Influence of ortho substituents on 17O NMR chemical shifts in phenyl esters of substituted benzoic acids
Ilmar A Koppel, Vilve Nummert, Vahur Mäemets, Mare Piirsalu

To cite this version:

HAL Id: hal-00614319
https://hal.science/hal-00614319
Submitted on 11 Aug 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Influence of ortho substituents on 17O NMR chemical shifts in phenyl esters of substituted benzoic acids

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Physical Organic Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>POC-10-0124.R1</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Research Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Jul-2010</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Koppel, Ilmar; University of Tartu, Institute of Chemical Physics Nummert, Vilve; University of Tartu, Institute of Chemistry Mäemets, Vahur; University of Tartu, Faculty of Science and Technology Piirsalu, Mare; University of Tartu, Institute of Chemistry</td>
</tr>
<tr>
<td>Keywords:</td>
<td>NMR spectra of phenyl benzoates, 17O NMR chemical shifts, substituent effects, ortho effect, correlation equations</td>
</tr>
</tbody>
</table>

http://mc.manuscriptcentral.com/poc
Influence of ortho substituents on 17O NMR chemical shifts in phenyl esters of substituted benzoic acids

Vilve Nummert,1 Vahur Mäemets,2 Mare Piirsalu,3 and Ilmar A. Koppel4∗

Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

e-mail:1 vilve.nummert@ut.ee, 2 vahur.maemets@ut.ee, 3 mare.piirsalu@ut.ee, 4 ilmar.koppel@ut.ee

17O NMR spectra for 29 phenyl esters of ortho-, para- and meta-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, at natural abundance in acetonitrile were recorded. The $\delta^{(17)}$(O) values of carbonyl and the single-bonded oxygens for para derivatives gave good correlation with the σ^{+} constants. The $\delta^{(17)}$(O) values for meta derivatives correlated well with the σ_{m} constants. The influence of ortho substituents on the $\delta^{(17)}$(O) values of carbonyl oxygen and the single-bonded oxygens was analyzed using the Charton equation containing the inductive, σ_{i}, resonance, σ^{+}_{R}, and steric, E_{s}^{B}, substituent constants. For ortho derivatives excellent correlations with the Charton equation were obtained when the data treatment was performed separately for derivatives containing electron-donating $+$R and electron-attracting $-$R substituents. The electron-donating substituents in ortho-, meta- and para-substituted esters resulted in shielding of the 17O signal and the electron-withdrawing groups caused deshielding. In phenyl ortho-substituted benzoates the substituent–induced positive inductive ($\rho_{i} > 0$), resonance ($\rho_{R} > 0$) and steric ($\delta_{ortho}E_{s}^{B} > 0$) effects were found. The steric interaction of ortho substituents with ester group was found to produce a deshielding effect on the carbonyl and single-bonded oxygens. For ortho derivatives with $-$R substituents the resonance term was insignificant and the steric term was ca. twice weaker as compared to that for derivatives with $+$R substituents. The $\delta^{(17)}$(O) values for ortho-substituted nitrobenzenes, acetophenones and benzoyl chlorides showed a good correlation with the Charton equation as well. In ortho-substituted nitrobenzenes the inductive, resonance and steric effect were found to be ca. 1.7 times stronger as compared to that for phenyl ortho-substituted benzoates.

Keywords: NMR spectra of phenyl benzoates; 17O NMR chemical shifts; substituent effects; ortho effect; correlation equations

INTRODUCTION

In our previous papers the influence of substituent effects, especially ortho effect, on the rates of the alkaline hydrolysis in various media (as shown in References[1-7]), the carbonyl carbon 13C NMR chemical shifts, δ_{CO},8] and the carbonyl carbon infrared stretching frequencies, ν_{CO},9] in substituted phenyl benzoates, (X-C$_6$H$_4$CO$_2$C$_6$H$_5$, C$_6$H$_5$CO$_2$C$_6$H$_4$-X) were studied. In the present paper we extend our study of the ortho substituent effect to the
17O NMR chemical shifts, \(\delta^{17}\text{O} \), in substituted phenyl benzoates, containing substituents in benzoyl moiety (X-C\(_6\)H\(_4\)CO\(_2\)CH\(_3\)).

To the best of our knowledge, no study of the ortho, meta, and para substituent effects on the \(\delta^{17}\text{O} \) values for phenyl esters of substituted benzoic acids, X-C\(_6\)H\(_4\)CO\(_2\)CH\(_3\), could be found in the literature. There are also no \(\delta^{17}\text{O} \) data for the phenyl esters of substituted benzoic acids, except unsubstituted phenyl benzoate, X = H\[^{10,11}\] available in the literature. The values of \(\delta^{17}\text{O} \) in the ortho-substituted esters of substituted benzoic acids are available only for methyl benzoates, X-C\(_6\)H\(_4\)CO\(_2\)CH\(_3\), with X = OCH\(_3\), Cl, NO\(_2\), CH\(_3\) and 2,6-disubstituted methyl benzoates, X\(_1\)X\(_2\)-C\(_6\)H\(_4\)CO\(_2\)CH\(_3\), with X\(_1\) = X\(_2\) = CH\(_3\), C(CH\(_3\))\(_3\)^{12-14}.

Although there are numerous investigations on the \(\delta^{17}\text{O} \) values for esters in literature,\[^{10-33}\] the influence of the substituent effects on the \(\delta^{17}\text{O} \) of the carbonyl and methoxy oxygens in esters of substituted benzoic acid, using correlation equations, has been studied only for meta- and para-substituted methyl benzoates and para-substituted methyl 2,6-dimethyl-4-X-benzoates.\[^{14-16}\] The \(\delta^{17}\text{O} \) values of carbonyl and methoxy oxygens in meta- and para-substituted methyl benzoates gave good correlations with \(\sigma_m \) and \(\sigma^\sigma \) constants, respectively. In the hindered benzoates, 2,6-dimethyl-4-X-benzoates, the through-conjugation was found to be essentially reduced due to the increased torsion angle between the carbonyl group and the ring plane.\[^{13,14}\] It was found that in methyl benzoates reaction series an introduction of electron-attracting substituents causes deshielding and electron-donating substituents shielding of the carbonyl and methoxy O atoms.\[^{14-16}\] It has been shown\[^{26-29}\] that in substituted carbonyl derivatives, Y-C\(_6\)H\(_4\)CO-X, RCO-X, the shielding of the carbonyl oxygen is increased and the sensitivity of the Y substituent is diminished with an increase in the electron-donating power of the X group.

In ortho-substituted compounds the \(\delta^{17}\text{O} \) data have been quite extensively studied for nitrobenzenes,\[^{34,35}\] acetoephones,\[^{36-38}\] benzaldehydes,\[^{36}\] and benzoyl chlorides.\[^{39,40}\] But to the best of our knowledge, up to now the correlation equations were not applied to describe the influence of ortho substituents on the \(17\text{O} \) NMR chemical shifts. In ortho-substituted derivatives the steric influence of ortho substituents on the \(\delta^{17}\text{O} \) values has been explained by steric inhibition of resonance and van der Waals interactions.\[^{12-14,39,41-44}\] It was suggested that in systems in which the functional group is free to rotate, due to steric consequences the functional group is rotated out of the plane of the aromatic ring increasing the double bond character of the functional group. In the rigid systems the steric influence of ortho substituents was explained by the van der Waals interactions between the ester group and the adjacent bulky substituent.\[^{41,42}\]

In the previous papers we found that in substituted phenyl benzoates, (X-C\(_6\)H\(_4\)CO\(_2\)C\(_6\)H\(_5\), C\(_6\)H\(_5\)CO\(_2\)C\(_6\)H\(_5\)-X) the influence of ortho substituents on the log \(k \) values in the alkaline hydrolysis,\[^{1-7}\] the carbonyl carbon \(^{13}\text{C} \) NMR chemical shifts, \(\delta_{\text{C}} \), and the carbonyl carbon infrared stretching frequencies, \(\nu_{\text{CO}} \), was precisely described with the Charton equation\[^{45}\] using the inductive, \(\sigma_i \), resonance, \(\sigma^\text{R} \), and steric, \(E_S^B \), substituent constants. Nearly the same results were obtained when for ortho substituents the Charton steric scale, \(\psi \),\[^{49}\] based on van der Waals radii, was used. In the phenyl esters of ortho-substituted benzoic acids (X-C\(_6\)H\(_4\)CO\(_2\)C\(_6\)H\(_5\)) the contribution of ortho inductive and ortho steric components were found to be the dominant factors in the alkaline hydrolysis in
water,[6] the carbonyl carbon infrared stretching frequencies, \(\nu_{\text{CO}}\),[1,9] for cis conformers as well as in the \(^{13}\)C NMR chemical shifts, \(\Delta_{\text{CO}}\),[8]

\[
\log k_{\text{ortho}}(\text{H}_2\text{O}, 25 \degree \text{C}) = -0.333 + 2.13\sigma_1 + 0.31\sigma_2 + 2.67E_s^B
\]

\(R = 0.992, s_0 = 0.126, n/n_0 = 11/11\)

\[(\nu_{\text{CO}})_{\text{cis}} = 1742.7 + 16.4\sigma_1 - 22.6E_s^B\]

\(R = 0.993, s_0 = 0.117, n/n_0 = 9/9\)

\[(\Delta_{\text{CO}})_{\text{ortho}} = 165.32 - 5.08\sigma_1 + 1.58\sigma_2 - 4.33E_s^B\]

\(R = 0.978, s_0 = 0.257, n/n_0 = 11/11\)

In reaction series considered (Eqns (1)-(2)) the resonance term was negligible. In the \(^{13}\)C NMR chemical shifts, \(\Delta_{\text{CO}}\),[8] the value of \((\rho_\text{R})_{\text{ortho}}\) has the opposite sign \((\rho_\text{R})_{\text{ortho}} = +1.6\) as compared to that for \(\text{para}\) derivatives \((\rho_\text{R})_{\text{para}} = -1.00\).

Recently we found[4,8] good correlations between the log \(k\) values of the alkaline hydrolysis of \(\text{ortho}\)-substituted phenyl benzoates and the infrared stretching frequencies of carbonyl group, \(\nu_{\text{CO}}\), as well as the \(^{13}\)C NMR chemical shifts, \(\Delta_{\text{CO}}\), in case the additional resonance and steric scales were included.

The aim of the present paper was to check the applicability of the Charton equation to describe the influence of \(\text{ortho}\) substituents on the \(\Delta(\nu)\) values in phenyl esters of \(\text{ortho}\)-substituted benzoic acids, (X-C\(_6\)H\(_4\)CO\(_2\)C\(_6\)H\(_5\)), and to compare the substituent effects in the \(\Delta(\nu)\) values with those in the alkaline hydrolysis,[6] the infrared stretching frequencies, \(\nu_{\text{CO}}\),[9] and the \(^{13}\)C NMR chemical shifts, \(\Delta_{\text{CO}}\).

