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Abstract 

Tumor necrosis factor (TNF)-α, a pleiotropic cytokine that exerts a variety of 

effects, such as growth promotion, growth inhibition, angiogenesis, cytotoxicity, 

inflammation, and immunomodulation, has been implicated in several 

inflammatory conditions. It plays a significant role in many inflammatory 

diseases of lung. Given that there is significant literature supporting the 

pathobiologic role of TNF-α in asthma, mainly in severe refractory asthma, and 

COPD, TNF-α inhibitors (infliximab, golimumab and etanercept) are now 

regarded as potential new medications in asthma and COPD management. The 

studies reported in literature indicate that TNF-α inhibitors are effective in a 

relatively small subgroup of patients with severe asthma, possibly defined by 

an increased TNF axis, but they seem to be ineffective in COPD, although an 

observational study demonstrated that TNF-α inhibitors were associated with a 

reduction in the rate of COPD hospitalisation among patients with COPD 

receiving these agents to treat their rheumatoid arthritis. These findings 

require a smart approach because there is still good reason to target TNF-α, 

perhaps in a more carefully selected patient group. TNF-α treatment should 

therefore not be thrown out, or abandoned. Indeed, since severe asthma and 

COPD are heterogeneous diseases that have characteristics that occur with 

different phenotypes remained poorly characterized and little known about the 

underlying pathobiology contributing to them, it is likely that definition of these 

phenotypes and choice of the right outcome measure will allow us to 

understand which kind of patients can benefit from TNF-α inhibitors. 
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Introduction 

Tumor necrosis factor (TNF)-α, a pleiotropic cytokine that exerts a variety of 

effects, such as growth promotion, growth inhibition, angiogenesis, cytotoxicity, 

inflammation, and immunomodulation [1], has been implicated in several 

inflammatory conditions [2-6]. 

This cytokine is produced predominantly by activated macrophages but also by 

other immune (lymphocytes, natural killer cells, mast cells) as well as stromal 

(endothelial cells, fibroblasts, microglial cells) cells. TNF is synthesized as a 

monomeric type-2 transmembrane protein (tmTNF) that is inserted into the 

membrane as a homotrimer and cleaved by the matrix metalloprotease TNF-α 

converting enzyme (TACE; ADAM17) to a soluble circulating trimer (solTNF); 

both tmTNF and solTNF are biologically active [7, 8]. The balance between 

tmTNF and solTNF signaling is influenced by cell type, activation status of the 

cell, the stimulus eliciting TNF production, TACE activity, and expression of 

endogenous TACE inhibitors leading to divergent TNF-mediated effects on 

cellular viability [9, 10]. 

TNF-α receptors and signaling 

The actions of TNF-α are mediated as well as regulated by its ubiquitously 

expressed TNF receptors 1 (TNF-R1, Tnfrsf1a) and 2 (TNF-R2, Tnfrsf1b), which 

are membrane glycoprotein receptors that specifically bind TNF and 

homotrimers of lymphotoxin A, but the two receptors differ in their expression 

profiles, ligand affinity, cytoplasmic tail structure, and downstream signaling 

pathway activation [11]. TNF-R1 is expressed in most cell types, and can be 

activated by binding of either solTNF or tmTNF, with a preference for solTNF; 

whereas TNF-R2 is expressed primarily by cells of the immune system and by 

endothelial cells, and is preferentially activated by tmTNF [12]. The 

cytoplasmic domains of these receptors are unrelated and are linked to 

different intracellular signalling pathways. 

TNF-R1 and TNF-R2 are assumed to use different intracellular signaling 

pathways and may thus mediate different functions Multiple experimental 
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approaches have shown that TNF-R1 initiates the majority of biological 

