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Abstract 
A central question in motor control is how the central nervous system (CNS) deals with 

redundant degrees of freedom (DoFs) inherent in the musculoskeletal system. One way 

to simplify control of a redundant system is to combine several DoFs into synergies. In 

reaching movements of the human arm, redundancy occurs at the kinematic level 

because there are an unlimited number of arm postures for each position of the hand. 

Redundancy also occurs at the level of muscle forces because each arm posture can be 

maintained by a set of muscle activation patterns. Both postural and force-related motor 

synergies may contribute to simplify the control problem. The present study analyzes the 

kinematic complexity of natural, unrestrained human arm movements, and detects the 

amount of kinematic synergy in a vast variety of arm postures. We have measured inter-

joint coupling of the human arm and shoulder girdle during fast, unrestrained and 

untrained catching movements. Participants were asked to catch a ball launched 

towards them on 16 different trajectories. These had to be reached from two different 

initial positions. Movement of the right arm was recorded using optical motion capture 

and was transformed into 10 joint angle time courses, corresponding to 3 DoFs of the 

shoulder girdle and 7 of the arm. The resulting time series of the arm postures were 

analyzed by Principal Components Analysis (PCA). We found that the first three 

principal components (PCs) always captured more than 97% of the variance. 

Furthermore, subspaces spanned by PC sets associated with different catching 

positions varied smoothly across the arm's workspace. When we pooled complete sets 

of movements, three PCs, the theoretical minimum for reaching in 3D space, were 

sufficient to explain 80% of the data's variance. We assumed that the linearly correlated 

DoFs of each significant PC represent cardinal joint angle synergies, and showed that 

catching movements towards a multitude of targets in the arm's workspace can be 

generated efficiently by linear combinations of three of such synergies. The contribution 

of each synergy changed during a single catching movement and often varied 

systematically with target location. We conclude that unrestrained, one-handed catching 

movements are dominated by strong kinematic couplings between the joints that reduce 

the kinematic complexity of the human arm and shoulder girdle to three non-redundant 

DoFs. 
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1. Introduction 

Reaching for a target located in peripersonal space is a task that most of us conduct 

many times each day. There is a general consensus that the control of such aimed limb 

movements requires a series of sensorimotor transformations, which map the target’s 

retinal image onto an appropriate muscle activation pattern that in turn moves the limb 

towards the target (Beek, Dessing, Peper & Bullock, 2003; Georgopoulos, 1991; 

Kalaska & Crammond, 1992; Wolpert & Ghahramani, 2000). Several of the steps in this 

series of transformations involve one-to-many mappings, which complicate the 

necessary computations. This issue is known as the redundancy problem (Bernstein, 

1967). 

An example for the redundancy problem is the transformation of a desired hand position 

into an appropriate arm posture. Finding unambiguous solutions for this transformation 

is not a trivial task. The CNS overcomes this problem routinely and often generates 

reproducible behavior that exhibits invariant parameters, which have been observed in 

classical studies such as Soechting and Lacquaniti (1981), Atkeson and Hollerbach 

(1985), Morasso (1981), and Flash and Hogan (1985). The results of these studies imply 

additional constraints that are realized within the nervous system and have led to the 

formulation of a range of hypotheses concerning the generation of goal-directed limb 

movements. One influential idea in motor research is the concept of motor primitives and 

movement synergies (Bernstein, 1967; Lee, 1984; Macpherson, 1991, for a recent 

review, see Ting and McKay, 2007). This concept assumes that the various degrees of 

freedom (DoFs) of a motor system are not controlled independently but instead are 

coupled in their actions. In theory, this would lead to a reduction of the effective number 

of DoFs to a level that can be controlled more easily by the CNS. 

There are numerous studies suggesting that the coupling of DoFs occurs on various 

stages. These stages encompass the simultaneous activity of several muscles acting on 

one joint (Haruno & Wolpert, 2005), multi-joint synergies (Debicki & Gribble, 2005; 

Gottlieb, Song, Hong, Almeida, & Corcos, 1996; Latash, Aruin, & Shapiro, 1995; 

Santello, Flanders, & Soechting, 1998; Yang, Zhang, Huang & Jin, 2002) or the 

combination of basic behavioral modules (Bizzi, 2003; d'Avella & Bizzi, 2005; d'Avella, 

Saltiel, & Mussa-Ivaldi, Giszter, & Bizzi, 1994; Sanger, 2000). Although several 
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mathematical methods are suitable for detecting synergies, some of which exhibit even 

better performance than Principal Component Analysis (Tresch, Cheung, & d'Avella, 

2006), PCA is a common tool in the analysis of motor behavior and often reveals 

evidence of fundamental building blocks of the studied movements (Daffertshofer, 

Lamoth, Meijer, & Beek, 2004). One advantage of PCA is that it captures covarying and, 

thus, coupled DoFs in a very intuitive manner. An important second reason for the use of 

PCA in the study presented here was that PCA only considers linear correlations among 

DoFs which can be considered as the most-simple, i.e., minimal model of inter-joint 

coupling. This minimal model can be of great relevance to studies in computational 

neuroscience, as it determines to what extent the natural complexity can be explained 

by a linear approach. 

Studies that apply PCA to biological movement data have focused on a wide variety of 

movements, including the formation of hand postures (Santello, Flanders, & Soechting, 

1998), drawing tasks (Sanger, 2000), gender identification based on gait (Troje, 2002), 

leg wiping reflexes in the frog (d'Avella & Bizzi, 1998), and inter-limb coordination 

(Forner-Cordero, Levin, Li, & Swinnen, 2005). Generally, these studies argue in favor of 

a modular organization of the CNS because they succeed in describing the observed 

physiological complexity by means of a small number of PCs. In the context of human 

arm movements, PCA has been applied to the analysis of rhythmic juggling movements 

(Post, Daffertshofer, & Beek, 2000), object retrieval (Sabatini, 2002), and whole body 

reaching movements (Thomas, Corcos, & Hasan, 2005). Many studies use a setup 

related to the common “center-out task” (Galloway & Koshland, 2002; Gomi & Kawato, 

1997; Morasso, 1981), in which participants are instructed to execute relatively slow, 

well-planned pointing or reach-to-grasp movements constrained to a horizontal plane. 

Sabatini (2002) found that such planar movements are effected by two types of muscle 

activity patterns, one for the outward and one for the inward part of the movement. In 

spite of its experimental benefits, the center-out task, for the most part, neglects the 

natural dexterity of the human arm that is a result of 10 DoFs: three in the shoulder 

girdle, three in the shoulder joint, two in the elbow and lower arm, and a further two in 

the hand joint. To date, it is an open question how these 10 DoFs are coupled to each 

other when the arm is mechanically unrestrained. Arbitrary positioning and orientation of 

the hand in space requires three DoFs of translation for positioning (along the axes x, y, 
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z) and further three DoFs of rotation for orientation of the inner hand surface (roll, pitch, 

yaw). Since humans are able to attain voluntarily many different hand orientations at any 

given hand position, it is plausible to assume that at least six DoFs must be used if all 

behavioral tasks of a human arm were considered. However, some behavioral tasks 

could require less than six DoFs, for example if hand orientation varied systematically 

with hand position. 

