg Zha) (b b, +2j (A13)
In general, th|s part can be written as the sum of nuclear kinetic and nuclear potential energy,
Hg = Eq (P)+ E ot (Q) (A14)
whereas,
E.(Q)=EHQ)+VQ) (AL5)

The standard, quadratic, part of the nuclear potential energy EﬁfN) (6 ) is corrected now by

some, yet unknown, potential energy term VN(Z)((j) that is also quadratic function of
coordinate operators. This correction originates from the interaction of vibrating nuclei with
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electrons. In general, kinetic energy of vibration motion can also be corrected by some, yet
unknown quadratic function of nuclear momenta operatorsw, (5) i.e.

En(P) =T, (P)+ W (P) (A16)
On the adiabatic level, however, kinetic energy correction is negligibly small and it is
neglected. It becomes important only when the Born-Oppenheimer approximation is

broken,‘E}f(R)— ES (Reql <hwm,, i.e. in the case when electrons due to theirs final mass are

n

not able to follow nuclear motion adiabatically. This correction is not present in [40] and in
what follows it has been introduced just with respect to subsequent nonadiabatic
transformation as it is specified in the present work.

The Hamiltonian (A1) can now be formally written as the sum of two parts, electronic Ha and
nuclear part Hg,

H = HatHg (AL17)
The nuclear part is specified by egs. (A13-16), and Ha is,

HA = ENN (6)_Er(\|2N) (6)_\/1\52)(6)_ ( ) ZhPQ(Qh aQ += ZVPQRSa aQaSaR (A18)

PQRS
For particular orders of the Taylor S expan3|on the electronic part (A18) has the form,
H x50 = Emn (R Z heo (Ry )@, += > PésvaRSa - a53,3, (A19a)
AiL0) = ZENNQ +ZUPQQ 3,3, (A19b)
RQr
1 A O 1 AN 5+t
H oo =~ 2 V0 QQs +2 D UukQ.Q,3:a, (A19c)
2 rs 2 PQrs
1 "D D
H A2(0,2) _EZWN PP (A19d)

In the notation used,H ,; (k) i stands for the order of Taylor’ series expansion in crude

adiabatic representation, whereas j stands for the order of the coordinate operator Q and k

stands for the order of momentum operator P within the given order iof the Taylor’s
expansion.
The adiabatic quasi-particle transformations (A2, A3, A9, A10), up to the second order of

Taylor’s expansion (A4), generate the terms H o and HB,(,k)
Ai(j, I,

stand now for the i-th order of Taylor series expansion in adiabatic representatlon the j-th
order of the coordinate operator Qand the k-th order of momentum operator P within the

given order of the Taylor’s expansion.
Up to the 2" order expansion in Q, P and in 2" order expansion of the operators of quasi-

particle transformation (Cp,, d pg )» the particular terms (Al19a-d) and (A13) transform as,

whereas i, j, k in i(j,k)

H £0(00) > H 00) +H D) +H 20) (A20a)
H yi00) = HTLO) + H77A2(2,0) (A20b)
H 500 = H 222.0) (A20c)
H A2(02) H (A20d)

A2(0,2)
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He =H BO(0.0) H B0(0,0) +H B1(0.0) +H B2(L1) +H B2(0,0) (A20e)
The form of transformed terms is,
H =% (R ZhPQ Jarag + = ZVPQRSaPEQESER (A21)
A0(0,0) 2 sors
i = =Y Eyw Q +Z[UPQ +Z(h§QcRQ + hpoChe )}Q araq +
r PQr (A22)

_ =t =t+= =

o r 0 A
+ Z (VPQTS Crr + VrqrsCre Nr@pPaoasar
PQRSTr

—_ = =4 =

1 rs 1 rs rs*
+Z[EUPQ +Z(EhSR . +2h° b+ UfeChg +Ug CRP\J+ZhRSCRPCSQ:| ,Q.apaq +

0 rs 0 rs* 0 r S 0 r* . s* 0 0 r*.s
t5 Z {VPQTS Crr T VirsCrp + Z [VPQTK CrrCks T VrkrsCrpCio T Z(VTQKS ~ V1osk )CTPCKR ] }
PORSTrs K

= = =t=+= =

.QrQsapaQasaR

(A23)
= —EZWN“EES (A24)
Hoos = Heo Zha) (b br + 2] (A25)