functions of TNF-α [13, 14]. The binding of TNF to TNF-R1 leads to the 

recruitment of TRADD (TNF-R1-associated death domain protein) into the 

receptor complex. TRADD subsequently recruits other effector proteins into the 

complex. FADD/MORT1 (FAS-associated death domain protein), TRAF2 (TNF 

receptor associated factor 2), and the death domain kinase RIP (receptor 

interacting protein) have been shown to interact directly with TRADD. While 

FADD/MORT1 is essential for TNF-induced apoptosis through activating a 

caspase cascade, RIP and TRAF2 are critical in the activation of nuclear factor-

κB (NF-κB) and activator protein 1 (AP-1), which regulate the expression of 

numerous immune and inflammatory response genes. Both transcription 

factors are activated through protein kinase cascades culminating in the 

phosphorylation of yet-to-be-identified IκB kinases and the molecularly 

characterized c-jun N-terminal kinases (JNK), respectively. In addition, it has 

been reported that RIP mediates TNF-induced necrotic cell death. For TNF-R2 

signaling, it is known that the occupancy of TNF-R2 by TNF leads to the 

recruitment of TRAF1 and TRAF2 as well as inhibitors of apoptosis protein 1 

and 2 (cIAP1 and cIAP2). However, because most of the research effort from 

many laboratories is devoted to the study of TNF-R1 signaling, it is less clear 

how these molecules correlate to transduce the diverse TNF signals through 

TNF-R2. 

Until recently, the prevailing theory was that the majority of the biological 

effects mediated by TNF-α are achieved through its interaction with TNF-R1 

where the TNF-R2 plays a minor role in binding and redistributing the ligand to 

TNF-R1 in a process coined “ligand passing” [15]. However, there is 

accumulating evidence that signaling through the TNF-R2 influences a number 

of pro-inflammatory responses, including the activation of T cells [16-18], 

myofibroblasts [19], inhibition of angiogenesis and tumor suppression [20]. 

The proteinase TACE can also cleave TNF-R1 and TNF-R2 to yield soluble TNF 

receptors (sTNF-R) that act as competitive non-signalling agonists for TNF. 

sTNF-Rs show a higher degree of affinity for the cytokine than the 

corresponding bound forms. When TNF is bound to these soluble receptors, it 
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can no longer interact with the membrane forms and, therefore, it has been 

speculated that the presence of the soluble forms may constitute a way of 

regulating TNF actions [21]. 

TNF and its receptors may have a number of physiological and pathological 

roles. TNF-α acts as an endogenous mediator of pro-inflammatory cytokine 

stimulation and other cellular responses, including lymphocyte activation and 

migration, and cell proliferation, differentiation and apoptosis [22-24]. 

Moreover, TNF-α can induce reactive oxygen species (ROS) [24, 25] and 

stimulate the induction of various genes involved in inflammation [26-28] 

including interleukin-8 (IL-8). TNF-α also depletes cellular glutathione (GSH), a 

cellular antioxidant [29]. 

Role of TNF-α in asthma and COPD 

TNF-α plays a significant role in many inflammatory diseases of lung. Of the 

various pulmonary diseases, it is implicated in asthma, chronic bronchitis, 

chronic obstructive pulmonary disease (COPD), acute lung injury and acute 

respiratory distress syndrome [30]. Figure 1 illustrates the putative role of 

TNF-α in the pathogenesis of asthma and COPD. 

TNF-α is expressed in asthmatic airways and may play a key role in amplifying 

asthmatic inflammation through the activation of NF-κB, AP-1 and other 

transcription factors [31]. Elevated levels of TNF-α have been observed in 

induced sputum and in bronchoalveolar lavage fluid (BALF) from asthmatic 

patients and up-regulated TNF expression has been detected in alveolar 

macrophages, mast cells, and bronchial epithelial cells [32-39]. TNF-α induces 

the expression of multiple airway epithelial cell genes, including cytokines (IL-5, 

IL-6, IL-8, G-CSF, GM-CSF), chemokines (eotaxin, MCP-1, RANTES), adhesion 

molecules (ICAM-1), extracellular matrix glycoproteins (tenascin), 

neuropeptides (endothelin-1), mucins (MUC-1, MUC-2, MUC-5AC), and 

cytosolic phospholipase A2 [40-51]. TNF-α increases the adhesion of activated 

eosinophils to respiratory epithelial cell cultures and promotes neutrophil 

chemotaxis, adherence, and transendothelial and transepithelial migration 

[52–54]. IgE receptor activation induces TNF-α release from human lung tissue 
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and upregulates eosinophil TNF mRNA levels [55]. TNF-α causes transient 

bronchial hyperresponsiveness (BHR) [56] likely because it decreases M2 

muscarinic receptor expression and promotes recruitment of eosinophils, 

containing major basic protein, an M2 antagonist [57]. It is widely accepted 

that airway hyperreactivity can be caused by dysfunction of neuronal M2 

muscarinic receptors that normally limit acetylcholine release from 

parasympathetic nerves [58]. Nonetheless, genetic polymorphism of the TNF-α 

gene on chromosome 6 is associated with asthma, asthma severity and BHR 

[59]. 