To date, PCA studies on unrestrained arm movements have been either limited to the 

sagittal body plane (Thomas, Corcos, & Hasan, 2005) or to the trajectories of 

manipulated objects (Post et al., 2000). Thus, the effective redundancy of natural human 

reaching movements has never been determined. In particular, it is unknown how the 

coupling of DoFs might be modulated depending on the location of the target in the 

arm’s workspace. 

The goal of our study was to elicit fast and unrestrained reaching movements in a large 

part of the 3D workspace of the arm, involving the intuitive and natural use of a large 

number of joints. Catching movements meet these criteria well, as most people have a 

natural aptitude for catching and, as opposed to juggling (Post et al., 2000), do not 

require extensive training sessions. Although participants can accomplish a catching 

task reliably, it requires a considerable amount of attention, which ensures that 

participants concentrate on the task. This facilitates natural and fast movements, while 

conscious planning is minimized. 

Catching movements are a well-studied paradigm in the study of interceptive actions. 

They definitely require the use of three translational DoFs for hand positioning in space 

but it is unclear to what extent additional DoFs are required to account for hand 

orientation. Several studies have addressed the problem of visual extraction/prediction 

of the future catching position (Alderson, Sully, & Sully, 1974; Peper, Bootsma, Mestre & 

Bakker, 1994; Montagne, Laurent, Durey & Bootsma, 1999), or the impact of spatio-

temporal constraints imposed by the balls flight direction and speed (Laurent, Montagne, 

& Savelsbergh, 1994; Mazyn, Montagne, Savelsbergh, & Lenoir, 2006). The latter 

studies revealed that acceleration and deceleration phases of the hand movement 

depend on the speed of the ball and, thus, time to contact. Based on the experimental 

evidence on spatio-temporal constraints and timing of human catching movements, 

Beek et al. (2003) proposed to model them as prospective movements with continuous 
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adjustment of hand speed and direction by means of a feedback controller. Whereas it is 

clear that a feedback controller would account for the appropriate timing of the 

movement, a major question concerns how a controller could deal with the redundancy 

problem posed by the 10 DoFs of the arm and shoulder girdle. Recently, cross-

correlations of synchronously recorded joint angle time courses revealed that at least 

some output variables of the neural controller are significantly coupled during catching 

(Mazyn, Montagne, Savelsbergh, & Lenoir, 2006). The present study takes a step further 

and measures the amount of coupling among all 10 DoFs of the human arm and 

shoulder girdle. It does so for catching movements that traverse a wide range of arm 

postures. 

The main objective of the present study was to identify joint angle synergies within the 

physiological joint angle space of the human arm and shoulder girdle. To this end, we 

applied PCA to determine the amount of inter-joint coupling and the number of effective 

DoFs underlying human catching movements that involve a 10D joint angle space. We 

reasoned that, if a small set of principal components would exist that allowed for the 

description of at least 95% of the variance within this space, these principal components 

would capture the synchronous movement of several joints and, hence, could be 

interpreted as joint angle synergies. The less joint angle synergies would be necessary 

for posture reconstruction, the more the dimensionality of the control problem could be 

reduced. 

We show that three PCs are generally sufficient to describe more than 97% of variance 

within the 10D posture space of single catching movements. The contribution of 

individual PCs depends systematically on target location. Finally, we use PCs to 

reconstruct arm postures and derive arm movements. Based on these findings, we 

argue that PCs not only provide a tool for analyzing biological movement but also are a 

candidate format for joint angle synergies that could contribute to reducing the 

dimensionality of joint angle motor space. 
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2. Methods 

2.1. Participants 

In total, nine subjects (seven males, two females) participated in the experiments. Their 

age ranged from 21 to 34 years. Eight of the participants were naïve as to the scientific 

background of the study. All participants were right-handed, had normal or corrected-to-

normal vision, and had no obvious or known motor deficits. Participants gave their 

informed consent to the experimental procedures carried out within the scope of the 

study. 

2.2. Experimental procedure 

Participants were seated comfortably on a chair in the center of the experimental setup. 

A custom-made shooting device attached to a tripod was placed in front of the 

participant at a distance of 280 cm. A table-tennis ball could be launched manually from 

the shooting device onto 16 different trajectories traversing the workspace of the 

participant’s right arm (Fig. 1a). These trajectories were the same for all participants and 

were not adjusted with respect to individual differences in body size or arm lengths. The 

velocity of the ball ranged from 5.0 to 5.3 m/s. This corresponds to a flight time range 

between 530 and 560 ms, assuming 280 cm as the length of the ball’s flight trajectory. 

(For the sake of optimal spatial resolution of the joint angle measurements, the flight 

trajectory could not be tracked in its entirety.) 

To elicit goal-directed arm movements we instructed the participants to catch the 

approaching ball at a convenient point on its flight path. Since we wanted the behavior to 

be as natural as possible, no specific instructions were given with respect to movement 

speed, the catching point, or how to catch the ball. Participants were encouraged to 

move only their right arm, but there were no physical constraints or instructions to 

restrain movements of the trunk. Prior to the actual experiment participants were 

familiarized with the setup and the procedure. 

 

(Fig. 1 approximately here) 
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For each trial, participants had to adopt one of two predefined initial postures. In initial 

posture one, the right arm of the participant hung in a relaxed posture besides the 

participant’s torso. In initial posture two, the right hand rested on the participant’s right 

thigh (Fig. 1a). Idealized target positions are indicated by grey circles and each ball 

trajectory determined one possible target position. Lateral variations of the ball’s flight 

trajectory were brought about by shifting the position of the tripod along a base line 

parallel to the participant’s frontal plane. Vertical variations were achieved by altering the 

angle of the shooting device (Fig. 1b). Each experimental session consisted of two 

subsessions. Within one subsession, there were 16 blocks of at least three trials, each 

consisting of one movement. In each block, the ball was launched onto one of the 16 

predefined trajectories once. The order of blocks, i.e., target positions, was randomized. 

In subsession 1, the first movement within a block started from initial arm position 1, the 

second movement started from initial position 2, and the third movement started from 

initial position 1 again (succession of 1-2-1). Subsession 2 was comprised of another 

random sequence of the sixteen different trajectories. Here, the within-block succession 

of initial positions was 2-1-2. Each movement was repeated at least twice. If a 

movement was not successful, it was repeated from the same initial position until it was 

successful. However, error trials (i.e., ball missed entirely) were so rare that they were 

discarded. Overall, individuals completed between 6 and 9 successful trials per start-

target combination. 

2.3. Motion Capture 

Kinematic data were recorded using an optical motion capture system (Vicon Motion 

Systems, Oxford, UK) consisting of 9 high-speed CCD cameras with 120 Hz temporal 

and approximately 1 mm of spatial resolution. Thirteen spherical retroreflective markers 

(diameter 14 mm) were attached to the participants’ skin using double-sided adhesive 

tape. Markers were positioned on easily identifiable bony landmarks (Fig. 2). The table-

tennis ball was also covered in retroreflective foil. The setup provided Cartesian 

coordinates of all marker positions and of the ball. 

 

(Fig. 2 approximately here) 
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2.4. Kinematic model 

For the kinematic analysis, we modeled the arm as a kinematic chain with 4 segments 

articulated by four joints and 10 DoFs in total. This chain originated at the upper sternum 

marker which also served as the origin of the body-fixed coordinate system. From 

proximal to distal, the kinematic chain consisted of a collarbone segment with three 

DoFs, an upper arm segment with three DoFs, a lower arm segment with two DoFs and 

a hand segment with two DoFs (Fig. 2). Prior to the actual experiment participants 

executed calibrating movements that consisted of the successive movements of all 

DoFs of the arm. Based on these data, we determined segment lengths, the joint 

centers of the shoulder, elbow, and wrist, and the position of the markers relative to the 

segments they were attached to. This was done for each participant individually.  

