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Abstract

We propose a new test of independence of random vectors. We first show that the
null hypothesis implies the nullity of the trace of an operator involving inverse
regressions covariance operators. Then, using an approach based on slicing, we
define a test statistic for which an asymptotic distribution under null hypothesis is
derived. Simulations that permit to evaluate the performance of the proposed test
with comparisons with existing methods are given.
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1 Introduction

Testing for independence of two random vectors X = (Xl,...,Xp), and

Y = (Yl, .y Yq)/, that are respectively p-dimensional and g-dimensional, is a
classical problem in statistics. When Z = (X’, Y’)" has a (p +¢q)-variate normal
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distribution with partitioned covariance matrix

Cll C12
C21 CZZ

the hypothesis of independence may be formulated as C;, = 0. In this con-
text, several tests have been introduced, including the likelihood ratio test
and the Pillai’s test (see, e.g., [2], [5]). For the more general case where Z has
an elliptic distribution three methods have been proposed in [1] and, more
recently, an approach based on spatial signs have been introduced in [14]. It
is, of course, better to consider distribution-free methods. In this direction,
[6] introduced a method based on ranks whereas nonparametric approaches
have been proposed, for instance, in [3], [8], [11], [12] and [13]. To the best of
our knowledge, there does exists a method that is based on a well known re-
sult in probability theory that gives connections between the independence
property and conditional expectations. Such a method may be of a great
interest because it is necessarily a distribution-free method since the afore-
mentioned result holds whatever is the distribution of (X, Y). In this paper,
we tackle an approach based on this result for defining an independence test
between random vectors. Our proposal is described in Section 2. We first
remark that the independence property implies the nullity of the trace of an
operator involving covariance operators of expectations of X conditional to
the coordinates of Y. Then, we adopt ideas used in sliced inverse regression
for approximating these covariance operators and, therefore, to introduce
the test statistic that will be used. The limiting distribution of this statistic
under null hypothesis is then derived, and the related test procedure is de-
scribed. Section 3 is devoted to the presentation of simulations that permit
to evaluate the performances of the proposed approach and to compare it
with existing methods. All the proofs of lemmas and theorem are given in
Section 4.

2 The proposed method

This section is devoted to the presentation of our proposal for testing for
independence between two random vectors. We first introduce notations
and remark that the null hypothesis implies the nullity of the trace of an
operator involving inverse regressions covariance operators. Then, using
an approach based on slicing, as in [9], we define a test statistic for which
an asymptotic distribution under null hypothesis is derived. That permits
to specify the proposed testing procedure.



2.1 Formulation of the problem

Denoting by E the mathematical expectation, we assume that E (||X||4) <
+00, where || - || denotes the Euclidean norm of IR” induced by the usual
inner product < -, - > of R”. We are interested in testing for the hypothesis

7‘(02XJ.LY,

where 1L denotes stochastic independence, against the alternative hypothe-
sis H; stating that X and Y are not independent. If Hj is true, then X 1L Y;
for any j € {1,---,q}. We will express this latter property by means of the
covariance operators A; of the conditional expectations IE(X|Y}), given by

Aj=E((BXIY) - p) ® (EXIY) — 1)),

where u = E (X), and ® denotes the tensor product defined as follows: for
any pair (x, y) of elements of an Euclidean space with inner product < -,- >,
x®y is the linear map h —< x,h > y. Using the equality tr(x ® x) = ||x|]* (see
[7]), we obtain

tr(A) = E(tr ((BCXIY) - p) @ (EXIY) - ) = E (”]E(XIYj) - y||2).

Then X 1L Y; implies that IE (XIY]-) = p almost surely, what is equivalent to
q
having tr(A;) = 0. Therefore, H, implies that tr(A) = 0, where A = }' A;.
j=1
Consequently, testing for H) against H; can be done by taking a consistent
estimator of tr(A) as test statistic. Following an approach used in [9] for
estimating an inverse regression covariance operator, we will in fact use a
consistent estimator of t7(A), where A is an approxnnatlon of A obtained
by slicing the ranges of the Y;’s. For j € {1, ..., g}, let (I )1<h<, be a partition
of Y;(Q)) such that each probability pj := P(Y; € I ) is non null. Putting

pin = EX|Y; €T} "y and 1 = y j»n — 1, the aforementioned operator Ais given

byA Z A],whereA Zp]h’(]h@)’[]h

Remark 1 In all of the paper we use tensor notations and operators. How-
ever, in a finite-dimensional framework the related transcriptions into ma-
trix notations, that are useful for pratical implementation, are easy to obtain
from [7]. More precisely, the matrix related to the operator x ® y is given

by yx’, where x = (xl, - xp)/ (resp. y = (]/1, v yq)l) is the matricial repre-
sentation of the vector x (resp. y) relative to the canonical basis of IR? (resp.
IRY).