_ 0
H o %hwrdfPQPrapaQ (A26)
:__zhwrd:m( P.Q,+Q.P: hrao (A27)

rsPQ
z_zha)r PR rRQaPaQ - Z‘,ha)rdrF‘RerSa‘F’aQang (A28)
PQRr PQRSr

Since quasi-particle transformations preserve total number of fermions, the Wick’s theorem
can be applied to all terms with fermion operators resulting in the normal product form and
corresponding. contractions. It enables SCF solution of the electron-vibration problem. It
should be noticed that after application of Wick’s theorem, general set of all spinorbitals (P,
Q, R, S) is divided on two distinct groups, occupied spinorbitals (lI,J,..) and unoccupied
spinorbitals (A,B,..). Treatment of the particular transformed terms and solution of the
problem is described in [40].

The main points of the solution are:

The pure fermion part of the Hamiltonian (Wick’s theorem is applied to all terms with

fermion operators, but pure fermion part is represented only by terms without boson
operators) is sum of three terms,

He a0)(Ro) = H (e (Ro )+ H ooy (R )+ H{ (o) (Ry) (A29)

a/ The ground state adiabatic total electronic energy is represented by zero-particle term (i.e.
scalar quantity, contribution of contractions of fermion operators),
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H I(:)(ad)(RO ) = Ef;e(cad)(Ro )+ AE(%d) = (EI?IN (R + ESCF ) Zha) (A30)

rAl
As it is seen from (A30), the ground state crude-adiabatic total electronic energy E

(R,) at

fixed nuclear geometry R, is due to electron-vibration (phonon) coupling on the adiabatic
level corrected by the term,

AE(g) =D ho,

rAl

0(cad

(A30a)

This correction is contribution of contractions of the one and two-particle terms of (A28). In
(A30a), summation runs over all normal modes (r), the unoccupied orbitals (A) and occupied
orbitals (I).

b/ The one-particle term covers adiabatic correction to the crude-adiabatic HF orbital
energies,

HE (o) ZEP cad) [aP ap] Zha) (ZCPACQA Zcm CQI] {a;ZQ} (A31)

rPQ
In (A31), {P, Q} stands for total set of orbitals, whereas {A} represents the subset of
unoccupied orbitals and {1} represents the subset of occupied orbitals.
c/ The two-particle term covers adiabatic correction to the crude-adiabatic electron correlation
energy,

" 1 a+tata & S
He ) (Ro) =5 S Vs N[EF 8 B8R |+ D o, (cPRcSQ)N[apaQasaR} (A32)
PQRS rPQRS

The terms of the Hamiltonian that contain after the transformation and Wick’s theorem
application the fermion and boson operators, result in the analog of the CPHF equations and

in the equation for the nuclear potential energy correction V,°

U;Q + (‘gg - ‘98 k};Q + z [(VF(’)IQA - VgIAQ )C;d - (VgAQl - V|0A|Q ):{A]Z 5;5PQ (A33)
Al
and
Vi = 2up D (unch +uich) (A34)
1 Al

Diagonalization of (A33) yields transformation coefficients (c;, ). It enables to calculate all

corrections on the adiabatic level (see, [40, 41]). Knowledge of the nuclear potential energy
correction V,;’ enables to solve secular equations of nuclear motion,

Z(%Z EyinE pot + @ 5nja =0 (A35)
t S

with the normalization condition for eigenvectrors a,

ZE SO _’Z o, (A35a)

Solutlon of the electron-vibration problem on the adiabatic level is then an iterative SCF
procedure of coupled electronic, CPHF and nuclear equations. If contribution of the
differences in two-electron coulomb terms in (A33), i.e. the third Ihs-term in (A33), can be

neglected with respect to (58 —gg) differences, then formal analytic expression for corrected
normal mode frequencies on adiabatic level can be written in the analytic form,

1 2
h =ha, -2(ho, )’ ' A36
a)r(ad) @, ( a)r) ; (82 _g|0 )(CAI ) ( )

The normal mode energy correction,
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2 1 Y
= 2(ho, ) ;m(cm) (A36a)
is due to adiabatic correction (V) to nuclear potential energy E,(fh} .
The normal mode energy correction (A36a) is identical to the normal mode energy correction
that can be obtained as nonadiabatic correction in second order of perturbation theory
assuming single boson excitation processes (see expression C2a forcy, ),

Aw, = -2(ho, )’ z
Al

(82 — glo ) (A36b)

(62 2 - (hoo, |

The term nonadiabatic is related to the fact that contributions to the correction arise due to
virtual transitions between occupied {I} and unoccupied {A} states. In this case, the
unperturbed part of the Hamiltonian is represented by the terms A21, A25 and term A26
represents perturbation.

