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Undoped and p and n doped AgSbX 2 (X = Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.

To enlighten electron transport behaviours observed in AgSbSe 2 and AgSbTe 2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX 2 approximates) and disordered systems (Ag 1- x Sb x X), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX 2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semi-metallic properties of the analyzed samples.

Introduction

The ternary chalcogenides AgSbSe 2 and AgSbTe 2 belongs to family of semiconductors with disordered NaCl cubic structure (s.g. Fm3m) in which silver and antimony occupy metal sublattice [START_REF] Geller | Ternary Semiconducting Compounds witch Sodium Chloride-Like Structure: AgSbSe 2 , AgSbTe 2 , AgBiS 2 , AgBiSe 2[END_REF][START_REF] Wernick | New semiconducting ternary compounds[END_REF][START_REF] Wolfe | Anomalous Hall Effect in AgSbTe 2[END_REF]. Alloys of both compounds either in single-crystal form or in thin-film form have received considerable interest owing to their optical and electronic properties. They are attractive phase-change (PC) materials used as a switching medium in rewritable optical memories [START_REF] Wang | Assessment of Se-based phase change alloy as a candidate for non-volatile electronic memory applications[END_REF][START_REF] Xu | Crystallization and C-RAM application of Agdoped Sb 2 Te 3 material[END_REF][START_REF] Zayed | Optical absorption behavior of AgSbTe 2 thin films[END_REF][START_REF] Soliman | Optical properties of thermally vacuum evaporated AgSbSe 2 thin films[END_REF][START_REF] Wand | Phase change properties of ternary AgSbSe 2 chalcogenide films[END_REF][START_REF] Patel | Effect of Substrate Temperature On the Crystalline of AgSbSe 2 Films[END_REF][START_REF] Abdelghany | Electrical conductivity and thermoelectric power of AgSbSe 2[END_REF][START_REF] Patel | Growth and Crystallization of AgSbSe 2 Films[END_REF].

Both compounds are also very interesting due to their thermoelectric properties (see Table1), especially very low thermal conductivity λ < 1 Wm -1 K -1 which is a consequence of their disordered structure. Cubic AgSbTe 2 is known as a good p-type thermoelectric material, but due to its thermodynamical instability below 360°C it slowly decomposes to secondary phases: α-Ag 2 Te and Sb 2 Te 3 , what limits its practical application. It is expected that alloying of AgSbTe 2 with other cubic compounds, such us: GeTe (so called TAGS alloys [START_REF] Rowe | Handbook of Thermoelectrics[END_REF]), PbTe and SnTe, can help to stabilize the NaCl structure. However, these alloys are also known to be complicated by their inhomogeneity, despite reports of complete solid solutions in phase diagram determinations [START_REF] Chen | Macroscopic thermoelectric inhomogeneities in (AgSbTe 2 ) x (PbTe) 1-x[END_REF]. Exceptionally high thermoelectric figure of merit ZT = 2, has been reported for (Ag 1-y SbTe 2 ) 0.05 (PbTe) 0.95 , which may involve the nanoscale second-phase inclusions. Authors believe that these inclusions are responsible for quantum effects increasing thermoelectric figure of merit ZT. Although, conflicting reports on the same materials claim only ZT of 1 or less. Chen et al. [START_REF] Chen | Macroscopic thermoelectric inhomogeneities in (AgSbTe 2 ) x (PbTe) 1-x[END_REF] have shown that these materials are multiphase on the scale of millimetres despite appearing homogeneous by X-ray diffraction and routine electron microscopy. Using a scanning Seebeck microprobe, authors found significant variation of Seebeck coefficient including both n-type and p-type behaviour in the same sample. It can not be excluded that complicated behaviour of the alloys can be result of the complex nature of their parent compounds.

A c c e p t e d m a n u s c r i p t

Despite that AgSbSe 2 and AgSbTe 2 based materials are widely investigated, the basic information about properties of pure compounds, e.g. the nature of the disorder or electronic structure is still not quite clear.