For the comparison, the \(\Delta(\nu)\) values for substituted nitrobenzenes,[34,35] acetophenones,[36,38] and benzoyl chlorides,[39-40] published in literature were correlated with the Charton equation as well.

EXPERIMENTAL

NMR measurements

\(^{17}\)O NMR spectra for 29 phenyl esters of \(\text{ortho}\-, \text{meta}\-, and \text{para}\-)substituted benzoic acids, X-C\(_6\)H\(_4\)CO\(_2\)C\(_6\)H\(_5\) (X = H, 4-NO\(_2\), 4-F, 4-Cl, 4-Br, 4-CH\(_3\), 4-OCH\(_3\), 4-NH\(_2\), 4-C(CH\(_3\))\(_3\), 3-NO\(_2\), 3-CN, 3-Cl, 3-F, 3-CH\(_3\), 3-OCH\(_3\), 3-N(CH\(_3\))\(_2\), 2-NO\(_2\), 2-CN, 2-F, 2-Cl, 2-Br, 2-I, 2-CF\(_3\), 2-CH\(_3\), 2-OCH\(_3\), 2-N(CH\(_3\))\(_2\), 2-NH\(_2\), 2-SO\(_2\)CH\(_3\), 2-SCF\(_3\)), were recorded at natural abundance in acetonitrile (see Table 1). The \(^{17}\)O NMR spectra were recorded on a Bruker Avance II 200 spectrometer equipped with 10 mm BBO probe at the resonance frequency 27.13 MHz. Benzoates were dissolved in the mixture of 1 ml CD\(_3\)CN and 2 ml CH\(_3\)CN. Acetonitrile-d\(_3\) “Special HOH” 99.8 atom % D, Aldrich and Acetonitrile SPECTRANALR, Riedel-de Haën were used. Depending on the type of the benzoate the concentration varied between values from 0.3 molal to 1 molal. Temperature of the measurements was 50 °C. Water at 50 °C was used as an external reference (\(^{17}\)O chemical shift was taken 0 ppm). Depending on the sample about 0.5 to 1.8 million scans (measurement time up to 70 hours)
was acquired at the spectral width 23148 Hz and its size 2048 data points. The 10 µs (at the ~11µs 90 degree pulse) exitation pulse with pre-scan delay 64 µs and with the relaxation delay 50 ms was applied. Acquisition time was 44 ms. The data were processed with Bruker TopSpin 2.0 software package. During the data processing an exponential multiplication of the FID with LB = 40 was applied. For the correction of the baseline rolling caused by acoustic ringing effect a backward linear prediction for the first 10 data points of the FID was applied also during of the data processing. The line width of the 17O spectral lines of the phenyl esters measured was within the range 250-400 Hz and up to 50-60 Hz for the water standard. The error of the chemical shifts measured was estimated on the basis of repetitive measurements and was ≤±0.4 ppm.

The standard 1H and proton-decoupled 13C NMR spectra were recorded in CDCl$_3$ solution with 1% TMS added for the spectral referencing at a room temperature and at 200.13 and 50.33 MHz correspondingly. 2D HSQC or HETCOR spectra were recorded also for assignment of the 1H and 13C peaks.

Synthesis of compounds

The preparation procedure and characteristics for the phenyl esters of the ortho-, meta- and para-substituted benzoic acids, (X-C$_6$H$_4$CO$_2$C$_6$H$_5$), has been described in Reference.$^{[6]}$ The phenyl esters of 2-N(CH$_3$)$_2$-, 2-SO$_2$CH$_3$- and 2-SF$_3$-substituted benzoic acids were prepared by the addition of thionyl chloride to the mixture of corresponding ortho-substituted benzoic acid and phenol in pyridine at 0 ºC with stirring.$^{[50]}$ Phenyl 2-N(CH$_3$)$_2$-benzoate was recrystallized from aqueous 80% ethanol: yield 62%, m.p. 63-64 ºC, Reference.$^{[51]}$ m.p. 67-69 ºC. Phenyl 2-SO$_2$CH$_3$-benzoate was recrystallized from aqueous 67% ethanol: yield 56%, m.p. 116-117 ºC, Reference.$^{[51]}$ m.p. 108-110 ºC. Phenyl 2-SF$_3$-benzoate was extracted from the reaction mixture with diethyl ether. The ether layer was dried with unhydrous magnesium sulfate. Diethyl ether was removed under the reduced pressure. Phenyl 2-(trifluoromethylthio)benzoate: b.p. 145-147ºC/2.5 mbar, yield 40%. The phenyl esters of 3-CN-, 3-OCH$_3$- and 3-F-substituted benzoic acids were prepared from corresponding substituted benzoyl chloride and phenol in pyridine solution.$^{[52]}$ Phenyl 3-CN-benzoate was recrystallized from aqueous ethanol: yield 27%, m.p. 95-96 ºC, Reference, $^{[53]}$ m.p. 92-95. Phenyl 3-OCH$_3$-benzoate: yield 66%, m.p. 62-63, Reference,$^{[53]}$ m.p. 64-66 ºC. Phenyl 3-F-benzoate: yield 64%, m.p. 55-56, Reference,$^{[54]}$ m.p. 54-55 ºC. Purity of synthesized phenyl esters of 2-N(CH$_3$)$_2$-, 2-SO$_2$CH$_3$-, 2-SF$_3$-, 3-CN-, 3-OCH$_3$-, and 3-F-substituted benzoic acids was confirmed by 1H and 13C NMR spectroscopy in CDCl$_3$ at 25 ºC.

Phenyl 2-(methylsulfonyl)benzoate
Phenyl 2-(trifluoromethylthio)benzoate

H NMR: 7.76 d, 1H (H-3), 3J = 7.8; 7.35-7.56 m, 4H (H-4,5,10,12); 8.09 dd, 1H (H-6), 3J = 7.4, 4J = 2.0; 7.19-7.27 m, 3H (H-9,11,13).

13C NMR: 128.46 (C-1); 133.0 (C-2); 133.72 (C-3); 132.81 (C-4); 129.22 (C-5); 131.43 (C-6); 164.74 (C-7); 150.84 (C-8); 121.59 (C-9,13); 129.65 (C-10,12); 126.30 (C-11); 129.77 (C-14), 1J_C-F =310.0.

Phenyl 2-(dimethylamino)benzoate

H NMR: 6.99 d, 1H (H-3), 3J = 8.4; 7.37-7.45 m, 3H (H-4,10,12); 6.89 m, 1H (H-5), 3J = 7.8; 7.94 dd, 1H (H-6), 3J = 7.8, 4J = 1.7; 7.20-7.27 m, 3H (H-9,11,13); 2.92 s, 6H (H-14).

13C NMR: 119.80 (C-1); 153.16 (C-2); 117.05 (C-3); 132.92 (C-4); 118.65 (C-5); 132.19 (C-6); 166.27 (C-7); 151.30 (C-8); 121.72 (C-9,1σ1 σ3); 129.40 (C-10,12); 125.60 (C-11), 43.78 (C-14).

Phenyl 3-methoxybenzoate
H NMR: 7.70 dd, 1H (H-2), $^4J = 2.6$ and 1.6; 7.13-7.30 m, 4H (H-4,9,11,13); 7.36-7.47 m, 3H (H-5,10,12); 7.81 ddd, 1H (H-6), $^3J = 7.6$, $^4J = 1.6$ and 1.1; 3.86 s, 3H (H-14).

13C NMR: 131.14 (C-1); 114.80 (C-2); 159.92 (C-3); 120.14 (C-4); 129.61 (C-5); 122.64 (C-6); 165.00 (C-7); 151.22 (C-8); 121.73 (C-9,13); 129.48 (C-10,12); 125.86 (C-11), 55.54 (C-14).

Phenyl 3-cyanobenzoate

H NMR: 8.50 dt, 1H (H-2), $^4J_{av}=1.7$, $^3J=0.7$; 7.92 ddd, 1H (H-4), $^5J = 7.8$, $^4J = 1.7$ and 1.3; 7.67 dt, 1H (H-5), $^3J_{av}= 7.9$, $^5J = 0.7$; 8.43 ddd, 1H (H-6), $^5J = 7.9$, $^4J = 1.3$ and 1.7, 7.18-7.35 m, 3H (H-9,11,13); 7.46 m, 2H (H-10,12), $^3J_{av}= 7.9$.

13C NMR: 131.28 (C-1); 133.79 (C-2), 113.53 (C-3), 136.50 (C-4), 129.69 (C-5), 134.11 (C-6), 163.21 (C-7), 150.77 (C-8), 121.47 (C-9,13), 129.67 (C-10,12), 126.35 (C-11), 117.67 (C-14).

Phenyl 3-fluorobenzoate

H NMR: 7.87 dddd, 1H (H-2), $^3J_{F-H} = 9.2$, $^4J = 1.6$ and 2.7, $^5J = 0.4$; 7.16-7.52 m, 7H (H-4,5,9-13); 7.99 ddd, 1H (H-6), $^3J = 7.7$, $^4J = 1.6$ and 1.1.

13C NMR: 132.06 (C-1), $^1J_{F-C} = 7.7$; 117.07 (C-2), $^2J_{F-C} = 23.3$; 162.79 (C-3), $^1J_{F-C} = 247.4$; 120.62 (C-4), $^2J_{F-C} = 21.5$; 130.27 (C-5), $^3J_{F-C} = 7.9$; 125.94 (C-6), $^4J_{F-C} = 3.3$; 164.00 (C-7), $^4J_{F-C} = 3.1$; 151.02 (C-8); 121.62 (C-9,13); 129.56 (C-10,12); 126.07 (C-11).

