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Mathématiques et Informatique, BP 943 Franceville, Gabon.

Abstract

We propose a new test of independence of random vectors. We first show that the
null hypothesis implies the nullity of the trace of an operator involving inverse
regressions covariance operators. Then, using an approach based on slicing, we
define a test statistic for which an asymptotic distribution under null hypothesis is
derived. Simulations that permit to evaluate the performance of the proposed test
with comparisons with existing methods are given.

Key words: independence test, sliced inverse regression, consistency.
1991 MSC: 62H12, 62J02.

1 Introduction

Testing for independence of two random vectors X =
(
X1, ...,Xp

)′
and

Y =
(
Y1, ...,Yq

)′
, that are respectively p-dimensional and q-dimensional, is a

classical problem in statistics. When Z = (X′,Y′)′ has a (p+q)-variate normal
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distribution with partitioned covariance matrix

C =

 C11 C12

C21 C22


the hypothesis of independence may be formulated as C12 = 0. In this con-
text, several tests have been introduced, including the likelihood ratio test
and the Pillai’s test (see, e.g., [2], [5]). For the more general case where Z has
an elliptic distribution three methods have been proposed in [1] and, more
recently, an approach based on spatial signs have been introduced in [14]. It
is, of course, better to consider distribution-free methods. In this direction,
[6] introduced a method based on ranks whereas nonparametric approaches
have been proposed, for instance, in [3], [8], [11], [12] and [13]. To the best of
our knowledge, there does exists a method that is based on a well known re-
sult in probability theory that gives connections between the independence
property and conditional expectations. Such a method may be of a great
interest because it is necessarily a distribution-free method since the afore-
mentioned result holds whatever is the distribution of (X,Y). In this paper,
we tackle an approach based on this result for defining an independence test
between random vectors. Our proposal is described in Section 2. We first
remark that the independence property implies the nullity of the trace of an
operator involving covariance operators of expectations of X conditional to
the coordinates of Y. Then, we adopt ideas used in sliced inverse regression
for approximating these covariance operators and, therefore, to introduce
the test statistic that will be used. The limiting distribution of this statistic
under null hypothesis is then derived, and the related test procedure is de-
scribed. Section 3 is devoted to the presentation of simulations that permit
to evaluate the performances of the proposed approach and to compare it
with existing methods. All the proofs of lemmas and theorem are given in
Section 4.

2 The proposed method

This section is devoted to the presentation of our proposal for testing for
independence between two random vectors. We first introduce notations
and remark that the null hypothesis implies the nullity of the trace of an
operator involving inverse regressions covariance operators. Then, using
an approach based on slicing, as in [9], we define a test statistic for which
an asymptotic distribution under null hypothesis is derived. That permits
to specify the proposed testing procedure.
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2.1 Formulation of the problem

Denoting by E the mathematical expectation, we assume that E
(
‖X‖4

)
<

+∞, where ‖ · ‖ denotes the Euclidean norm of Rp induced by the usual
inner product < ·, · > of Rp. We are interested in testing for the hypothesis

H0 : X y Y,

where y denotes stochastic independence, against the alternative hypothe-
sis H1 stating that X and Y are not independent. If H0 is true, then X y Y j

for any j ∈ {1, · · · , q}. We will express this latter property by means of the
covariance operators Λ j of the conditional expectations E(X|Y j), given by

Λ j = E
((
E(X|Y j) − µ

)
⊗

(
E(X|Y j) − µ

))
,

where µ = E (X), and ⊗ denotes the tensor product defined as follows: for
any pair (x, y) of elements of an Euclidean space with inner product < ·, · >,
x⊗ y is the linear map h 7→< x, h > y. Using the equality tr(x⊗ x) = ‖x‖2 (see
[7]), we obtain

tr
(
Λ j

)
= E

(
tr

((
E(X|Y j) − µ

)
⊗

(
E(X|Y j) − µ

)))
= E

(∥∥∥E(X|Y j) − µ
∥∥∥2

)
.