TNF-α is also believed to play a central role in the pathophysiology of COPD 

[60]. It is produced by alveolar macrophages, neutrophils, T cells, mast cells 

and epithelial cells following contact with different pollutants including cigarette 

smoke [61]. TNF-α has been shown in animal models to induce pathological 

features associated with COPD, such as an inflammatory cell infiltrate into the 

lungs, pulmonary fibrosis and emphysema [62, 63]. It enhances neutrophil 

chemotaxis and migration by inducing the expression of chemokine interleukin 

8 (IL-8) and upregulating endothelial adhesion molecules [64, 65]. In vivo, 

elevated levels of TNF-α have been demonstrated in peripheral blood, bronchial 

biopsies, induced sputum and BALF of patients with stable COPD compared 

with control subjects [66-70]. TNF-α has been shown to correlate with body 

mass index (BMI) and cigarette smoke exposure [71, 72] and other 

inflammatory mediators [73] in COPD. A polymorphism of the promoter region 

of the TNF-α gene has been implicated in the occurrence, severity, and 

mortality risk of COPD [74-76]. 

Intriguingly, TNF-α levels in sputum increase significantly during acute 

exacerbations of COPD [77, 78]. TNF-α together with IL-1β has been identified 

as key cytokine that is able to initiate inflammatory cascades during 

exacerbations of severe asthma [79] and COPD [80]. In particular, it has been 

reported that TNF-α is the initial and predictive cytokine released in the 

cascade following lipopolysaccharide (LPS) exposure [80]. 
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Given the role of TNF in the pathogenesis of asthma and COPD, it is obvious to 

assume that TNF-α and/or its soluble receptor may be a target for reducing 

asthma and COPD inflammation. 

TNF-α inhibitors 

The therapeutic goal when administering TNF-α inhibitors is to eliminate the 

surplus of TNF-α in the blood and from sites of inflammation. Reduction should 

be made such that TNF-α levels do not fall below levels that may comprise an 

individual's immuno-competency. Once a TNF-α inhibitor is administrated and 

absorbed from the site of administration, a number of interactions occur 

between tissue/fluids and blood. Upon reaching the target site the TNF 

inhibitors bind to soluble TNFs and TNF expressed on the surface of various 

cells triggering the pharmacologic mechanism of action. There are three 

commercially available biologic agents that inhibit TNF-α – etanercept, 

infliximab, and adalimumab. In addition, two other TNF inhibitors, certolizumab 

pegol and golimumab, are in development. Some recent review articles offer a 

thorough description of these drugs [81, 82]. 

Etanercept is a fully human dimeric fusion protein composed of a TNF-α type II 

receptor and the Fc portion of IgG1. It is administered as a subcutaneous 

injection. Etanercept is a receptor blocker that binds to free-floating and cell-

bound TNF. Once bound to TNF, it prevents TNF actions at its usual receptor 

sites on T cells as well as other cells. Etanercept does not activate complement 

mediated cell lysis. 

Infliximab is a chimeric monoclonal antibody (mAb) composed of the constant 

region of human immunoglobulin and two murine variable regions targeted to 

TNF-α. It has a chimeric binding site, which means that a portion of the protein 

is mouse derived and is recognized as foreign protein by the human immune 

system. This increases the potential for antibodies directed against infliximab, 

which might neutralize its effect. Indeed, chimeric antibodies are designed to 

minimize the human antimouse antibody (HAMA) antigenic response triggered 

by the antigenic part of the mouse component, while retaining a high 

specificity. However, although the immunogenicity profile is reduced, chimeric 
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antibodies such as infliximab can still trigger a human anti-chimeric antibodies 

(HACA) response [83]. This is similar to the HAMA response and reduces the 

antibody's efficacy. Infliximab, once bound to TNF-α, may activate complement 

mediated cell-lysis. Complement mediated cell lysis is believed to be 

responsible for the effectiveness in granulomatous diseases such as Crohn’s 

disease and sarcoidosis. 