DATA PROCESSING AND RESULTS
The δ^{17}O values for the carbonyl and single-bonded oxygens in the phenyl esters of \textit{para}- and \textit{meta}-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, given in Table 1 were correlated with Eqns (4) and (5). For \textit{meta} substituents σ_m, σ_l and σ_R were used.

$$\delta^{17}O_{\text{para(meta)}} = \delta^{17}O_H + (\rho^+)_\text{para(meta)}\sigma^+(\sigma_m)$$ \hspace{1cm} (4) \\
$$\delta^{17}O_{\text{para(meta)}} = \delta^{17}O_H + (\rho)_\text{para(meta)}\sigma_l + (\rho^+)_\text{para(meta)}\sigma^+_R$$ \hspace{1cm} (5) \\

In the case of \textit{ortho}-substituted derivatives the influence of the inductive, resonance and steric factors on the δ^{17}O values was separated using the following Charton equations$^{[45]}$:

$$\delta^{17}O_\text{ortho} = \delta^{17}O_H + (\rho)_{\text{ortho}}\sigma_l + (\rho^+)_\text{ortho}\sigma^+_R + \delta_{\text{ortho}}E^B_s$$ \hspace{1cm} (6) \\
$$\delta^{17}O_\text{ortho} = \delta^{17}O_H + (\rho)_{\text{ortho}}\sigma_l + (\rho^+)_\text{ortho}\sigma^+_R + \delta_{\text{ortho}}$$ \hspace{1cm} (7)

The correlation of the δ^{17}O values with Eqns (6) and (7) was performed separately for \textit{ortho}-substituted derivatives containing the \textit{ortho} electron-donating +R substituents (X = OCH$_3$, CH$_3$, N(CH$_3$)$_2$, F, Cl, Br, H) and derivatives with the \textit{ortho} electron-withdrawing −R substituents (X = NO$_2$, CN, CF$_3$, SCF$_3$, SO$_2$CH$_3$, H). The Brown and Okamoto constants, σ^+,$^{[55,56]}$ the polar substituent constants, σ_m, $^{[56]}$ the Taft inductive σ_l,$^{[8,46]}$ resonance σ_R constants ($\sigma^+_R = \sigma^+_p - \sigma_l$), and σ^+_R ($\sigma^+_R = \sigma^+_p - \sigma_l$),$^{[8,47]}$ were used in the data processing. As the steric constants for \textit{ortho} substituents two steric scales were employed: the E^B_s constants and the Charton scale of ν.$^{[49,60,61]}$ The steric constants, E^B_s, determined on the basis of the acid hydrolysis of \textit{ortho}-substituted phenyl benzoates, C$_6$H$_5$CO$_2$C$_6$H$_4$X,$^{[6,48]}$ in the case of substituents X = H, F, Cl, Br, I, CH$_3$, C(CH$_3$)$_2$, CF$_3$, were found to be nearly linear function of the ν values, calculated on the bases of van der Waals radii, r_v.

The results of correlations of the carbonyl oxygen and the single-bonded oxygen δ^{17}O values, for phenyl esters of \textit{para}-, \textit{meta}- and \textit{ortho}-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, with Eqns (4)-(7) are listed in Table 2. For comparison, the correlation of the δ^{17}O values published in literature for \textit{ortho}-, \textit{para}- and \textit{meta}-substituted nitrobenzenes,$^{[17,34,35,57,58]}$ X-C$_6$H$_4$NO$_2$, acetophenones,$^{[36-38,59]}$ X-C$_6$H$_4$COCH$_3$, and benzoyl chlorides,$^{[27,39,40]}$ X-C$_6$H$_4$COCl, with Eqns (4)-(6) are shown in Table 2 as well.

To compare of the substituent effects on the δ^{17}O values of the carbonyl oxygen and the single-bonded oxygen for phenyl esters of \textit{ortho}-, \textit{para}- and \textit{meta}-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, with those in the kinetic data of the alkaline hydrolysis, log k, the carbonyl carbon 13C NMR chemical shifts, δCO, and the infrared stretching frequencies of the carbonyl group, νCO, in substituted phenyl benzoates, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, the following relationships were used:

$$\delta^{17}O_\text{ortho} = \delta^{17}O_H + a_1(\text{ortho})\Delta log k_X + a_2(\text{ortho})\sigma_R + a_3(\text{ortho})E^B_s$$ \hspace{1cm} (8) \\
$$\delta^{17}O_\text{ortho} = \delta^{17}O_H + a_1(\text{ortho})(\Delta \delta \text{CO})_X + a_2(\text{ortho})\sigma^+_R + a_3(\text{ortho})E^B_s$$ \hspace{1cm} (9)
\[\delta^{17}O_{\text{ortho}} = \delta^{17}O_{\text{H}} + a_{\text{1(ortho)}}(\Delta \nu_{\text{CO}})_{\text{X}} + a_{\text{2(ortho)}} \sigma^+_{\text{R}} + a_{\text{3(ortho)}} E^B \]
(10)

\[\delta^{17}O_{\text{para(meta)}} = \delta^{17}O_{\text{H}} + a_{\text{1(para)}}(\Delta \log k_X) + a_{\text{2(para)}} \sigma^+_{\text{R}}(\sigma^+_{\text{R}}) \]
(11)

\[\delta^{17}O_{\text{para(meta)}} = \delta^{17}O_{\text{H}} + a_{\text{1(para)}}(\Delta \nu_{\text{CO}})_{\text{X}} + a_{\text{2(para)}} \sigma^+_{\text{R}}(\sigma^+_{\text{R}}) \]
(12)

\[\delta^{17}O_{\text{para(meta)}} = \delta^{17}O_{\text{H}} + a_{\text{1(para)}}(\Delta \nu_{\text{CO}})_{\text{X}} + a_{\text{2(para)}} \sigma^+_{\text{R}}(\sigma^+_{\text{R}}) \]
(13)

In Eqns (8)-(13), \(\Delta \log k_X = \log k_X - \log k_H \), \((\Delta \nu_{\text{CO}})_{\text{X}} = (\delta_{\text{CO}})_{\text{X}} - (\delta_{\text{CO}})_{\text{H}} \) and \((\Delta \nu_{\text{CO}})_{\text{X}} = (\nu_{\text{CO}})_{\text{X}} - (\nu_{\text{CO}})_{\text{H}} \). The log \(k \) values for the alkaline hydrolysis in water and aqueous 50% DMSO, the carbonyl carbon \[^{13}C \] NMR chemical shifts, \(\delta_{\text{CO}} \), and the IR stretching frequencies of the carbonyl group, \(\nu_{\text{CO}} \), for phenyl benzoates, \(X-C_6H_4CO_2C_6H_5 \), used in correlations with Eqns (8)-(13) are given in References.\[^{[6,8,9,51,52]}\] In the case of phenyl esters of ortho-substituted benzoic acids, the \(\nu_{\text{CO}} \) values for cis conformers estimated by the carbonyl stretching frequencies deconvolution were used. The results of data treatment with Eqns (8)-(13) are listed in Table 3. For the data processing a multiple-parameter linear least-squares (LLSQ) procedure\[^{[62]}\] was used.

DISCUSSION

The \(\delta^{17}O \) values in phenyl esters of para-substituted benzoic acids, \(X-C_6H_4CO_2C_6H_5 \), (Table 1) gave excellent correlations so with the single parameter treatment using the Brown and Okamoto \(\sigma^+ \) constants\[^{[55,56]}\] (Eqn (4)) as the dual substituent parameter treatment with the Taft \(\sigma^I \)\[^{[8,46]}\] and \(\sigma^+_{\text{R}}(\sigma^+_{\text{R}} = \sigma^I - \sigma^I) \) constants (Eqn (5), Table 2):

\[\delta^{17}O_{\text{para}} = (345.2 \pm 0.3) + (9.07 \pm 0.55) \sigma^I \]
(14)

\[R = 0.986, s = 0.918, n/n_0 = 9/9 \]

\[\delta^{17}O_{\text{para}} = (345.9 \pm 0.5) + (7.21 \pm 0.99) \sigma^I + (9.71 \pm 0.54) \sigma^+_{\text{R}} \]
(15)

\[R = 0.990, s = 0.752, n/n_0 = 9/9 \]

In para-substituted phenyl benzoates the calculated sensitivity of the \(\delta^{17}O \) values of the carbonyl oxygen towards the inductive effect and through-conjugation shown by Eqns (14) and (15) (Table 2) were approximately the same as earlier were found for methyl benzoates in References\[^{[15,16]}\] (\(\rho^+ = 9.76, \sigma^I = 9.03, \sigma^+_{\text{R}} = 9.66 \) (Table 2)). The excellent correlation of the \(\delta^{17}O \) values obtained with \(\sigma^I \) and \(\sigma^+_{\text{R}} \) constants (Eqns (14) and (15)) suggests that the \(\delta^{17}O \) values for phenyl esters of para-substituted benzoic acids are besides the inductive effect dependent on the through-conjugation between substituent and the carbonyl oxygen similar to that for para-substituted methyl benzoates,\[^{[14-16]}\] acetophenones,\[^{[36,37,59]}\] benzytol chlorides,\[^{[27,39,40]}\] nitrobenzenes.\[^{[35,57-58]}\] The \(\delta^{17}O \) values of the single-bonded phenoxy oxygen show good correlations with Eqns (4) and (5) as well. The influence of para
substituents from the benzoyl part of esters on the $\delta^{17}(O)$ of the single-bonded phenoxy oxygen was ca. one-half the size of substituent effects in the $\delta^{17}(O)$ of carbonyl oxygen (Table 2) which is similar to that in Reference[14-16]. The chemical shifts of carbonyl oxygen for meta derivatives correlated well with the single parameter treatment using the Taft σ_m constants as the dual substituent parameter treatment with the Taft σ_1 and σ^e_R constants (Table 2).

In meta-substituted phenyl benzoates the calculated sensitivity of the $\delta^{17}(O)$ values of carbonyl oxygen towards the σ_m constants was nearly the same as earlier found for methyl benzoates in Reference15 ($\rho_m = 6.44$15 7.17 Table 2). In the case of meta derivatives the $\delta^{17}(O)$ values for single-bonded phenoxy oxygen showed very low sensitivity towards the substituent effects in benzoyl moiety ($\rho_m = 1.71$ Table 2). In case the $\delta^{17}(O)$ values of single-bonded phenoxy oxygen for meta derivatives were correlated with the Taft σ_1 and σ^e_R constants; the resonance term was excluded as insignificant.

The positive values of ρ^s, ρ_1 and ρ^e_R calculated using the $\delta^{17}(O)$ values for carbonyl oxygen and single-bonded phenoxy oxygen in phenyl esters of substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, (Table 2) prove that the electron-withdrawing substituents cause high-frequency shift of the 17O signal showing deshielding effect of the O atom. The electron-donating substituents have an opposite effect resulting in low-frequency shift and shielding of the O atom. This is consistent with the increased double bond character of the carbonyl group produced by an electron-withdrawing groups and an increase in single bond character resulting from the electron-donating substituents[26,36,63,65] An increase in the negative charge on the carbonyl oxygen indirectly causes the oxygen lone pair to be less tightly bound. Earlier[8,9] the increased double bond character of the carbonyl group produced by an electron-withdrawing groups in phenyl esters of substituted benzoic acids was proved by the carbonyl carbon 13C NMR chemical upfield shifts, δ_{CO}, and the increased infrared stretching frequencies of the carbonyl group, ν_{CO}.