Then X y Y j implies that E
(
X|Y j

)
= µ almost surely, what is equivalent to

having tr(Λ j) = 0. Therefore, H0 implies that tr (Λ) = 0, where Λ =
q∑

j=1
Λ j.

Consequently, testing forH0 againstH1 can be done by taking a consistent
estimator of tr(Λ) as test statistic. Following an approach used in [9] for
estimating an inverse regression covariance operator, we will in fact use a
consistent estimator of tr(Λ̃), where Λ̃ is an approximation of Λ obtained
by slicing the ranges of the Y j’s. For j ∈ {1, ..., q}, let (I( j)

h )1≤h≤r j be a partition
of Y j(Ω) such that each probability p jh := P(Y j ∈ I( j)

h ) is non null. Putting
µ jh = E(X|Y j ∈ I( j)

h ) and τ jh = µ jh−µ, the aforementioned operator Λ̃ is given

by Λ̃ =
∑q

j=1 Λ̃ j, where Λ̃ j =
r j∑

h=1
p jhτ jh ⊗ τ jh.

Remark 1 In all of the paper we use tensor notations and operators. How-
ever, in a finite-dimensional framework the related transcriptions into ma-
trix notations, that are useful for pratical implementation, are easy to obtain
from [7]. More precisely, the matrix related to the operator x ⊗ y is given
by yx′, where x =

(
x1, ..., xp

)′
(resp. y =

(
y1, ..., yq

)′
) is the matricial repre-

sentation of the vector x (resp. y) relative to the canonical basis of Rp (resp.
Rq).
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2.2 The test statistic

Letting
{(

X(i),Y(i)
)}

1≤i≤n
be an i.i.d sample of (X,Y), we consider for any

j ∈
{
1, ..., q

}
and any h ∈

{
1, ..., r j

}
:

n̂ jh =

n∑
i=1

1{
Y(i)

j ∈I
( j)
h

}, p̂n
jh =

n̂ jh

n
, X

n
jh =

1
n̂ jh

n∑
i=1

1{
Y(i)

j ∈I
( j)
h

}X(i), X
n

=
1
n

n∑
i=1

X(i), (1)

where Y(i)
j is the j-th coordinate of Y(i), and 1A denotes the indicator function

of A. Then, we estimate Λ j by the random operator

Λ̂n
j =

r j∑
h=1

p̂n
jh

(
X

n
jh − X

n)
⊗

(
X

n
jh − X

n)
,

and, putting Λ̂n =
q∑

j=1
Λ̂n

j , we take as test statistic the random variable

Ŝ(n) = tr
(
Λ̂n

)
.

It is a strongly consistent estimator of tr(Λ̃). Indeed, the strong law of large
numbers ensures the almost sure convergence of p̂n

jh (resp. X
n
; resp. X

n
jh) to

p jh (resp. µ ; resp. µ jh) as n→ +∞ and, therefore, that of τ̂n
jh = X

n
jh −X

n
to τ jh.

As the bilinear map
(
x, y

)
∈ Rp

×Rp
7→ x⊗ y ∈ L(Rp) is continuous, we then

deduce the almost sure convergence of Λ̂n
j to Λ̃ j as n→ +∞, which implies

that of Ŝ(n) to tr(Λ̃).

Now, we will give the asymptotic distribution of Ŝ(n) under H0. For j ∈
{1, · · · , q}, let us introduce the diagonal matrix ∆ j = diag

(
p j1, p j2, ..., p jr j

)
and

put Γ j = ∆−1
j ⊗

K Ip, where ⊗K denotes the Kronecker product and Ip is the
p × p identity matrix. Then, we consider the matrices

Γ =



Γ1 0 ... 0

0 Γ2 ... 0
...

...
...

...

0 0 ... Γq


(2)
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and

Σ =



σ1111 σ1112 ... σ11qrq

σ1211 σ1212 ... σ12qrq

...
... ...

...