2.5. Joint angles 

To calculate joint angles of a particular posture we used forward kinematics of the arm 

model described above. Using nonlinear optimization routines based on the Levenberg-

Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) of MATLAB 7 (The 

MathWorks) we adapted the joint angles of the arm model such that the sum of squared 

distances between model markers and their real counterparts was minimal. Thus, we 

were able to determine joint angles based on kinematic models of nine individual 

participants. The optimization was done for all movements in a frame-by-frame manner. 

Although our models simplified the true arm kinematics, both by neglecting skin 

movements and by keeping the centers of rotations of all joints fixed relative to the 

segments, the matching error was sufficiently low. Median marker mismatch was 8.3 

mm per marker (25th percentile: 6.7 mm, 75th percentile: 10.2 mm), which amounted to 

60% of the markers’ diameter. The onset of a trial was defined as the time when hand 

velocity exceeded 0.2 m/s (1.6 mm per frame). Termination of a movement was defined 

as the time of hand contact with the ball which, in turn, was determined by visual 

inspection of the motion capture data.  

In order to achieve equal weighting of all start-target combinations and to obtain data 

sets of equal size for all participants, we decided to average trials for each start-target 

combination and participant. To allow for averaging of arm movements, each trial was 

normalized to 100 single postures by spline interpolation. Duration of arm movements 
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varied between 300 ms to 700 ms (median: 391 ms, percentiles: 25% = 350 ms, 75% = 

441 ms). This range can be explained by different distances between starting and 

catching position of the hand. Catching positions on the contralateral side were further 

away and took longer to reach than those on the ipsilateral side. In total, we obtained 32 

average movements per participant (2 initial positions x 16 target positions). All further 

analyses were carried out on these average time courses (except supplementary Figs. 

S2b, S3, S4, and S5). We controlled for a potentially biasing effect of averaging by 

comparing the results with an analysis that was based on all single trials (see Section 

3.4). Averaging introduced no significant bias into our analysis. 

2.6. PCA 

PCA describes the distribution of variance of the underlying data set by vectors or 

principal components. PCs thereby constitute a new orthonormal coordinate system 

whose unity vectors are aligned with the directions of largest variance. Although the 

number of PCs is equal to the number of variables often only the first few components 

are needed to capture most of the variance in a data set (see also Manly, 2004). 

Computing PCA is identical to finding the eigenvectors and eigenvalues of the data set’s 

covariance matrix or correlation matrix. In our case, the correlation matrix was used in 

order to attribute equal weight to each observed variable. Otherwise, large absolute 

values of variables might have dominated the result of the PCA. To achieve such equal 

weighting, the covariance matrix is scaled, separately for each component, by the 

variances of the respective pair of observation variables. Mathematically, this is identical 

to carrying out the PCA on the correlation matrix of the original data set instead of the 

covariance matrix. Equation 1 shows the correlation measure used in this study, where a 

and b represent a pair of observation variables, a  and b  are their respective means, 

and n is the number of observations.  
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All necessary calculations were done using MATLAB 7 (The MathWorks). We carried 

out PCA on sets of 10-dimensional postures, each of which constitute a point in joint 
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angle space. Each PCA yielded a set of 10 PCs and corresponding eigenvalues. The 

PCs of a set of postures thereby satisfy the criterion  

∑
=

+=
n

i
iim pcpp

1
  (Eq. 2), 

where n PCs, ip , can be weighted by their respective scores, ci, and added to the mean 

posture vector, mp , such that the result equals any recorded arm posture, p . The 

underlying rationale of this analysis is the idea that if two or more joint angles were 

coupled, such that they would always move in synchrony and in a fixed magnitude ratio, 

this would result in significant linear correlation of these coupled joint angles. PCA would 

detect these linear correlations and sort them according to the fraction of variance that 

they explain. As a result, the loadings of each ip  in Eq. 2 represent a set of 10 joint 

angles that are always scaled together whenever the posture of the arm and shoulder 

girdle changes. This combined scaling reflects inter-joint coupling and can be interpreted 

as a sign of synergy. 

In practice, we applied PCA in two ways. First, we computed PCA separately for each 

averaged angular time course of all 32 start-target combinations which were coded as 

matrices of 100 postures x 10 angles each. This analysis will be referred to as single-

target-PCA. Then we pooled average movements associated with one initial arm 

position of single participants. Thus, the analyzed data consisted of a matrix with 1600 

postures x 10 joint angles per person and start position. This analysis based on sets of 

16 movements will be referred to as multiple-target-PCA. 

In order to determine the minimal number of PCs that are sufficient to reconstruct most 

of the observed arm postures, we applied two criteria. First, we omitted those PCs 

whose eigenvalues were smaller than one because such PCs would explain less 

variance than one variable of the original data set (Kaiser-Guttman criterion; see 

Jackson, 1993). In our case, this corresponded to a minimum explained variance of 

10%. The second criterion was that, ideally, at least 95% of the total variance should be 

explained. Since these two criteria could potentially lead to different numbers of PCs 

(e.g., if three PCs explain 90% of the variance, a fourth one can only explain less than 

10% but is required to reach the 95% threshold) we also applied a bootstrap Kaiser-

Guttman criterion (e.g., Jackson, 1993) in case of the multi-target PCA. Finally, we 
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always considered at least three PCs because this is equal to the minimal number of 

PCs that is necessary to explain arbitrary hand positions in 3D-space (for further 

explanation see results Section 3.1). 

Note that the performance of PCA in reducing data dimensionality and the significance 

of single PCs is expressed by the fraction of data variance explained. In our case, the 

term data variance refers to the dimensionless total variance within the 10D posture 

space after normalization of each joint angle to unit variance (see Eq.1). It does not refer 

to the variance of a joint angle or the covariance between two joint angles, both of which 

would be measured in degrees. 

2.7. Comparison of PC subspaces 

It should be noted that, in contrast to many other studies that apply PCA, all items of our 

data vectors are joint angles and, thus, their magnitudes are immediately comparable 

with each other. As a consequence, it is possible to define a metric that allows to 

measure distances within the original 10D joint angles space. For example, the set of 

PCs that accounts for most of the variance, say 95%, of a particular movement spans a 

low-dimensional subspace within 10D joint angle space. As a metric to quantify the 

similarity of different PCA results, we compared PC subspaces spanned by three PCs 

(see also Fig. 5 for results). We calculated the distance between two such subspaces 

according to  

)(1)sin(),( 2
min VUsVUdist T−== ϕ  (Eq. 3). 