We determined the $\delta^{17}(O)$ values for thirteen phenyl esters of ortho-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, (Table 1). All measured ortho-substituted benzoates, except X = 2-NH$_2$, showed the high-frequency shift of the 17O signal. It could be mentioned that the substituent-induced 17O NMR chemical shifts, $\Delta\delta^{17}(O) = \delta^{17}(O)_X - \delta^{17}(O)$_H, for phenyl esters of substituted benzoic acids for X = OCH$_3$, Cl, NO$_2$ determined in the present work (see Table 1) were essentially larger ($\Delta\delta^{17}(O)$_OCH$_3$ = 21.2, $\Delta\delta^{17}(O)$_Cl = 21.2, $\Delta\delta^{17}(O)$_NO$_2$ = 22.7) as compared with those given earlier in Reference[12] for ortho-substituted methyl benzoates ($\Delta\delta^{17}(O)$_OCH$_3$ = 1.2, $\Delta\delta^{17}(O)$_Cl = 2.9, $\Delta\delta^{17}(O)$_NO$_2$ = 1.7).

The $\delta^{17}(O)$ values for phenyl esters of ortho-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, listed in Table 1 showed excellent correlations with the Charton equation (Eqns (6) and (7)) in case the data treatment was carried out separately for derivatives with $+R$ substituents and with $-R$ substituents. In the case of $+R$ substituents (X = H, 2-F, 2-Cl, 2-Br, 2-CH$_3$, 2-OCH$_3$, 2-N(CH$_3$)$_2$) the influence of ortho substituents to the carbonyl oxygen chemical shifts could be expressed as follows:

\[
(\delta^{17}O)_{ortho} = (346.2 \pm 1.8) + (17.3 \pm 1.8)\sigma_1 + (9.68 \pm 1.13)\sigma^e_R - (81.2 \pm 5.2)E_n^B
\]

\[R = 0.993, s = 1.06, n/n_0 = 7/7\]
Equation (16) was obtained in case the more significantly deviating \((\delta^{7}\text{O})\) values for 2-NH$_2$ and 2-I derivatives were excluded before data treatment. In the case of 2-NH$_2$ ester the deviation was attributed to the intramolecular hydrogen-bonding shielding effect.$^{[9,17]}$ Thus, in the ortho-substituted esters the carbonyl oxygen is deshielded by \(-I\) and steric effects and shielded by +R substituent effects.

For phenyl esters of ortho-substituted benzoic acids containing electron-withdrawing –R substituents (X = H, NO$_2$, CN, CF$_3$, SO$_2$CH$_3$, SCF$_3$) we found:

\[
(\delta^{7}\text{O})_{\text{ortho}} = (346.9 \pm 3.1) + (16.0 \pm 5.1)s - (32.6 \pm 4.0)E_{s}^{B}
\]

\[R = 0.979, \ s = 2.40, \ n/n_0 = 6/6\]

The data treatment with Eqns (6) and (7) using two steric scales for ortho substituents, E_s^B and the modified Charton ν constants, gave nearly identical results (Table 2). When the Charton steric ν constants were used, the susceptibility to the steric effect, δ_{ortho}, was positive and approximately twice smaller as compared to the δ_{ortho} value obtained using the E_s^B scale. We found the influence of ortho substituents to the $\delta^{17}\text{O}$) values in phenyl benzoates containing substituents in benzoyl moiety, to be influenced by the positive inductive effect approximately by the same extent for both +R substituents ((\(\rho\)\text{ortho} = 17.3, Eqn (16)) and –R substituents (\((\rho\)\text{ortho} = 16.0, Eqn (17)). The influence of the ortho inductive effect was found to be approximately one-half the size of the corresponding influence from the para position (Eqns (14) and (15)). For phenyl esters of substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, nearly the same ratio \((\rho\)\text{ortho}/(\rho\)\text{para}) \approx 2 was observed in the carbonyl carbon 13C NMR chemical shifts, δ_{CO}, and infrared stretching frequencies, ν_{CO}.\[^9\] For the alkaline hydrolysis of substituted phenyl benzoates in water for both series containing the substituents in benzoyl and in the phenyl part of benzoates (\(\rho\)\text{ortho}/(\rho\)\text{para} was approximately 1.5.\[^6\]

In the case of ortho derivatives with +R substituents the contribution of the through-conjugation between substituent and the carbonyl oxygen was observed by the same extent as that for para substituents. The sensitivity of the $\delta^{17}\text{O}$ toward the through-conjugation in the case of ortho +R substituents was 9.68 (Eqn (16), Table 3). The same value for para-substituted derivatives was 9.71 (Eqn (16)). In the case of esters with –R substituents the resonance factor was excluded as insignificant.

Results of correlations in Eqns (16) and (17), and Table 2 show that due to the steric positive requirements of ortho substituents the $\delta^{17}\text{O}$ values increase (high-frequency shift of the ^{17}O signal) showing deshielding effect of the O atom in the case of both the ortho +R substituents and ortho –R substituents. We found that the steric requirement in the case of ortho +R substituents was approximately twice as strong as in the case of –R substituents.

In the case of the single-bonded phenoxy oxygen, similar to the inductive and resonance terms, the influence of the steric term appeared to be one-half the size of the steric term for carbonyl oxygen (Table 2). The influence of ortho substituents to the single-bonded $\delta^{17}\text{O}$ values in the case of +R substituents could be expressed as follows:
\[
(\delta^{17}\text{O})_{\text{ortho}} = (187.7 \pm 1.1) + (7.12 \pm 1.13)\sigma_I + (2.48 \pm 0.70)\sigma_R^2 - (33.5 \pm 3.2)E_B
\]
\[
R = 0.986, s = 0.648, n/n_0 = 7/7
\]

Separation of the inductive, resonance and steric components of substituent effects in the \(\delta^{17}\text{O}\) values for phenyl esters of \textit{ortho}-substituted benzoic acids, X-C\(_6\)H\(_4\)CO\(_2\)C\(_6\)H\(_5\), with donor +R substituents (Eqn (16)) show that the influence of the through-conjugation between \textit{ortho} +R substituents and the carbonyl oxygen occurs by the same extent as that for \textit{para} substituents. This confirms that in esters considered with +R substituents the carbonyl group is still coplanar with the \textit{ortho}-substituted aryl ring and due to the through-resonance effect of electron-donating substituents the carbonyl oxygen shows a strong shielding effect. Consequently, in the \textit{ortho}-substituted esters with +R substituents only one substituent in the \textit{ortho} position could not distort the planarity between the carbonyl group and the ring plane essentially. Similarly to esters considered, in the case of the \(\delta^{17}\text{O}\) values for nitrobenzenes\(^{[34]}\) the resonance effect remains important despite of the steric interactions between the substituent and the nitro group. It was concluded\(^{[43,65,66]}\) that a small steric effect of \textit{ortho} substituent in the case of 2-methylbenzoate doesn’t necessarily distort planarity or result in steric inhibition of resonance. In a series of substituted benzoate anions, the \textit{ab initio} calculations of the carbonyl group rotation barriers indicated\(^{[67]}\) that due to \(\pi\)-resonance effect the planar conformations are preferred.

We suggest that in the case of +R substituents the observed steric effects in the \(\delta^{17}\text{O}\) values similar to that for carbonyl carbon \(^{13}\text{C}\) NMR chemical shifts, \(\delta_{\text{CO}}\),\(^{[8]}\) are caused by the repulsive van der Waals deshielding effect. Due to the bulky \textit{ortho} substituents the \(\pi\)-electron density around the CO oxygen in an \textit{ortho}-substituted ester would be reduced due to the electrostatic repulsion between the orbitals of the substituent and those of the CO bond, with the effect increasing as substituent increases the size (the van der Waals deshielding\(^{[17,41,42,44,68]}\)). In the case of the electron-donating substituents due to the repulsive van der Waals steric effect the shielding effect of the O atom is reduced.

We found that in the case of –R electron-withdrawing substituents (X= H, NO\(_2\), CN, CF\(_3\), SO\(_2\)CH\(_3\), SCF\(_3\)) the steric deshielding effect to be twice weaker as compared to that for the electron-donating substituents and the resonance factor was insignificant. We admit that in the case of –R substituents the carbonyl group is rotated out of the \textit{ortho}-substituted aryl plane and similar to that for electron-donating substituents, the steric effect is caused by the repulsive van der Waals deshielding effect.\(^{[17,41,42,44,68]}\) Evidently, in the case of –R substituents the observed repulsive van der Waals deshielding effect was approximately twice weaker as compared to that for planar esters with +R substituents due to the increased torsion angle between the carbonyl group and the \textit{ortho}-substituted aryl plane.\(^{[13]}\) In the case of \textit{ortho} electron-withdrawing substituents the deviation from a coplanar configuration between the ring and the carbonyl group is presumably due to prevention of the positive charge delocalization.\(^{[36]}\)

In phenyl esters of \textit{ortho}-substituted benzoic acids the calculated sensitivities of the \(\delta^{17}\text{O}\) values towards the substituent inductive effect, \((\rho)_{\text{ortho}}\), was more than three times stronger ((\(\rho)_{\text{ortho}} \approx 17\), Table 2) as compared to the same sensitivities, \((\rho)_{\text{ortho}}\) in the case of the carbonyl carbon \(^{13}\text{C}\) NMR chemical shifts, \(\delta_{\text{CO}}\). ((\(\rho)_{\text{ortho}} = 5.00^{[8]}\)). In the substituent-induced chemical shifts of carbonyl carbon for phenyl esters of \textit{ortho}-substituted benzoic acid.
acids with +R substituents the contribution of the steric effect ($\delta_{\text{ortho}} = -81.2$, Table 2) was ca 18 times stronger compared to the steric effect in the case of the carbonyl carbon 13C NMR chemical shifts, δ_{CO} ($\delta_{\text{ortho}} = -4.40$). Dahn and Carrupt$^{[26]}$ have reported that the (de)shielding effect of the carbonyl oxygen atom is mainly determined by the energy of the $n - \pi^*$ excitation; donor-acceptor type interactions influence the level of both orbitals. As the n orbital of this transition is nearly exclusively located on the O atom, the extinction acts less on 13C and thus mainly responsible for the difference in the substituent sensitivity between 13C and 17O shifts. Chao$^{[40]}$ concluded that the 17O shift values in carbonyl compounds are strongly influenced by the $n - \pi^*$ mixing, whereas the 13C values are determined by multiple factors. The $n - \pi^*$ mixing does not affect the 13C chemical shifts because the lone pair is located on the O atom. Studying the 17O chemical shifts in benzamides derivatives De Rosa$^{[69]}$ suggested that in localized exited state the through–conjugation is possible between the substituent and the carbonyl oxygen and is not affected by the ground state torsion angle.

Correlation of the 17O NMR chemical shifts, δ^{17}O, for ortho- and para-substituted nitrobenzenes, benzoyl chlorides and acetophenones

To compare the substituent effects in the δ^{17}O) values for ortho- and para-substituted nitrobenzenes, X-C$_6$H$_4$NO$_2$, benzoyl chlorides, X-C$_6$H$_4$COCl, and acetophenones, X-C$_6$H$_4$COCH$_3$, with those in δ^{17}O) values for the phenyl esters of para- and ortho-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, the corresponding δ^{17}O) values were correlated with Eqns (4)-(6).