Appendix B: Nonadiabatic, P-dependent transformation of adiabatic Q-dependent variables.
Q, P- dependent form of electronic Hamiltonian

=+ =

Transformation of adiabatic variables(a ,a) (?E) to nonadiabatic variables (a*,a),( *,b)

has been introduced in Section 111.2. In particular,

ZR zzsléRs (PhS’ z; :ZS:(GRS( a51 ZCRS (7;5' ag = ( (E)) Z; (B1)

and,
b =b, +Z(JAIrF,Q(P)a;aQ b= b’ +Z(CT,PQ(P))+a;aQ (Bla)

=4 =

b, =bx Zdrpo( FPZQ . by =b; +Z( rPQ( )) arao (B1b)

Since transformation matrix C(P) is unitary matrix (85a) and anticommutation and
commutations relations (86,87) have to hold, then following relation between matrix elements
Cpo and d,, of corresponding transformation matrices can be derived,

arPQ = Z(éRP )+ Ff 'éRQ J (BZ)
R

IEaIso holds,

A —(d,ge) =0 (B3)

and,

6ra(P) = P ()= -2 00 P PP

It should be reminded that mvarlant of the transformation is beside the total number of
particles (89) also momentum operator (90), i.e. P = P.

Transformation coefficients 6PQ,& o — 1.€. operators of the transformations (B1), are defined
as functions of the nuclear momenta operators P through the Taylor’ series,

Z > PPy dipo(P) Z Y d PP, (B4)

r1 T 51 -Sk

Up to second order of Taylor’s expansion then holds,
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0 ot A ot Ast A ars
Coo = Opq+ Cho cgp =0, G +Con =ZR:(CLRC3R 83560 ) (B5)

0 ~
drPQ PQ 1 rP CPQ +ZCIS?PC|2Q (BG)

Nonadiabatic, bar-less, varlables (B1) are now introduced into the adiabatic form of the
Hamiltonian (A20a-A20e) instead of adiabatic double-bar variables. The particular terms, up
to second order of Taylor’s expansion in boson operators, transform as

w60~ Haooo) + Haon) + Hazpor) (B7a)
g~ Moy Haay + Houogoo) (B7b)
g > o) (B7¢)
a0z > a2 (B7d)
s000) > Teo00) + Hauwo)  Hezny + Heooo) (B7e)
Hoog = Hewon + Heaoo) (B7)
Hozag = Howw (B7g)
a200 > He200) (B7h)

In terms (B7a-h), subscripts i(j,k) stand now for the i-th order of Taylor’ series expansion in
nonadiabatic representation, while j is the order of the coordinate operator Q and the k is the
order of momentum operator P within the given order of the Taylor’s expansion.

The form of particular terms is,

H A(00) = Zh R )aPaQ += ZVPQRSa acsasaR (BBa)
2 pors
0 r* +
ALL0) = ZENNQ +Z|:UPQ +Z( PQCRQ Y hRQCRP):lQraPaQ +
Por (B8b)
+ Z(VPQTS Crr + VTQRs Crp braPaQ asapg
PQRSTY
0 Aar 0 Ar* + 0 Ar 0 Ar* + A+
H AL0,1) = Z(hPRCRQ hroCre )PraPaQ + Z(VPQTSCTR — V1ors Crp )DraPaQaS ag (B8c)
rPQR rPQRST
1 roas 0 0 o s 0 A1 0 s
H a0 ZE Z {UPQCRQ RQCRP +Z[(hPRCRS + hgsCrp }:SQ (hSR + hRQC }3 ] .
rsPQR
.(Q P, +P,Q,Jasa, +
0 r \as 0 r* r* \as* 0 0 AS*
+ Py Z [(VPQTS ~Vparu Crs >:UQ + (VTURS Cro — VTQRS Cry }:UP + (VTQUS ~ Vigsu )(CTR Cor — ClrCrp )]
2 1spQRSTU

(Qr s PsQr)a;a(SasaR
(B8d)
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HA2 (2,0) ZV 5Q,Q, +
0 Ars 0 .rs* r s r s*
+ Z|:2 +2( hPRC +5 h QCrp 1 UprCro +uRQCRPj RSCRPCSQ:|Q Q, aPaQ