Adalimumab is a recombinant human IgG1 mAb that is specific for human TNF. 

It was developed using phage display technology resulting in an antibody with 

human-derived heavy and light chain variable regions and human 

immunoglobulin G constant regions. Adalimumab is administered as a 

subcutaneous injection. The mechanism of action of adalimumab is the same 

as that of infliximab in that it binds to free floating and cell-bound TNF and 

may also induce complement mediated cell lysis. 

The primary difference between the three TNF-α inhibitors is that the receptor 

blocker etanercept does not induce complement and has one binding site for 

TNF-α. The mABs are “classic” immunoglobulins with a Fc portion and two 

arms each with a binding site for TNF-α and both induce the complement 

cascade upon binding to TNF-α. 

Certolizumab is a Fab1 fragment of an IgG1 mAb and lacks effector functions 

because it has no Fc region. Golimumab is IgG1 antibody, which is capable of 

complement fixation and Fc-receptor binding. It is fully human mAbs. 

Safety of TNF-α inhibitors 

Given their mechanisms of action, it is possible that use of TNF-α inhibitors 

may predispose patients to an increased risk of serious and life-threatening 

infection, recrudescence of tuberculosis (TB), and reactivation of hepatitis B.  

The anti-TNF-α therapies have subtly different side-effect profiles. Patients 

taking infliximab appear to have a higher risk of infection from histoplasmosis, 

coccidiomycosis or reactivation TB [84, 85]. Cases of TB were also reported in 

the studies of adalimumab, particularly at doses higher than those that were 

subsequently licensed, suggesting a dose–response effect. The reasons for this 
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remain unclear, but it is possible that, by virtue of their ability to fix 

complement, the monoclonal anti-TNF-α antibodies interfere with granuloma 

formation in a manner that is beneficial in Crohn's disease but detrimental in 

the reactivation of TB, whereas etanercept has neither of these effects. In any 

case, suppression of defense against infections also occurs with etanercept 

treatment, particularly against intracellular growing pathogens. Individual 

cases of a TB reactivation have also been described with the use of etanercept. 

Animal studies have suggested that partial rather than complete TNF blockade 

may allow preservation of the beneficial and anti-inflammatory functions of this 

cytokine in TB immunity [86]. 

The TNF-α inhibitors are contraindicated in patients with unstable congestive 

heart failure (CHF) and should be used only after other agents have failed in 

patients with a past history of CHF who are stable [87]. In particular, there 

have been reports of etanercept-induced CHF [88]. This event appears to be 

very rare, but therapy with etanercept for patients with unstable cardiac 

disease might be best avoided. This is a problem in COPD patients because the 

prevalence of CHF in patients with COPD is known to range from 20% to 32% 

[88]. 

The oncogenic potential of etanercept, particularly for lymphoma, is a much-

debated issue. It may be dependent on the disease state that is being treated. 

Recent reports have suggested a slight (perhaps up to 3-fold) increase in the 

risk of lymphoma, particularly in patients with rheumatoid arthritis [89]. A 

recent meta-analysis involving infliximab and adalimumab demonstrated an 

increase risk of lymphoproliferative diseases and malignancies in patients 

treated with these agents [90]. 

Several patients treated with TNF antagonists have developed multiple 

sclerosis [91]. Others with multiple sclerosis have had exacerbations of their 

disease when treated with these agents. 

At least 2 cases in which the use of infliximab has been associated with 

hepatotoxicity in the absence of other factors have been published [87]. No 
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similar reports of hepatotoxicity caused by etanercept or adalimumab have 

been published [87]. 

TNF-α inhibitors and asthma 

Considering the critical role of TNF-α in the pathogenesis of asthma and the 

need for alternative treatments for those asthmatic patients with severe 

disease who are particularly resistant to conventional therapy, molecules 

targeted at blocking the effects of TNF-α are likely to constitute a considerable 

advance in the management of these difficult patients. Indeed, some trials 

have explored the possibility of using TNF-α inhibitors in asthmatic patients 

(table 1). 