Experimental and theoretical details

The starting materials were prepared by direct fusion of stoichiometric amounts of their constituent elements (Ag, Sb, Se, Te) of purity 99.99% in sealed, evacuated silica tubes covered inside with thin layer of pyrolytical carbon. Tubes were heated in temperature controlled, cradled furnace at 700°C for 1 h, with continuous swinging to complete mixing and reaction. Tubes were gradually cooled to room temperature to obtain polycrystalline ingots. The materials were ground and hot-pressed in graphite dies (argon atmosphere, t = 20 min, p = 30 MPa, at T = 410 °C) and slowly cooled down with rate of 1 °C/min to the room temperature in order to avoid fracturing. Because AgSbTe 2 can undergo decomposition below 360°C some of AgSbTe 2 samples were heated in evacuated quartz ampoules to 450°C and rapidly cooled down by quenching in water, in order to obtain single-phased materials. The samples of 10 mm in diameter and about 20 mm in height, were cut with a diamond saw and polished.

The prepared materials were characterized by X-ray diffractometer (X'Peret Philips system, with filtered CuK α radiation) and scanning electron microscopy (JEOL JSM-840)

with an electron-probe microanalysis apparatus (EPMA). The lattice parameters were calculated from the experimental X-ray patterns using FullProf refinement program implementing Rietveld method. Mass densities were determined using the immersion technique with water as the liquid.

The electrical and thermal transport properties were measured over the temperature range from 300 to 600 K. The electrical conductivity was determined by four-probe AC technique.

The Seebeck coefficient and thermal conductivity measurements were conducted in radiation- Electronic structure computations have been performed using full potential Green function Korringa-Kohn-Rostoker method [START_REF] Yoneda | Temperature dependence of the figure-of-merit of[END_REF][START_REF] Bansil | Electronic structure and magnetism of Fe 3-x V x X (X=Si, Ga, and Al) alloys by the KKR-CPA method[END_REF][START_REF] Wojciechowski | Thermoelectric properties and electronic structure of CoSb 3 doped with Se and Te[END_REF] in ordered approximants of AgSbX 2 (see, Sec. 3.1) as well as hypothetical AgX and SbX. To account for chemical disorder in NaCltype Ag 1-x Sb x X alloys, the coherent potential approximation (CPA) has been incorporated.

The crystal potential of muffin-tin form has been constructed within the LDA framework, using von Barth-Hedin parametrization for the exchange-correlation part. For well-converged charges and potentials, the total, site-decomposed and l-decomposed density of states (DOS)

were computed applying k-space tetrahedron integration. The Fermi level was determined from the generalised Lloyd formula [START_REF] Stopa | Linear aspects of the Korringa-Kohn-Rostoker formalism[END_REF][START_REF] Kaprzyk | Green's function and a generalized Lloyd formula for the density of states in disordered muffin-tin alloys[END_REF]. The electronic properties of fully disordered system within the NaCl-type structure, corresponding to the chemical formula Ag 0.5 Sb 0.5 X A c c e p t e d m a n u s c r i p t

(

Results and discussion

Structural analysis

Scanning electron microscopy (SEM) observations with simultaneous EPMA analysis of the samples revealed that the resulting materials had an uniform microstructure and chemical composition. The AgSbTe 2 samples contained well-formed grains with sizes ranging from 5

to 50 µm (Fig. 1a) . The AgSbSe 2 samples had a glass-like texture without visible grain borders (Fig. 1b). The measured densities were found to be 98% of the theoretical value.

XRD analysis confirmed that obtained AgSbSe 2 samples were single-phased. In case of AgSbTe 2 only small amounts (appr. <3%) of secondary phase inclusions were observed.

The Rietveld method was used for refining of the structure parameters for the disordered NaCl structure model (Fm3m) as well as different models of ordered ABX 2 -type structures.

There were considered the most common superstructures of NaCl: e.g.

α- NaFeO 2 (R-3m), LiTbS 2 (Fd-3m) and γ- LiFeO 2 (I4 1 /amd).
The final results of refinement for the AgSbSe 2 material are presented in the Table 2.

Analysis of "goodness of fit" statistical parameters for the refinement results, such as: χ 2 , R wp , and Durbin-Watson statistics, show that all the models describe experimental data practically with the same precision and therefore they are indistinguishable by these criteria.

