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Mixing and haos in open �owsAlessandro Mouraa,∗, Ulrike Feudelb, Emmanuelle GouillartaInstitute of Complex Systems and Mathematial Biology, King's College, University ofAberdeen, Aberdeen AB24 3UE, UKbInstitut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität, PF 2503,D-26111 Oldenburg, GermanySurfae du Verre et Interfaes, UMR 125 CNRS/Saint-Gobain, 93303 Aubervilliers,FraneAbstratWe review the theory and experimental knowledge of mixing in open �owsdisplaying haoti advetion, from a point of view of dynamial systems the-ory. We show that the haoti saddle and its stable and unstable manifoldsonstitute the skeleton around whih the dynamis are organised, and thattheir fratal properties govern advetion and mixing in open �ows. The ef-fets of KAM islands on the mixing is examined, as well as the interplaybetween moleular di�usion and haoti advetion. We disuss what theappropriate de�nition of mixing is in pratial situations, and present ex-periments motivated by industrial appliations to bak these disussions.We also disuss appliations of these onepts to plankton dynamis in theoeans.Keywords: Chaoti advetion, Open �ows, Mixing1. IntrodutionWhen one thinks of mixing, the image most likely to ome to mind isthat of a liquid being stirred in a losed ontainer. This is indeed a veryimportant senario, whih has been the fous of most studies on the dy-namis of mixing sine Aref's pioneering work (Aref, 1984). That landmarkwork and those whih followed have established that stirring an give riseto haoti advetion, whih results in the ontinuous strething and folding
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of any given portion of the �uid. This haoti dynamis auses any blob of�uid to be quikly deformed into a �lamentary shape with very thin �lamentsspreading all over the ontainer (see Fig. 1). As the stirring ontinues, the�laments beome denser and denser in spae as their total length inreases,until moleular di�usion mixes them homogeneously into the bakground.This homogeneous mixing is the diret result of the fat that the ontaineris losed: the �laments are ontinuously strethed, and having nowhere elseto go, they end up �lling the entire spae in the ontainer.

Figure 1: Shape of a dye droplet after stirring on the surfae of a thin layer ofglyerol in a Petri dish. Experiment arried out by I.M. Jánosi, K.G. Szabó,T. Tél, and M. Wells at the von Kármán Laboratory of Eötvös University,Budapest. From (Tél et al., 2005).The study of mixing in open �ows � �ows with onstant in�ow andout�ow, where �uid is not bound to a region of �nite volume � has been lessthoroughly pursued. But open �ows are extremely important in many areasof siene and engineering, and problems involving mixing in open �ows are2



ruial for many natural and man-made systems. Chaoti advetion is alsopresent in open �ows, suh as in the �ow of streams around obstales, andin situations where �ow is stirred in the open, without walls restriting themotion of the �uid. In open �ows, haos takes a di�erent form omparedto the ase of losed �ows (Tél et al., 2005), beause typial �uid partilesesape any given region of spae in a �nite time. There is, however, a setof unstable �trapped� orbits whih are bounded within a �nite region andwhih never esape. These non-esaping orbits onstitute an invariant set ofthe dynamial system assoiated with advetion � the haoti saddle. Eventhough the orbits in the haoti saddle have zero measure in spae � that is,the probability that an initial ondition hosen randomly belongs to one ofthe trapped orbits in the haoti saddle is zero �, they are very importantfor understanding the dynamis of open systems, beause they determine theasymptoti (t → ∞) advetion dynamis. The haoti saddle has a fratalgeometry, and this gives rise to omplex behaviour of �uid parels in theirneighbourhood. Fluid partiles near the haoti saddle undergo suessiveepisodes of strething and folding, just as in the losed ontainer ase. Butthe di�erene is that the �ow is esaping as well, and as a result the �lamentsprodued by strething are not spae-�lling. The fratal strutures generatedby the haoti dynamis are limited by the out�ow, and the situation ofhomogeneous mixing found in the losed ase is never reahed in open �ows;instead a harateristi pattern of �laments with intriate struture re�etingtheir underlying fratal geometry is formed, as illustrated in Fig. 2, whihshows the simulation of passive traers being adveted in a human bloodvessel (Shelin et al., 2009, 2010). An experimental example of a dye mixedinto an open �uid, a problem of great industrial interest, whih is desribedin Setion 6.It is lear that in an open system the �ow is not mixed in the sense ofthe losed ase, sine some of the �uid esapes through the out�ow unmixed.But the portions of �uid whose trajetories bring them lose to the haotisaddle are strethed and folded many times before they esape, and in thoseregions some mixing does take plae. In other words, in open �ows there ispartial mixing, due to the transient nature of the dynamis of open �ows.The importane of open �ows for so many areas makes it important tohave a solid understanding of the dynamis of mixing in those systems. Inthis work, we review the most important results in this area, and present themajor relevant onepts in a uni�ed framework, and we also disuss some ofthe most relevant appliations of these onepts in physis and engineering.3



Figure 2: Simulation the advetion of passive traers for a 2D model of ablood vessel with a large aneurysm. The �ow was obtained by solving theNavier-Stokes equation, with realisti boundary onditions. From (Shelinet al., 2009).The rest of this paper is organised as follows. In Setions 2 and 3, we in-trodue the onept of haoti advetion, and disuss the role of the haotisaddle and its stable and unstable manifolds for the dynamis of open �ows.In Se. 4, we show how fratal distributions arise in haoti open �ows due tothe haoti saddle, and their onsequenes for the advetion dynamis; andwe introdue the onept of fratal dimension as a measure of the sensitivityto initial onditions and an indiator of strong mixing. In Setion 5, thenon-hyperboli ase is examined, and the onsequenes of KAM islands tomixing are explored. Setion 6 takes moleular di�usion into aount, anddisusses what are the appropriate measures of the e�ieny of mixing forreal-world ases; the disussion is illustrated with experimental results in theontext of industrial mixing. Finally, in Setion 7 the appliation of theseonepts to the dynamis of plankton in the oean is presented.2. Example of an open �ow: the blinking vortex-sink systemWe will now introdue a very simple open �ow whih exhibits haotiadvetion and is given analytially as a mapping, whih means that there isno need to solve Navier-Stokes equations to study and simulate it. We will4



use this �ow to illustrate many of the onepts relevant to haos and open�ows in the following.
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Figure 3: Illustration of the blinking-vortex �ow. The sinks are indiated bythe blak irles. During the �rst half of a period, the left sink is ative and�ow spirals towards it (a), while during the seond half half of the period, theleft sink is losed and the right sink is open, as shown in (b). This swithingfrom on sink to the other is iterated inde�nitely.
-1

0

1

2

-2 -1 0 1 2

-1

0

1

2

-2 -1 0 1 2Figure 4: Trajetories orresponding to two very lose initial onditions inthe blinking vortex-sink �ow. From (Tél et al., 2005).The blinking vortex-sink �ow (Aref et al., 1989; Károlyi and Tél, 1997)is a generalisation of Aref's blinking vortex �ow (Aref, 1984). It is a 2Dinompressible �ow on an in�nite plane, with two sinks whih open and loseperiodially in alternation: in the �rst half of eah yle one sink is open5



and the other one is losed, and in the seond half the situation is reversed(see Fig. 3). As �uid falls into the sink it spirals around it, and so eah sinkis also a vortex. Eah vortex-sink is modelled as a point-soure of vortiitysuperimposed to a loalised sink, and we assume that the �ow whih fallson either of the sinks disappears from the system and does not ome bak.This is learly an open �ow, where the in�ow region orresponds to the wholespae beyond the sinks. The out�ow region is not modelled expliitly: �uidpartiles are assumed to simply disappear when they fall into a sink. Beinga two-dimensional inompressible �ow, advetion in the blinking vortex-sinksystem is Hamiltonian (see Se. 3 below).Consider �rst a single vortex-sink, in a oordinate system where the originoinides with it. It generates a veloity �eld with a radial omponent ur =
−C/r orresponding to the sink, and a tangential omponent uϕ = K/rmodelling the spiralling motion of the �uid as it falls into the sink.A �uid partile follows a trajetory determined by the following equationsof motion:

ṙ = −C/r, ϕ̇ = uϕ/r = K/r2. (1)Solving these equations with initial onditions r0 and ϕ0, we get
r(t) = (r20 − 2Ct)1/2, ϕ(t) = ϕ0 −

K

C
ln

r(t)

r0
. (2)To get the blinking vortex-sink system (Aref et al., 1989; Károlyi and Tél,1997), we just need to put two vortex-sink points on the plane and then turnthem on and o� alternately for a duration T/2 as explained above, therebygenerating a time-periodi �ow of period T . Without loss of generality, wehoose the positions of the vorties at x = ±a, y = 0, where a is a parameterof the system. Sine we have an analytial expression for the motion of �uidpartiles for eah of the half-periods, it is not di�ult to �nd an expressionfor the new position rn+1 after one period as a funtion of the position rn atthe beginning of the period. This is best done using a omplex representationfor the position of a �uid partile, z = x+ iy. The mapping from the initialposition zn to the new one zn+1 is then given by

zn+1/2 = (zn + a)