σqrq11 σqrq12 ... σqrqqrq


, (3)

where
σik j` = V(ik j`) + pikp j`

(
V − V(ik)

− V( j`)
)
,

with

V(ik) =E
((

X − µik
)
⊗

(
X − µik

)
|Yi ∈ Ik

)
,

V(ik j`) =E
((

1{Yi∈Ik}

(
X − µik

))
⊗

(
1
{Y j∈I`}

(
X − µ j`

)))
,

and
V = E

((
X − µ

)
⊗

(
X − µ

))
.

Then, we have:

Theorem 1. Under H0, nŜ(n) converges in distribution, as n → +∞, to Q =
U
′ΓU where U is a centered random vector having a normal distribution

in Rpq with covariance operator equal to Σ.

2.3 The test procedure

For a given significance level α ∈]0, 1[, the hypothesisH0 will be rejected if
FQ

(
nŜ(n)

)
> 1 − α, where FQ denotes the cumulative distribution function

of Q. Since Q is a quadratic form of a normally distributed random vector,
FQ can be computed or approximated by using formulas given in [10] and
which involve the eigenvalues of Σ

1
2 ΓΣ

1
2 . In practice Σ and Γ are unknown;

so, they are to be replaced by consistent estimators. For estimating Γ, we
consider

Γ̂(n) =



Γ̂n
1 0 .... 0

0 Γ̂n
2 .... 0

...
...

...
...

0 0 ... Γ̂n
q


(4)
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where Γ̂n
j =

(
∆̂n

j

)−1
⊗

K Ip, with ∆̂n
j = diag

(̂
pn

j1, p̂
n
j2, ..., p̂

n
jr j

)
. Estimation of Σ is

achieved by considering the pq × pq matrix Σ̂n given by

Σ̂n =



σ̂n
1111 σ̂n

1112 ... σ̂n
11qrq

σ̂n
1211 σ̂n

1212 ... σ̂n
12qrq

...
...

...
...

σ̂n
qrq11 σ̂n

qrq12 ... σ̂n
qrqqrq


, (5)

where
σ̂n

ikj` = V(ik j`)
n + p̂n

ikp̂
n
j`

(
V̂n − V̂(ik)

n − V̂( j`)
n

)
with

V̂(ik j`)
n =

1
n

n∑
t=1

(
1{

Y(t)
i ∈Ik

} (X(t)
− X

n
ik

))
⊗

1{
Y(t)

j ∈I`

} (X(t)
− X

n
j`

)
V̂( jk)

n =
1

n jk

n∑
i=1

1{
Y(i)

j ∈Ik

} (X(i)
− X

n
jk

)
⊗

(
X(i)
− X

n
jk

)
V̂n =

1
n

n∑
i=1

(
X(i)
− X

n)
⊗

(
X(i)
− X

n)
.

Remark 2. Practical implementation can be done by using Remark 1 that
shows that, identifying each vector with its matrix relative to canonical
basis, we can write :

Λ̂n
j =

r j∑
h=1

p̂n
jĥτ

n
jh

(̂
τn

jh

)′
(6)

V̂(ik j`)
n =

1
n

n∑
t=1

1{
Y(t)

j ∈I`

} (X(t)
− X

n
j`

) (1{
Y(t)

i ∈Ik

} (X(t)
− X

n
ik

))′
(7)

V̂( jk)
n =

1
n jk

n∑
i=1

1{
Y(i)

j ∈Ik

} (X(i)
− X

n
jk

) (
X(i)
− X

n
jk

)′
. (8)

V̂n =
1
n

n∑
i=1

(
X(i)
− X

n) (
X(i)
− X

n)′
(9)

Remark 3. The proposed method is achieved from the following algorithm:
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(1) Compute X
n

and for j = 1, · · · , q and h = 1, ..., r j compute n̂ jh,X
n
jh and

p̂n
jh from (1). Then compute τ̂n

jh = X
n
jh − X

n
and Λ̂n

j from (6) .