1 0 rs 0 rs* 0 r As 0 r* \§* 0 0 r*.s
+ E z {VPQTS Cir t VrgrsCrp t Z [VPQTU CrrCys + VrursCrpCug + 2(VTQUS — Vrosu }:TP Cur ] }
rsPQRST U

Q,Qapa5asay
(B8e)
1., . - px a
s 0 rs 0 rs 0 r s
H po0.2) = ZW PP, + Z( horCrg += hRQ . ZhRS wCe |PPasa, +
rsPQR 2 2
1 0 ars 0 ars 0 ar as 0 Arrast 0 0 ar*as
+—- Z{VPQTSCTR + V1ors Crp +Z[VPQTU CrrCus t VrursCreCug t+ 2(VTQSU ~V1qus )CTPCUR] }
rSPQRST U
o
P Pasazasa,
(B8f)

A200 2ZENN rPQa aQ
rPQ

0 r 0 .r* 0 0 J0 +
{[U R T hPSCSR + hSRCSP ):|drRQ |:URQ + § ,( RS SQ + h CSR )j|drPR }'aPaQ +
rPQR

0 Ar 0 ~r* 0 +A+
+2) | Upg + hPTcTR +hcr )}ersaPaQasaR +
rPQR

J0 0 P* 0
[(VPQTS CTU VPQTU CTS )d o T (VTQRs Cry — VTURs CTQ )d wu T (VTQus VTqu XCTP dn R T CUR d rPT )]
rPQRSTU

apagasag +2 Z(VPQVTCVS + Vygst Cvp )d,RU 8pa5a58, 8 as

rPQRSTUV
(B8g)
Heot0,0) Zha) (b b, +2j (B8h)
HBllO) Zha) drPQQraPaQ (B8i)
rPQ
H B1(01) — _Zha)rdropo Pra;ao (B8j)
rPQ
1 =+=
B2(L1) — & O Uipg =N Uspq N\, I + F U, Jaraag
H 5 PQh dso —hadls [Q,P, + P.Q, Jara (B8K)
H B2(2,0) — 0 (Bal)
Heo0.2) Zha) (drPRéRQ rRQéRP )Dr a;aQ (B8m)
rsPQR
Bzoo Zhw( rprd rRQ d:)PRd?RQ ;aQ + Zhw (drPRd:)QS drPPRdrOQS b;aéaSaR (B8n)
PQRF PQRST

Nonadiabatic transformations (B1) preserve the total number of fermions (89) and Wick’s
theorem can be applied to all nonadiabatic terms with fermion operators. The result is normal
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product form with corresponding contractions. It enables SCF solution of the electron-
vibration problem. Also in this case after application of Wick’s theorem, general set of all
spinorbitals (P, Q, R, S) is divided on two groups, occupied spinorbitals (1,J) and unoccupied
spinorbitals (A,B). Treatment of the particular transformed terms and solution of the problem
is tedious but straightforward [33a].

Also in this case, the pure fermion part of the Hamiltonian (Wick’s theorem is applied to
all terms with fermion operators, but pure fermion part is represented only by terms without
boson operators, i.e. B8a, B8g, B8n) is sum of three terms,

H F(na)(RO ) =H g(na)(RO )+ H l,:(na)(RO )+ H I,:'(na)(RO) (Bg)

a/ The ground state nonadiabatic total electronic energy is represented by zero-particle term
(i.e. scalar quantity - contribution of contractions of fermion operators)

H E(na)(RO): (;?cad)(RO)'i_ AE(Ona) = (El(\)IN (R + EgCF ) Zhw ( Ci ) (BlO)

As it is seen from (B10), the ground state crude-adiabatic total electronic energy E(‘f(cad)(Ro) at

fixed nuclear geometry Ry (contractions of B8a) is due to electron-vibration (phonon)
coupling on the nonadiabatic level corrected by the difference of two terms,

AES, =23 hav, 6 ( | ZJZZM,( e 2] (B10a)
rAl rAl

This correction arises as contribution of the contractions of one and two-particle terms of
(B8g) and (B8n). The form of (B10a) indicates that in principle, electronic ground state

energy correction on nonadiabatic level AE(na)(R ) can also be negative, in contrast to

electronic ground state energy correction on adiabatic level (46, A30a),AE&d)(RO), that is

always positive. It depends on the value of nonadiabatic contributions¢}, , i.e. on an extent of

participation of the nuclear Kinetic effect on electronic motion. In (B10a), summation runs
over all normal modes (r), the unoccupied orbitals (A) and occupied orbitals (1).