2.2 The test statistic

Letting {(X“ Y(l))} _.., be an iid sample of (X,Y), we consider for any
jedl,.. ,q}andanyhe{l }

n n

n
— nh —n 1 N =N 1
= ] = @ = 0
mn=Y 1.0 o P ,X.h_Agl__X,X ZX 1)
j (@) -7U h = i
i:l {Y] EIh } ] n ] n]h l:l {YE)EIIEJ)} n l:l

where Yy) is the j-th coordinate of Y® and 1,4 denotes the indicator function
of A. Then, we estimate A; by the random operator

and, putting A" = Z A” we take as test statistic the random variable
j=1

S = ¢y (X“)

It is a strongly consistent estimator of tr(A). Indeed, the strong law of large
numbers ensures the almost sure convergence of p'. (resp X' resp )

pjn (resp. u ; resp. uj) as n — +oo and, therefore, that of/\;?h = th ~X'to T i
As the bilinear map (x,y) € R? xR - x®y € L(IR?) is continuous, we then
deduce the almost sure convergence of A]’7 to Ajas n — +oo, which implies

that of S to tr(A).

Now, we will give the asymptotic distribution of 5™ under H,. For j €
{1,---,q}, let us introduce the diagonal matrix A; = diag (pjl, Pj2s s pjr].) and
put I'; = A7' ® I, where ®" denotes the Kronecker product and I, is the
p X p identity matrix. Then, we consider the matrices

r, 0 0
0 I .. 0

r=r (2)
0 0 T,



and

0111 01112 - Ollgr,
01211 O1212 .-« Ol2gp,
L= , _ , (3)

quq 11 Uqrq 12 .- quq qrq

where
_ v/ (ikjt ik it
Oikje = V(l / ) + PikpPje <V — V( ) — V(] )),

with

VO =B (X - ux)® (X - un)|Y:i€Ly),
V(0 = ((Uyeny (X = p)) @ (1{yje1€} (X = uie))).

and
V=E(X-p)eX-u).

Then, we have:

Theorem 1. Under H,, n’S\(”) converges in distribution, asn — +oo, to Q =
U'TU where U is a centered random vector having a normal distribution
in RP with covariance operator equal to X.

2.3 The test procedure

For a given significance level a €]0, 1], the hypothesis H, will be rejected if
Fq (ng(”)) > 1 — a, where [Fg denotes the cumulative distribution function
of Q. Since Q is a quadratic form of a normally distributed random vector,
Fq can be computed or approximated by using formulas given in [10] and
which involve the eigenvalues of £2T'L2. In practice ¥ and T’ are unknown;
so, they are to be replaced by consistent estimators. For estimating I', we
consider

—

" 0 .. 0

_ 0 T" .. 0

ro=f - 2 (4)
0 0 T




e = _1 . An . . . .
where F’]? = (A’;) ®F I, with A]. = diag (?77’1:?]12/ ...,f?]?r]_). Estimation of L is
achieved by considering the pg X pg matrix X, given by

- -n

9111 %11z 11gy,
-n -n -n
—~ o o w0
1211 %1212 1247
Lo=| A (5)
-n -n -n
quqll quqlz G‘VW»?
where (ki) "
—~ _ ki) i (T T U
Oijc =V "+ Palie| Ve = Vi = Vi
with

@)1y . _
R = (1[Y5”Elk} (x- Xik)) ¢ (1{%»45} (X0 - th’)]

- X,)e (0 - X))

—n

1 - l.
Vi== (X()—Xn)@)(X()—X).

Remark 2. Practical implementation can be done by using Remark 1 that
shows that, identifying each vector with its matrix relative to canonical
basis, we can write :

X’; = hZ:; VT (?1'1’1), ;
e 1 n —n x" ’
=Y (I{Y;M} (x? - Xf‘f)] [0 027 !
(i 1 © h_Xx" 1-X,)
=LY (KO-T)(x0-K). K
T Y 0T §
i=1

Remark 3. The proposed method is achieved from the following algorithm:



(1) Compute X' and for j=1,---,gand h = 1,...,r; compute /n\jh,ii;h and

?7].’}1 from (1). Then compute 75;7]1 = X?h ~X and X7 from (6) .