(2) Compute Ŝ(n) = tr
(

q∑
j=1

Λ̂n
j

)
and, for j = 1, ..., q, compute ∆̂n

j , Γ̂
n
j =

(
∆̂n

j

)−1
⊗

K

Ip and Γ̂(n) by using (4) .
(3) Compute V̂n from (9) and for i, j = 1, · · · , q, k = 1, ..., ri and ` = 1, ..., r j,

compute V̂(ik j`)
n and V̂( jk)

n from (7) and (8) respectively.
(4) For i, j = 1, · · · , q, k = 1, ..., ri and ` = 1, ..., r j, compute

σ̂n
ikj` = V̂(ik j`)

n + pn
ikp

n
j`

(
V̂n − V̂(ik)

n − V̂( j`)
n

)
.

(5) Compute the matrix Σ̂(n) given in ( 5).

(6) Compute the eigenvalues λ1, ..., λqrq of
(
Σ̂(n)

)1/2
Γ̂(n)

(
Σ̂(n)

)1/2
. Then con-

sider the function FQ (t) := P
(
χ2
ν < t/c

)
where

c =

( qrq∑
j=1
λ2

j

)
( qrq∑

j=1
λ j

) and ν =

( qrq∑
j=1
λ j

)2

( qrq∑
j=1
λ2

j

) .
(7) Compute pc = 1 − FQ

(
nŜ(n)

)
. If pc ≥ α then acceptH0; otherwise reject

it.

3 Simulation results

In order to check the efficacy of the proposed method and to compare it with
that of existing methods, a simulation study was performed. We computed
empirical sizes and empirical powers over 1000 replications, with nominal
significance level α = 0.05, 0.10, from our method that we denote by REG
and three known methods. These later methods are the likelihood ratio
test (LRT), the method based on ranks given in [6] and denoted here by
CLL, and the method introduced in [11] denoted by MI. For sample sizes
n = 50, 100, 200, 300, 400, 500, we generated 1000 independent replicates of
a pair Z = (X′,Y′)′ of random vectors by using the following models:

Model 1 : Z has a centered normal distribution inR10 with covariance matrix
C given by

C =

 I5 γI5

γI5 I5


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Table 1
Empirical sizes from REG, with sample size n and nominal significance level α.

Model 1 Model 2

n α = 0.05 α = 0.10 α = 0.05 α = 0.10

50 0.018 0.052 0.024 0.06

100 0.027 0.078 0.038 0.084

200 0.047 0.089 0.032 0.093

300 0.047 0.104 0.047 0.091

400 0.038 0.083 0.042 0.094

500 0.044 0.097 0.046 0.095

where I5 denotes the 5 × 5 identity matrix and γ is a real belonging to[0, 1].

Model 2 : Z is a two-dimensional random vector with coordinates defined
by X =

√
3
20 (aX1 + bY1) and Y =

√
3
20 (bX1 + aY1), where X1 and Y1 are

independent random variables having a student distribution with 5 degrees
of freedom, and a =

√
1 + γ +

√
1 − γ and b =

√
1 + γ −

√
1 − γ where γ

belongs to [0, 1].

For both models, H0 holds if and only if γ = 0. Table 1 gives outputs for
empirical sizes from our method. Satisfactory results are provided, except
for low sample size (n = 50). The most accurate results are obtained for
n ≥ 200. The obtained results for empirical powers, for γ from 0 up to 0.4,
are given in Figures 1 to 3 for Model 1, and in Figures 4 to 6 for Model 2.
They show that, for moderate values of γ and sufficiently large values of
n, our method outperforms all the considered existing methods except LRT
that gives the best results in all the tackled situations. However, for n = 100
our method is also outperformed by CLL, and by MI when γ is small. For
large values of γ all the methods give the same empirical power equal to 1.
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Fig 1: n= 100,  αα=0.05
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Fig. 1. Empirical power versus γ for Model 1, n = 100 and α = 0.05.
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Fig. 2. Empirical power versus γ for Model 1, n = 300 and α = 0.05.
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Fig 3: n= 500,  αα=0.05

REG
LRT
CLL
MI

Fig. 3. Empirical power versus γ for Model 1, n = 500 and α = 0.05.
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Fig. 4. Empirical power versus γ for Model 2, n = 100 and α = 0.05.