Moreover, in all calculated, theoretical X-ray diffraction patterns, intensities of characteristic superstructure reflections are lower than the experimental background signal. These results are a consequence of very similar (different only of about 5%) X-ray scattering factors of Ag and Sb for CuK α  radiation. Therefore, it seems that the nature of ordering in the AgSbSe 2 and AgSbTe 2 structure can not be easily investigated by classical X-ray diffraction techniques.

However, preliminary structural calculations show that such analysis would be possible by using neutron radiation method.

Transport properties
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Studies of temperature dependences of electrical conductivity revealed that AgSbSe 2 and AgSbTe 2 exhibit semimetallic/semiconducting behavior. The activation energies E a for both compounds, determined using an Arrhenius law, are about 0.03 eV and remain close to another result of 0.09 eV obtained from electrical investigations (Table 1). On the other hand, these data are much lower than values of direct band gap energy E In this model, the Seebeck coefficient α can be expressed as follows:
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The carrier concentration n can be expressed as follows:
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where: k B is the Boltzmann's constant, η -reduced Fermi energy, F x -Fermi integral of order

x, m * -effective mass, T-absolute temperature.
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At first, we calculated the reduced Fermi levels from the experimental Seebeck coefficient data using Eq. ( 2), then determined electron effective masses from Eq. (3) using the calculated reduced Fermi energies and the experimental Hall carrier concentration values.

The calculated effective masses of carriers are significantly different: 2.7 for AgSbTe 2 and 0.7 for AgSbSe 2 , despite of comparable mobility (40-50 cm 2 s -1 V -1 ). Dissimilar effective masses m * can indicate some differences in band structure of both compounds near the Fermi energy.

The samples of AgSbSe 2 and AgSbTe 2 exhibit very low thermal conductivity (see Table 3). The measured value for AgSbSe 2 at room temperature is with very good agreement with literature data (Table 1), whereas thermal conductivity of AgSbTe 2 is higher than earlier reported value (0.62 W•m -1 K -1 ). The discrepancy can be result of different amount of secondary phase inclusions and larger electrical conductivity.

Total thermal conductivity λ of solids is the sum of carrier λ el. and lattice λ latt components:

latt el λ λ λ + = (7) 
In order to explain impact of the electronic contribution on thermal conductivity, the Wiedemann-Franz-Lorenz law was applied and the values of thermal conductivity λ el were estimated:

σ λ LT el = ( 8 
)
where L is the Lorenz number which may vary from 1.485 • 10 -8 V 2 K -2 for nondegenerated semiconductors to 2.443 • 10 -8 V 2 K -2 for metals and for strongly degenerated semiconductors.

However, above Lorenz number are not applicable for partially degenerated semiconductors. Therefore, an attempt have been undertaken to determine the Lorenz number L and the electronic part of thermal conductivity with the use of Fermi-Dirac statistics as follows:

A c c e p t e d m a n u s c r i p t

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⋅ + + - ⋅ + + = + + 2 1 2 2 2 ) ( ) ( 1 2 ) ( ) ( 1 3 η η η η r r r r B F F r r F F r r e k L ( 9 
)
The Fermi level values, which were used in the above calculations, alike those of carrier effective masses, were estimated with the use of absolute Seebeck coefficient experimental data (Eq. 4.). The results of computations are presented in Table 3; they indicate that about 18% and 5% of the total thermal conductivity, for AgSbTe 2 and AgSbSe 2 respectively, can be contributed to its electronic part.

The thermoelectric figure of merit ZT which can be expressed as:

T ZT l el λ λ σ α + = 2 (10)
is commonly used parameter for evaluation of thermoelectric materials.

Maximal values of ZT were measured at temperature of 525 K and are equal about 0.2 and 0.1 for AgSbTe 2 and AgSbSe 2 respectively. However, optimization of carrier concentration (e.g. by doping) should enhance properties of both materials.