(

1− CT

|zn + a|2
)1/2−iK/2C

− a;

zn+1 =
(

zn+1/2 − a
)

(

1− CT
∣

∣zn+1/2 − a
∣

∣

2

)1/2−iK/2C

+ a. (3)6



Here zn+1/2 is an intermediate variable representing the partile's positionafter the �rst half-period.Dimensional analysis reveals that the dynamis is fully determined by thetwo dimensionless parameters:
η = CT/a2, and ξ = K/C, (4)whih an be interpreted as the dimensionless sink strength and the ratio ofthe vortex to sink strength, respetively.Fluid partiles esape from the system when they are too lose to one ofthe vortex-sinks while it is ative. It is easy to derive from Eq. (2) that theportions of the �uid whih are within a distane of R =

√
CT of a sink, at theinstant when it starts to be ative, will leave the system in the next half-yle.Two di�erent trajetories of �uid partiles in this system are illustrated inFig. 4.3. Chaoti advetion in open �owsLet us onsider now an open �ow of an inompressible �uid. A �uidpartile at a given point r at time t has a veloity given by the veloity �eld

u(r, t) of the �ow at that point. The equation of motion for �uid partiles isthen
dr

dt
= u(r(t), t). (5)Finding an expliit expression for u(r, t) involves solving the Navier-Stokesequation with the boundary onditions orresponding to the given physialsystem. It is usually not possible to solve the Navier-Stokes equation analyt-ially in realisti senarios, but here we will fous on the advetion dynamisfor a given �ow �eld, and from now on we will simply assume that u(r, t) isgiven. The results we present here are ompletely independent on how onegoes about omputing u(r, t).Equation (5) de�nes a time-dependent dynamial system with the num-ber of degrees of freedom equal to the spatial dimension of the �ow. Thissuggests the possibility that this dynamial system ould be non-integrable,and displays haos. From the point of view of the theory of dynamial sys-tems, advetion in open �ows is a sattering proess: there is a well-de�nedasymptoti region where the dynamis is simple � for example, in the �owpast an obstale, the �uid in the upstream and downstream regions movesat almost onstant speed and diretion; and there is a bounded region of7



spae where the �ow dynamis is omplex � for example, in the wake of theobstale the motion an be very errati and unpreditable. This latter regionis alled the mixing region.Another ruial feature of open �ows is that the dynamis is transient : atypial �uid partile stays in the mixing region for some time after arrivingfrom the upstream region, and then esapes again to the downstream region,never to return again. The type of haos displayed by suh systems is termedtransient haos (Lai and Tél, 2011); it is also sometimes alled haoti sat-tering. The subjet of transient haos is part of the fundamental theory ofdynamial systems, and we an take advantage of the substantial body ofresults in this �eld to shed some light at the behaviour of haoti open �ows,and what the onsequenes of haos are to mixing in this kind of �ow.The disussion of haos in open �ows beomes partiularly simple in thease of two-dimensional inompressible �ows, and we fous on this ase forthe remainder of this paper, unless otherwise noted. This is not only for thesake of simplifying our presentation: many very important systems an bemodelled by 2D �ows, inluding the Earth's oeans and atmosphere (Ped-losky, 1979). The inompressibility ondition in 2D �ows is expressed by
∇ · u =

∂ux

∂x
+

∂uy

∂y
= 0. (6)This expression implies that there is a stream funtion Ψ(x, y, t) whih de-termines the �ow's veloity (Landau and Lifshits, 2000; Bathelor, 1967):

ux(x, y, t) =
∂Ψ(x, y, t)

∂y
; uy(x, y, t) = −∂Ψ(x, y, t)

∂x
. (7)Using the above expressions, the equation of motion for an adveted partilean be written in terms of the stream funtion:

ẋ =
∂Ψ

∂y
; ẏ = −∂Ψ

∂x
. (8)These two equations de�ne a Hamiltonian dynamial system with one degreeof freedom, where the variable x plays the role of position, and y playsthe role of onjugate momentum, and the stream funtion Ψ(x, y, t) is theHamiltonian funtion (Landau and Lifshits, 2000; Bathelor, 1967). Thephase-spae of this Hamiltonian system is therefore the physial 2D spae ofthe �ow, and an be diretly visualised in experiments by using dyes whihare passive traers (Sommerer, 1996).8



In stationary �ows, the stream funtion is time-independent, and the �uidpartile trajetories oinide with the streamlines, whih are level urves of
Ψ. In this ase we have a time-independent Hamiltonian system with onlyone degree of freedom, and its dynamis is always integrable (that is, non-haoti). This is similar to the ase of a simple pendulum of one degreeof freedom, whose dynamis is known from elementary lassial mehanisto be always integrable. If the �ow is non-stationary, however, the systemis desribed by a time-dependent Hamiltonian, similar to that of a drivenpendulum. It is well-known that suh driven non-linear systems ommonlyhave haoti dynamis (Ott, 1993). In open systems this results in �uidpartiles having ompliated, errati motion for a transient period beforethey esape to the out�ow.Chaos is haraterised by a sensitive dependene of the trajetories tosmall perturbations in the initial onditions. This is illustrated in Fig. 4 forthe blinking sink-vortex system introdued earlier. Two initially very losetrajetories eventually separate and leave to the out�ow through di�erentpoints, and at di�erent times. This is a general property of haoti systems:the same sensitivity to initial onditions is present in any haoti �ow. As anexample, Fig. 5 shows the same phenomenon in a 2D �ow past a ylindrialobstale.It is important to note here that even very simple time dependenies ofthe �ow an give rise to haoti advetion. For example, time-periodi �owsin general display haoti advetion (Aref, 1984; Ottino, 1989; Sommerer,1996).4. Mixing in the presene of haos: the haoti saddle and theappearane of fratalsChaoti advetion is haraterised by the presene of a haoti saddle,whih is a set of orbits trapped in the mixing region. These are orbits thatnever esape the mixing region, and onstitute an invariant set of the dy-namis. A haoti saddle has the property that none of its orbits esape themixing region either in the forward dynamis (t → +∞) or in the reversedynamis (t → −∞). There are in�nitely many orbits in the haoti saddle,inluding a ountable set of periodi orbits of arbitrarily high periods, aswell as an unountable set of aperiodi orbits. These orbits are distributedin spae in a fratal on�guration, and this has a profound in�uene on thedynamis of advetion. A snapshot of the haoti saddle for the blinking9
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Figure 5: Illustration of a sensitivity of trajetories to initial onditions ina hannel �ow. Above: depition of hannel �ow. Below: zoom-in on theregion in the wake of the ylinder, showing the simulation of two trajetoriesorresponding to very lose initial onditions. From (Tél et al., 2005).vortex-sink �ow is shown in Fig. 6. The self-similar struture harateristiof fratals is learly seen.The haoti saddle has zero measure, whih means that if we hooserandomly points in a region of spae, the probability of the hosen pointbeing on the haoti saddle is zero. In addition, the saddle is not an attrator:with probability 1, orbits not exatly on the haoti saddle will eventuallyesape to the out�ow region. This is in ontrast to strange attrators presentin many nonlinear dissipative systems, where trajetories near the attratingset onverge to the attrator. In this latter ase it is easy to see why the10



Figure 6: Snapshot of the a) haoti saddle, b) stable manifold, and ) un-stable manifold in the blinking vortex-sink �ow (η = 0.5, ξ = 10), taken atthe beginning of eah period. The irle in ) shows the area of the �uid thatwill esape during the next half time period. From (Tél et al., 2005).fratal struture of the attrator is important for the dynamis. But thehaoti saddle is a non-attrating set, and although it is an invariant set ofthe dynamis, it might appear that sine trajetories do not onverge to it,it should not be important in pratie. But nothing ould be further fromthe truth: the haoti saddle is the skeleton of a transient haoti system,whih determines the most important dynamial features of the system. Inorder to understand this, we must disuss the other invariant sets assoiatedwith the haoti saddle. 11