An uncontrolled study of etanercept 25 mg administered subcutaneously twice 

weekly for 12 weeks in 15 patients with severe asthma documented a 

significant (2.5 doubling concentration) improvement in methacholine BHR, a 

240-mL improvement in Forced Expiratory Volume in 1 Second (FEV1), and an 

improvement in asthma quality of life [92]. These findings were confirmed in a 

study that measured markers of TNF-α activity on peripheral-blood monocytes 

in 10 patients with refractory asthma, 10 patients with mild-to-moderate 

asthma, and 10 control subjects and also investigated the effects of treatment 

with etanercept (25 mg twice weekly) in the patients with refractory asthma. 

Antagonism of TNF-α with 10 weeks of etanercept therapy significantly reduced 

the expression of membrane-bound TNF-α by peripheral-blood monocytes and 

improved the provocative concentration of methacholine causing a 20% fall in 

FEV1 (PC20), the asthma-related quality of life, FEV1, and symptom scores, as 

compared with placebo [93]. The baseline expression of membrane-bound 

TNF-α by peripheral-blood monocytes and the extent to which it was reduced 

by etanercept treatment were independently associated with the net 

improvement in both primary outcome measures.  

Although these interesting data indicate a role for etanercept in the treatment 

of asthma, the results of other studies deny such a role. The administration of 

etanercept for 2 weeks to subjects with mild-to-moderate allergic asthma did 

not prevent pulmonary eosinophilia during the late phase response to 
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bronchoscopic segmental allergen challenge and, furthermore, TNF antagonism 

increased pulmonary IL-4 levels [94]. Data from a different study of etanercept 

administered once weekly for 12 weeks in 39 patients with severe 

corticosteroid refractory asthma demonstrated only a small but significant 

improvement in asthma control and systemic inflammation, as measured by 

serum albumin and CRP, with no improvements in the secondary endpoints of 

lung function, Peak Expiratory Flow (PEF) or BHR, supporting the view that if 

anti–TNF-α is to be effective in asthma, it will only be on a relatively small 

subgroup of patients, possibly defined by an increased TNF axis [95]. Minor 

adverse events, including injection site pain and skin rashes, were more 

frequent with etanercept than with placebo. 

Only one study evaluated the effectiveness of infliximab. This mAb reduced 

diurnal PEF variability and, interestingly, the number of mild exacerbations 

encountered, but not morning PEF, in a trial of symptomatic patients with 

moderate asthma despite receiving inhaled corticosteroid (ICS) therapy [96]. 

There were no serious adverse events related to the study agent. 

A trial that assessed the safety and efficacy of golimumab (50, 100, or 200 

mg) through week 52 in a large population of patients with uncontrolled, 

severe persistent asthma was unable to demonstrate significant differences 

were observed for the change in percent-predicted FEV1 or severe 

exacerbations through week 24 [97]. Unfortunately, an unfavourable 

risk/benefit profile led to early discontinuation of therapy with golimumab. 

30.3% of patients treated with golimumab experienced serious adverse events, 

with serious infections occurring frequently. Moreover, one death and eight 

malignancies occurred in the golimumab groups. Nonetheless, careful 

examination of 53 nucleotide polymorphisms in 144 severe asthmatic subjects 

demonstrated a positive association between pharmacologic effect of 

golimumab and a common single nucleotide polymorphism (SNP) in 2 TNF 

receptor genes. Polymorphisms in TNF-α or ADAM17 did not associate with a 

positive effect of golimumab [98]. 

TNF-α inhibitors and COPD 
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In view of the similarities between chronic severe asthma and COPD, it has 

been suggested that blocking the biological effects of TNF-α may be beneficial 

in the treatment of COPD. Although randomised controlled trials to evaluate 

the effectiveness of TNF-α inhibitors in patients with COPD have been few, the 

results of the first studies seem to indicate that they are not real effective in 

this disease (table 2). 

An exploratory study of infliximab treatment in patients with COPD did not 

show a short-term improvement in clinical or inflammatory parameters from 

infliximab treatment in patients with mild-to-moderate COPD, although 

patients so treated did demonstrate an increase in exhaled nitric oxide (eNO) 

[99]. Increased cough was reported by eight patients in the infliximab group. 

In a larger dose-finding study, subjects with moderate to severe COPD 

received infliximab 3 mg/kg or 5 mg/kg or placebo at Weeks 0, 2, 6, 12, 18, 

and 24 and efficacy, health status, and safety were assessed through Week 44. 