— q —~ — — =1
(2) Compute S™ = tr(z A;l) and, forj =1,...,q,compute A}, I} = (A?) ®F
=1
I, and T'™ by using (4) .
(3) Compute V, from (9) and fori,j=1,---,q,k=1,.,r;and £ =1,..,7,

compute V,Sikj 9 and V,S] g from (7) and (8) respectively.
(4) Fori,j=1,---,q,k=1,..,r;and £ = 1,...,7;, compute

S(ikje) . . (S S S
Ty = V,S €) +Pikij(V” — Vi V,SJ )).
(5) Compute the matrix £ given in ( 5).
—~, \1/2—~ | ;—~ \1/2
(6) Compute the eigenvalues Ay, ..., Ay, of (Z(”)) re (Z(”)) . Then con-
sider the function Fgq (t) := P (x? < t/c) where

qrq qrq 2
(.Z Af) (Z /\f)
j=1 j=1
c= T and v = p .
(Z Af) (Z A?)
j=1 j=1
(7) Compute p. =1-1TFq (nTS\(”)) If pc > a then accept H); otherwise reject

it.

3 Simulation results

In order to check the efficacy of the proposed method and to compare it with
that of existing methods, a simulation study was performed. We computed
empirical sizes and empirical powers over 1000 replications, with nominal
significance level a = 0.05, 0.10, from our method that we denote by REG
and three known methods. These later methods are the likelihood ratio
test (LRT), the method based on ranks given in [6] and denoted here by
CLL, and the method introduced in [11] denoted by MI. For sample sizes
n = 50,100, 200, 300, 400, 500, we generated 1000 independent replicates of
a pair Z = (X', Y’)" of random vectors by using the following models:

Model 1: Z has a centered normal distribution in R!° with covariance matrix

C given by
C= 15 ')/15
yls Is



Table 1
Empirical sizes from REG, with sample size n and nominal significance level a.

Model 1 Model 2
n a=0.05 a=0.10 a=0.05 a=0.10
50 0.018 0.052 0.024 0.06
100 0.027 0.078 0.038 0.084
200 0.047 0.089 0.032 0.093
300 0.047 0.104 0.047 0.091
400 0.038 0.083 0.042 0.094
500 0.044 0.097 0.046 0.095

where I5 denotes the 5 X 5 identity matrix and y is a real belonging to[0, 1].

Model 2 : Z is a two-dimensional random vector with coordinates defined
by X = \/%(aXl +bY;) and Y = \/%(le +aY7), where X; and Y; are
independent random variables having a student distribution with 5 degrees
of freedom, and a = \1+y + {1-yand b = \1+y — \/1-y where y
belongs to [0, 1].

For both models, H, holds if and only if y = 0. Table 1 gives outputs for
empirical sizes from our method. Satisfactory results are provided, except
for low sample size (n = 50). The most accurate results are obtained for
n > 200. The obtained results for empirical powers, for y from 0 up to 0.4,
are given in Figures 1 to 3 for Model 1, and in Figures 4 to 6 for Model 2.
They show that, for moderate values of y and sufficiently large values of
n, our method outperforms all the considered existing methods except LRT
that gives the best results in all the tackled situations. However, for n = 100
our method is also outperformed by CLL, and by MI when y is small. For
large values of y all the methods give the same empirical power equal to 1.
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Fig 1: n= 100, a=0.05
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Fig. 1. Empirical power versus y for Model 1, n = 100 and a = 0.05.

Fig 2: n= 300, a=0.05
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Fig. 2. Empirical power versus y for Model 1, n = 300 and a = 0.05.
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Fig. 3. Empirical power versus y for Model 1, n = 500 and a = 0.05.
Fig 4: n=100, a=0.05
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Fig. 4. Empirical power versus y for Model 2, n = 100 and « = 0.05.
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Fig. 5. Empirical power versus y for Model 2, n = 300 and a = 0.05.
Fig 6: n= 500, a=0.05
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Fig. 6. Empirical power versus y for Model 2, n = 500 and « = 0.05.
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4 Proofs

4.1 Lemmas

Putting E = R? and F = R" X R X ... X IR"7, we introduce the operators

u u
I : EEXFH € EXE
v 0
A
IT; : e L(EXF)X(ExXF)—» Ae L(EXF),
X
A
IT, : e L(EXF)X(ExXF)—»x€e€EXF
X

Furthermore, we consider the random vectors

'j

i
L e— st (i) ._ ()
W] = Z 1{de](1])} not Wj = Z 1{1/(.[)61,(1/)} h
h=1 /

h=1

where { fl(j), ey r(]])} is the canonical basis of R", and the random vectors

valued into E X F given by:

X-u X0 X X
W, | W Wi
z=|  |,z9=] ' | Z=
()
W, W, W,

Then, putting
Zy®Z 1w .
T:[ ° °],vz=1E(Z®Z),V<Z”>:;Zz@@z@,
Zy )

considering the linear map ¢ from L(E X F) X (E X F) to L (E X F) defined
by:

P(S) =111 (S) =T, (S) ® [Ty (1) — 1 ® Iy (IT> (S)) — TTy (I (S)) ® 11
— Iy (1) ® (I, (S)) + Iy (I1, (S)) ® Iy (1) + ITp (1) ® Iy (T2 (S))

12



where 1 = [E(Zp), and denoting by ® the tensor product between elements
of L(E X F) (associated with the inner product of this space defined by:
< A,B >= tr(AB")), we have:

Lemma 1. Asn — +o0o, H, = \n (Vgﬂ — VZ) converges in distribution to a
random variable H having a centered normal distribution in L (E X F) with
covariance operator equal to [E [((p(T ~E(T))) & (¢(T - IE(T)))].

Proof. Clearly, Z = Zo — Iy(u1) and Z® = Zg) — HO(ZS), where

X
o _ | W = _ 1y o
zy=|" | and ZO:EZ;ZO'
(@)
Wq
Therefore,
LN 6 o > >
H, = Vn EZ}ZO ® Z) ~E(Zo®Zo) - (Zy — i11) ® o (Z,)

— 1 ® T (Zg — 1) = Ty (Zg — 1) @ Zg — Tho (1) @ (Z — 1)

0o (Zy — i) @ Tl (Zp) + o (1) ® Ty (Z — )] -
Considering the L (E X F) X (E X F) -valued random variables

(@) (@)
TO = [ZO ® Zy ] i=1,2,..,n,

)
ZO

and putting K, = Vn (% Y, TO - ]E(T)), we can write
i=1

H, =TTy (Ky) = T (K,) ® T (Zy) - 1 ® Ty (T2 (K)
~ Ty (T2 (K,)) ® Zg = Ty (11) @ (I (K,.))
+ Ty (T (K,)) @ Ty (Zg) + Ty (111) @ Ty (TTs (K)
= pu (Ky), (10)

where @, is the random operator from £ (E X F)X(E X F) to L (E x F) defined

13



as:

Pa(S) = 11 (8) ~ T () ® Ty (Zg) — 1 ® Ty (T (5)) ~ o (T (5)) ® Z,
— Ty (1) ® (T2 (S)) + Ty (T (S)) ® Ty (Zg ) + Ty (111) @ Ty (T2 (S))
= 3(5,Z), (11)

and g is the continuous map from (£ (E X F) X (E X F)) X (E X F) to L(E X F)
defined as :

g(5,C) =11, (S) =T, (S) ® Iy (C) — 1 ® Iy (I (S)) — Iy (12 (S)) ® C
— Ty (1) ® (T (5)) + Ty (I, (S)) @ Ty (C) + Ty (1) ® Ty (TT ().

The central limit theorem in L (E X F) X (E X F) ensures that K, converges
in distribution, as n — +oo, to a random operator K having a centered
normal distribution in L (E X F) X (E X F) with covariance operator I'1 =
E(T — E(T)) ® (T — E(T))). Furthermore, from the strong law of large num-
bers, we have the almost sure convergence, in EXF, of ZZ topu;asn — +o0o0. We
deduce (see [4]) that (Kn,zg) converges in distribution to (K, y1), as n — +oo.
From the continuity of g, it follows that g(Kn,zg) converges in distribution,
asn — +oo, to g(K, u1) = @(K). Then, from (10) and (11), H, converges in dis-
tribution to H = ¢(K). Since ¢ is linear, H has a centered normal distribution
in L (E X F) with covariance operator I, = E((¢ (T — E(T)))® (¢ (T — E(T)))).
O

The following lemma gives the limiting distribution of A" under H,. Any
operator S of L(E X F) can be partitioned in the form

500 S()l SOq
510 511 Slq

where
Soo € L(RP), Sp; € L(R7,RP), Sjp € L(R?,R"), S € LR, R™)
with 1 < j, k, £ < g. In this context, let us consider the operators
Ty : S € L(EXF) - So; € L(R7,R)

and the map

Tj

q
Vv:Ae LEXF) - Z Pl (Toj (A) £7) ® (Io; (A) £7) € L(E).

j=1 h=1

14



Then, we have:

Lemma 2. Under H,, nA" converges in distribution to { (H) asn — +co.