4.1. The stable manifold of the haoti saddleFirst let us onsider the stable manifold of the haoti saddle (we willrefer to it as just the stable manifold, for oniseness). It is the set of initialonditions whose trajetories approah asymptotially the haoti saddle, inthe limit t → +∞. Fluid partiles lying on the stable manifold enter themixing region and never leave it, beoming `trapped' there. However, thestable manifold has zero measure, like the haoti saddle. This is a simpleonsequene of the inompressibility of the �uid: if a positive area of �uidbelonged to the stable manifold, it would onverge asymptotially to thehaoti saddle, whih as we have seen has zero area; but this would violatethe inompressibility property. As a result, almost all orbits started in thein�ow region will leave the mixing region some �nite time after entering it,and only a set of initial onditions of zero measure orresponds to trajetorieswhih never leave.The stable manifold for the blinking vortex-sink system is shown in Fig.6. In spite of its zero measure, the stable manifold has a great in�uene onthe global dynamis of the system. Orbits starting from points lose to it willspend a long time in the interation region before esaping, and these long-lived trajetories are responsible for the sensitivity of the dynamis to initialonditions. To understand this point, onsider initial onditions lying on aone-dimensional segment whih rosses the stable manifold. Figure 7 showsthe esape time of �uid partiles with initial onditions on suh a segmentas a funtion of their positions (that is, how many periods it takes for agiven �uid partile to esape through one of the vortex-sinks). At the pointswhere the line intersets with the stable manifold, the esape time diverges,sine the orresponding trajetories onverge to the haoti saddle and gettrapped in the mixing region. Beause the stable manifold is a fratal set,its intersetions with the segment (and with any smooth urve) are in�niteand non-enumerable, and onstitute a Cantor set. This is the origin of themany peaks seen in Fig. 7, and also the origin of the wild appearane of theesape time funtion. Fig. 7 also shows a magni�ation of a small region ofthe plot, and we see that the plot does not beome any smoother as we lookloser. This is a onsequene of the self-similar nature of the stable manifold:this intriate struture of peaks and troughs is found at all sales.The sensitivity to the initial onditions an be understood as a diretresult of the fratal nature of the stable manifold. Figure 7 shows thatan observable quantity suh as the esape time varies wildly in arbitrarily12
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small sales, and is therefore impossible to predit in regions lose to thestable manifold. One way to understand this is onsidering that if there is a�lament of the stable manifold lies between two �uid partiles, they will endup following ompletely di�erent trajetories, even if they started very loseto eah other; and sine there is an unountable in�nity of these �laments,it is not di�ult to see how the unpreditable and errati behaviour of thetrajetories near the stable manifold arises.4.2. The unstable manifoldThe other important set assoiated with the haoti saddle is its unstablemanifold. This is the set of points whose trajetories onverge asymptotiallyto the haoti saddle in the reverse dynamis, that is, as t → −∞. The un-stable manifold is also a fratal set, omposed of an intriate arrangement of�laments muh like the stable manifold. Fig. 6 shows the unstable manifoldfor the blinking vortex-sink system. The physial meaning and relevane ofthe unstable manifold is due to the fat that those trajetories whih staya long time in the mixing region (that is, lying lose to the stable manifoldin the in�ow region) will trae out the unstable manifold on their way outtowards the out�ow region. As a onsequene, the unstable manifold an beobserved diretly in imaging experiments, by following a dye as it is adveted(Sommerer, 1996). One the bulk of the dye has esaped, what still remainsin the observation region shadows the unstable manifold, and hene is dis-torted into a omplex �lamentary struture whih beomes �ner and �ner astime passes and more dye is lost to the out�ow. This proess is illustratedin Fig. 8, and shown for the blinking vortex-sink �ow in Fig. 9.We remark that our disussion so far has foused on the motion of �uidpartiles, whih oinides with the advetion of passive salars by the �uid inthe absene of moleular di�usion. But the unstable manifold also manifestsitself in the ase of non-zero di�usion: as we will see in Se. 6, the spatialonentration distribution of the salar approahes a pattern whih shadowsthe unstable manifold, with a lower length sale set by the di�usion andthe mean strething rate. Thus for small enough di�usion oe�ients, theunstable manifold governs the long-time dynamis of the advetion of salars.4.3. The fratal dimension and its physial meaningThe intriate fratal geometry of the invariant sets of haoti �ows, il-lustrated in Fig. 6 for the blinking vortex-sink �ow, is intimately onnetedto the unpreditability of the dynamis and with the intensity of mixing in14
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Figure 8: Illustration of a dye droplet reahing the mixing region of an openhaoti �ow. After some time, the remaining dye traes out the unstablemanifold of the haoti saddle. From (Tél et al., 2005).open �ows. In order to quantify this relation, we review here the onept offratal dimension (Halsey et al., 1986; Faloner, 2003), and we fous on itsphysial meaning and its onnetion to the dynamis of mixing.Consider �rst the stable manifold of the haoti saddle. It is omposedof a fratal set of urves, as in Fig. 6. Imagine now a grid of resolution ǫ ona given region of interest, whih intersets the stable manifold. Let N (ǫ) be15



Figure 9: Evolution of a set of partiles in the blinking vortex-sink �ow.Compare the last piture with Fig. 6. From (Tél et al., 2005).16



the number of grid ells ontaining points in the stable manifold. The frataldimension D of the stable manifold is de�ned from the way N sales with ǫ.In general the saling follows a power law: N (ǫ) ∼ ǫ−D; D is de�ned as thefratal dimension. More preisely:
D = lim

ǫ→0

lnN (ǫ)

ln(1/ǫ)
. (9)For objets of regular geometry, D orresponds to the usual notions of di-mension: a one-dimensional urve has D = 1, and a surfae has D = 2, forinstane. But for fratal entities suh as the invariant manifolds of haoti�ows, D is generally not an integer. For the stable (and unstable) manifold,omposed of a fratal set of urves, the fratal dimension satis�es 1 < D ≤ 2in two dimensions.Equation (9) is in fat one of the many possible de�nitions of a frataldimension; it is alled the box-ounting dimension, and also the apaitydimension. Sine it is the only de�nition we will use in this work, we willrefer to D from now on as simply the fratal dimension.One of the reasons why the fratal dimension is suh an important oneptis that it an be interpreted as a measure of the unertainty of the dynamisof a transient haoti system. In order to justify this interpretation, let ussay we have an unertainty δ in the determination of the initial ondition of apartile of a passive traer whose trajetory we want to predit. For example,we would like to be able to tell when the partile will leave the mixing region,and where it will be in the out�ow region when it does leave. As disussedin Se. 4.1, trajetories with initial onditions loated in the viinity ofthe stable manifold are extremely hard to predit. There is therefore an�unertain region�, onsisting of the region in spae within a distane ofabout δ from points in the stable manifold, wherein predition is e�etivelyimpossible. A good measure of the unertainty for the given auray δ isthen the area A(δ) of the unertainty region. From the de�nition of frataldimension in Eq. (9), the number of �boxes� of size δ interseting the stablemanifold sales as δ−D, for su�iently small δ. Sine eah box has area δ2,the total area of the unertain region sales as

A(δ) ∼ δ2−D. (10)The exponent 2−D determines how the size of the unertainty region dependson the auray δ. In non-haoti �ows, the stable manifold is a regular set17



of urves, with D = 1. In this ase, the unertainty area is proportional to δ,so that if we inrease the auray by a fator of, say, 10, A will derease bythe same fator. But in haoti �ows, D > 1; A then dereases more slowlywith δ, meaning that inreases in auray have a muh redued e�et onthe area of the unertainty region. This e�et beomes extreme for values of
D lose to 2. For the ase of D = 1.9, for example, it would take a dereaseof ten orders of magnitude in δ to redue A by a fator of 10.The area A(ǫ) is proportional to the probability of a randomly hoseninitial ondition, when perturbed to a nearby initial ondition at a distane
ǫ away, to be on the other side of one of the �laments of the stable mani-fold, resulting in very di�erent outomes for the two initial onditions. Thisobservation suggests a way of measuring D, by piking a large number ofrandomly hosen pairs of points separated from eah other by a distane ǫ,and simulating their orbits, to asertain if the two trajetories are similar(for example, by omparing their esape times); those pairs whih do nothave similar orbits are labelled �unertain pairs�. By the disussion above,the fration f(ǫ) of unertain pairs is proportional to A(ǫ). The funtion
f(ǫ) an be found numerially by omputing the fration of unertain pairsfor several values of ǫ and plotting the result in a log-log plot; the slope ofthat plot gives the exponent 2 − D. More rigorously, the fratal dimensionand the unertain fration are related by

D = 2− lim
ǫ→0

ln f(ǫ)

ln ǫ
. (11)An example of this alulation is shown for the blinking vortex-sink systemin Fig. 10.Although the disussion above was entred on the stable manifold, by thetime-reversal property of Hamiltonian systems, the unstable manifold has thesame fratal dimension as the stable manifold. Sine the trajetories whihspend long times in the mixing region onverge to the unstable manifold, thisis where most of the mixing takes plae. Therefore, the fratal dimension Dalso measures the strength of the mixing in open �ows: the greater the frataldimension, the greater the amount of mixing happening in the �ow.4.4. The Grassberger-Kantz relationDynamial systems an be lassi�ed into hyperboli or non-hyperboli,depending on the stability properties of the orbits in their haoti saddles. Inhyperboli systems, all orbits in the haoti saddle are unstable. A hallmark18
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Figure 10: Numerial alulation of the unertainty fration f(ǫ) for theblinking vortex-sink system, with η = 0.5, ξ = 10. The fratal dimension isgiven from the slope s by D = 2− s ≈ 1.74.of hyperboli systems is that they have an exponential deay: that is, ifwe keep trak of the time evolution of a typial area of �ow, the amount
Q(t) of this initial area still remaining in the mixing region at time t deaysexponentially with t for large t: Q(t) ∼ e−κt. κ is the esape rate of the�ow. It satis�es κ < λ, where λ is the haoti saddle's Lyapunov exponent.The physial meaning of the Lyapunov exponent is that it measures themean exponential rate of separation of nearby �uid partiles while they arein the mixing region. The fratal dimension D of the unstable manifold, theLyapunov exponent λ and the esape rate κ are related by the Grassberger-19