No therapeutic benefit was observed in the primary outcome variable: health 

status as assessed by the Chronic Respiratory Questionnaire (CRQ) [100]. 

Similarly, no therapeutic benefit was noted in lung function, dyspnea, or in the 

incidence of moderate to severe COPD exacerbations. A modest trend toward 

improved 6-minute walk test (6-MWT) was demonstrated in the infliximab 

treatment groups, although this did not reach statistical or clinical significance. 

Higher proportions of infliximab-treated subjects discontinued the study agent 

due to adverse events (20–27%) than did placebo-treated subjects (9%). The 

most frequently reported adverse events in the combined infliximab treatment 

groups were COPD exacerbation, upper respiratory tract infection, sinusitis, 

pain, back pain, headache, and diarrhea. The Authors observed no 

opportunistic infections and no differences in the occurrence of infections 

requiring antibiotics, but they did find a higher incidence of pneumonia in 

infliximab-treated subjects and, although not statistically significant, more 

cases of cancer. 

A recent small study population in cachectic patients with COPD revealed no 

change in levels of inflammatory markers in exhaled breath condensate (EBC) 

and minor effects on systemic inflammatory markers following treatment with 
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infliximab (5 mg/kg) administered to patients at weeks 0, 2 and 6 and 

evaluated at weeks 8 and 12, and followed through week 26 [101]. 

Nonetheless, an observational study conducted to evaluate the effectiveness of 

TNF-α antagonists in preventing COPD hospitalisations in a cohort of patients 

diagnosed with both rheumatoid arthritis and COPD identified from a health 

claims database, demonstrated that TNF-α inhibitors were associated with a 

reduction in the rate of COPD hospitalisation among patients with COPD 

receiving these agents to treat their rheumatoid arthritis [102]. This effect, 

however, was due exclusively to a reduction of 50% in the rate of COPD 

hospitalisation with etanercept. The other TNF-α inhibitor under study, namely 

infliximab, did not reduce the risk of COPD hospitalisation.  

What can we learn from trials 

The studies reported in literature indicate that TNF-α inhibitors are effective in 

a relatively small subgroup of patients with severe asthma, possibly defined by 

an increased TNF axis [103], but they seem to be ineffective in COPD, 

although in the study of Rennard et al. [100], the 6-MWT post hoc analyses 

suggested that cachectic individuals, as well as younger individuals, derived 

relatively greater benefit from treatment with infliximab. The discrepancy in 

the results obtained in two inflammatory diseases such as asthma and COPD 

have not been entirely unexpected. In fact, targeting of TNF-α is extremely 

effective in some inflammatory conditions (such as rheumatoid arthritis, 

inflammatory bowel disease and psoriasis), but has proved to be a less useful 

target in other conditions in which efficacy was expected, such as vasculitis, 

but even within rheumatoid arthritis, about one-third of patients show little 

response to this treatment for reasons that are still poorly understood. 

Barnes has suggested that the failure of anti-TNF therapy is more likely a 

result of the fact that COPD is a highly complex inflammatory disease in which 

many other cytokines and mediators are involved, and that blocking a single 

cytokine does not have any effect, as other cytokines such as interleukin (IL)-

1β and IL-6 may play a similar role [104]. In the recent study of Sapey et al. 

[105] that aimed to know the relationships between this cytokine and its 
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antagonists in disease compared with healthy controls, TNF-α, sTNF-R1, and 

sTNF-R2 concentrations were not raised and TNF-α did not correlate with 

markers of disease suggesting that TNF-α is unlikely to be highly active in 

stable COPD. Nonetheless, it remains possible that TNF-α is quiescent when 

COPD is stable and only becomes biologically active (with increased 

concentrations) during exacerbations [106]. Indeed, the substantial increase in 

TNF-α production following LPS exposure and in vivo exacerbation studies 

suggests that the role of TNF-α may be more predominant in acute 

inflammatory episodes rather than in the chronic disease process [80]. 

Therefore, we completely agree with the opinion future studies may be better 

focused on the roles of anti-TNF therapies in preventing or modifying the 

severity of acute exacerbations. In any case, it must be mentioned that there 

is evidence of a subset of patients with polymorphisms of the TNF-α gene (that 

influence gene expression) who have an increased severity of COPD [107] or a 

mucus producing phenotype [108]. 