U and V are 10 x 3 matrices that each contain three PCs (i.e., represent two distinct 

PCAs) as column vectors. They define the subspaces. The column vectors of U and V 

are normalized to unit length 1. Because, by definition, PCs are orthogonal to each 

other, U and V are orthonormal matrices and their column vectors span a 3D subspace 

within 10D joint angle space. The distance between these subspaces, dist(U,V), is 

defined by the smallest angle φ by which U can be rotated to match V. sin(φ) is 

estimated numerically by finding the minimal singular value smin of the matrix VU T , 

which is a 3 x 3 matrix that contains dot products of all pairs of PCs from U and V. For 

details on singular value decomposition see Golub and van Loan (1989). Thus, Eq. 3 is 

the matrix version of the calculation of the smallest angle between two vectors, where 

the cosine of the angle is equal to the dot product of the normalized vectors. The angle 
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φ in Eq. 3 describes the similarity of the subspaces U and V, with 0° indicating identity 

and 90° indicating orthogonality. A mean value of 81° indicates chance level similarity 

for 3D subspaces within a 10D space. 

2.8. Reconstruction of movements 

A reduced set of PCs can be used to approximate the original data. While this entails a 

loss of accuracy, the loss will be relatively small if the used PCs capture a large amount 

of variance. Using Eq. 2 with n = 3 we can approximate a posture by neglecting the 

amount of variance accounted for by higher PCs. The scores c1 to c3 can be found by 

projecting p  onto the respective PC ip . As PCs and the mean posture stay constant for 

one data set, we can then describe a given movement exclusively by the time courses of 

the three scores c1 to c3.  

3. Results 

3.1. Hand trajectories 

As our analysis of inter-joint coupling and movement synergies in the arm and shoulder-

girdle is entirely based on joint angles, all computations were carried out on vectors 

containing 10 joint angles, or on time courses thereof. To provide an intuitive 

demonstration of what the actual catching movements looked like, Fig. 3 shows 

representative hand trajectories of one participant. Trajectories were always curved and, 

in the course of the entire experiment, the hand traversed a 3D volume with the 

approximate size of 800 mm by 400 mm by 800 mm (x, y, and z, respectively). Standard 

deviations of different target positions were smaller than the width of a human hand (i.e., 

< 100 mm) and did not overlap. The idealized arrangement of target positions shown in 

Fig. 1b can be recognized clearly in Fig. 3. Because we did not scale the setup 

according to the participants’ size or arm lengths, preferred catching positions differed 

by 57 to 145 mm among participants (standard deviation for average catching positions 

of all participants). Catching locations were always spaced evenly (compare Figs. 1b 

and 3). Irrespective of their body size, all participants had to cover a large portion of their 

arm’s workspace (arm lengths were 59 cm to 74 mm, distance from shoulder center to 

palm) and the arm was often nearly stretched out when catching balls at target positions 

1, 4, and 16). 
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(Fig. 3 approximately here) 

 

Note that all trajectories in Fig. 3 are curved and trajectories toward different target 

positions span a 3D volume. As a consequence, at least three PCs are required to 

explain all trajectories. The reason for this is that each PC describes a linear 

combination of joint angles that allow displacement of the hand along a single curved, 

albeit 1D trajectory. Two PCs will allow displacement along a curved, but at most 2D 

surface. To move the hand away from this surface, at least one further, third PC must be 

postulated to explain all trajectories shown in Fig. 3. 

At least three DoFs of movement are required to position the hand at an arbitrary 

position in a 3D volume. The complete set of recorded catching movements does span a 

3D volume because both starting points lay well outside the plane spanned by the target 

positions (or, considering the spread of catching positions, even well outside the 

subspace that includes all catching positions). Suppose that the 10 DoFs of the arm and 

shoulder girdle were found to correlate so substantially that a PCA could group them into 

a small number of joint angle synergies. Then, each synergy would couple a set of joint 

angles into a single DoF. Since PCs are mutually orthogonal (by definition) and, 

therefore, independent from each other, three synergies are needed to obtain three 

DoFs. Thus, no less than three PCs can capture all arm postures recorded in our 

experiments. 

 

3.2. Single-target-PCA 

With the single-target-PCA for all participants and all data sets, three PCs were always 

sufficient to capture more than 97% of the data’s variance. This was true for data sets 

associated with either initial position (Fig. 4). In all cases, the first PC accounted for at 

least 68% of the variance. In several cases this value reached 75%. The remaining 

variance could almost completely be explained by the second and third PC. On average, 

these PCs accounted for 20% (min. 13%, max. 26%) and 5% (min. 2%, max. 7%) of the 

variance, respectively. 
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Note that the ata were not pooled across participants, mainly because participants 

differed in the size, weight, and muscle force of their arms. Therefore, one set of joint 

angles would correspond to different arm postures, joint torques, and associated muscle 

activations in different participants. As yet, Fig. 4 shows that PCA reduces the number of 

effective DoFs in all participants and the relative contributions of the three PCs are very 

similar across participants. 

In conclusion, the results indicate strong kinematic couplings between individual joints in 

the arm and shoulder girdle and, therefore, high redundancy in the underlying data sets. 

The first three PCs are necessary to satisfy the 95% variance criterion (see Section 2.6), 

whereas the third PC contributes less than the 10% variance required by the Kaiser-

Guttman criterion. According to the latter criterion, trajectories of individual start-target 

combinations could be described reasonably well by only two effective DoFs. 

Nevertheless, our considerations outlined in the preceding Section 3.1 led us to consider 

always at least three PCs. 

 

(Fig. 4 approximately here) 

3.3. Comparison of subspaces 

Considering that three PCs are sufficient to describe single-target data sets, it was 

necessary to evaluate the similarity of these solutions, in particular with respect to target 

position. In principle, we could have obtained specialized solutions for individual start-

target combinations. To identify any systematic trend across our solutions we 

determined the similarity between subspaces spanned by sets of three PCs associated 

with adjacent target positions. For this, we selected two series of target positions. The 

first series formed a horizontal transect across the arm’s workspace including target 

positions 2, 6, 10, 13, and 15 (Fig. 5a). The second series formed a vertical transect 

including target positions 5 to 8 (Fig. 5b). For both series we calculated the similarity of 

each pair of subspaces. This was done separately for each participant. We found that 

the similarity between each pair of subspaces was significantly higher than expected for 

random placement (p < .01 for initial position 1, p < .02 for initial position 2, Bonferroni-

corrected for multiple comparisons). Moreover, distance between subspaces generally 

depended on the spatial distance between target positions. The closer the target 
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positions were, the more similar were their associated PC subspaces. For example, 

distance values of the subspace for the most contralateral target 15 systematically 

increased when compared with increasingly ipsilateral targets at the same height (Fig. 

5a). Similarly, distance values of the subspace for the highest target 5 in Fig. 5b 

systematically increased when compared with lower targets (Fig. 5b). This effect was 

more pronounced in subspaces of the horizontal transect (Fig. 5a) than in those of the 

vertical transect (Fig. 5b). The only target for which there was no systematic difference 

of its own PC subspace and those of its adjacent targets was the low target 8 that was 

located close to the ipsilateral knee of the participants. 

 

(Fig. 5 approximately here) 

 

3.4. Multiple-target-PCA 

As the similarity analysis indicated a close relationship between neighboring PC sets, we 

examined whether different movements could be described by a single set of more 

general PCs with similar quality. For this, we computed multiple-target-PCA for both 

initial positions and each participant separately (Fig. 6). Analogous to single-target-PCA, 

we found that three PCs were sufficient to capture a large portion of the data’s variance. 