Electronic structure

Binary compounds AgX and SbX

The investigations of electronic structure characteristics in hypothetical AgX and SbX allowed to get more insight into formation of semimetallic properties in AgSbX 2 . From Fig. 4, presenting densities of states (DOS) in AgX and SbX, one learns that there is a deep valley (or a true energy gap) in the electronic spectra, above the 8 th or 18 th band in the case of SbX and AgX, respectively. Since the binary compounds possess the valence electron number (VEN) different from the aforementioned ones, i.e. VEN = 11 in SbX and VEN = 17 in AgX, they exhibit metallic ground state. Electronic structure of AgX consists of lower lying s-like states (containing 2 electrons), which comes essentially from X atom, and the block of presumably d-Ag and p-X states,
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enabling to accommodate 16 electrons. The semiconducting or semimetallic properties would be expected if all these bands are completely filled (VEN = 18). Since AgX possess 17 valence electrons (if accounting for s-X states), the Fermi level (E F ) is placed in upper region of the valence bands (VB). Consequently, AgX (VEN=17) can be viewed as one-hole compounds, since one electron must be added to reach the true energy gap (or a deep DOS valley).

Electronic structure of SbX consists of four successive blocks of bands. The lower lying two separate and narrow s-DOS peaks arrive from X (the lowest band) and Sb atoms. The higher lying two blocks of strongly hybridised p-states from X and Sb, are separated by a true gap or a deep DOS minimum seen in SbSe and SbTe, respectively. Hence, the semiconducting properties would be expected for VEN = 8 and then SbX (VEN = 9) systems can be viewed as one-electron compounds due to the Fermi level falling at the bottom of the conduction band (CB). From the analysis of hypothetical binary parent compounds, we see that there is a slight difference between selenides and tellurides concerning electronic states near E F , i.e. the presence of the energy gap separating VB and CB in AgSe and SbSe, whereas only a deep DOS minimum in AgTe and SbTe. This behaviour will have some consequences on differences in electronic structure of AgSbX 2 .

Ternary ordered AgSbX 2

Our computations of different crystallographically ordered approximants of AgSbX 2

(resulting in the X-ray diffraction patterns similar to that received for disordered NaCl-type structure, see Table 4) show that their ground state electronic properties are really very close.

In all considered cases, the Fermi level (E F ) was found either in the deep valley (semimetallic-like state) due to a small overlap of VB and CB, (Fig. 5) or it exhibits a pseudogap behaviour (VB and CB edges contact at E F ), depending on different atomic arrangements.

Thus, the question whether AgSbX 2 may form superstructures different from NaCl-type alloy
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should be addressed to the forthcoming neutron diffraction measurements as well as the accurate electronic structure computations including the analysis of the total energy. At the moment we focus more attention on electronic structure of the disordered model of AgSbX 2 , which may serve as a reference case for further consideration of possible atomic superstructures. Noteworthy, the fully disordered model of AgSbX 2 is widely accepted in the literature.

Fully disordered Ag 0.5 Sb 0.5 X

The appearance of semimetallic properties in the NaCl-type disordered AgSbX 2 is not so straightforward from the aforementioned analysis (see, Sec. 3.3.1) of the binary parent compounds (and predictions of rigid band model). The Fermi level was supposed to fall into the gap at VEN = 8 or VEN = 18 (accounting for d-shell), which can be expected when adding/removing one or three electrons to/from AgX or SbX, respectively (antimony possesses four electrons more than silver). In Ag 1-x Sb x X alloy, Ag 4d-states are noticeably present in the valence band but they are almost completely filled, which can be detected from almost vanishing d-contribution to total DOS above E F (Fig. 4). In Sb (Z = 51), due to more attractive crystal potential comparing to that of Ag (Z = 47), the 4d-states are practically expelled from the valence states (they form a semi-core levels) and only sp-states are present.