10



0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γγ

E
m

pi
ric

al
 p

ow
er

Fig 5: n= 300,  αα=0.05

REG
LRT
CLL
MI

Fig. 5. Empirical power versus γ for Model 2, n = 300 and α = 0.05.
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Fig. 6. Empirical power versus γ for Model 2, n = 500 and α = 0.05.
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4 Proofs

4.1 Lemmas

Putting E = Rp and F = Rr1 ×Rr2 × ... ×Rrq , we introduce the operators

Π0 :

 u

v

 ∈ E × F 7→

 u

0

 ∈ E × F,

Π1 :

 A

x

 ∈ L (E × F) × (E × F) 7→ A ∈ L (E × F) ,

Π2 :

 A

x

 ∈ L (E × F) × (E × F) 7→ x ∈ E × F.

Furthermore, we consider the random vectors

W j :=
r j∑

h=1

1{
Y j∈I

( j)
h

} f ( j)
h ,W

(i)
j :=

r j∑
h=1

1{
Y(i)

j ∈I
( j)
h

} f ( j)
h

where
{

f ( j)
1 , ..., f ( j)

r j

}
is the canonical basis of Rr j , and the random vectors

valued into E × F given by:

Z =



X − µ

W1
...

Wq


, Z(i) =



X(i)
− X

n

W(i)
1
...

W(i)
q


, Z0 =



X

W1
...

Wq


.

Then, putting

T =

 Z0 ⊗ Z0

Z0

 ,VZ = E(Z ⊗ Z),V(n)
Z =

1
n

n∑
i=1

Z(i)
⊗ Z(i),

considering the linear map ϕ from L (E × F) × (E × F) to L (E × F) defined
by:

ϕ(S) = Π1 (S) −Π2 (S) ⊗Π0
(
µ1

)
− µ1 ⊗Π0 (Π2 (S)) −Π0 (Π2 (S)) ⊗ µ1

−Π0
(
µ1

)
⊗ (Π2 (S)) + Π0 (Π2 (S)) ⊗Π0

(
µ1

)
+ Π0

(
µ1

)
⊗Π0 (Π2 (S))

12



where µ1 = E(Z0), and denoting by ⊗̃ the tensor product between elements
of L(E × F) (associated with the inner product of this space defined by:
< A,B >= tr(AB∗)), we have:

Lemma 1. As n → +∞, Hn =
√

n
(
V(n)

Z − VZ

)
converges in distribution to a

random variable H having a centered normal distribution in L (E × F) with
covariance operator equal to E

[(
ϕ(T − E(T))

)
⊗̃

(
ϕ(T − E(T))

)]
.

Proof. Clearly, Z = Z0 −Π0(µ1) and Z(i) = Z(i)
0 −Π0(Z

n
0), where

Z(i)
0 =



X(i)

W(i)
1
...

W(i)
q


and Z

n
0 =

1
n

n∑
i=1

Z(i)
0 .

Therefore,

Hn =
√

n

1
n

n∑
i=1

Z(i)
0 ⊗ Z(i)

0 − E (Z0 ⊗ Z0) −
(
Z

n
0 − µ1

)
⊗Π0

(
Z

n
0

)
− µ1 ⊗Π0

(
Z

n
0 − µ1

)
−Π0

(
Z

n
0 − µ1

)
⊗ Z

n
0 −Π0

(
µ1

)
⊗

(
Z

n
0 − µ1

)
+Π0

(
Z

n
0 − µ1

)
⊗Π0

(
Z

n
0

)
+ Π0

(
µ1

)
⊗Π0

(
Z

n
0 − µ1

)]
.