Cumulative values for three PCs varied over participants from 78% to 91% and the first 

PC captured between 37% and 57% of the data’s variance. Thus, the first PC captured a 

smaller fraction of the variance than in single-target-PCA, whereas the second and third 

PCs played much larger roles, with fractions of explained variance ranging from 19% to 

30% for the second PC and from 10% to 17% for the third PC. Thus, according to the 

95% criterion, further PCs would have to be considered, however no additional PCs 

would have satisfied the Kaiser-Guttmann criterion. To assess validity of our selection of 

three PCs, we also applied a bootstrap method to quantify the variance of our PCA. The 

results are listed in Table 1, showing that the variance of the bootstrapped eigenvalues 

is always less than 1%. Mean values are nearly identical with those shown in Fig. 6. The 

small variance shows that the first three PCs always indicate significant inter-joint 

coupling. 
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(Fig. 6 approximately here) 

 

(Table 1 approximately here) 

 

Finally, we tested whether normalization of the joint angle ranges to unit variance could 

have lead to an overrating of the smallest PC. For this, we re-calculated both the single-

target and multiple-target-PCA for the covariance matrices instead of the correlation 

matrices (see method Section 2.6 and Eq. 1). Comparison of the results with those 

shown in Figs. 4 and 6 reveals that both procedures succeed in capturing most of the 

data’s variance with two or three PCs and that at least three PCs are necessary to 

explain movements to more than one target (Supplementary Figs. S1 and S2a). The 

same holds true when trials were not averaged per participant and start-target 

combination, but all single trials were included (Supplementary Fig. S2b). 

3.5. Time course of scores 

Since our multiple-target-PCA used a single set of PCs for all movements, different 

movements solely differ in the time courses of their respective scores (see Eq. 2). 

Therefore, we examined whether features of these time courses, such as the maximum 

magnitude or the timing of local peaks, could be related to the spatial properties of the 

respective hand movements. For this purpose we chose the same horizontal and vertical 

series of target positions as in Fig. 5. For each of these movements, we solved Eq. 2 for 

c1 to c3, i.e., the scores associated with the first three PCs. As the arm posture p  

changes over the course of the catching movement, the scores c1 to c3 change as well. 

Fig. 7a shows the results for the horizontal series of target positions; Fig. 7b shows the 

results for the vertical series. Scores at time 0 represent the initial arm posture. 

The scores’ time courses deviated from each other in a systematic manner, revealing 

specific contributions of individual PCs to movement into a particular direction. For 

example, the peak magnitude of the score of PC 2 in Fig. 7a systematically decreased 

when horizontal target positions shifted from ipsilateral (pos. 2 and 6) to contralateral 

(pos. 13 and 15). A similar dependence was found for the score of PC 3 of the same set 

of movements, yet the timing of the local minima differed. Target-dependent divergence 

of the time courses was strongest at the end of the movement for PC 2, and shortly after 
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half-time for PC 3 (Fig. 7a). Moreover, divergence of scores decreased again for PC 3. 

Depending on the horizontal target position, the time course formed a trough that was 

most pronounced when the target position was contralateral to the catching arm. 

PC 3 also strongly contributes to the vertical target displacement along the transect 

through positions 5 to 8 (Fig. 7b). However, in contrast to its effect on horizontal target 

displacement, divergence begins later and steadily increases until the end of movement. 

At the end of the trajectory, large scores of PC 3 correspond to high target positions 

within the arm’s workspace. In conclusion, the relative contribution of a given PC to 

catching movements not only depends on target position, but can also vary over time in 

a non-monotonic manner. 

 

(Fig. 7 approximately here) 

 

In order to assess how the magnitude of the gaps between the time courses in Fig. 7 

relate to the variability of each time course, we estimated the effect of PC variability on 

the spread of each time course. For this we applied a bootstrap analysis in which we 

sampled 50 random sets of postures from the multiple-target data set and calculated 

corresponding sets of PCs and time courses. The result showed that the gaps between 

time courses for movements to different targets were often larger than the variance 

among the 50 bootstrap solutions (Supplementary material, Fig. S3). Much like in Fig. 7, 

all three PCs varied in importance during a catch, and did not vary uniformly. Although 

the spread within each group of corresponding time courses differed over time, the 

systematic dependence on target location remained clear, although there was increased 

overlap where time courses in Fig. 7 were close to each other (e.g., PC 3 in Fig. 7a and 

PC 2 in Fig. 7b, both toward the end of the movement). 

3.6. Reconstruction of movements 

A small number of PCs is adequate to describe the movements analyzed here. To test 

the quality of this description, we reconstructed joint angle time courses using the first 

three PCs only, obtained either from single-target-PCA or from multiple-target-PCA. Fig. 

8 shows a representative example based on multiple-target-PCA. Several joint angle 

time courses were reconstructed with very high accuracy, for instance the angles 
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clavicula θ and φ, humerus θ and ψ, and hand φ. Other reconstructed time courses 

showed more pronounced deviation from the original, for example the angles ulna θ, 

ulna ψ, and hand θ. However, the qualitative characteristics of all original time courses 

were well-preserved. Importantly, reconstruction from the reduced set of PCs never led 

to unphysiological joint angles. This indicates that the inter-joint couplings captured by 

any one of the first three PCs never violate physiological boundaries and, therefore, 

qualify as joint-angle synergies that correspond to coordinated changes in posture. To 

determine the effect of inter-trial variability on the quality of this reconstruction, we re-

calculated all joint angle time courses on the basis of the 50 bootstrap solutions of the 

PCA (same bootstrap analysis as described in the previous section). The result shows 

that a random sample of postures causes only little variability among the reconstructed 

time courses (Supplementary material, Fig. S4). Moreover, the bootstrapped PCs do not 

introduce unphysiological joint angles into the reconstructed time courses, indicating that 

inter-trial variability does not confound the physiological plausibility of the extracted joint 

angle synergies. 

 

(Fig. 8 approximately here) 

 

To assess the accuracy of reconstruction more quantitatively we first computed hand 

trajectories using forward kinematics based on reconstructed angular time courses. We 

then compared reconstructed hand trajectories and original hand trajectories via root 

mean squared error (RMSE). This was done for trajectories based on both single- and 

multiple-target-PCA. Generally, the RMSE for reconstruction based on single-target-

PCA was low, indicating high accuracy with a median of 11.7 mm and maximum 

deviation never exceeding 50 mm. For the results based on multiple-target-PCA, 

however, the RMSE reveals lower accuracy. Here, the median was 63.3 mm with 

maximum errors up to 140 mm. In both cases, median errors are well below the width of 

the human hand, and small compared to the considered workspace (approximately 0.7 

m² cross-sectional area at catching distance). 
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3.7. Features of PCs 

In order to illustrate the effect of inter-joint coupling captured by individual PCs, we 

generated three artificial movements. Each one of these was based on only one of the 

first three PCs of a representative participant as obtained from multiple-target-PCA. We 

modulated each PC’s score sinusoidally around the average arm posture with maximum 

score amplitude set to three standard deviations (with respect to the SD of the score 

distribution of the original data set). As a result, the movement amplitude fell within the 

range observed during the experiments. Videos of these movements were provided in 

the supplementary material. 

The movement expressed by PC 1 is an upward rotation of the arm, accompanied by an 

adduction of the shoulder girdle. The resulting movement is reminiscent of the gesture 

we make when raising a sign for a vis-à-vis observer to see. The movement expressed 

by PC 2 is an inward and forward movement of the hand, with an elbow extension 

accompanying the adduction of the upper arm. It resembles a pushing movement along 

an oblique line. The movement expressed by PC 3 is an upward and lateral movement 

of the slightly extended arm, with very little movement of the elbow. 