Similarly to the phenyl esters of ortho-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, (Eqns (16) and (17)), the δ^{17}O) values for ortho-substituted nitrobenzenes showed excellent correlation with the Charton equation (6) in case the data treatment was performed separately for nitrobenzenes with +R substituents and with −R substituents. For δ^{17}O) values of ortho-substituted nitrobenzenes, X-C$_6$H$_4$NO$_2$, with +R substituents (X = H, CH$_3$, CH$_2$CH$_3$, CH(CH$_3$)$_2$, C(CH$_3$)$_3$, OCH$_3$, SCH$_3$, N(CH$_3$)$_2$, F, Cl, Br, 2,6-(CH$_3$)$_2$) we obtained (Table 2):

\[
(\delta^{17}{\mathrm{O}})_{\text{ortho}} = (578.1 \pm 3.5) + (26.8 \pm 5.2)\sigma_1 + (11.7 \pm 2.4)\sigma R - (108.4 \pm 7.8)E_s B
\]

\[
R = 0.975, \ s = 3.47, \ n/n_0 = 11/12
\]

In the case of ortho-substituted nitrobenzenes, X-C$_6$H$_4$NO$_2$, with −R substituents (X = H, NO$_2$, CN, CF$_3$, CONH$_2$, CO$_2$CH$_3$) the substituent effect ($\delta^{17}{\mathrm{O}})_{\text{ortho}}$ is expressed as follows (Table 2):

\[
(\delta^{17}{\mathrm{O}})_{\text{ortho}} = (573.7 \pm 3.5) + (20.2 \pm 6.3)\sigma_1 - (58.4 \pm 6.0)E_s B
\]

\[
R = 0.981, \ s = 3.12, \ n/n_0 = 6/6
\]

The δ^{17}O) values of carbonyl oxygen for the phenyl esters of ortho-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, showed excellent correlation with δ^{17}O) values for ortho-
substituted nitrobenzenes, X-C₆H₄NO₂, including simultaneously derivatives with +R and –R substituents.

\[\delta^{^{17}}O_{2-X-nitrobenzenes} = (572.2 \pm 1.7) + (1.63 \pm 0.08)\Delta\delta^{^{17}}O_{2-X-benzoates} \]
\[R = 0.986, s = 2.90, n/n₀ = 12/12 \]

\[\delta^{^{17}}O_{4-X-nitrobenzenes} = (575.1 \pm 1.4) + (1.70 \pm 0.24)\Delta\delta^{^{17}}O_{4-X-benzoates} \]
\[R = 0.935, s = 3.73, n/n₀ = 8/12 \]

We can see (Eqns (21) and (22), Table 2) that in substituted nitrobenzenes the inductive, resonance and steric substituent effects appeared to be 1.7 times stronger as compared to that for the phenyl esters substituted benzoic acids, X-C₆H₄CO₂C₆H₅.

In the case of ortho-substituted benzyol chlorides, X-C₆H₄COCl, and acetophenones, X-C₆H₄COCH₃, the correlations with the Charton equation (Eqn (6)) was performed for derivatives with +R ortho substituents only. Unfortunately in literature there are available only very few values on \(\delta^{^{17}}O \) for ortho-substituted benzoyl chlorides and acetophenones with –R substituents, to treat the corresponding \(\delta^{^{17}}O \) values with Eqn (6).

For ortho-substituted benzyol chlorides, X-C₆H₄COCl, containing +R substituents we found (Table 2):

\[(\delta^{^{17}}O)_{ortho} = (486.0 \pm 2.2) + (35.0 \pm 2.9)\sigma_I + (16.3 \pm 2.5)\sigma^+ R - (93.3 \pm 4.9)E_s^B \]
\[R = 0.994, s = 1.38, n/n₀ = 6/6 \]

In the case of ortho-substituted acetophenones, X-C₆H₄COCH₃, containing +R substituents, the substituent effect is described as follows (Table 2):

\[(\delta^{^{17}}O)_{ortho} = (550.6 \pm 2.3) + (26.2 \pm 2.9)\sigma_I + (40.8 \pm 2.7)\sigma^+ R - (148.0.3 \pm 5.4)E_s^B \]
\[R = 0.996, s = 1.68, n/n₀ = 7/7 \]

The \(\delta^{^{17}}O \) values for para-substituted nitrobenzenes, benzyol chlorides and acetophenones showed excellent correlation with Eqn (5) an (6) using the Brown and Okamoto substituent constants \(\sigma^+ \). The calculated sensitivities towards the through-resonance, \(\rho^+ \), for para-substituted benzyol chlorides and acetophenones were respectively 21.2, and 24.1 (Table 2). The corresponding values of \(\rho^+ \) coincide well with the similar \(\rho^+ \) values reported earlier (for benzyol chlorides \(\rho^+ = 21.7 \),[39] for acetophenones \(\rho^+ = 22.5 \).[27,59]). For para-substituted nitrobenzenes we obtained \(\rho^+ = 14.9 \) (Table 2, \(\rho_I = 18.6 \),[34] and \(\rho^+_R = 24.0 \).[34]).

Correlation of the \(^{17}O \) NMR chemical shifts, \(\delta^{^{17}}O \), for meta-substituted methyl benzoates, nitrobenzenes, and acetophenones

For comparison the \(\delta^{^{17}}O \) values published in literature for meta-substituted methyl benzoates, X-C₆H₄COCH₃, nitrobenzenes, X-C₆H₄NO₂, and acetophenones, X-
C₆H₄COCH₃, were correlated with Eqns (4)-(6) as well. The δ^{17}O values for meta-substituted methyl benzoates showed good correlations so with the single parameter treatment using σ_m constants (Eqn (4)) as the dual substituent parameter treatment with the Taft σ_t and σ^p_R constants (Table 2). In methyl benzoates for the δ^{17}O values of the carbonyl oxygen the calculated ρ_m value was 5.53 ($\rho_t = 6.86$, $\rho^p_R = 1.93$) and for nitrobenzenes $\rho_m = 5.28$ ($\rho_t = 6.78$, $\rho^p_R = 0$). The calculated values of ρ_m for methyl benzoates and nitrobenzenes coincide well with the similar ρ_m values reported earlier (for methyl benzoates $\rho_m = 6.44$[15], for nitrobenzenes $\rho_t = 6.5$[58], $\rho^p_R = 0.6$[58]). In meta-substituted nitrobenzenes and acetophenones the susceptibility to the inductive effect was ca one-half the size of that for the corresponding para derivatives and the resonance term was excluded as insignificant (Table 2).

Correlation of the 17O NMR chemical shifts, δ^{17}O, with the substituent-induced rates of the alkaline hydrolysis, Δlog k, the carbonyl carbon 13C NMR chemical shifts, $\Delta\delta_{CO}$, and IR carbonyl stretching frequencies, $\Delta\nu_{CO}$

We correlated the δ^{17}O values of the carbonyl oxygen and the single-bonded oxygen for phenyl esters of ortho-, para, and meta-substituted benzoic acids, X-C₆H₄CO₂H₃, with the corresponding rates of the alkaline hydrolysis, Δlog k, the carbonyl carbon 13C NMR chemical shifts, $\Delta\delta_{CO}$, and IR carbonyl stretching frequencies, $\Delta\nu_{CO}$, using Eqns (8)-(13) (Table 3). The δ^{17}O values for ortho derivatives, show a good correlation with the corresponding Δlog k values of the alkaline hydrolysis, the carbonyl carbon 13C NMR chemical shifts, $\Delta\delta_{CO}$, and IR carbonyl stretching frequencies, $\Delta\nu_{CO}$, (0.998 > R > 0.963, Table 3) in case the additional resonance and steric terms were included (Eqns (8)-(13)) and the data treatment was carried out separately for esters with +R substituents and –R substituents. The δ^{17}O values for para derivatives were correlated well with the corresponding values of Δlog k for the alkaline hydrolysis, the 13C NMR chemical shifts, $\Delta\delta_{CO}$, and IR the stretching frequencies, $\Delta\nu_{CO}$, when the additional resonance term, $a_2(\text{para})\sigma^p_R$, (Eqns (11)-(13), Table 3) was included. To correlate the δ^{17}O values for meta derivatives the additional $a_2(\text{meta})\sigma^p_R$ scale was included. The slope a_1 in Eqn (8)-(13) is the ratio of inductive effects in the 17O NMR chemical shifts and in the corresponding process compared. So the slope a_1 in Eqn (8) represents the ratio of the substituent-dependent inductive effects in the δ^{17}O values and in Δlog k values of the alkaline hydrolysis and the slope a_1 in Eqn (9) is the ratio of the susceptibility to the inductive effect in the δ^{17}O values and in the carbonyl carbon 13C NMR chemical shifts, $\Delta\delta_{CO}$. The slope a_1 in Eqn (10) corresponds to the ratio of the inductive effects in δ^{17}O values and in the IR stretching frequencies, $\Delta\nu_{CO}$, for the ortho-substituted esters. Correlation equations obtained in Table 3 could be used to estimate the rates of the alkaline hydrolysis, the carbonyl carbon 13C NMR chemical shifts, $\Delta\delta_{CO}$, and IR carbonyl stretching frequencies, $\Delta\nu_{CO}$, using the δ^{17}O values for esters considered.

We found the carbonyl 17O NMR chemical shifts, δ^{17}O, for the phenyl esters of ortho-substituted benzoic acids with +R substituents to be correlated well with the Δlog k values
of the alkaline hydrolysis in water at 25 °C, the carbonyl carbon 13C NMR chemical shifts, $\Delta \delta_{\text{CO}}$, and the IR stretching frequencies, $\Delta \nu_{\text{CO}}$, as follows (Eqns (25)-(27), Table 3):

$$
\delta^{17}\text{O}_{\text{ortho}} = (346.2 \pm 1.7) + (8.90 \pm 0.89)\Delta \log k + (7.93 \pm 1.10)\sigma^s_R - (98.3 \pm 5.0)E_s^B
$$ (25)

$$
R = 0.993, s = 0.990, n/n_0 = 7/7
$$

$$
\delta^{17}\text{O}_{\text{ortho}} = (345.4 \pm 2.0) - (3.62 \pm 0.43)\Delta \delta_{\text{CO}} + (10.0 \pm 1.3) \sigma^s_R - (95.2 \pm 5.8)E_s^B
$$ (26)

$$
R = 0.991, s = 1.17, n/n_0 = 7/7
$$

$$
\delta^{17}\text{O}_{\text{ortho}} = (346.3 \pm 1.6) + (0.64 \pm 0.08)\Delta \nu_{\text{CO}} + (7.76 \pm 1.56)\sigma^s_R - (75.1 \pm 4.8)E_s^B
$$ (27)

$$
R = 0.990, s = 0.942, n/n_0 = 6/6
$$

The same relationships for the phenyl esters of ortho-substituted benzoic acids with $-R$ substituents are expressed as follows:

$$
\delta^{17}\text{O}_{\text{ortho}} = (347.0 \pm 2.9) + (6.31 \pm 2.08)\Delta \log k - (50.3 \pm 5.5)E_s^B
$$ (28)

$$
R = 0.978, s = 2.47, n/n_0 = 6/6
$$

$$
\delta^{17}\text{O}_{\text{ortho}} = (346.0 \pm 1.1) - (3.97 \pm 1.14)\Delta \delta_{\text{CO}} - (47.4 \pm 5.8)E_s^B
$$ (29)

$$
R = 0.996, s = 1.09, n/n_0 = 6/6
$$

$$
\delta^{17}\text{O}_{\text{ortho}} = (345.4 \pm 1.9) + (1.32 \pm 0.13)\Delta \nu_{\text{CO}}
$$ (30)

$$
R = 0.987, s = 2.09, n/n_0 = 4/4
$$

In Eqn (8) $a_1 = \rho(\delta^{17}\text{O})/\rho(\text{AH})$, $a_2 = \rho_R(\delta^{17}\text{O}) - a_1\rho_R(\text{AH})$ and $a_3 = \delta_S(\delta^{17}\text{O}) - a_1\delta_S(\text{AH})$. In Eqn (9) $a_1 = \rho(\delta^{17}\text{O})/\rho(\delta_{\text{CO}})$, $a_2 = \rho_R(\delta^{17}\text{O}) - a_1\rho_R(\delta_{\text{CO}})$ and $a_3 = \delta_S(\delta^{17}\text{O}) - a_1\delta_S(\delta_{\text{CO}})$. In Eqn (10) $a_1 = \rho(\delta^{17}\text{O})/\rho(\nu_{\text{CO}})$, $a_2 = \rho_R(\delta^{17}\text{O}) - a_1\rho_R(\nu_{\text{CO}})$ and $a_3 = \delta_S(\delta^{17}\text{O}) - a_1\delta_S(\nu_{\text{CO}})$. In relations shown the alkaline hydrolysis is denoted by (AH), the susceptibility to the steric factor by δ_S, the carbonyl carbon 13C chemical shifts by (δ_{CO}), and the IR carbonyl stretching frequencies by (ν_{CO}).

Using for the alkaline hydrolysis of the phenyl esters of substituted benzoic acids, X-$C_6H_4CO_2C_6H_5$, $\rho(\text{AH})_{\text{ortho}} = 2.13$, $\rho_R(\text{AH})_{\text{ortho}} = 0.31$ and $\delta(\text{AH})_{\text{ortho}} = 2.67$ in water at 25 °C as well as $\rho(\delta^{17}\text{O})_{\text{ortho}} = 17.3$, $\rho_R(\delta^{17}\text{O})_{\text{ortho}} = 9.68$ and, $\delta_S(\delta^{17}\text{O})_{\text{ortho}} = -81.2$ for esters with $+R$ substituents (Table 3) we obtained the values of $a_1 = 8.12$, $a_2 = 7.28$ and $a_3 = -102.8$ which are approximately the same as shown by Eqn (25) (Table 3).

The positive values of the parameter a_1 in Table 3 prove that the substituent-induced $\delta^{17}\text{O}$ values, the $\Delta \log k$ values of the alkaline hydrolysis and the IR carbonyl stretching frequencies, (ν_{CO}), grow with increase of the inductive effects of substituent included. In correlation of the $\delta^{17}\text{O}$ values with the carbonyl carbon 13C NMR chemical shifts, $\Delta \delta_{\text{CO}}$, (Eqn (9)) the negative value of the parameter a_1 shows that in phenyl esters of substituted benzoic acids the influence of the substituent-induced inductive effect on the $\delta^{17}\text{O}$ values is opposite to that in the 13C NMR chemical shifts, $\Delta \delta_{\text{CO}}$. With increase in σ_1 values of substituents the $\delta^{17}\text{O}$ values were found to increase but the carbonyl carbon 13C NMR
chemical shifts, $\Delta \delta_{CO}$, were found to diminish when the electron-attracting substituents are involved.

When the carbonyl δ^{17}O values for the phenyl esters of ortho-substituted benzoic acids with $-R$ substituents were correlated with Eqns (8)-(10) (Table 3) the magnitudes of a_2 do not differ from zero and the corresponding resonance term during the data treatment was excluded as insignificant. In the case of esters with $-R$ substituents the influence of the steric term was approximately twice weaker as compared to that for derivatives with $+R$ substituents (Table 3).

When the single bonded δ^{17}O values were correlated with Eqns (8)-(13) the magnitudes of parameters a_1, a_2, and a_3 were twice smaller as compared to that for the carbonyl δ^{17}O values (Table 3).

CONCLUSIONS

The 17O NMR spectra for 29 phenyl esters of ortho-, para-, and meta-substituted benzoic acids, X-C=C=O, were recorded. The electron-donating substituents in ortho-, para- and meta-substituted esters resulted in shielding of the 17O signal (upfield shift) and electron-withdrawing groups caused deshielding (downfield shift). The 17O NMR chemical shifts of the carbonyl oxygen and the single-bonded oxygen for para derivatives correlated well with the σ^+ constants. The δ^{17}O values for the ortho derivatives showed excellent correlation with the inductive, σ_I, resonance, σ^+_R, and steric, E_{SB}^B, substituent constants in case the data treatment was performed separately for derivatives containing the electron-donating $+R$ substituents and electron-attracting $-R$ substituents. The steric interaction of ortho substituents with the ester group was found to produce deshielding effect of the carbonyl and single-bonded oxygens. We suggest that in phenyl esters of ortho-substituted benzoic acids the steric effect is caused by the repulsive van der Waals deshielding effect. For ortho derivatives with $-R$ substituents the resonance term was insignificant and the steric term was ca. twice weaker as compared to that for derivatives with $+R$ substituents. The δ^{17}O values for para- and ortho-substituted nitrobenzenes correlated well with the σ^+, inductive, σ_I, resonance, σ^+_R, and steric, E_{SB}^B, substituent constants, respectively, similar to that for phenyl esters of substituted benzoic acids. Only, in δ^{17}O, for nitrobenzenes (XC=C=NO$_2$) the susceptibility to the σ^+, inductive σ_I, resonance, σ^+_R, and steric, E_{SB}^B, substituent constants, was 1.7 times stronger as compared to that for phenyl esters of substituted benzoic acids. The δ^{17}O values for meta-derivatives correlated well with the σ_m substituent constants.

Acknowledgements

This work was supported by the grants No 8162 and No 6705 of the Estonian Science Foundation.
REFERENCES

Table 1. 17O NMR chemical shifts, $\delta^{(17)}$O, of the carbonyl oxygen and the single-bonded oxygen for phenyl esters of ortho-, para- and meta-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$, in CH$_3$CN at 50 °C.

<table>
<thead>
<tr>
<th>Substituent</th>
<th>$\delta^{(17)}$O$_{C=O}$</th>
<th>$\delta^{(17)}$O$_{OPh}$</th>
<th>Other functions</th>
<th>c_{ester}</th>
<th>$\delta^{(13)}$CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-NO$_2$</td>
<td>368.4</td>
<td>196.3</td>
<td>600.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-CN</td>
<td>358.3</td>
<td>191.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-F</td>
<td>362.4</td>
<td>195.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Cl</td>
<td>370.2</td>
<td>197.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Br</td>
<td>372.4</td>
<td>199.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-I</td>
<td>368.8</td>
<td>197.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-CF$_3$</td>
<td>375.1</td>
<td>199.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-SO$_2$CH$_3$</td>
<td>375.4</td>
<td>201.5</td>
<td>161.1</td>
<td>165.75</td>
<td></td>
</tr>
<tr>
<td>2-SCF$_3$</td>
<td>373.9</td>
<td>197.4</td>
<td></td>
<td>164.74</td>
<td></td>
</tr>
<tr>
<td>2-OCH$_3$</td>
<td>366.9</td>
<td>197.8</td>
<td>54.0</td>
<td>166.27</td>
<td></td>
</tr>
<tr>
<td>2-CH$_3$</td>
<td>364.6</td>
<td>195.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-N(CH$_3$)$_2$</td>
<td>364.2</td>
<td>197.8</td>
<td></td>
<td>166.27</td>
<td></td>
</tr>
<tr>
<td>2-NH$_2$</td>
<td>340.6</td>
<td>188.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>345.7</td>
<td>187.3</td>
<td>165.17b</td>
<td>0.4 m</td>
<td></td>
</tr>
<tr>
<td>4-NO$_2$</td>
<td>351.9</td>
<td>188.3</td>
<td>574.6</td>
<td>0.4 m</td>
<td></td>
</tr>
<tr>
<td>4-F</td>
<td>344.4</td>
<td>187.0</td>
<td>0.5 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Cl</td>
<td>346.7</td>
<td>187.5</td>
<td>0.5 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Br</td>
<td>345.4</td>
<td>187.1</td>
<td>0.5 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-CH$_3$</td>
<td>343.2</td>
<td>186.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-OCH$_3$</td>
<td>336.7</td>
<td>184.9</td>
<td>60.8</td>
<td>0.3 m</td>
<td></td>
</tr>
<tr>
<td>4-NH$_2$</td>
<td>333.5</td>
<td>183.8</td>
<td>0.3 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-C(CH$_3$)$_3$</td>
<td>344.1</td>
<td>187.0</td>
<td>0.5 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-NO$_2$</td>
<td>350.8</td>
<td>187.6</td>
<td>576.8</td>
<td>0.5 m</td>
<td></td>
</tr>
<tr>
<td>3-CN</td>
<td>350.6</td>
<td>188.2</td>
<td>0.5 m</td>
<td>163.21</td>
<td></td>
</tr>
<tr>
<td>3-F</td>
<td>348.1</td>
<td>186.9</td>
<td></td>
<td>164.00</td>
<td></td>
</tr>
<tr>
<td>3-Cl</td>
<td>349.0</td>
<td>188.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-CH$_3$</td>
<td>346.5</td>
<td>188.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-OCH$_3$</td>
<td>346.7</td>
<td>187.8</td>
<td>51.9</td>
<td>165.00</td>
<td></td>
</tr>
<tr>
<td>3-N(CH$_3$)$_2$</td>
<td>344.4</td>
<td>186.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approximately 1 molal solutions of ortho and para derivatives in mixture of CH$_3$CN and CD$_3$CN (2 ml + 1 ml) were used, except where shown otherwise. Reference$^{[2]}$.
Table 2. Correlation of the 17O NMR chemical shifts, $\delta^{(17)O}$, of the carbonyl oxygen and the single-bonded oxygen (OPh) with Eqns (4)-(7)