b/ The one-particle term has the form,

Ro) = Zplgg(cad)(RO)N [E;gP ]_ ZZ Er*éLQN [a;aQ]+

rPQ
; zhwr[z(c;Acg’; st ) lencq — & )]N o, )+
PQ A I (B11)

+ 3 ((0(P)- p(P)g™+ (h(Q)- p(Q))ed JéioNlazag -

rPQ

- Z ((VI;IQA Vg )élr; + (V;Aol ~Voaig )é; ) N [a;aq]
rPQAI

In (B11) shorthand notation has been used,

r _ 0 r 0 r 0 r 0 r
Vpors = Z (VPQTS Crr T Vport C1s — VrorsCpr — Verrs Cor )
T

For symbols h, p, holds; h(A)=0, h()=1, p(A)=1, p(1)=0.

As it is seen from (B11), this part represents electronic spectrum of the system corrected (all
terms following after the first, crude adiabatic, term) by nonadiabatic electron-
vibration(phonon) interactions.
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¢/ The two-particle fermion part of the Hamiltonian has the form,

" 1 [ —
H F(na)(RO ) = E ZVgQRS(cad)N [aP ERERER ]+

PQRS

roAr* Ar Ar* +at
+ Zha)r(cPRcSQ —CPRCSQ)\I[aPaQaSaR]—
rPQRS

—2) ehtioN [a;agasap ]+
rPQS

0 r 0 r 0 0 ro|Ar* +at
+ z Z [VPQTSCTI ~VporiCrs + (VTQSI ~Vrais >:PT ]CRI N [aPaQaS ag ]+

rPQRST |
0 r 0 r 0 0 r Arx +At
+ > Z[VTIRSCQT ~VrorsCir +(V|QTS ~Vigst )CTR ]CIPN [aPaQaSaR]_
rPQRST |
[ 0 r 0 r ( 0 0 )Cr ]ér*N[a+a+a a ] BlZ
- Z Z VearsCra = Vearalrs T WVrasa — Vroas JCpr fCraN |8p808585 | — ( )
rPQRST A
_ Zz[o SN, +(o 0 )g’]é“N[a* +aa]
ViarsCor ~ Vrogrstar T Waors — Vagst Frr 1lap pdgdsapg
rPQRST A

This two-particle term represents electron correlation energy corrected (all terms following
after the first, crude adiabatic, term) by nonadiabatic electron-vibration(phonon) interactions.
The pure fermion part of the Hamiltonian (B9, B10, B11, B12) does not depend on boson
operators. It means that this part of the Hamiltonian is invariant of vibration (phonon)
excitations. However, besides the terms B8a,g,n that constitute pure fermion part, all other
terms, i.e. B8b,c,d,e,f,h,i,j,k,m depend on boson operators. These terms constitute an effective

fermion Hamiltonian that depends on boson excitations. For boson vacuum|0) , the effective
partis written asH .,
H s =(0|B8b + B8c + B8d + B8e + B8f + B8h + BSi + B8 + B8M|0) (B13)

Integration over boson operators and application of Wick’s theorem on fermion operators
divides (B13) on the sum of three terms,

_HO " "
a/ Effective zero-particle term represents vibration zero-point energy, i.e.

1
H °F> = EZha}, (Bl4a)

This term and term B(10) represent total energy of the system that account for nonadiabatic
electron-vibration(phonon) interactions in its electronic ground state at boson vacuum.
b/ Effective one-particle term has the form,

ZU N [apap]+
( C; 2) - 2ho, Re(é;Rc{,; ))N [a;ap ]+
rPR

0 0 roA~rx Ar Arx +
(Z VPRPA VPRAP XCIRCIA + CIRCIA) (VPRPI - VPRIPXCARCAI + CarCa )jN [aPaP]+
PAI\ R

rPAI(

(B14b)

|\>||—\

Arr 0 0 m Arr +
VPIPA VPIAP XC —Chp )_ (VPAPI - VPAIPXCIA —Cia )}N [aPaP]
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¢/ Form of the effective two-particle term is,

" 1

Hie, = P Z(VSQTS (CTR Cre )+ VTQRS( - ))\I [a ayasag ]_
rPQRST
r * ~ Ak r r* ~ Apk (Bl4C)
1 (VSQTU (CTRCISrU + CTchgu )+ V?URS (CPT Cuo + CI;T CGQ ))+ .
) 2 Z At ars N[aPaQasaR]
+ 2(VTQSU VTQus XCPTCPR + CprCp )