 

(Fig. 9 approximately here) 

 

In addition, Fig. 9 shows the magnitude of inter-joint coupling as captured by the first 

three PCs. The loadings of each PC are shown for four different situations. PC 1, which 

captures most of the data’s variance, turns out to be very similar across different 

situations presented here. This shows that PC 1 is robust against changes in start 

posture and calculation method. Therefore, it must represent more general movement 

features. As judged by the grade of similarity among the four situations shown in Fig. 9, 

these general movement features are governed by levation and protraction of the 

shoulder girdle (shoulder θ and φ), inward rotation of the upper arm (humerus φ), 

pronation of the lower arm (ulna ψ) and both hand angles. While PCs 2 and 3 still retain 

common elements they differ more strongly between situations and might be responsible 

for situation-specific features of movements. 

In order to assess the robustness of the PC loadings shown in Fig. 9, and in addition to 

the bootstrap analysis presented in the three previous sections, we calculated a second 
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error estimate that assessed the potential effect of marker mismatch in our motion 

capture procedure. For this we determined the effect of added noise to the recorded 

marker positions (standard deviation of noise was 8 mm, compared to 8.3 mm median 

marker mismatch as described in Section 2.5). The resulting mean PC loadings were 

very similar to those of the original data set (see supplementary figure S5). Loadings of 

the first PC varied very little in the presence of noise, with coefficients of variation 

ranging between .03 and .37. In the second and third PC, sensitivity to noise was more 

pronounced and coefficients of variation were larger than 1 in four out of ten loadings, 

but for a mutually different subset of loadings in the two PCs. In conclusion, the effects 

of both error sensitivity (Fig. S5) and situation-specific variability (Fig. 9) increase the 

variability of the PC loadings with decreasing importance of the PC. However, the 

number of joint angle synergies that describe most of the variance in the experimental 

data remains unaffected, and the overall pattern of these joint angle synergies varies 

only moderately for a single participant. 

 

4. Discussion 

In this study we showed that 10D joint angle kinematics of mechanically unrestrained 

catching movements in humans can be efficiently characterized by the linear 

combination of as few as three PCs. This was the case for both single-target-PCA (Fig. 

4) and multiple-target-PCA (Fig. 6). Given the fact that we analyzed 3D arm movements 

with hand positions covering a substantial 3D volume, finding three PCs is equivalent to 

finding the theoretical minimum number of components. In fact, the result suggest that 

the six DoFs for arbitrary hand positioning (translation along three axes) and orientation 

(roll, pitch and yaw rotation) are not required in unrestrained, one-handed catching. 

In single-target-PCA, the orientation of subspaces spanned by three PCs tends to vary 

systematically across the arm’s workspace (Fig. 5). In multiple-target-PCA, target 

positions are encoded via the time courses of PC scores. Individual PCs thereby 

contribute to shifts in particular directions within the arm’s workspace (Fig. 7). The 

reconstruction of original movements is very accurate when based on the first three PCs 

of that very movement, but accuracy declines from 11.7 mm to 63.3 mm (RMSE) if PCA 

is based on an entire set of movements. Finally, since translation movements of the 
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hand occur along all three axes, linear reconstruction with three PCs implies that there 

can be only one hand orientation per hand position. As reconstruction of natural 

movements by use of three PCs is good (Fig. 8), this suggests that there are preferred 

hand orientations for any given catching position. While it is clear that there are 

manipulation tasks that involve rotational dexterity at a single hand position, for example, 

opening a jar, it is possible that the joint angle synergies underlying one-handed 

catching are important for many other reaching tasks as well. 

It is worth mentioning that PCA only reduced dimensionality because variables were 

linearly correlated with each other, i.e., two or more joint angles changed in a temporally 

coordinated manner. One key aspect in the present study is the high number of 

analyzed DoFs and the broad scope of natural movement patterns. The fact that we 

consistently find three PCs that can efficiently describe such variable data is in line with 

our hypothesis that seemingly complex human arm movements, such as one-handed 

catching, may be described by target-dependent linear combinations of a small set of 

joint angle synergies. As linear combinations of these synergies can encode natural 

movements in a very compact manner, they may be part of the solution for the 

redundancy problem on the kinematic level of the human motor system. 

4.1. Neural feedback, biomechanics, and muscle activation 

Since our study focuses on the coupling of kinematic degrees of freedom, it emphasizes 

the behavioral aspect of spatially continuous, goal-directed movements rather than 

physiological aspects of muscle activation patterns or biomechanical properties of the 

upper limb. The consistent detection of three joint angle synergies for unrestrained, one-

handed catching movements potentially reflects an invariant feature of movement 

control in other reaching tasks. Therefore, we suspect that the linear correlation of joint 

angles detected by our PCA suggests the presence of neural coupling by means of 

neural coactivation of muscles actuating different joints. Of course, there are at least 

three further sources of coupling that are likely to contribute to the observed linear 

correlation of DoFs. First, neural feedback is known to play a critical role in the control of 

arm movement (Gordon, Ghilardi, & Ghez, 1995; Graziano, 1999). Similarly, feedback 

control is likely to be beneficial to increase the reconstruction performance, especially in 

multiple-target-PCA. Secondly, muscle activation and de-activation functions that 
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transfer the time course of motoneuron activity into a time course of isometric muscle 

force are often modelled by first-order differential equations with separate time constants 

of force increase and decrease (Winter and Stark, 1988; Neptune and Hull, 1998; for 

review, see Zajac, 1989). Essentially, these models act as low-pass-filters with delayed 

force build-up/decline after a step onset/offset of motoneuron activity. For example, a 

de-activation time constant of 40 ms in elbow muscles (Winter and Stark, 1988) can 

cause an overlap of contraction time courses in elbow and proximal shoulder muscles 

within 40-50 ms in spite of lacking neural co-activation. Generally, muscle properties are 

known to contribute to kinematic properties of the human arm movements (Gribble & 

Ostry, 1996). Thirdly, interaction torques that are of purely mechanical origin occur 

necessarily in a moving multisegmented arm. Since all three of these mechanisms are of 

transient nature, they can hardly explain the entire scope of joint angle coupling 

detected by our PCA, mainly because this coupling is consistent across the entire 

workspace of catching movements. Interaction torques are known to be compensated 

for by the CNS (Gribble & Ostry, 1999), so part of the observed linear correlation is likely 

to be caused by this neural compensatory mechanism. 

4.2. Single-target and multiple-target-PCA 

A recent comparative study that evaluated the power of different methods for the 

extraction of movement synergies (Tresch, Cheung, & d'Avella, 2006) shows that PCA is 

capable of extracting synergies but exhibits lower performance than other methods. 

Nevertheless, our results show that PCA is sufficiently powerful to reduce dimensionality 

to the theoretical minimum of three effective DoFs. While it is possible that other 

methods could explain even more data variance with three DoFs, they couldn’t possibly 

yield less than three DoFs. The main reason for us to apply PCA for identification of joint 

angle synergies was to determine an ‘as-simple-as-possible’ grouping of DoFs on the 

basis of consistent linear correlation. Since the minimum possible number of three PCs 

explains such a large amount of variance, these three PCs can serve as intuitive, 

plausible and potent description of synergies. Moreover, it suggests that a simple linear 

model can be used to explain a large fraction of the natural variability observed in one-

handed catching. 
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Both single-target and multiple-target analyses clearly emphasize the target-dependent 

nature of the extracted PCs (Figs. 5, 7). Assuming that the inter-joint coupling captured 

by PCs reflects at least some aspects of the underlying neural controller, single-target 

and multiple-target analyses allow for two alternative interpretations, both of which 

involve a linear model that can serve as testable hypothesis in physiological studies. 