Considering the L (E × F) × (E × F) -valued random variables

T(i) =

 Z(i)
0 ⊗ Z(i)

0

Z(i)
0

 , i = 1, 2, ...,n,

and putting Kn =
√

n
(

1
n

n∑
i=1

T(i)
− E(T)

)
, we can write

Hn = Π1 (Kn) −Π2 (Kn) ⊗Π0

(
Z

n
0

)
− µ1 ⊗Π0 (Π2 (Kn))

−Π0 (Π2 (Kn)) ⊗ Z
n
0 −Π0

(
µ1

)
⊗ (Π2 (Kn))

+ Π0 (Π2 (Kn)) ⊗Π0

(
Z

n
0

)
+ Π0

(
µ1

)
⊗Π0 (Π2 (Kn))

= ϕn (Kn) , (10)

whereϕn is the random operator fromL (E × F)×(E × F) toL (E × F) defined

13



as:

ϕn(S) = Π1 (S) −Π2 (S) ⊗Π0

(
Z

n
0

)
− µ1 ⊗Π0 (Π2 (S)) −Π0 (Π2 (S)) ⊗ Z

n
0

−Π0
(
µ1

)
⊗ (Π2 (S)) + Π0 (Π2 (S)) ⊗Π0

(
Z

n
0

)
+ Π0

(
µ1

)
⊗Π0 (Π2 (S))

= g(S,Z
n
0), (11)

and g is the continuous map from (L (E × F) × (E × F)) × (E × F) to L (E × F)
defined as :

g(S,C) = Π1 (S) −Π2 (S) ⊗Π0 (C) − µ1 ⊗Π0 (Π2 (S)) −Π0 (Π2 (S)) ⊗ C
−Π0

(
µ1

)
⊗ (Π2 (S)) + Π0 (Π2 (S)) ⊗Π0 (C) + Π0

(
µ1

)
⊗Π0 (Π2 (S)) .

The central limit theorem in L (E × F) × (E × F) ensures that Kn converges
in distribution, as n → +∞, to a random operator K having a centered
normal distribution in L (E × F) × (E × F) with covariance operator Γ1 =
E((T − E(T)) ⊗̃ (T − E(T))). Furthermore, from the strong law of large num-
bers, we have the almost sure convergence, in E×F, of Z

n
0 toµ1 as n→ +∞. We

deduce (see [4]) that (Kn,Z
n
0) converges in distribution to (K, µ1), as n→ +∞.

From the continuity of g, it follows that g(Kn,Z
n
0) converges in distribution,

as n→ +∞, to g(K, µ1) = ϕ(K). Then, from (10) and (11), Hn converges in dis-
tribution to H = ϕ(K). Since ϕ is linear, H has a centered normal distribution
inL (E × F) with covariance operator Γ2 = E((ϕ (T − E(T)))⊗ (ϕ (T − E(T)))).
�

The following lemma gives the limiting distribution of Λ̂n under H0. Any
operator S of L(E × F) can be partitioned in the form

S =



S00 S01 ... S0q

S10 S11 ... S1q
...

...
...

...

Sq0 Sq1 ... Sqq


where

S00 ∈ L(Rp),S0 j ∈ L(Rr j ,Rp),S j0 ∈ L (Rp,Rr j) ,Sk` ∈ L(Rr` ,Rrk)

with 1 ≤ j, k, ` ≤ q. In this context, let us consider the operators

Π0 j : S ∈ L (E × F) 7→ S0 j ∈ L (Rr j ,Rp)

and the map

ψ : A ∈ L (E × F) 7→
q∑

j=1

r j∑
h=1

p−1
jh

(
Π0 j (A) f ( j)

h

)
⊗

(
Π0 j (A) f ( j)

h

)
∈ L (E) .

14



Then, we have:

Lemma 2. UnderH0, nΛ̂n converges in distribution to ψ (H) as n→ +∞.

Proof. Since we have τ jh = 0 underH0, we can write

nΛ̂n =

q∑
j=1

r j∑
h=1

(̂
pn

jh

)−1 √
n
(̂
pn

jĥτ
n
jh − p jhτ jh

)
⊗
√

n
(̂
pn

jĥτ
n
jh − p jhτ jh

)
.