The equations that hold for coefficients of transformation matrices C and C can be

derived from one-particle terms in first order of Taylor’s expansion in boson operators, i.e.

from terms B8b,c,i and B8j after Wick’s theorem application. Diagonalization imposed on
these terms, i.e.

rPQRST

Higo) = ZgPQ N[asas] . Higy =ZP§;PrN[a;aP] (B15)
results in coupled equations for transfo;mation coefficients cp, and €y ;
Urg + (67 =24 B + Zllvon =viua K = (hscr =vouo Fis =100 61 =100 (BL69)
(28 - 28 i +Z[(VP|QA Vino Bin = Voar = Viuo BiaJ- 10,65 = 87654 (B16b)

Solution of dlagonallzatlon equations yields off-diagonal adiabatic transformation coefficients
Cpo and off-diagonal nonadiabatic transformation coefficients Cf,, P=Q. For diagonal

elements holds cg, =€, =0 (see A7, B5; Cp =Cpg =Jpo)- In adiabatic limit when¢ =0,
andhw, << \gg —58‘, eq. B16b can be omitted and adiabatic CPHF equations (A33) are

recovered. In this context, coupled set of equations (B16a, B16b) represents generalized
CPHF (GCPHF) equations.

From zero-particle terms (these arise as contractions after Wick’s theorem application) in
second-order of Taylor’s expansion in-Q (B8e, B8I) or in P (B8f, B8m) respectively, for
corrections to potential energy V,° and for corrections to nuclear kinetic energy W,® can be

derived,
Vg = Zuﬂs + Z[(uer +ho Gl fon + (u i +ha)r6|SA)c/rxl ] (B17a)
i Al

W = 2ha, Y ¢, Ch, (B17h)
Al

These corrections modify nuclear potential and nuclear kinetic  energy,
ie.E,,(Q)=E&Q)+V?@Q), Ew(P)=T,(P)+W,?(P) that are used at solution of secular

equations of nuclear motion — see (A35). In the adiabatic limit¢ =0, correction to potential
energy is reduced to adiabatic expression (A34) and kinetic energy correction equals zero.
TermW,is different from zero only if nonadiabatic effect cannot be neglected, i.e. in case

when system is in antiadiabatic state and inequality ‘g,o(R)— g,‘i(Rj < ha, holds.

Appendix C: Approximate solution of GCPHF equations

Knowledge of the matrix elements ¢ and ¢ of transformation matrices enables calculation of
all corrections to nonadiabatic Q,P-dependent form of electronic Hamiltonian that are
consequence of electron-vibration (phonon) interactions. The exact treatment requires
iterative solution of diagonalization equations that are represented by coupled set of GCPHF
equations (B16a,b) and secular equations of nuclear motion (A35) for particular fixed nuclear
configuration Ro. If it is accepted that electron-vibration(phonon) interactions influence
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system Hamiltonian mainly over one-electron term, as it is general treatment in solid-state
theory (see the form of interaction term (39b) and also (1) in the present paper), then an
approximate solution of GCPHF equations (B16a,b) can be obtained. In this case, it is
reasonable to neglect contributions of two-electron terms in GCPHF equations (B16a,b). The
diagonalization equations are then of the approximate form (Cl1a,b),

Ut +(£8 —£3 )by —hw,Ehy = £554, (Cla)
(eg - &5 )6,2(? —h,Cpg = EpBpg (C1b)
With respect to calibration for diagonal matrix elements,ci, =€y, =0, solution of

approximate diagonalization equations (Cla,b) for off-diagonal matrix elements can be
derived in the analytic form,

ro_ ur (88 - 88) . P¢Q (Cza)
e (ho, )’ - (52 — &g )2
&Ly = hao, P-Q (C2b)

PQ 2 2 ;
(ho, ) = (8 - 3)
Two extreme limits are interesting;
a/ strong adiabatic regime, i, /|3 — 58‘ — 0. In this case,

ur

r PQ ar

Cro =75 5y.and Cpp =0 (C3a)
Eq —&p

b/ strong nonadiabatic regime, f®, /

r

¢l =0, and &, = —F (C3b)
o " he

£p — gg‘ — 0. In this case,

r

For an intermediate regime, both transformation coefficients contribute to energy corrections.
The limit, 7o, /|&} —gg‘ — 1, would result in singularities of (C2a,b) but this case can be

excluded since for transformation coefficients have to hold <1l>

Ar
Cro

Cro with respect to

validity of the Taylor’ series expansions (A4, B4).
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