Hence, the onset of pseudo-gap on DOS can not be expected neither at VEN = 8 nor at VEN = 18, due to specific hybridization of different type of orbitals (d-orbitals of Ag and p-orbitals of Sb) in alloyed system. Fig. 5 illustrates the DOS evolution in Ag 1-x Sb x X, which can not be interpreted in terms of rigid band behaviour and a simple shift of E F with the variation of the number of valence electrons. Since the change in the relative Ag/Sb content strongly modifies the population of d-type Ag and sp-type Sb orbitals (and also their hybridization), one can establish the simple rule for appearance of the pseudo-gap at the Fermi level in Ag 0.5 Sb 0. and X -2 . The energy gap above the 7 th band in Ag 0.5 Sb 0.5 X was partly confirmed in view of accurate KKR-CPA computations (Fig. 6). However, our results rather indicate a pseudo-gap behaviour than the appearance of the band gap at E F in both compounds. Furthermore, the evolution of DOS in both series of compounds shows subtle differences, since Ag 0.5 Sb 0.5 Te exhibits slightly higher DOS value at E F than Ag 0.5 Sb 0.5 Se. This feature well corroborates with electronic properties detected in binary (true energy gap in selenides against a deep valley in tellurides). Interestingly, more 'metallic-like' character of Ag 0.5 Sb 0.5 Te (lower thermopower and electrical resistivity) with respect to Ag 0.5 Sb 0.5 Se was observed from our electron transport properties measurements.

However, accurate investigations of the Fermi surface properties (including computations of k-dependent electron group velocities and life-times [20]) are necessary to obtain more quantitative insight into the thermopower behaviour of these compounds.

Conclusions

We have studied the crystallographic and physical properties of AgSbSe 2 and AgSbTe 2 polycrystalline samples. Structural analysis using Rietveld refinement method shows that the nature of the disorder can not be handling by X-ray powder diffraction method due to similar scattering factors for Ag and Sb atoms. However, preliminary calculations show that such analysis would be possible by using neutron radiation method, what will be undertaken in further investigations.

Both compounds exhibit promising thermoelectric properties, in particular very low Besides, we suggest that the presence of low DOS near E F in AgSbX 2 allows easily tuning the Seebeck coefficient sign upon suitable doping/substitution. However, n-type AgSbX 2 compounds are expected to have smaller thermopower than the presented here p-type materials, as can be roughly detected on the KKR-CPA DOS. 
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  shielded vacuum probe by forcing variable heat flux across the sample and measuring corresponding linear variations of temperature differences and thermoelectric voltage in steady-state conditions. Heat flux, passing by the cold side of the sample, was measured by previously calibrated heat-flux sensor. The results were used for precise calculations of increased heat losses due to very low thermal conductivity of measured samples. The Hall coefficient R H was measured using low frequency (7 Hz) AC sample current of 50 to100 mA/mm 2 in a constant magnetic field of 0.705 T at the room temperature. Carrier concentrations were evaluated from the Hall coefficient R H , assuming a Hall scattering factor A equal to 1.0.

  3 to 0.71 eV) measured by optical method for intrinsic absorption region. It may suggest that results of electrical investigations correspond rather to activation energy of extrinsic charge carriers, but another explanation of discrepancies may lay in significant differences in microstructure of samples (thin layer vs. bulk polycrystalline material).The magnitude of the Seebeck coefficient of AgSbTe 2 at the room temperature is consistent with semimetallic behavior of this sample (68 µV K -1 ). The Seebeck coefficient for AgSbSe 2 is much larger (320 µV K -1 ) what can be an indication of more semiconducting-like character of this compound. Both materials exhibit p-type of conductivity and relatively large Hall concentration of carriers of 1•10 19 and 5•10 19 cm -3 for AgSbSe 2 and AgSbTe 2 respectively. The Seebeck coefficient and Hall carrier concentration data were used to estimation of effective mass of carriers m * , assuming a single parabolic band model with acoustic phonon scattering as a predominant carrier scattering mechanism.

5 XA c c e p t e d m a n u s c r i p t VEN=14.

 5t from the following relation : VEN = 0.5 x 11 [sd-Ag] + 0.5 x 5 [sp-Sb] + 6 [sp-Se], yielding The above-mentioned VEN rule is in line with the simple ionic condition leading to a saturation of chemical bonds and then an onset of the semiconducting state in AgSbX 2 system, if accounting for the expected valence states of the constituent atoms, i.e. Ag + , Sb+3 
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  thermal conductivity and quite large, positive Seebeck coefficient. Temperature dependence of electrical conductivity points out semiconducting with a very narrow band (E g ~ 30 meV) or semimetallic properties of these materials. The AgSbSe 2 and AgSbTe 2 compounds exhibit p-type conductivity, what suggests that Fermi level is shifted on the valence bands edge.The electronic structure calculations in fully disordered as well as in different ordered models of AgSbX 2 confirm practically in all cases that their ground state properties are semimetallic due to a slight overlapping of conduction and valence bands near the Fermi energy. Interestingly, in AgSbSe 2 the calculated DOS value is about twice smaller than the corresponding value in AgSbTe 2 . All the DOS features well support electrical resistivity measurements exhibiting ρ weakly dependent with T (resulting in the activation energy gap close to zero in both systems) as well as the ρ values larger for AgSbSe 2 . Moreover, the measured RT thermopower, which is much larger in AgSbSe 2 (α = 320 µV K -1 ) than in AgSbTe 2 (α = 68 µV K -1 ), can be related to relatively stronger variation of valence-like DOS as well as lower N(E F ) in the former.