<table>
<thead>
<tr>
<th>Scales</th>
<th>$\delta^{(17)O}_H$</th>
<th>ρ_1 or $\rho_2(\rho)$</th>
<th>$\rho^s_{s} R(\rho^s_{s} R)$</th>
<th>δ_{ortho}</th>
<th>R^a</th>
<th>$(R_0^2)^b$</th>
<th>s^c</th>
<th>n_0^d</th>
</tr>
</thead>
</table>
| Phenyl esters of ortho-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$ | C^{17}O | $+$R substituents included, acetonitrile at 50 °C | σ_1, $\sigma^s_{s} R$, E_s^B | 346.2 ± 1.8 | 17.3 ± 1.8 | 9.68 ± 1.13 | −81.2 ± 5.2 | 0.993 | 0.182 | 1.06 | 7/7
d | σ_1, $\sigma^s_{s} R$, ν | 347.4 ± 3.5 | 14.3 ± 4.3 | 4.62 ± 2.08 | 33.2 ± 5.0 | 0.961 | 0.182 | 2.41 | 7/7
e | σ_1, $\sigma^s_{s} R$, E_s^B | 346.9 ± 3.1 | 16.0 ± 5.1 | 0 | −32.6 ± 4.0 | 0.799 | 0.304 | 2.40 | 6/6
g | σ_1, ν | 346.5 ± 2.0 | 18.1 ± 1.3 | 0 | 15.9 ± 1.3 | 0.991 | 0.304 | 1.61 | 6/6
| ortho-substituted nitrobenzenes, X-C$_6$H$_4$NO$_2$ | C^{17}O | +R substituents included, acetonitrile at 75 °C | σ_1, $\sigma^s_{s} R$, E_s^B | 578.1 ± 3.5 | 26.8 ± 5.2 | 11.7 ± 2.4 | −108.4 ± 7.8 | 0.975 | −0.072 | 3.47 | 11/12
e | σ_1, $\sigma^s_{s} R$, ν | 573.7 ± 3.5 | 20.2 ± 6.3 | 0 | −58.4 ± 6.0 | 0.981 | 0.072 | 3.12 | 6/6
| ortho-substituted benzoyl chlorides, X-C$_6$H$_4$COCl | C^{17}O | +R substituents included, acetonitrile at 75 °C | σ_1, $\sigma^s_{s} R$, E_s^B | 486.0 ± 2.2 | 35.0 ± 2.9 | 16.3 ± 2.5 | −93.3 ± 4.9 | 0.994 | −0.188 | 1.38 | 6/6
| ortho-substituted acetophenones, X-C$_6$H$_4$COCH$_3$ | C^{17}O | +R substituents included, dioxane at 30 °C | σ_1, $\sigma^s_{s} R$, E_s^B | 550.6 ± 2.3 | 26.2 ± 2.9 | 40.8 ± 2.7 | −148.0 ± 5.4 | 0.996 | −0.187 | 1.68 | 7/7
| Phenyl esters of para-substituted benzoic acids, X-C$_6$H$_4$CO$_2$C$_6$H$_5$ | C^{17}O | Acetonitrile at 50 °C | σ^p_{p} | 345.2 ± 0.3 | 9.07 ± 0.55 | − | − | 0.986 | − | 0.918 | 9/9
| σ_1, σ^p_{p} | 345.9 ± 0.5 | 7.21 ± 0.99 | 9.71 ± 0.54 | − | 0.990 | 0.106 | 0.752 | 9/9
| Acetonitrile at 40 °C | σ^p_{p} | 337.8 ± 0.2 | 9.66 ± 0.29 | − | − | 0.990 | − | 0.970 | 23/23
| Methyl esters of para-substituted benzoic acids, X-C$_6$H$_4$CO$_2$CH$_3$ | C^{17}O | $+$R substituents included, dioxane at 30 °C | σ^p_{p} | 187.1 ± 0.2 | 2.26 ± 0.26 | − | − | 0.952 | − | 0.428 | 9/9
| σ_1, σ^p_{p} | 187.5 ± 0.2 | 1.26 ± 0.41 | 2.60 ± 0.22 | − | 0.976 | 0.304 | 0.307 | 9/9

For Peer Review

http://mc.manuscriptcentral.com/poc
\(\sigma_i, \sigma^+_R \)	337.6 ± 0.5	10.0 ± 1.1	9.56 ± 0.41	–	0.990	0.437	0.991	23/23
\(\sigma^+_R \)	127.8 ± 0.2	3.72 ± 0.26	–	–	0.949	–	0.884	23/23
\(\sigma_i, \sigma^+_R \)	127.4 ± 0.5	4.64 ± 0.97	3.47 ± 0.37	–	0.948	0.443	0.884	23/23
\(C=^{17}O \)	–	–	Acetonitrile-d₃ at 40 °C					
\(\sigma^+_p \)	335.8 ± 0.4	11.5 ± 0.6	–	–	0.990	–	1.12	8/8
\(\sigma_i, \sigma^+_R \)	336.8 ± 0.6	8.72 ± 1.38	12.2 ± 0.6	–	0.994	0.086	0.885	8/8
\(\sigma^+_R \)	125.8 ± 0.3	3.85 ± 0.54	–	–	0.935	–	0.969	8/8
\(\sigma_i, \sigma^+_R \)	126.2 ± 0.7	2.70 ± 1.56	4.14 ± 0.67	–	0.931	0.044	1.00	8/8
\(C=^{17}O \)	–	–	Acetonitrile at 40 °C					
\(\sigma^+_p \)	341.7 ± 0.2	9.40 ± 0.43	–	–	0.993	–	0.616	8/8
\(\sigma_i, \sigma^+_R \)	341.5 ± 0.5	9.89 ± 0.97	9.19 ± 0.59	–	0.992	0.317	0.654	8/8
\(\sigma^+_R \)	128.4 ± 0.2	3.90 ± 0.34	–	–	0.974	–	0.491	8/8
\(\sigma_i, \sigma^+_R \)	127.9 ± 0.3	5.07 ± 0.53	3.39 ± 0.32	–	0.986	0.464	0.359	8/8
\(N^{(17)}O_2 \)	–	–	para-substituted nitrobenzenes, X-C₆H₄NO₂					
\(\sigma^+_p \)	573.3 ± 0.7	14.9 ± 0.8	–	–	0.980	–	2.57	14/14
\(\sigma_i, \sigma^+_R \)	574.3 ± 1.6	12.1 ± 3.6	15.3 ± 1.0	–	0.979	0.158	2.61	14/14
\(C=^{17}O \)	–	–	para-substituted benzoyl chlorides, X-C₆H₄COCl					
\(\sigma^+_p \)	485.5 ± 0.1	21.2 ± 0.3	–	–	0.999	–	0.485	11/11
\(\sigma_i, \sigma^+_R \)	485.6 ± 0.5	20.9 ± 0.6	21.4 ± 0.3	–	0.999	0.239	0.502	11/11
\(C=^{17}O \)	–	–	Tetrachloromethane at 40°C					
\(\sigma^+_p \)	490.8 ± 0.3	21.0 ± 0.5	–	–	0.998	–	0.706	8/8
\(\sigma_i, \sigma^+_R \)	491.3 ± 0.5	20.0 ± 1.1	21.5 ± 0.7	–	0.998	0.365	0.696	8/8
\(\sigma^+_R \)	17/17	–	para-substituted acetophenones, X-C₆H₄COCH₃					
\(C=^{17}O \)	–	–	Acetonitrile at 60 °C					
\(\sigma^+_p \)	548.3 ± 0.9	22.8 ± 1.4	–	–	0.986	–	2.65	9/9
\(\sigma_i, \sigma^+_R \)	549.1 ± 1.9	20.3 ± 4.0	23.6 ± 1.8	–	0.985	0.230	2.75	9/9
\(C=^{17}O \)	–	–	Dioxane at 30 °C					
\(\sigma^+_p \)	547.9 ± 1.2	24.1 ± 1.9	–	–	0.976	–	3.52	9/9
\(\sigma_i, \sigma^+_R \)	550.1 ± 2.7	19.4 ± 5.1	25.8 ± 2.5	–	0.976	0.259	3.53	9/9
\(C=^{17}O \)	–	–	Deuterochloroform at 25 °C					
\(\sigma^+_p \)	542.6 ± 0.4	24.9 ± 0.5	–	–	0.998	–	1.25	12/12
\(\sigma_i, \sigma^+_R \)	543.2 ± 0.8	25.7 ± 1.8	24.7 ± 0.6	–	0.998	0.336	1.30	12/12
\(\sigma_m \)	346.1 ± 0.3	7.17 ± 0.68	–	–	0.969	–	0.564	8/8
\(\sigma_i, \sigma^+_R \)	346.5 ± 0.4	6.16 ± 0.86	3.87 ± 0.90	–	0.967	0.735	0.584	8/8

http://mc.manuscriptcentral.com/poc
| σ_m | 187.4 ± 0.1 | 1.71 ± 0.33 | – | – | 0.932 | – | 0.187 | 5/5³ |
| σ_t, σ_R | 187.2 ± 0.2 | 1.82 ± 0.63 | 0 | – | 0.783 | – | 0.309 | 5/5⁴ |

Methyl esters of meta-substituted benzoic acids, X-C₆H₄CO₂CH₃

| σ_m | 337.5 ± 0.2 | 5.53 ± 0.41 | – | – | 0.945 | – | 0.603 | 23/23⁵ |
| σ_t, σ_R | 337.1 ± 0.2 | 6.86 ± 0.52 | 1.93 ± 0.46 | – | 0.966 | 0.880 | 0.481 | 23/23 |

C^{17}O Acetonitrile at 40 °C

| σ_m | 127.3 ± 0.1 | 3.20 ± 0.29 | – | – | 0.923 | – | 0.430 | 22/23⁶ |
| σ_t, σ_R | 127.0 ± 0.1 | 3.79 ± 0.28 | 0 | – | 0.955 | – | 0.245 | 19/23⁷ |

meta-substituted nitrobenzenes, X-C₆H₄NO₂

| σ_m | 575.7 ± 0.4 | 5.28 ± 0.82 | – | – | 0.904 | – | 0.778 | 10/10³⁸ |
| σ_t, σ_R | 575.0 ± 0.3 | 6.78 ± 0.66 | 0 | – | 0.960 | – | 0.512 | 10/10 |