Kantz formula (Grassberger and Kantz, 1985):
D = 2− κ

λ
. (12)More rigorously, we should have D1, the information dimension (Faloner,2003), instead of the box-ounting D in the expression above, but sine Dand D1 are almost always very lose for open �ows, this approximation isvalid in most ases.4.5. Robustness of the haoti saddleIn all the disussion above, and in most of what follows, we onentrateon the ase of two-dimensional �ows. Furthermore, we have onentrated onthe motion of �uid partiles, that is, of passive traers whih assume exatlythe veloity of the surrounding �uid. The fratal struture of the haotisaddle and its assoiated invariant manifolds persist, however, in the aseof atual, �nite-sized partiles, whih have inertia and whose veloities donot oinide with that of the �uid's veloity �eld (Vilela et al., 2006, 2007;Cartwright et al., 2010). There are some onsiderable di�erenes betweenthe dynamis of �uid partiles and that of inertial partiles, in partiular thepossibility of the appearane of attrators in the latter ase (Benzik et al.,2002; Motter et al., 2003; Cartwright et al., 2010). But even when the globaldynamis has attrators, haoti saddles are still present, and the systemis still governed by fratal strutures in phase spae onneted to a haotisaddle, as in the simpler ase of passive advetion.The same overall piture remains valid for three-dimensional systems(Cartwright et al., 1996; Tuval et al., 2004; de Moura and Grebogi, 2004a); inthis ase, the stable and unstable manifolds are a fratal set of sheets, insteadof segments. Periodiity is also not required for the existene of the haotisaddle: aperiodi and random �ows an also result in well-de�ned fratalstrutures in phase spae (Károlyi et al., 2004; Rodrigues et al., 2010).A onlusion of the above disussion is that the onepts of haoti saddleand its stable and unstable manifolds are remarkably robust, and are notonsequenes of over-simpli�ed models of �ows. As a result, we expet fratalsets to be features of real �ows whih are dominated by large-sale oherentstrutures; if the �ow is dominated by well-developed turbulene, on theother hand, this is no longer true. 20



5. Transport barriers and KAM islands: the e�etive dimensionIn disussions about haoti open �ows and the haoti saddle it is oftenassumed, sometimes taitly, that the dynamis is hyperboli. The reason ispartly that the hyperboli ase is more treatable, and there are more rigorousresults available about that ase. For example, the Grassberger-Kantz rela-tion (12) is only valid for hyperboli systems. However, non-hyperboliityours in many important ases, and is to be expeted in many very generalsenarios in �uid dynamis. For example, it an be shown that the dynam-is of 2D advetion on a �ow past an obstale beomes haoti immediatelyafter the transition of the �ow from stationary to time-dependent, as theReynolds number is inreased beyond a ritial value; furthermore, the dy-namis is non-hyperboli for a range of Reynolds numbers past the transitionpoint, independently of the shape of the obstale or the partiular featuresof the �ow (Biemond et al., 2008). Many other systems of interest are non-hyperboli, and it is imperative that we understand the mixing dynamis inthe non-hyperboli ase.Non-hyperboliity is manifested through the appearane of stable orbitsin spae. These orbits are surrounded by stable islands, from whih �uiddoes not esape. These stable regions orrespond to persistent vorties inthe �ow. In dynamial systems parlane, they are KAM islands (MaKayand Meiss, 1987). KAM vorties are ommonly found in 2D �ows, and theyhave been observed in environmental �ows, suh as the stratospheri polarvortex, whih plays a ruial role in the proess of ozone depletion (Koh andLegras, 2002); and also in oean irulation patterns (Abraham, 1998; Boydet al., 2000; Abraham et al., 2000). As is well known from the theory ofHamiltonian dynamial systems, they form a fratal hierarhial struture,with big islands being surrounded by smaller islands, and these in turn aresurrounded by even smaller islands, and so on (see Fig. 11). The preseneof KAM islands means that there is a �nite volume of initial onditions inthe mixing region whose orbits do not esape, orresponding to those initialonditions lying in the islands. However, �uid partiles with initial onditionsoutside the interation region annot enter the islands. As a result, the set ofinitial onditions outside the mixing region whose trajetories end up trappedthere still has zero measure, as in the hyperboli ase. However, the islandshave deep onsequenes for the sattering dynamis, resulting in importantdi�erenes between the hyperboli and non-hyperboli ases.The transport of �uid in the viinity of the islands is dominated by Can-21



Figure 11: Illustration of the hierarhial struture of KAM islands andCantori. Solid irles represent KAM tori, and Cantori are represented bythe irles with holes. From (Tél et al., 2005).tori, whih are remnants of broken up KAM tori. Cantori are also invariantsets of the dynamis, as are KAM islands; but in ontrast with those, �uidpartiles an ross from one side of a Cantorus to the other. However, it takestypially very long times to do so, and as a onsequene the Cantori at aspartial transport barriers. The overall piture of non-hyperboli transport isskethed in Figure 11.As we mentioned above, it is very ommon to �nd KAM islands in �uid�ows, the blinking sink-vortex �ow is no exeption. Figure 12 shows strobo-sopi trajetories for a set of parameters for whih the �ow is non-hyperboli,and an island is learly visible. The magni�ation in Fig. 12 shows the strik-ing self-similar organisation of the islands. The e�et of Cantori on theadvetion dynamis an be seen in the loud of points surrounding the sub-22



islands on the upper right and to the left of the main island in the magni�ed�gure. These points are snapshots taken at the start of every period of asingle orbit whih meanders inside the Cantorus surrounding these islands.This orbit eventually esapes, after thousands of yles. Another Cantorusan just be seen surrounding the main island. These Cantori are in turnsurrounded by a bigger Cantorus enirling the whole struture, whih is ap-parent from the higher density of points in the region around the omplex ofislands in the bottom �gure 12.An example of KAM islands visualised in an atual experiment is seen inFig. 22.5.1. Dynamial onsequenes of non-hyperboliityThe partition of spae by the KAM islands and Cantori into distintdomains separated by transport barriers has no ounterpart in hyperbolisystems, and is the ause of the profound di�erenes in the dynamis of hy-perboli and non-hyperboli �ows. A diret onsequene of the self-similarstruture of the transport barriers depited in Fig. 11 is the phenomenonknown as stikiness: in non-hyperboli �ows, many trajetories spend ex-tremely long times inside Cantori, leading to very long typial esape timesompared to hyperboli dynamis. Beause of the self-similar organisationof the Cantori, one inside, an orbit may enter an inner Cantorus loatedwithin another Cantorus, and so on to arbitrarily high levels in the Cantorushierarhy. So one a �uid partile is inside a Cantorus, it will wander withina fratal labyrinth from whih esape is likely to take a very long time.Even in non-hyperboli �ows it is still true that �uid partiles with initialonditions outside of KAM islands will eventually esape with 100% prob-ability: the omponent of the haoti saddle outside the islands has zeromeasure. But stikiness makes esape sub-exponential, in marked ontrastwith hyperboli �ows, where esape is exponential. In non-hyperboli �ows,the number N(t) of partiles, with initial onditions hosen randomly in aregion with no intersetion with KAM islands, that have not esaped up totime t, follows a power law (Meiss and Ott, 1985):
N(t) ∼ t−γ , (13)with γ > 0.A diret onsequene of the slower esape dynamis desribed by Eq. (13)is that the fratal dimension D of the stable (and unstable) manifold is equal23
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Figure 12: Strobosopi map of the blinking vortex-sink �ow, with η = 1,
ξ = 18, parameters for whih the �ow is non-hyperboli. The map showsthe orbits of a few �uid partiles, with positions taken at disrete times, atthe beginning of every period of the �ow. The piture on the bottom is amagni�ation of a small region of the top piture, and shows the self-similarstruture of the KAM islands.
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to the dimension of the embedding spae, D = 2 (Lau et al., 1991). This is notinonsistent with the fat that the stable and unstable manifolds have zeromeasure, sine fratal sets an have fratal dimension equal to the dimensionof the phase spae and still have zero measure (Faloner, 2003); and thisis indeed the ase of the stable and unstable manifold of non-hyperbolitransient systems. However, from the interpretation of the fratal dimensionas a measure of unertainty of transient systems, expressed mathematiallyby Eq. (11), the fat that D assumes the maximum possible value in non-hyperboli systems suggests that these systems have an extreme sensitivityto initial onditions. Indeed, the exponent in Eq. (11) vanishes for D = 2,whih means that the �unertainty probability� f(ǫ) dereases more slowlythan a power law for small ǫ.This extreme sensitivity of the dynamis is apparent from the plot of theesape time as a funtion of the initial onditions. This is shown in Fig.13, with initial onditions taken in the interior of the outermost Cantorus ofFig. 12. The esape time is a very irregular funtion, with wild osillationsnearly everywhere; and the magni�ation shows that this irregular behaviouris present down to arbitrarily small sales.5.2. The e�etive dimensionA glimpse at Fig. 13 suggests that prediting asymptoti properties oftrajetories in this system is an almost impossible task. The reason for thisunpreditability is the very long time it takes initial onditions inside Cantorito esape: two initially very lose trajetories will have muh more time tospend in the mixing region to separate and follow independent paths beforethey esape. Figs. 11 and 12 also suggest that the unpreditability is greaterfor initial onditions loated in deeper levels of the Cantorus hierarhy, asthey have longer esape times. To measure the unertainty, we ompute theunertainty plot f(ǫ), as done in Se. 4.3, using initial onditions inside theoutermost Cantorus, and inside the inner Cantorus indiated by the loud ofpoints in the left plot of Fig. 12. Fig. 14. shows the result of this alulationfor initial onditions piked in two di�erent regions: inside the outermostCantorus, and inside one of the inner Cantori seen in Fig. (12).Figure 14 may seem to ontradit the assertion made in Se. 5.1 that
D = 2 for non-hyperboli systems, as this would predit that the plot of f(ǫ)versus ǫ should be a �at line with zero slope. But in non-hyperboli systems,the ǫ → 0 limit in Eq. (11) onverges extremely slowly. For extremely small25
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Figure 13: Esape time plot for the blinking vortex-sink �ow, with η = 1,
ξ = 18. Initial onditions are taken on a segment with x0 = 1.75.values of ǫ, the slope does in fat approah 0 for ǫ small enough; but reah-ing this limit usually requires values of ǫ so small they are not physiallyrelevant. Any model of a physial system has a lower sale below whih the26
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Figure 14: Fration of unertain pairs as a funtion of separation ǫ betweenpoints in a pair for the blinking vortex-sink �ow, with η = 1, ξ = 18; seeSetion 4.3. Initial onditions are for the bottom urve are taken in theoutermost Cantorus, on the segment x0 = 1.75, y0 ∈ (−1.18,−1.175); forthe top urve, initial onditions are in an inner Cantorus, on x0 = 1.75, y0 ∈
(−1.193,−1.192). The numbers beside eah urve are the slope oe�ientsobtained from �tting, f(ǫ) ∼ ǫs.model is no longer valid; this may be given, for example, by the size of ad-veted partiles we are following in an experiment, of by the �nite resolutionof our measurements. This implies that the dimension that is relevant inrealisti systems is not the mathematial de�nition (11) with its unreahablelimit, but is given instead by an e�etive dimension Deff (de Moura and Gre-bogi, 2004b; Motter et al., 2005), de�ned as an approximation of the frataldimension for a �nite range of ǫ (see Fig. 15):