Moreover, from

E
(
W j ⊗

(
X − µ

))
=E


 r j∑

h=1

1{
Y j∈I

( j)
h

} f ( j)
h

 ⊗ X −

 r j∑
h=1

1{
Y j∈I

( j)
h

} f ( j)
h

 ⊗ µ


=

r j∑
h=1

f ( j)
h ⊗

(
p jhτ jh

)
and n−1

n∑
i=1

(
W(i)

j ⊗
(
X(i)
− X

n))
=

r j∑
h=1

f ( j)
h ⊗

(̂
pn

jĥτ
n
jh

)
, we easily obtain the equality

Π0 j (Hn) =
r j∑

h=1
f ( j)
h ⊗

(√
n
(
pn

jhτ
n
jh − p jhτ jh

))
. Thus:

nΛ̂n =

q∑
j=1

r j∑
h=1

(̂
pn

jh

)−1 (
Π0 j (Hn) f ( j)

h

)
⊗

(
Π0 j (Hn) f ( j)

h

)
= ψn(Hn),

where ψn is the random map from L(E × F) to L(E) defined as :

ψn(S) =

q∑
j=1

r j∑
h=1

(̂
pn

jh

)−1 (
Π0 j (S) f ( j)

h

)
⊗

(
Π0 j (S) f ( j)

h

)
.

Putting ∆n = ψn(Hn) − ψ(Hn), we have

∆n =

q∑
j=1

r j∑
h=1

(
Π0 j (Hn) f ( j)

h

)
⊗

(
((̂pn

jh)−1
− p−1

jh ) Π0 j (Hn) f ( j)
h

)
=

q∑
j=1

r j∑
h=1

g jh

(
Hn, p̂n

jh

)
,

where

g jh : (A, x) ∈ L (E × F) ×R∗+ 7→
(
Π0 j (A) f ( j)

h

)
⊗

(
(x−1
− p−1

jh )Π0 j (A) f ( j)
h

)
.

Since p̂n
jh converges in probability to p` as n → +∞ , we deduce from

Lemma 1 and the continuity of g jh that g jh

(
Hn ,̂pn

jh

)
converges in distribu-

tion to g jh

(
H, p jh

)
, as n → +∞. Clearly, g jh

(
H, p jh

)
= 0; then, the preceding

15



convergence property is a convergence in probability. Consequently, ∆n con-
verges in probability to 0 as n→ +∞ and, therefore, ψn(Hn) and ψ(Hn) have
the same limiting distribution. As ψ is continuous and Hn converges in
distribution to H, nΛ̂n converges in distribution to ψ(H). �

4.2 Proof of Theorem 1

From Lemma 2, we deduce that underH0, ntr
(
Λ̂n

)
converges in distribution,

as n→ +∞, toQ = tr
(
ψ(H)

)
. Now, it remains to prove thatQhas the required

expression. We have

tr
(
ψ(H)

)
=

q∑
j=1

r j∑
h=1

p−1
jh tr

((
Π0 j (H) f ( j)

h

)
⊗

(
Π0 j (H) f ( j)

h

))
=

q∑
j=1

r j∑
h=1

p−1
jh

〈
Π0 j (H) f ( j)

h ,
(
Π0 j (H) f ( j)

h

)〉
=

q∑
j=1

r j∑
h=1

(
Π0 j (H) f ( j)

h

)′ (
p−1

jh Ip

) (
Π0 j (H) f ( j)

h

)
=

q∑
j=1

U
′

jΓ jU j,

where

U j =



Π0 j (H) f ( j)
1

Π0 j (H) f ( j)
2

...

Π0 j (H) f ( j)
r j


= Φ j(H)

and

Γ j =



p−1
j1 Ip 0 ... 0

0 p−1
j2 Ip ... 0

...
...

...
...

0 0 ... p−1
jr j

Ip


= ∆−1

j ⊗
K Ip
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with ∆ j = diag
(
p j1, p j2, ..., p jr j

)
. Putting

U =



U1

U2
...