Fig. 1 SEMFig. 2

 12 Fig. 1 SEM picture of the fracture of a) AgSbTe 2 and b) AgSbSe 2 sample.
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 3456 Fig. 3 Temperature dependence of the Seebeck coefficient values of AgSbSe 2 and AgSbTe 2 .

  

  

  

Table 1 Selected physical properties of AgSbSe 2 and AgSbTe 2 .

 1 

	Parameter		AgSbTe 2	AgSbSe 2
	Space group		Fm3m	Fm3m
	Cell size [Å]	6.078 [1]	5.786 [1]
	Density [g•cm -3 ]	7.12 [1]	6.60 [1]
	Band gap [eV]	0.71 ** [6] 1.65 *** [6]	0.091 * [11] 0.34 * [10] 1.03 *** [7]
	Thermal [W•m -1 •K -1 ]	conductivity	0.64 [3]	0.82 [9]
	Electrical conductivity [S•cm -1 ]	130-150 [3]	154 [14]
	Seebeck coeff. [µV•K -1 ]	165-240 [3]	
	Melting point [°C]	555 [2]	610 [2]
	* electrical measurements; ** direct gap -optical measurements;
	*** indirect gap -optical measurements	

Table 2 . Results of Rietveld refinement for the disordered structure (Fm3m) and selected possible ordered systems of AgSbSe 2 .

 2 

	Short-range order	s.g.	a [Å]	b [Å]	c [Å]	χ 2	R wp	DW-stat.
	disordered	Fm3m	5.7883	-	-	2.15	27.3	0.51
		Superstructures (short-range ordered structures)	
	A1	R-3m	4.0933 4.0933 20.0475 2.25	28	0.48
	B1	Fd-3m	11.5766	-	-	2.15	27.3	0.51
	F1	I4 1 /amd	5.7883 5.7883 11.5766 2.25	28	0.48
	E1	Pmmn	5.7883	-	-	2.15	27.3	0.50

Table 3 . Thermoelectric properties of undoped AgSbTe 2 and AgSbSe 2 samples at room temperature.

 3 Elec. contr. of therm. conduct. λ el [W•m

	Parameter	AgSbTe 2	AgSbSe 2
	Cell size a [Å]	6.0816	5.7883
	Density ρ [g•cm -3 ]	7.15	6.60
	Band gap E g [meV]	26	30
	Electrical conductivity σ [S•cm -1 ]	332	79
	Seebeck coeff. [µV•K -1 ] (at 320 K)	68	320
	Thermal conductivity λ [W•m -1 •K -1 ]	1.15	0.81
	-1 K -1 ]	0.2	0.04
	Type of majority carriers	p	p
	Hall carrier concentration n [cm -3 ]	5.0 • 10 19	1.0 • 10 19
	Hall mobility µ [cm 2 s -1 V -1 ]	41	49.2
	Carrier effective mass m*/m 0	2.7	0.7
	ZT parameter (at 525 K)	0.2	0.1

Table 4 Results of computations for the disordered structure (Fm3m) and selected possible ordered systems of AgSbSe 2 .

 4 

	Short-range		Band gap	Position of the
		s.g.		
	order		E g	Fermi level E f
	disordered	Fm3m	semimetal	minimum of DOS
	A1	R-3m	semimetal	valence bands
	B1	Fd-3m	~0.1 eV	minimum of DOS
	F1	I4 1 /amd	semimetal	conduction bands
	E1	Pmmn	semimetal	valence bands
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