Although there have been no head-to-head trials, the literature seems to 

indicate that etanercept might be more effective than infliximab in asthma and 

COPD. Intriguingly, infliximab demonstrates clinical benefit in Crohn's disease 

whereas etanercept is ineffective. It is also interesting to note that infliximab 

appears to be less efficacious in smokers compared to non-smokers who suffer 

from Crohn's disease [109]. One might, therefore, speculate that, while the 

two drugs share a common therapeutic target, they might also differ in some 

aspects of their mode of action. 

Although both infliximab and etanercept are potent neutralizers of TNF 

bioactivity, there are fundamental differences in their molecular structures, 

their binding specificities, and the manner in which they neutralize TNF. 

Infliximab, by virtue of being IgGI antibodies, can activate complement and 

bind Fc receptor and it also can bind both monomeric and trimeric solTNF and 

tmTNF, whereas etanercept only binds TNF trimers and interacts with tmTNF 

with reduced avidity, compared with that of infliximab [82, 110-112]. 

Furthermore, infliximab forms stable complexes with soluble TNF-α, whereas 

etanercept tends to form relatively unstable complexes, allowing dissociation of 
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TNF-α and the potential to form a reservoir for binding TNF [110]. Infliximab, 

therefore, completely neutralizes TNF bioactivity, whereas freely diffusing 

etanercept might be considered to redistribute bioavailable TNF from sites of 

production to sites of lower concentration. 

Another difference between etanercept and infliximab is the ability of 

etanercept to neutralize lymphotoxin, a property that is shared by its parent 

receptor TNF-R2 [110, 113]. Lymphotoxin A is involved in the normal 

development of lymphoid tissue and also acts as an inducer of the 

inflammatory response [114]. A further important consequence of the 

structural differences between these drugs is the fact that infliximab, but not 

etanercept, fixes complement, and therefore can lyse cells that express TNF-α 

on their surface [115]. Since TNF-α is initially expressed on the cell surface 

before being cleaved off by TACE, a wide range of cells, including T cells, may 

be susceptible. Indeed, preliminary reports appear to confirm this in vivo, with 

a decrease in absolute numbers of peripheral blood CD4+ T cells (which 

express interferon γ and TNF-α) in patients with ankylosing spondylitis treated 

with infliximab and a reciprocal increase with etanercept [116, 117]. All these 

substantial differences might explain why etanercept is more effective than 

infliximab in asthma and COPD. 

Nonetheless Barnes believes that it is unlikely that any different results would 

be obtained with a different anti-TNF approach using etanercept, as the effects 

of blocking antibodies and soluble receptors are usually similar in terms of 

clinical efficacy in other inflammatory diseases [104]. Unquestionably this 

interpretation is correct. Nonetheless, we are convinced that although the 

overall results of published studies are perhaps disappointing, there is still 

good reason to target TNF-α, perhaps in a more carefully selected patient 

group. TNF-α treatment should therefore not be thrown out, or abandoned. 

The true problem is that patients enrolled in the different trials have been 

considered as subjects of a general population with always the same 

characteristics since we consider severe asthma and also COPD as 

homogeneous diseases, and recruited using arbitrary clinical and physiological 

criteria. On the contrary, severe asthma and COPD are heterogeneous diseases 
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that have features that occur with different phenotypes remained poorly 

characterized and little known about the underlying pathobiology contributing 

to them [118, 119]. Considerable thought should be put into recruitment 

criteria with the emphasis more on identifying and including the at need 

population [120]. It is likely that definition of these phenotypes will allow us to 

study the correct patient population. If we will also be able to choose the right 

outcome measure we understand which kind of patients can benefit from TNF-

α inhibitors. 

We believe that the findings present in the literature require such an approach. 