Deff(ǫ) = 2− d ln f(ǫ)

d ln ǫ
≈ onst. for ǫ1 < ǫ < ǫ2, (14)valid in a range (ǫ1, ǫ2), with ǫ1 ≪ ǫ2. Deff satis�es Deff(ǫ) → 2 as ǫ → 0, inaordane with Eq. (11).From Eq. (14), the results in Fig. 14 an be interpreted as yielding27



Figure 15: Illustration of the onept of e�etive dimension, the slope of thetangent to the lnN vs. ln 1/ε urve.the e�etive fratal dimension of the stable and unstable manifold for twodi�erent loations in spae: Deff = 1.86 inside the outermost Cantorus, and
Deff = 1.98 inside one of the inner Cantori. The e�etive dimension thereforedepends on the position in non-hyperboli systems, in ontrast to the atualfratal dimension, whih is 2 anywhere. The greater esape time in innerCantori means that the invariant manifolds of the haoti saddle have �moretime� to be strethed and folded and distorted by advetion, hene the greatere�etive dimension.Beause of time-reversal symmetry, the stable and unstable manifoldshave the same fratal dimensions � and also the same e�etive fratal di-mensions. We argued in Setion 4.3 that the fratal dimension of the unstablemanifold is a measure of lower-sale mixing e�ieny for open �ows. Thismeans that the �uid in regions of spae surrounded by Cantori will be ex-tremely well-mixed, and the e�ieny of mixing inreases as we go deeperinto the Cantorus struture, and reahes the maximum limit of Deff → 2 forregions buried deep within the Cantori. This piture is somewhat at oddswith the prevalent idea in muh of the literature of this �eld that the pres-ene of KAM islands is an impediment to mixing. This assertion is validin losed �ows, for whih optimal mixing requires mixing the �uid homoge-28



neously throughout the ontainer; this is obviously not possible with KAMislands. In open �ows, however, the �uid to be mixed usually omes from thein�ow region, and thus from outside the KAM islands, and so this is not aproblem. Instead, the islands ause �uid to spend very long times within theCantori, and be very well mixed as a result. Therefore, in ontrast to losed�ows, in open �ows KAM islands an be said to enhane mixing. However,it is important to note that our measure of mixing only takes into aountthe small-sale limit, and it ignores moleular di�usion. It also ignores thetime it takes to ahieve good mixing, sine the stable and unstable manifoldare all de�ned in the asymptoti dynamis. In industrial appliations andother ases of interest all these fators must be taken into aount, and other,more pratial de�nitions of mixing e�ieny are desirable. These will beintrodued in Setion 6.6. Mixing �uids by stirring in ontinuous-�ow proessesIn the previous setions we foused on the purely advetive aspets ofmixing, ignoring moleular di�usion entirely. In this Setion, we take mole-ular di�usion into aount, and investigate how di�usion in an open �ow isa�eted by its haoti dynamis, and what onsequenes this has for the e�-ieny of mixing. We will also revisit the de�nition of �good� mixing, takingdi�usion into aount.6.1. What does good mixing mean for a di�usive dye in an open �ow?How are di�erent �uids mixed together and homogenised in industrialontinuous-�ow devies? The elaboration of pulp and paper, osmetis orproessed food often involves a mixing step whih is part of an integratedontinuous-�ow system of reators (Paul et al., 2003). Continuous-�ow man-ufaturing allows reduing waiting times and the handling of materials. At asmaller sale, some miro�uidis devies also integrate open-�ow miromix-ers (Lee et al., 2001; Strook et al., 2002; Okkels and Tabeling, 2004) inlabs-on-a-hip. For all these appliations, it is ruial both to understandthe physial mehanisms at play, and to use relevant measures of mixingquality (Dankwerts, 1952; Bryant, 1977; Ehrfeld et al., 1999; Aubin et al.,2003; Kukukova et al., 2009).In suh systems, inhomogeneous �uid enters the mixing reator, and �uidthat is ontinuously �owing out of the reator has to satisfy some desiredproperty � suh as su�ient hemial homogeneity, a maximal onentration29



in some hemial speies, a target rheology, et.. An example of open-�owreator is shown in Fig. 16. It onsists in a free-surfae hannel of shallowretangular setion, where visous �uid (ane-sugar syrup) �ows ontinu-ously at a �xed �ow rate. Fluid partiles ross a mixing region, where tworod-stirrers (irled in blue in Fig. 16 (a)) move on interseting trajetories(dashed lines in Fig. 16 (a)) and streth passing �uid partiles thanks tothe haoti advetion. The experimental apparatus has been desribed else-where (Gouillart et al., 2009). In the following, we make use of experimentsrealised with this rod-stirring protool to explain how a di�usive dye is mixedin open �ows; the mehanisms presented here apply nevertheless to the widerlass of open �ows with a mixing region with a limited spatial extent.In the experiment of Fig. 16, �uid in�owing into the mixing region is nothomogeneous, as a blob of blak dye ontrasts with the surrounding dye-free �uid (Fig. 16 a)). In industrial systems also, the omposition of thein�owing �uid is usually heterogeneous; it may for example onsist in twoparallel streams of di�erent liquids, or in a suession of pathes of di�erentliquids that have to be blended together. The out�owing �uid, however, isrequired to be �mixed�. Let us �rst examine the di�erent snapshots in Fig. 16in order to speify what this somewhat vague term of mixed enompasses. Inontrast to the segregated state in the in�ow, where blak (dyed) and white(dye-free) �uid are well separated, the mixed state an be de�ned as a dyeonentration pattern where all white �uid partiles are lose to blak �uidpartiles, and vie versa. The snapshot of Fig. 16 b) has been taken a fewrotation periods of the rods after the arrival of the blob inside the mixingregion shown in Fig. 16 a). Filaments of dyed and dye-free �uid that �ow outof the mixing region in the upper part of Fig. 16 b) are better mixed thanthe �uid in�owing in Fig. 16 a), beause the �laments are thinner than thepathes in Fig. 16 a). However, partiles inside the white and blak �lamentsare still surrounded by �uids partiles that all have the same olour, as inthe initial pathes in the in�ow. This means that the dye onentrationlevels are the same as in the in�ow (that is, the initial onentration ofthe blob of dye, and the null onentration). This may be a problem if,for example, the appliation requires that there is a maximal aeptableonentration of one speies (here, the dye) in the �nal produt. In thesnapshot of Fig. 16 ) that was taken a few stirring periods after b), dyepartiles look muh better mixed than in Fig. 16 b), beause dye �lamentswere smeared out by moleular di�usion with dye-free �uid, resulting inintermediate grey onentration levels. Moleular di�usion ensures that the30