$\text{N}^{(17}\text{O})_2$ Acetonitrile at 75°C

| σ_m | 549.8 ± 0.6 | 10.6 ± 1.8 | – | – | 0.931 | – | 1.34 | 6/6³⁹ |
| σ_t, σ_R | 548.6 ± 0.9 | 12.8 ± 2.5 | 0 | – | 0.910 | – | 1.52 | 6/6 |

meta-substituted acetophenones, X-C₆H₄COCH₃

| σ_m | 549.8 ± 0.6 | 10.6 ± 1.8 | – | – | 0.931 | – | 1.34 | 6/6³⁹ |
| σ_t, σ_R | 548.6 ± 0.9 | 12.8 ± 2.5 | 0 | – | 0.910 | – | 1.52 | 6/6 |
$^\text{a}$ Correlation coefficient.
$^\text{b}$ R_0 – zeroth correlation coefficient.
$^\text{c}$ Standard deviation.
$^\text{d}$ n_0 reflects the total number of data involved in the correlation; n – the number of points remaining after exclusion of significantly deviating points.
$^\text{e}$ The $\delta^{(17)}$O values for 2-NH$_2$ and 2-I derivatives were omitted.
$^\text{f}$ Charton’s modified steric constants, υ,$^{[6,8,49]}$ were used.
$^\text{g}$ For 2-SCF$_3$ substituent the isosteric constant $E_s^B = -0.582$ was calculated with relation: $\upsilon = (0.026 \pm 0.049) - (2.05 \pm 0.15)E_s^B$, ($R = 0.976$, $n = 10$) using steric constant, $\upsilon = 1.22^{[60]}$ for OC(CH$_3$)$_3$ substituent.
$^\text{h}$ For 2-SCF$_3$ substituent the isosteric constant $E_s^B = -0.667$ was calculated using $\upsilon = 1.02^{[61]}$ for CH(CH$_3$)$_2$CH$_3$ substituent (Note g) and for 2-CONH$_2$ substituent the steric constants for 2-CH(CH$_3$)$_2$ substituent $E_s^B = -0.341$ was used.
$^\text{i}$ Data from Reference.$^{[34,35]}$ were used.
$^\text{j}$ Data from Reference.$^{[36]}$ were used.
$^\text{k}$ Data from Reference.$^{[14]}$ were used.
$^\text{l}$ Data from Reference.$^{[16]}$ were used.
$^\text{m}$ Data from Reference.$^{[17,57,58]}$ were used.
$^\text{n}$ Data from Reference.$^{[27]}$ were used.
$^\text{o}$ Data from Reference.$^{[59]}$ were used.
$^\text{p}$ Data from Reference.$^{[17]}$ were used.
$^\text{q}$ The $\delta^{(17)}$O values for 3-NO$_2$, 3-CH$_3$ and 3-F derivatives were omitted. When these values were included no correlation was found ($R^2 = -0.064$).
$^\text{r}$ The $\delta^{(17)}$O values for 3-NO$_2$, 3-CH$_3$ and 3-F derivatives were omitted. When these values were included no correlation was found ($R^2 = 0.054$).
$^\text{s}$ The 3-SO$_2$NH$_2$ derivative was excluded.
$^\text{t}$ The 3-SO$_2$NH$_2$, 3-SO$_2$CH$_3$, 3-SO$_2$Cl, and 3-CH$_2$Cl derivatives were excluded.
Table 3

Correlation of the 17O NMR chemical shifts, δ^{17}O, for the carbonyl oxygen and the single-bonded oxygen with the $\Delta \log k$ values of the alkaline hydrolysis, the carbonyl carbon chemical shifts, $\Delta \sigma_{CO}$, and IR stretching frequencies of carbonyl carbon, $\Delta \nu_{CO}$, with Eqns (8)-(13)

<table>
<thead>
<tr>
<th>Scales</th>
<th>$(\delta^{17}$O)$_H$</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>R^a</th>
<th>$(R^2)^b$</th>
<th>s^c</th>
<th>n/n_0^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenyl esters of ortho-substituted benzoic acidse,f,g,h,i</td>
<td>C$^{=17}$O \rightarrow</td>
<td>+R substituents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \log k_1$, σ^+_R, E_s^B</td>
<td>346.2 ± 1.7</td>
<td>8.90 ± 0.89</td>
<td>7.93 ± 1.10</td>
<td>−98.3 ± 5.0</td>
<td>0.993</td>
<td>−0.193</td>
<td>0.990</td>
<td>7/7j</td>
</tr>
<tr>
<td>$\Delta \log k_2$, σ^+_R, E_s^B</td>
<td>345.6 ± 0.9</td>
<td>6.91 ± 0.34</td>
<td>4.61 ± 0.62</td>
<td>−98.9 ± 2.5</td>
<td>0.997</td>
<td>−0.199</td>
<td>0.495</td>
<td>7/7j</td>
</tr>
<tr>
<td>$\Delta \sigma_{CO}$, σ^+_R, E_s^B</td>
<td>345.4 ± 2.0</td>
<td>−3.62 ± 0.43</td>
<td>10.0 ± 1.3</td>
<td>−95.2 ± 5.8</td>
<td>0.991</td>
<td>−0.136</td>
<td>1.23</td>
<td>7/7k</td>
</tr>
<tr>
<td>$\Delta \nu_{CO}$, σ^+_R, E_s^B</td>
<td>346.3 ± 1.6</td>
<td>0.64 ± 0.08</td>
<td>7.76 ± 1.56</td>
<td>−75.1 ± 4.8</td>
<td>0.990</td>
<td>0.364</td>
<td>0.942</td>
<td>6/6l</td>
</tr>
<tr>
<td>Phenyl esters of meta-substituted benzoic acidse,g,h</td>
<td>C$^{=17}$O \rightarrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \log k_1$, σ^+_R, E_s^B</td>
<td>187.5 ± 0.3</td>
<td>0.66 ± 0.30</td>
<td>1.97 ± 0.42</td>
<td>−</td>
<td>0.964</td>
<td>0.724</td>
<td>0.371</td>
<td>9/9f</td>
</tr>
<tr>
<td>$\Delta \log k_2$, σ^+_R, E_s^B</td>
<td>187.5 ± 0.3</td>
<td>0.52 ± 0.21</td>
<td>1.94 ± 0.39</td>
<td>−</td>
<td>0.968</td>
<td>0.730</td>
<td>0.350</td>
<td>9/9f</td>
</tr>
<tr>
<td>$\Delta \sigma_{CO}$, σ^+_R, E_s^B</td>
<td>187.5 ± 0.3</td>
<td>−0.48 ± 0.21</td>
<td>2.45 ± 0.28</td>
<td>−</td>
<td>0.966</td>
<td>0.206</td>
<td>0.363</td>
<td>9/9f</td>
</tr>
<tr>
<td>$\Delta \nu_{CO}$, σ^+_R, E_s^B</td>
<td>187.5 ± 0.3</td>
<td>0.16 ± 0.04</td>
<td>1.46 ± 0.34</td>
<td>−</td>
<td>0.984</td>
<td>0.889</td>
<td>0.248</td>
<td>9/9f</td>
</tr>
</tbody>
</table>

a Correlation coefficient

b Coefficient of determination

c Standard error of the regression

d Number of data points

e Phenyl esters of o-substituted benzoic acids

f Phenyl esters of m-substituted benzoic acids

g Phenyl esters of p-substituted benzoic acids

h Phenyl esters of $\text{C}^{=17}$O \rightarrow +R substituents

i Phenyl esters of $\text{C}^{=17}$O \rightarrow −R substituents

j Higher order corrections

k Lower order corrections

l Higher order corrections

m Lower order corrections

n Higher order corrections

o Lower order corrections
\(\Delta \log k_1, \sigma_R^2\)	346.0 ± 0.2	4.22 ± 0.37	–	–	0.974	–	0.521	8/8^a
\(\Delta \delta_{CO}, \sigma_R^2\)	346.1 ± 0.2	–2.20 ± 0.16	–	–	0.981	–	0.447	8/8^i
\(\Delta \nu_{CO}, \sigma_R^2\)	346.0 ± 0.9	0.61 ± 0.08	–	–	0.970	–	0.624	5/5^b

^a R – correlation coefficient.

^b \(R_0\) – zeroth correlation coefficient.

^c \(s\) – standard deviation.

^d \(n_0\) reflects the total number of data involved in the correlation; \(n\) – the number of points remaining after exclusion of significantly deviating points.

^e The values of \(\Delta \log k_1 = \log k^X - \log k^H\) for the alkaline hydrolysis in water at 25 ºC.\[^6\]

^f The \(\Delta \log k_2\) values for alkaline hydrolysis in aqueous 50% DMSO at 25 ºC.\[^{51,52}\]

^g The \(\Delta \delta_{CO}\) values from Reference.\[^{8}\]

^h The \(\nu_{CO}\) values from Reference.\[^{9}\]

^i The 2-I and 2-NH\(_2\) derivatives were omitted.

^j The log \(k = -1.422\) for 2-N(CH\(_3\))\(_2\) derivative was calculated from relation:\[^6\] \(\log k = -0.333 + 2.128\sigma_I + 0.312\sigma_R^0 + 2.699E_s^B\).

^k The \(\Delta \delta_{CO} = 1.1\) for 2-N(CH\(_3\))\(_2\) derivative was calculated using \(\delta_{CO}\) from Table 1.

^l The value of \(\nu_{CO}\) for 2-N(CH\(_3\))\(_2\) derivative is not available.

^m The log \(k = -0.98\) for 2-SCF\(_3\) derivative and the log \(k = -0.82\) for 2-SO\(_2\)CH\(_3\) derivative for alkaline hydrolysis in water were calculated (see Note j).

^n The \(\Delta \log k = -0.566\) for 2-SCF\(_3\) derivative and the \(\Delta \log k = 1.344\) for 2-CN derivative for alkaline hydrolysis in aqueous 50% DMSO were calculated from relation:\[^6\] \(\Delta \log k = 0.021 + 2.31\sigma_I + 0.777\sigma_R^0 + 2.693E_s^B\).

^o The \(\Delta \delta_{CO} = -0.43\) for 2-SCF\(_3\) derivative and \(\Delta \delta_{CO} = 0.58\) for 2-SO\(_2\)CH\(_3\) were calculated using \(\delta_{CO}\) (Table 1).

^p The \(\nu_{CO}\) values for 2-SCF\(_3\) and 2-SO\(_2\)CH\(_3\) derivatives are not available.

^q The log \(k = -0.055\) for 4-Br derivative and the log \(k = -0.795\) for 4-C(CH\(_3\))\(_3\) derivative were calculated from relation:\[^6\] \(\log k = -0.451 + 1.72\sigma\).

^r The \(\Delta \log k = -0.464\) for 4-C(CH\(_3\))\(_3\) derivative for alkaline hydrolysis in aqueous 50% DMSO was calculated from relation:\[^6\] \(\Delta \log k = -0.018 + 2.322\sigma\).

^s The log \(k = 0.134\) for 3-F derivative, log \(k = 0.615\) for 3-CN derivative, log \(k = -0.313\) for 3-OCH\(_3\) derivative, log \(k = -0.657\) for 3-N(NH\(_3\))\(_2\) derivative in water were calculated (see Note q).

^t The \(\delta_{CO}\) values from Table 1 and Reference.\[^{8}\]

^u The \(\nu_{CO}\) values for 3-F, 3-CN and 3-OCH\(_3\) derivatives are not available.