Single-target-PCA yields PC sets, which are unique for each start-target-combination. 

Encoding movement in this manner seems hardly efficient at first sight, because each of 

these combinations would require a separate set of PCs. However, we also find that 

these sets tend to vary systematically over a large fraction of the arm’s workspace (Fig. 

5). Thus, the similarity of adjacent PC sets may be the result of target-dependent 

interpolation between a few cardinal sets of PCs that form the fundamental building 

blocks of one-handed catching movements. In the process of movement generation, 

these sets would have to be combined dynamically, in order to form a new target-

dependent set of PCs. 

In multiple-target-PCA, we extracted only one such cardinal set of PCs for all 

movements associated with one initial posture. Not surprisingly, because the postural 

basis for multiple-target-PCA is much broader, posture reconstruction based on 3 

multiple-target PCs is less accurate but still good (Fig. 6). Our interpretation of this result 

is that different movements can be brought about by adjusting the weights of a single set 

of PCs, i.e., their scores, in a temporally coordinated fashion. Although we found 

different sets of PCs for each initial posture, it is conceivable that there is one single set 

of PCs that is even more general and could describe movements comprising arbitrary 

initial and target postures. The fact that both analyses produced a PC triplet with rather 

similar properties (Fig. 9) strongly supports the view that all recorded catching 

movements can be described by linear combination of a PC triplet. 

4.3. Relation to neurophysiological evidence 

Recent evidence from experiments on frogs suggests the existence of a small set of 

motor synergies that serve as distinct control modules in the spinal cord (d'Avella & 

Bizzi, 2005; d'Avella, Saltiel, & Bizzi, 2003). These studies analyze muscle activation, 

i.e., EMGs. Based on these EMGs, a set of motor primitives or basic muscle activation 

patterns is extracted. These time-varying synergies (d'Avella et al., 2003) are scaled in 
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amplitude, shifted in time and, eventually, linearly combined in order to form a variety of 

motor patterns.  

In contrast to the approach taken by d’Avella et al., we have identified static joint-angle 

synergies, where the time course of movement depends on the time course of a 

corresponding set of scaling factors. In the case of human arm movements this posture-

based approach is particularly plausible when considering posture-dependent tuning of 

motor cortex cells (Scott, Gribble, Graham, & Cabel, 2001; Scott & Kalaska, 1997). 

Further evidence for the importance of kinematic parameters in the generation of 

reaching movements was provided by direct stimulation of the motor cortex (Graziano, 

Aflalo, & Cooke, 2005; Graziano, Taylor, & Moore, 2002). These studies imply one-to-

one mappings between workspace and arm posture located in the motor cortex. These 

mappings are robust against external disturbances and suggest joint angles or postures 

as a possible foundation. 

Finally, joint angle synergies may serve as a kinematic template for models of 

interceptive arm movements in humans. Current modelling approaches for human 

catching movements favor feedback control over predictive open loop strategies 

(reviewed by Beek et al., 2003), in which time-varying synergies would not be required. 

Instead, the time-varying output of a feedback controller would drive the musculoskeletal 

system of the human arm and shoulder girdle. At this point, the triplets of joint angle 

synergies derived from our kinematic experiments may well serve as a starting point to 

model the correct degree of inter-joint coupling in unrestrained, one-handed catching 

movements. 
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Figure and table legends 

Fig. 1. Basic experimental setup. (a) Participants are instructed to catch an approaching 

ball. The ball is launched onto different trajectories traversing the workspace of the 

participant's right arm. Arm movements occur in 3D and are unconstrained. (b) Target 

positions. Sixteen different trajectories are brought about by varying the position and the 

angle of the shooting device. Idealized target positions are indicated by grey circles. 

 

Fig. 2. Kinematic model. The arm is modeled as a kinematic chain consisting of 4 

segments (a-d) with a total of 10 DoFs and 13 motion capture markers attached to it (m1 

to m13). DoFs are illustrated by rotation axes. Joints are denoted by black circles. M1 

represents a marker and the root joint of the kinematic chain. Markers m3 (attached to 

the 7th cervical vertebra), m4 (attached to the 10th thoracic vertebra), and m7 (attached 

to the scapula) are occluded by the body. 

 

Fig. 3. Hand trajectories of participant CL. The X-Z-plane corresponds to the frontal 

plane of the participant. The ball is launched towards the participant from the direction of 

the positive part of the Y-axis. Catching positions are indicated by ellipsoids, the 

dimensions of which correspond to the standard deviation of the end points' distribution 

and are numbered according to Fig. 1b. (a) Hand trajectories originating from initial 

position 1. (b) Trajectories originating from initial position 2. 

 

Fig. 4. Twenty-six three PCs explain most of the variance. PCA has been applied to all 

mean trials per start-target combination and person (single-target-PCA). Results have 

been averaged over participants (n = 9). Values above bars indicate cumulative 

percentage of explained variance of the first three PCs. Columns and error bars show 

means and std. across participants. (a) Results for mean trials of initial position 1. (b) 

Results for mean trials of initial position 2. 

 

Fig. 5. PC sets vary consistently across the workspace. We compared subspaces 

spanned by sets of the first three PCs associated with five different target positions. (a) 

Compared target positions form a horizontal transect across the arm’s workspace and 
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comprise positions 2, 6, 10, 13, and 15. (b) Compared target positions form a vertical 

transect across the arm’s workspace and comprise positions 5 to 8. In both transects, 

movements differ gradually from one target position to its neighboring positions. Here 3D 

subspaces within the 10D postural space are compared by computing the angle 

between two subspaces. The smaller the angle between the two subspaces, the more 

similar they are. Random 3D subspaces would result in an average angle of 

approximately 81° (dashed line). Adjacent columns show the angles between all 5 x 4 

(Fig. 5a) and 4 x 3 (Fig. 5b) subspaces within the horizontal and vertical transect 

respectively. Columns and error bars show mean and SD among participants (n = 9). 

 

Fig. 6. Results of multiple-target-PCA. Two sets of PCs per person were extracted. Left 

columns show results for multiple-target-PCA associated with initial position 1, right 

columns show results associated with initial position 2. Although here the first three PCs 

account for less variance than in the single-target-PCA, the cumulative value is still high 

(75%-80%). The second and third PC play a larger role than in single-target-PCA. 

 

Fig. 7. Representative time courses of the scores of the first three PCs for different 

target positions (participant CL). Each movement has a set of time courses of scores 

associated with it. The magnitude of these scores is represented by multiples of 

standard deviations of the original data. (a) Time courses of scores of five target 

positions which form a horizontal transect within the workspace of the arm. (b) Time 

courses of scores associated with four target positions which form a vertical transect. 

Same transect as in Fig. 5. Differences between movements often correspond to 

gradual changes in amplitude of the time course of one or two of the scores. 