Figure 16: Snapshots of a blob of dye passing through an open-�ow mixer,taken at di�erent times. The main open �ow is the upward diretion. Tworods (irled in blue in a)) streth and fold passing �uid partiles. (a) Arrivalof the dye blob in the mixing region (b) Three rotation periods of the rodsafter the entry of the blob (a)), unmixed dark �laments are �owing out ofthe mixing region, while the remainder of the initial blob keeps on beingstrethed by the rods. () Eight rotation periods after a), dye �lamentsinside the mixing region have been strethed enough to di�use with dye-less�uid; hene �uid �owing out of the mixing region is well mixed. (d) Later on,the same pattern as in ) repeats, with the intensity of the dye that deaysbeause of the open �ow.
31



Figure 17: Shemati time-evolution of a path of di�usive dye inside the mix-ing region. The path is strethed and folded into many thin �laments byhaoti advetion. Moleular di�usion starts to be e�ient one the width ofdye �laments reahes the Bathelor sale wB, at whih the e�ets of haotistrething and di�usion balane. Dye �laments then di�use with the sur-rounding �uid, and the ontrast of the dye beomes weaker with time.proximity between �uid partiles, that were in di�erent regions of spae in thein�ow, is realised at the moleular sale. In the following, we thus de�ne goodmixing for a path of �uid as a state where all its �uid partiles have beensmeared out by moleular di�usion with �uid partiles oming from di�erentregions, that were bearing di�erent onentration levels in the in�ow. Asthis de�nition depends on the distribution of dye and inhomogeneities inthe in�ow, one may require for more generality that a �uid partile di�useswith other �uid partiles that enter the mixing region at a di�erent periodof rotation of the rods.How does an open-�ow mixer suh as the devie in Fig. 16 ahieve thedi�usion-indued smearing of di�erent dye onentration levels that is visiblein Fig. 16 ) and d)? In �uid at rest, the timesale neessary for di�usion tobe e�ient at the sale of the reator width ℓ is ℓ2/κdiff , with κdiff the moleu-lar di�usivity. As κdiff takes very small values in liquids (10−8−10−10m2.s−1in water, and even lower values in more visous �uids), suh timesales areunrealisti for mixing in industrial large-sale installations. On the otherhand, shears indued by a �ow greatly inrease the e�etive di�usivity. Afamous example of this phenomenon is Taylor dispersion (Taylor, 1953). Tay-lor showed that a Poiseuille �ow through a pipe inreases moleular di�usionin the diretion of the �ow, beause the shear inreases the rate at whihonentration gradients are smeared out by di�usion. However, this e�et ofa simple shear is too weak for most large-sale pratial appliations, and isine�ient in the diretion transverse to the �ow.Chaoti advetion ahieves a more e�ient enhanement of di�usion. Thee�et of haoti advetion on a path of a di�usive dye is skethed in Fig. 17.32



Inside the mixing region where haoti advetion is at play, a path of dye iselongated into �laments that get thinner and thinner with time as they arestrethed more and more. After a short while, �laments reah the so-alledBathelor sale of the �ow (Bathelor, 1959), at whih di�usion starts to bee�ient. The value of the Bathelor sale is given by
wB =

√

κdiff

λ
, (15)with λ the Lyapunov exponent introdued before, whih is the mean streth-ing rate inside the mixing region. Dark and white �laments therefore startto di�use into neighbouring �laments as it is skethed in Fig. 17, and onen-tration gradients are smeared out. The Bathelor sale orresponds to thesale at whih the e�ets of di�usion and strething balane, (Villermaux andDuplat, 2003) so that the width of dye �laments is stabilised at this sale,whereas they are smeared out with other �laments that are ompressed intothe same �box� of width the Bathelor sale (Fig. 17). The Bathelor sale istherefore a di�usive ut-o� sale, whih is the smallest length sale that anbe observed in mixing patterns. This sale orresponds to the width of thethinnest �laments in Fig. 16 b-d.With this understanding of the interplay between di�usion and haotiadvetion, the de�nition of good mixing an now be spei�ed as follows: apath of dye is well mixed if it strethed enough by haoti advetion so thatall the resulting �laments reah the Bathelor sale and are smeared out bydi�usion (as in Fig. 17).The above de�nition of good mixing applies for mixing in losed �owsas well. In open �ows, however, an additional hallenge omes from thetransient nature to haoti advetion, and the variety of residene times of�uid partiles in the mixing region. In a losed vessel, all �uid partiles stayinside the vessel for the whole duration of the mixing step. In an open-�owdevie suh as in Fig. 16, �uid is onstantly �owing out of the viinity of therods, due to the onservation of �ow rate. Some of the esaping �uid has onlyspent a short while in the mixing region, beause haoti advetion shu�esrapidly an inoming path of dye onto the whole mixing region, inluding thepart lose to the out�ow that goes with the main �ow. This results in thedark dye �laments in Fig. 16 b), that have esaped shortly after their arrivalin the mixing region and were not strethed enough to reah the Bathelorsale: mixing is therefore ine�ient for suh �laments with short residenetimes. On the other hand, �uid partiles that stay for a longer time in the33



mixing region, as in Fig. 16 ) and d), are given enough time to reah theBathelor sale and to di�use with other onentration levels. Therefore, anymeasure of the e�ieny of mixing of an open-�ow protool must fous onthe fration of �uid partiles that esape the mixing region before they reahthe Bathelor sale, like in Fig. 16 b); of ourse, this fration should be assmall as possible for a good quality of mixing.6.2. The geometry of dye mixing in open �ows: haoti saddle and strangeeigenmodeWe have shown above that qualifying the mixing e�ieny of an open-�owdevie imposes a distintion between short and long residene times, morepreisely between weak and strong strething, the limit being the strethingneessary for a path of �uid to reah the Bathelor sale and di�use. Theorganisation of the pattern of dye �laments and the transport in and outof the mixing region, inluding ill-mixed �laments, stems in fat from thegeometry of the manifolds of the haoti saddle, that were introdued inSe. 3.Fluid partiles that are lose to the stable manifold of the haoti sad-dle approah the orbits of the haoti saddle and shadow during some timetheir periodi trajetory. In a mixing experiment suh as in Fig. 16, a fewperiods after the path of dye entered the mixing region, only partiles thatwere initially very lose to the stable manifold of the haoti saddle remaininside the mixing region. Therefore, the long-time dye �lamentary patterntraes out the unstable manifold of the haoti saddle, as in Fig. 16 () and(d). This mehanism was also skethed in Fig. 8 for a non-di�usive droplet.Nevertheless, the unstable manifold is a fratal one-dimensional set of zeromeasure, that is self-similar at all sales. Here, beause of di�usion, grey �l-aments lie on the unstable manifold thikened to a width the Bathelor sale,whih is the smallest length sale that an be observed in the pattern. Hene,the support of the dye is always this same set at long residene times. More-over, we have shown in (Gouillart et al., 2009) that not only the support ofthe dye, but also the whole dye onentration �eld C(x, t), repeats perfetlyover time, as in Fig. 16 () and (d). Only the global ontrast of the patternhanges with time, beause of the main �ow that takes away a fration ofthe �uid inside the mixing region at eah stirring period.
C(x, t) = 〈C〉(t)× C̃(x) (16)34



Figure 18: Typial evolution of the dye onentration mean and standarddeviation for an open-�ow protool, inside the mixing region (MR, blaksymbols) and in the out�ow (DS, grey symbols). Both moments of the on-entration �eld have an exponential evolution with the same exponent after ashort initial transient, beause the dye onentration �eld takes a permanentform (Eq. (17)).
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Self-similar onentration patterns that repeat over time are observed inlosed �ows as well, where they have been termed strange eigenmodes (Pier-rehumbert, 1994), beause they orrespond to the slowest eigenmode (ex-ept for the �rst trivial eigenmode, that is uniform) of the Perron-Frobeniusadvetion-di�usion operator. Here, the permanent onentration pattern anbe interpreted as well as an eigenmode of the advetion-di�usion operator.Contrary to losed �ows, the mean onentration inside the mixing region isnot onserved beause of the open �ow. The time evolution of the open-�oweigenmode desribes therefore the deay of the mean onentration of dyeinside the mixing region:
C(x, t) = C∞ exp(−κt)C̃(x), (17)where κ is the esape rate that appears in the Grassberger-Kantz relation(12). However, κ haraterises likewise the deay of all moments of the on-entration �eld, as shown in Fig. 18 for the evolution of the mean 〈C〉 andthe standard deviation σ(C) of the onentration �eld. When measured in-side the mixing region or in the out�ow region, both quantities follow anexponential deay with the same deay rate, as imposed by Eq. (17). Theonstant ratio σ(C)/〈C〉 is a measure of the normalised intensity of �utua-tions inside the eigenmode pattern; this quantity an be used for de�ning arelevant measure of mixing e�ieny, as we shall see later.As the support of the strange eigenmode shadows the unstable manifoldof the haoti saddle, its onentration �eld also takes the fratal struturethat was desribed in Setion 3. In partiular, holes in the support of theeigenmode (see Fig. 16 ()) have a large variety of widths (the smallest pos-sible width being the Bathelor sale). These holes do not ontain any orbitof the haoti saddle, neither portions of its unstable manifold. They orre-spond to the iterates of pathes of �uid that entered the mixing region a shortwhile ago: the larger the width, the more reent the entry time, as strethingby haoti advetion redues the width of suh pathes. Fluid loated insuh holes, be it a path of dyed or dye-less �uid, either ends up being om-pressed onto the unstable manifold fattened at a sale wB if it stays in themixing region for a su�ient time, or leaves the mixing region without havingdi�used with pathes of �uid that entered the mixing region at a di�erenttime. In the out�ow, the holes in the long-time permanent pattern thereforeorrespond to loations of ill-mixed �uid (no matter the omposition of thein�ow), while grey �laments orrespond to well-mixed �uid.36