Otherwise we could not consider a therapeutic option that in a well-identified 

group of patients would meet therapeutic needs not otherwise met. In other 

words, we could risk to throw the baby out with the bath water. 
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Figure 1 - Putative role of TNF-α in the pathogenesis of asthma and COPD. 
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Table 1 - Summary of studies of TNF-α inhibitors in asthma 

Study No patients and 
asthma severity 

Design Treatment Outcomes Results 

Howarth et al. [92] 17 patients with 
severe asthma 

Open label 
uncontrolled 

Etanercept 12 wk  1° ACQ 
2° FEV1, FVC, and 
morning and evening 
PEF, BHR 

Improvement ACQ, 
FEV1, FVC, morning 
and evening PEF, and 
BHR  

Berry et al. [93] 10 patients with 
refractory asthma, 
and 10 patients with 
mild-to-moderate 
asthma 

Randomized placebo 
controlled crossover 

Etanercept 10 wk  1° BHR and AQLQ 
2° FEV1, eNO, 
sputum cell counts  

Improvement AQLQ, 
FEV1, BHR 

 sputum histamine  

Morjaria et al. [95] 39 patients with 
severe corticosteroid 
refractory asthma 

Randomized placebo 
controlled parallel 
group 

Etanercept 12 wk  1° AQLQ 
2° ACQ, FEV1, PEF, 
BHR, exacerbations  

No benefit compared 
with placebo 

Rouhani et al. [94] 
 

26 patients with 
mild-to-moderate 
allergic 
asthma/inhaled β2-
agonists only 

Segmental allergen 
challenge 

Etanercept 2 wk Markers of 
inflammation BHR 

Increased TNF-R2 in 
BAL, no change in 
BHR 

Erin et al. [96] 
 

38 patients with 
moderate 
asthma/inhaled 
corticosteroids only 

Randomized placebo 
controlled parallel 
group 

Infliximab 6 wk 1° morning PEF 
2° FEV1, 
exacerbations, 
sputum markers  

No change in 
morning PEF 

 PEF variability 
 exacerbations  

Wenzel et al. [97] 231 patients with 
severe and 
uncontrolled 
asthma/high-dose 
inhaled 
corticosteroids and 
long-acting β2-
agonists 

Randomized, double-
blind, placebo-
controlled  

Golimumab 52 wk 1° FEV1, 
exacerbations  
2° AQLQ, rescue 
medication 

No benefit compared 
with placebo 

ACQ, Asthma Control Questionnaire; AQLQ, Asthma Quality of Life Questionnaire; BHR, bronchial hyperresponsiveness; eNO, exhaled nitric 

oxide; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; PEF, peak expiratory flow. 
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Table 2 - Summary of studies of TNF-α inhibitors in COPD 

Study No patients and 
COPD severity 

Design Treatment Outcomes Results 

van der Vaart et al. 
[99] 

14 current smokers 
with mild-to-
moderate COPD 

Randomized, double-
blind, placebo-
controlled 

Infliximab 6 wk Sputum samples, 
spirometry, diffusion 

capacity, eNO, REE, 
CCQ, SGRQ, BHR 

No benefit compared 
with placebo 

Rennard et al. [100] 157 patients with 
moderate to severe 
COPD 

Multicenter, 
randomized, double-
blind, placebo-
controlled, parallel-
group 

Infliximab 24 wk 1° CRQ 
2° FEV1, 6MWD, SF-
36, TDI, 
exacerbations 

No change in CRQ, 
FEV1, 6MWD, SF-36, 
TDI, exacerbations 

Dentener et al. [101] 16 patients with 
moderate to severe 
COPD 

Randomized, double-
blind placebo-
controlled 

Infliximab 6 wk Levels of 
inflammatory 
mediators in EBC and 
in blood 

No effect in local 
inflammation and 
minor effects on 
systemic 
inflammation. 

Suissa et al. [102] 15,771 subjects with 
both rheumatoid 
arthritis and COPD 

Observational study Infliximab 
Etanercept 

First occurrence of a 
hospitalisation 
for COPD during 
follow-up 

Reduction in the 
rate of COPD 
hospitalisation with 
etanercept but not 
with infliximab 

BHR, bronchial hyperresponsiveness; CCQ, Clinical COPD Questionnaire; CRQ, Chronic Respiratory Questionnaire; EBC, exhaled breath 

condensate; eNO, exhaled nitric oxide; FEV1, forced expiratory volume in 1 second; REE, resting energy expenditure; SGRQ, St. George 

Respiratory Questionnaire; SF-36, Short Form-36; TDI, transition dyspnea index; 6MWD, 6-minute-walk distance 
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