Proof. Since we have 7, = 0 under H,, we can write

and n! i (W(l) (X(l) )) Z £ ( G ]h) we easily obtain the equality

i=1
Ty, (H,) = hz £ ® (Vn (pt = puty)). Thus:

I

_ q
nA"* = Z p]h Ho] (H, )fh])) (Ho]' (Hy, )f(])) Yu(Hy),

j=1 h=1

where 1), is the random map from L(E X F) to L(E) defined as :

Yu(S) = ZZ HOJ(S)fh) ( 0j (5) %fj))'

j=1 h=1

Putting A, = Y,(H,) — Y(H,), we have

q ?’]' q I’j
Z H()] (H”) fh(]))®(( pjh)_l - p]_hl) HO] (H ) (]) Z g]h ns P]h
j=1 h=1 j=1 h=1
where

gin - (A,x) e L(EXF) X ]R: > (HO]‘ (A) f}f])) ((x _ p]h HO] (A) f(])) .

Since ﬁ;h converges in probability to p, as n — +oco , we deduce from
Lemma 1 and the continuity of gj, that g (Hn,fo\;‘h) converges in distribu-

tion to g (H, p]-h), as n — +oo. Clearly, gj (H, p]-h) = 0; then, the preceding

15



convergence property is a convergence in probability. Consequently, A, con-
verges in probability to 0 as n — +co and, therefore, ¢,(H,) and ¢/(H,) have
the same limiting distribution. As 1 is continuous and H,, converges in

distribution to H, nA" converges in distribution to ¢ (H). O

4.2 Proof of Theorem 1

From Lemma 2, we deduce that under H,, ntr (X”) converges in distribution,

asn — +oo,to Q = tr (Y (H)). Now, it remains to prove that Q has the required
expression. We have

tr(Y(H)) = pitr (T (H) £7) @ (T (1) £7))
h=1

r

-,

=1

(T1o; () 7Y (1) (Tl (D £7)

-,

D 2D 1D 1D

h=1
=) UTU,
=1
where
Iy, (H) £,
U - Ho]'(I:{) 2(]) - @ (H)
o (H) £
and
pil, 0 .. 0
;= 0 P]}.llp 0 = Afl ®" I,
0 0 p];i[p

16



with A; = diag (pjl,pjz, .y pjrj). Putting

U, Oy (H)
U= (L.{z = (szH) - O(H) (12)
u,) |o,H

and taking I as defined in (2), we clearly have U'T'U = Q. Since D is linear
and H is centered and normally distributed with covariance operator equal
to that of ¢(T), we deduce from (12) that U is also centered and normally
distributed; its covariance operator X equals that of ®(¢(T)), that is

L = E[(®(p(T))) ® (P(p(T)))] - E (P(p(T)) ® E (D(¢p(T)), (13)
where
D(P(T)) =D (Zy ® Zp) — D (Zo @Iy (1)) — D (11 ® Iy (Zy))
—® (o (Zo) ® p1) = P (I (111) ® Zo)

+O (TTy (Zo) ® Ty (1)) + D (Tp (1) ® Iy (Zp)) .

Since

Ty (Zy®7Z0) " = (W; @ X) " =1, oy
oy (Zo@ T () £ = (Wy @ ) £ = 1y, o0

Io; (1 ®To (Zo)) fh(j) = (IE (Wj) ® X) fhj) = pinX;
Io; (T (Zo) ® ) =To; (I (1) ® Zo) = 0;
Iy; (TTo (Zo) @ I (1)) = To; (TTo (1) ® Ty (Zo)) = 0;
we obtain ®(¢p(T)) = (ull, cos Ulpyy oy Ugly ooey uqrq),, where

Wjn = 1{Y],EI£J‘>} (X — ) —pnX.

Thus, we deduce from (13) that ¥ has the form given in (3) with o =
E (uik ® u]-g) —E(uy)®E (u]-g), where

17



E (1 ® tie) = B (Ly,ey (X = ) @ Ly e (X = ) + pap e E (X @ X)
—pjepiE (X — pie) ® (X — pie) 1Y € Ii)
Pl (X = pie) ® (X = pie) 1Y; € 1)
e (Lvseny (X = i) @ i) = picE (e ® gy ey (X = 1150))

and
E (ux) = E (I{Yiel,(f)} (X=u) - PikX) = Piklik — Pikth — Pikh = —Pikld-

Since, under Hy, we have p = y, it follows that

E (Lyy,er) (X = pir) ® pir) = (B (Ly,ery X) = E (Qy,en pix)) ® Wik
= (pictic — Pixtic) ® Uik
=0

and, similarly, [E (y it ® (1 {viel,) (X - ng))) = 0. Since we obviously have the
equality E (uy) ® E (M]‘g) = pipjc 4 ® u, we deduce the required equality:
oije = VI + pupji (V -V - V(]{))- O
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