The fration of well-mixed �uid may therefore be determined by mea-suring the fration A of the out�ow oupied by the support of the strangeeigenmode, that is by the unstable manifold fattened by di�usion. In Fig. 6() for example, the value of the well-mixed fration for the blinking vortex-sink �ow is given by the fration of the irle that leaves the mixing regionat eah half-period, that is oupied by the unstable manifold thikened to a�nite di�usive width. In the hannel rod-mixer of Fig. 16 (), the well-mixedfration is given in the same way by the fration of the out�ow pattern ov-ered by grey �laments. In the in�ow, �uid partiles that will be well mixedare found within a distane wB of the stable manifold. This is the uner-tain region desribed in Setion 4.3, with an unertainty distane given bythe di�usive length wB, and the unpreditability of trajetories that ensuresgood mixing for suh �uid partiles.One should not measure the dye overage inside the mixing region toompute the value of the well-mixed fration, beause in the mixing regionsome of the �uid inside the holes of the strange eigenmode pattern stays therefor a time long enough to reah the Bathelor sale and be inorporated ontothe strange eigenmode support. As a fration of the mixing region is takenaway to the out�ow at eah period (as the irle in Fig. 6 (), or the upper partof the mixing region in Fig. 16 ()), there is nevertheless a strong orrelationbetween the long-time dye overage inside the mixing region and the dyeoverage in the out�ow, that is, the well-mixed fration. The strength ofthe orrelation depends of the geometry of transport inside and out of themixing region, that determines whether �uid in the largest holes leaves themixing region before, after, or at the average residene time. In the sameway, the fratal dimension of the unstable manifold that was introdued inSetion 4 is orrelated to the well-mixed fration, as it measures the overageof spae by the unstable manifold; however, the large-sale organisation ofthe pattern and the sizes of its largest holes are not exatly haraterised bythe fratal dimension, whih is de�ned at the small-sale limit.An extreme ounter-example of the orrelation between the strength ofmixing inside the mixing region and in the out�ow is shown in Fig. 19. Forthis mixing experiment, the sense of rotation of the rods has been reversedompared with Fig. 16, while the diretion of the main �ow has been kept thesame. Here, the motion of the rods aelerates �uid along the walls, so thatan important fration of the �uid never enters the mixing region and is notstrethed by haoti advetion. We observe indeed on the long-time pattern(that is, the eigenmode pattern) in Fig. 19 that the unstable manifold overs37



Figure 19: (a) Long-time dye pattern (strange eigenmode) for an open-�owprotool where rods aelerate �uid along the hannel walls. Despite goodmixing around the haoti saddle, only a entral strip of the out�ow is wellmixed, whereas �uid on the hannel sides is not mixed at all. (b) Contraryto intuition, the quality of mixing dereases when the stirring frequeny isinreased, beause the aeleration of �uid along the sides is enhaned. ()Example of a path of dye that rosses the hannel without being mixed,beause its initial position did not interset the stable manifold of the haotisaddle.less than half the width of the hannel � �uid �owing on the sides of thehannel is hardly mixed at all. On the other hand, mixing inside the mixingregion is very good, as the mixing region is overed very densely by dye�laments, with only a few thin holes. Measures of mixing should thereforebe taken always in the out�ow.6.3. The eigenmode index as a measure of mixing e�ienyThe knowledge gained on the link between the eigenmode and the di�erentpossible fates of �uid partiles an now be used to derive a measure of mixingquality in open �ows, that was dubbed eigenmode index in previous work(Gouillart et al., 2011). We have mentioned earlier that the fration of theout�ow A oupied by the support of the eigenmode is a diret measureof the fration of �uid partiles strethed to the Bathelor sale, and antherefore be used as a diret measure of mixing quality. In pratie, thismeasure requires a hard threshold of the onentration value, and is thereforenot a very robust one. The eigenmode index σSE de�ned below overomesthis problem, sine it uses only the two �rst moments of the onentration38



distribution:
σSE =

σ(CSE)
〈CSE〉 , (18)with CSE(x) the onentration �eld of the eigenmode. σSE and A are ap-proximately related by

σSE ≃
√

1−A
A . (19)

σSE goes from zero for perfet mixing, to in�nity for no mixing at all. As thede�nition of σSE uses only the eigenmode pattern, σSE does not depend onthe position or size of an initial blob used for a mixing experiment (as long asthe blob intersets the stable manifold of the haoti saddle, so that the dyepattern traes out the strange eigenmode at long times � unlike the blob inFig. 19 ), for example). For a �xed protool of dye injetion, it was shownin (Gouillart et al., 2011) that the eigenmode index is related to the intensityof segregation of hemial engineering (Dankwerts, 1952, 1953), a measureof mixing that ompares the intensity of �utuations in the out�ow and inthe in�ow. The eigenmode index is nevertheless a more generi measure, asit does not depend on a spei� in�ow ondition.In theory, the eigenmode index an be measured from the onentrationpattern in the out�ow at any time after the Bathelor sale has been reahedfor all dye �laments that enter the out�ow. In pratie, it should be measuredshortly after this di�usion time in order to keep a signal to noise ratio as highas possible, noise being inevitably present in any experiment. If possible, theontribution of noise (Gaussian white noise from the amera, bubbles or dust�owing with the �uid, et.) to the standard deviation should be estimated,and removed from the measure of the standard deviation for the omputationof σSE. Also, σSE should be estimated on a region of the �uid that �ows outof the mixing region during a single stirring period.6.4. Qualitative trends in mixing e�ienyLet us now examine shortly the in�uene of a few physial parametersthat ontrol the e�ieny of mixing.First of all, Fig. 19 illustrates that the large-sale geometry of the �ow isof paramount importane (here, only reverting the sense of rotation of therods dereases greatly the e�ieny of mixing). Bypasses around the mixingregion should be avoided, as it is neessary that a partile passes lose to anorbit of the haoti saddle (if possible, at a distane less than the Bathelorsale) for being well mixed. 39



Figure 20: Mixing patterns at di�erent stirring frequenies (f = 1, 2, 4, 8rpm). The dye-overage of the out�ow inreases with the stirring frequeny.
40



Figure 21: Eigenmode index σSE measured at di�erent stirring frequenies
f for the rod-stirring protool of Fig. 16 (irles). σSE is plotted against anapproximate measure of the mean number of stirring periods N spent by a�uid partile inside the mixing region. N is omputed from the extent ofthe trajetory of the rods d, and the mean veloity of the �uid U in themain �ow. The eigenmode index inreases when the average residene timeinreases, sine a greater fration of the �uid reahes the Bathelor sale.Nevertheless, the geometry of the �ow is also an important fator for thevalue of the eigenmode index, as shown by the high value (blak triangle) of
σSE when the diretion of rotation of the rods is reversed (f. Fig. 19)Another important fator than an be easily tuned in an industrial setupis the average time of resideny inside the mixing region. The mean number ofstirring periods spent by a �uid partile inside the mixing region is ontrolledby the average veloity of the main �ow U , the spatial extent of the mixingregion d, and the stirring frequeny f :

N =
df

U
. (20)Inreasing the average residene time inside the mixing region inreases thefration of �uid partiles that are smeared by di�usion. We see indeed inFig. 20 that the overage of the out�ow by the eigenmode (hene the e�ienyof mixing) inreases with the stirring frequeny. This trend an be quanti�edby omputing the eigenmode index, as shown in Fig. 21.Slow strething arising from non-hyperboliity: elliptial islands and no-slipwalls. Chaoti advetion ours in the viinity of the orbits of the haoti41