 

Fig. 8. Reconstructed angular time courses based on a set of three PCs. Representative 

trial with original (gray lines) and reconstructed data (dashed lines). Most angular time 

courses allow a very accurate reconstruction. Both of the forearm angles (ulna θ and ψ) 

and one of the hand angles (hand θ) are less accurate, but the characteristics of their 

respective time courses are preserved; unphysiological joint angles never occurred. 
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Fig. 9. Coupling strengths between different DoFs for three PCs obtained from four 

different computations. Here, coupling strength is the respective element in the 10D PC 

vector and is specified for each DoF separately. PC 1 has very similar features in all 

situations, whereas PC 2 and PC 3 show more pronounced differences. 

 

Table 1. Explained variance of the first three PCs based on the results from 

bootstrapped multiple-target PCA. Each multiple-target dataset (1600 x 10 postures) 

was bootstrapped with a sample size of 100 for each one of 2 start positions (s1, s2) and 

9 participants. Eigenvalues, i.e., explained variance, of the first three PCs are given in 

percent. Numbers in parentheses denote variances of eigenvalues in percent. 

Supplementary figure legends 

Supplementary Fig. S1: Single-target-PCA based on covariance matrices, i.e., data sets 

where joint angle ranges were not normalized to unit variance. Compare with Fig. 4 of 

the manuscript. Panels separate trials according to initial hand position (a: initial position 

1; b: initial position 2). Without normalization, the joint angles with the broadest ranges 

dominate the analysis. As a result, two PCs are sufficient to capture at least 97% of the 

data’s variance. The third PC vanishes. This can be explained by the dominating effects 

of a few joint angles that essentially render the data sets of single start-target 

combinations two-dimensionally. This, however, does not happen when movements to 

more than one target are included (see Fig. S2). 

 

Supplementary Fig. S2: Alternative analysis of multiple-target-PCA. Compare with Fig. 6 

of the manuscript. (a) Multiple-target-PCA based on covariance matrices, i.e., data sets 

where joint angle ranges were not normalized to unit variance. Without normalization, 

the joint angles with the very largest ranges dominate the analysis, resulting in a larger 

fraction of variance explained by the first three PCs (more than 91%, compared to 78-

91% in normalized data sets of Fig. 6). (b) Multiple-target-PCA based on correlation 

matrices, but using all single trials rather than averaged trials as done in Fig. 6). 

Depending on the participant, the number of single postures varied from 3358 to 5698 

per PCA, as opposed to 1600 in Fig. 6. The result is very similar to that shown in Fig. 6; 

however the explained variance is slightly less (74-89%, compared to 78-91%). Both a) 
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and b) show that the choice of analysis does not change the number of significant PCs, 

i.e., the number of significant joint angle synergies. 

 

Supplementary Fig. S3. Time course of PC scores based on 50 bootstrap PCAs. 

Original joint angle time courses are projected into the spaces spanned by the first three 

PCs of each bootstrap PCA. (a) Time courses of PC scores for catching movements 

toward three target positions located on a horizontal transect within the workspace of the 

arm. (b) Time courses of PC scores for catching movements toward four target positions 

located on a vertical transect. Same transect as in Fig. 5. The gaps between time 

courses for movements to different targets are often larger than the spread of the 50 

bootstrap solutions, showing that there is a robust systematic dependence on target 

position. 

 

Supplementary Fig. S4: Time course of individual joint angles after reconstruction of the 

original movement by use of the first three PCs. Compare with Fig. 8. Black traces show 

the reconstructed joint angle time courses for 50 bootstrap solutions of the PCA 

(calculated by use of the correlation matrix). Same bootstrap analyses as used for Fig. 

S3. Red traces show the corresponding original time courses as measured in the 

experiment. The spread of the reconstructed time courses is small, showing that the 

variability between trials of one participant has little effect on the reconstruction of joint 

angle time courses. 

 

Supplementary Fig. S5: Loadings of the first three PCs (start position 1, participant CL, 

multiple-target-PCA). Black columns show the data from Fig. 9. White columns show the 

mean loadings of 15 sets of PCs calculated for noisy data sets. In each noisy data set, 

the marker positions were confounded by a random position offset. Standard deviation 

of the added noise was 8 mm. Note that this added noise was not equivalent to the 

estimated mean marker error of the original data set because here, noise was added 

independently for each marker and the resulting deviation from the kinematic chain 

could cumulate, whereas in the real experiments they could not do so. Arm postures and 

associated PCA were recalculated as in the original data set. Error bars show the 

standard deviation of the loadings. The mean noisy loadings differ from the original 
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loadings but the main features of the original PCs remain unaffected. Only one loading 

of PC 3, hand φ, reverses sign; however, the absolute value of this loading remains 

small. Standard deviations are small for PC 1 but increase for many loadings of PC 2 

and PC 3 (but not all; see hand φ and θ of PC 2), indicating that these PCs are more 

strongly affected by noise than PC 1. 

Supplementary videos 

Files: 

PC1_frontal_view.mpg 

PC1_side_view.mpg 

PC2_frontal_view.mpg 

PC2_side_view.mpg 

PC3_frontal_view.mpg 

PC3_side_view.mpg 

 

Each video shows the movement resulting from sinusoidal modulation of a single PC 

(PC 1, PC 2 and PC 3, respectively) around the average posture with maximum score 

amplitude set to three standard deviations. For each PC modulated in this way two 

views of the movement are provided, one from the frontal view and one from the right 

hand side view. See also Section 3.7 in the main text. 
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 AC AK CL CP HG MW OS TP VD mean 

s1 53.4 % 
(0.34) 

57.3 % 
(0.45) 

50.1 % 
(0.54) 

50.2 %
(0.31) 

48.1 %
(0.21) 

50.8 %
(0.36) 

54.9 %
(0.57) 

52.4 % 
(0.42) 

49.7 %
(0.51) 

51.9 
% PC 

1 
s2 52.6 % 

(0.33)  
51.3 % 
(0.18) 

40.0 % 
(0.36) 

45.0 %
(0.60) 

36.7 %
(0.44) 

43.8 %
(0.26) 

51.3 %
(0.49) 

46.9 % 
(0.37) 

46.9 %
(0.18) 

46.1 
% 

s1 21.2 % 
(0.36) 

21.9 % 
(0.34) 

19.6 % 
(0.22) 

22.9 %
(0.31) 

23.1 %
(0.26) 

19.9 %
(0.29) 

21.4 %
(0.30) 

21.2 % 
(0.28) 

20.8 %
(0.36) 

21.3 
% PC 

2 
s2 19.4 % 

(0.12) 
29.8 % 
(0.29) 

23.1 % 
(0.27) 

21.8 %
(0.50) 

29.4 %
(0.30) 

20.5 %
(0.17) 

23.1 %
(0.29) 

22.8 % 
(0.24) 

27.3 %
(0.36) 

24.1 
% 

s1 9.8 % 
(0.28) 

11.2 % 
(0.13) 

11.9 % 
(0.43) 

12.2 %
(0.27) 

14.9 %
(0.16) 

10.7 %
(0.04) 

15.1 %
(0.15) 

13.7 % 
(0.17) 

14.8 %
(0.10) 

12.7 
% PC 

3 
s2 15.3 % 

(0.13) 
10.2 % 
(0.19) 

17.4 % 
(0.29) 

13.9 %
(0.24) 

12.3 %
(0.09) 

13.9 %
(0.06) 

15.4 %
(0.19) 

14.1 % 
(0.34) 

12.0 %
(0.07) 

13.8 
% 