Uq


=



Φ1(H)

Φ2(H)
...

Φq(H)


= Φ(H) (12)

and taking Γ as defined in (2), we clearly haveU′ΓU = Q. Since Φ is linear
and H is centered and normally distributed with covariance operator equal
to that of ϕ(T), we deduce from (12) that U is also centered and normally
distributed; its covariance operator Σ equals that of Φ(ϕ(T)), that is

Σ = E
[(

Φ(ϕ(T))
)
⊗

(
Φ(ϕ(T))

)]
− E

(
Φ(ϕ(T)

)
⊗ E

(
Φ(ϕ(T)

)
, (13)

where

Φ(ϕ(T)) = Φ (Z0 ⊗ Z0) −Φ
(
Z0 ⊗Π0

(
µ1

))
−Φ

(
µ1 ⊗Π0 (Z0)

)
−Φ

(
Π0 (Z0) ⊗ µ1

)
−Φ

(
Π0

(
µ1

)
⊗ Z0

)
+Φ

(
Π0 (Z0) ⊗Π0

(
µ1

))
+ Φ

(
Π0

(
µ1

)
⊗Π0 (Z0)

)
.

Since

Π0 j (Z0 ⊗ Z0) f ( j)
h =

(
W j ⊗ X

)
f ( j)
h = 1{

Y j∈I
( j)
h

}X;

Π0 j
(
Z0 ⊗Π0

(
µ
))

f ( j)
h =

(
W j ⊗ µ

)
f ( j)
h = 1{

Y j∈I
( j)
h

}µ;

Π0 j
(
µ ⊗Π0 (Z0)

)
f ( j)
h =

(
E

(
W j

)
⊗ X

)
f ( j)
h = p jhX;

Π0 j
(
Π0 (Z0) ⊗ µ

)
= Π0 j

(
Π0

(
µ
)
⊗ Z0

)
= 0;

Π0 j
(
Π0 (Z0) ⊗Π0

(
µ
))

= Π0 j
(
Π0

(
µ
)
⊗Π0 (Z0)

)
= 0;

we obtain Φ(ϕ(T)) =
(
u11, ...,u1r1 , ...,uq1, ...,uqrq

)′
, where

u jh = 1{
Y j∈I

( j)
h

} (X − µ) − p jhX.

Thus, we deduce from (13) that Σ has the form given in (3) with σik j` =

E
(
uik ⊗ u j`

)
− E (uik) ⊗ E

(
u j`

)
, where
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E
(
uik ⊗ u j`

)
=E

(
1{Yi∈Ik}

(
X − µik

)
⊗ 1
{Y j∈I`}

(
X − µ j`

))
+ pikp j`E (X ⊗ X)

−p j`pikE
((

X − µik
)
⊗

(
X − µik

)
|Yi ∈ Ik

)
−p j`pikE

((
X − µ j`

)
⊗

(
X − µ j`

)
|Y j ∈ I`

)
−p j`E

(
1{Yi∈Ik}

(
X − µik

)
⊗ µik

)
− pikE

(
µ j` ⊗ 1

{Y j∈I`}

(
X − µ j`

))
and

E (uik) = E
(
1{

Yi∈I
(i)
k

} (X − µ) − pikX
)

= pikµik − pikµ − pikµ = −pikµ.

Since, underH0, we have µik = µ, it follows that

E
(
1{Yi∈Ik}

(
X − µik

)
⊗ µik

)
=

(
E

(
1{Yi∈Ik}X

)
− E

(
1{Yi∈Ik}µik

))
⊗ µik

=
(
pikµik − pikµik

)
⊗ µik

= 0

and, similarly, E
(
µ j` ⊗

(
1
{Y j∈I`}

(
X − µ j`

)))
= 0. Since we obviously have the

equality E (uik) ⊗ E
(
u j`

)
= pikp j` µ ⊗ µ, we deduce the required equality:

σik j` = V(ik j`) + pikp j`

(
V − V(ik)

− V( j`)
)
. �
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