saddle, that ause exponential strething of �uid partiles. Nevertheless, forsome protools the dynamis of strething are slower than exponential in apart of the mixing region, beause of a non-hyperboli haoti saddle. A �rstase orresponds to KAM islands (see Setion 5), that are segregated regionsinside whih �uid moves on regular trajetories and never esapes to theout�ow, but for the weak ation of di�usion only. KAM islands are observedin Fig. 22 (a-b) (one of them is pointed at by the red arrow in Fig. 22 a)),as small regions of dye-less �uid where dye never penetrates throughout thewhole experiment. This is beause �uid annot ross the boundary betweenthe haoti region, and the islands. In Fig. 22 (a-b), we observe the stikinessof KAM islands that was illustrated in Setion 5. The stikiness is shown bythe dark dye �laments around the islands, that have been muh less mixedwith dye-less �uid than in the remainder of the haoti region. At very longtimes (Fig. 22 (b)), the only visible �utuations of the dye pattern are foundaround the stiky islands. Nevertheless, even if unmixed �uid stays aroundthe islands, �uid partiles are strethed to very �ne �laments when they leavethe viinity of the islands, beause the esape rate out of these regions is veryweak. In Fig. 22 (b), dye �laments bear a high onentration level aroundthe islands, yet no signi�ant onentration �utuation due to the esape ofdye out of this region an be seen in the out�ow. Elliptial islands thereforeare only a minor issue in open �ows.A seond ase of non-hyperboliity is shown in Fig. 22 ). When therods pass lose to the hannel walls and the veloity of the main �ow is smallompared to the veloity of the rods, no �uid �ows through the mixing regionalong the hannel walls. The mixing region therefore extends to the walls ofthe hannel, and the separation between the in�ow and the mixing region ismarked by two separation points on the hannel walls (see Fig. 22 )), andtheir unstable manifold. These separation points are paraboli points, whihis a degenerate ase, between hyperboli orbits and ellipti KAM islands.Beause of the �xed walls and the no-slip boundary ondition, the strethingof �uid is very slow in the neighbourhood of the walls inside the mixingregion. As a result, after a given time dye �laments have been muh lessmixed with dye-less �uid near the wall than in the bulk of the mixing region,as an be shown by the greater ontrast of dye �laments near the wall (Fig. 22)). In losed �ows, many authors (Chertkov and Lebedev, 2003; Gouillartet al., 2007, 2008; Salman and Haynes, 2007; Popovyh et al., 2007; Bo�ettaet al., 2009) have shown that slow strething at the wall has a dramati e�eton the rate of mixing. This is observed even in the bulk of the mixing region,42



beause poorly-mixed �uid from the wall region periodially leaves the wallto be adveted in the remainder of the haoti region; in losed �ows, ithas therefore been argued that mixing an be more e�ient if the haotiregion is insulated from the wall by a thin non-haoti region (Gouillart et al.,2010). In open �ows, however, the e�et of walls is less dramati, beauseeven if poorly-mixed �uid is stored lose to the walls, �laments that esapethe viinity of the wall do not �ow diretly to the out�ow, but rather spenda few periods strethed inside the haoti mixing region, exatly in the sameway as other �uid partiles that do not visit the viinity of the walls. Themain e�et of walls is to redue slightly the average value of strething of themixing region. Walls, therefore, may be onsidered as a slight inonveniene,but not as a primary ause of poor mixing in open �ows, as they are in losed�ows.Note that regions with very long residene times are nevertheless an im-portant drawbak if almost stagnant pathes of �uid evolve in an undesiredway for long times (for example as a result of hemial evolution, or rheolog-ial evolution as for thixotropi �uids). A mixing region with more homoge-neous strething should be preferred for suh ases.Non-hyperboli regions of anomalously slow (non-exponential) strethingalso prevent the existene of a true onentration eigenmode, sine �uid doesnot esape suh regions at the same rate as for the remainder of the mixingregion. Therefore, dye stays trapped there for longer times. For intermedi-ate times, an almost invariant pattern is observed one dye �laments havereahed the Bathelor sale in the bulk of the mixing region (Fig. 22 a) or ))where strething is exponential. At longer times however, the ontrast of thedye pattern is loalised on the regions of slow strething (Fig. 22 b)). It hasbeen observed indeed that onentration patterns do not onverge on a per-manent pattern in suh ases, hene that the evolution of the onentrationmean and standard deviation in the out�ow do not obey exatly the sameexponential law (Gouillart et al., 2009). For suh protools, the eigenmodeindex should be omputed only at the intermediate times, where the mainontribution to the standard deviation omes from the ontrast between dye�laments of the bulk, and white holes of unmixed �uid.In onlusion, good mixing, whih is the strething of �uid partiles downto the Bathelor di�usion sale, is a di�ult task in open �ows beause ofthe transient stay of �uid partiles inside the mixing regions. While �uidpartiles with short residene times are often insu�iently mixed, �uid par-tiles with long residene times are mixed muh more than neessary. The43



(a) (b)

()Figure 22: Mixing patterns with non-hyperboli zones. (a) KAM islands(red arrows) are pathes of �uid that stay forever inside the mixing region.Dye therefore never enters the islands. Islands have a �stiky� boundarywhere strething is very low (hene the greater intensity of the dye) anddye is trapped for longer times than in the remainder of the mixing region.(b) At very long times after the entry of a blob of dye, dye is found onlyaround the elliptial islands. () When the �ow of the stirrers takes overthe e�et of the main hannel �ow near the walls of the hannel, the mixingregions extends to the hannel walls. Two paraboli separation points (redirles) and their unstable manifolds (red lines) de�ne the limit between thein�ow and the mixing region. Beause of the no-slip ondition, �uid partileslose to the walls stay for long times inside the mixing region being hardlystrethed. Therefore, unmixed �uid is stored near the walls and reinjetedalong the unstable manifold of the separation points, as shown by the darker�laments. 44



support of the eigenmode pattern, whih is the unstable manifold of thehaoti saddle fattened at the di�usion sale, traes out the region where�uid is well-mixed, while its omplementary orresponds to ill-mixed �uid.The normalised standard deviation of the eigenmode is therefore a relevantmeasure of mixing e�ieny, alled the eigenmode index.7. Chaoti advetion in the oean: plankton dynamisAn important appliation of haoti advetion in open �ows is the study ofthe interplay between mesosale hydrodynami motion and the distributionof marine organisms like phytoplankton and zooplankton. Sine the semi-nal paper by Abraham (Abraham, 1998) this biologial-physial interationhas been addressed in various studies (Mann and Lazier, 1991; Denman andGargett, 1995; Peters and Marrasé, 2000; Károlyi et al., 2000; López et al.,2001a; Martin et al., 2002; Tél et al., 2005; Sandulesu et al., 2008). Severaldi�erent aspets of plankton growth have been disussed, suh as the emer-gene of sustainable plankton blooms (Hernández-Garía and López, 2004),loalised plankton blooms in vorties (Sandulesu et al., 2007), the oexis-tene (Sheuring et al., 2003) and dominane (Bastine and Feudel, 2010) ofspeies.One of the major requirements for the growth of phytoplankton in theworld's oeans is the availability of nutrients whih is strongly dependent onthe �ow patterns in the oeans. Hene, the essential fators ontrolling theprimary prodution, i.e. the growth of plankton, are horizontal and vertialtransport of nutrients. Horizontal transport is in�uened by the mesosalehydrodynami �ow strutures suh as vorties and jet urrents, while verti-al transport is often related to oastal upwelling. The latter ours usuallywhen wind-driven urrents, in ombination with the Coriolis fore, produesEkman transport, by whih surfae waters are driven away from the oastand are replaed by nutrient-rih deep waters. Due to this upwelling theprimary prodution in these areas is strongly enhaned, giving rise also to aninrease of zooplankton and �sh populations. Horizontal transport, mixingand stirring and its impat on plankton blooms has been investigated in sev-eral studies (Abraham, 1998; López et al., 2001b; Hernández-Garía et al.,2002, 2003; Martin, 2003). On the one hand, horizontal stirring by mesosalestrutures like vorties and jets is responsible for the redistribution of plank-ton and nutrients and may therefore enhane primary prodution. On theother hand, horizontal transport an even ause the emergene of phytoplank-45



ton blooms (Károlyi et al., 2000). Furthermore, it in�uenes ompetition andoexistene of di�erent plankton speies (Brao et al., 2000).The basi equations whih govern the dynamis of plankton in the oeanontain three proesses: (i) reations modelling the biologial growth ofspeies, (ii) advetion desribing the advetion of speies by the �ow, and(iii) di�usion aounting for the small sale turbulene not taken expliitlyinto aount by the veloity �eld. The governing equations are reation-di�usion-advetion equations, whih in ase of a simple food hain model forthe marine eosystem onsist of three equations for nutrients N , phytoplank-ton P and zooplankton Z:
∂N

∂t
+ v · ∇N = FN +D∆N

∂P

∂t
+ v · ∇P = FP +D∆P (21)

∂Z

∂t
+ v · ∇P = FZ +D∆Z.To study the biologial-physial interations di�erent models for the growthof the speies FN , FP , FZ and di�erent veloity �elds v have been used. Theplankton dynamis inlude models whih desribe the plankton in terms ofexitable systems (Trusott and Brindley, 1994; Neufeld et al., 2002) as wellas of systems apable of exhibiting steady state and osillatory behaviour(Edwards and Brindley, 1996). The veloity �elds are either given by sim-ple two-dimensional kinemati �ows (Hernández-Garía and López, 2004) orin more realisti studies by oean irulation models (Pasquero et al., 2004;Brao et al., 2000). The di�usion term desribes eddy di�usion, hene, alldi�usion onstants have the same value. Equations (21) are solved numeri-ally by a semi-Lagrangian algorithm. That means, that the three proesses,advetion, reation and di�usion, are performed sequentially. While the bi-ologial growth terms are treated as onentration hanges on an Euleriangrid, the advetion of �uid parels is omputed in a Lagrangian frame. Theadvantage of this proedure is that �lamentary strutures whih are impor-tant features of haoti advetion of traers, as pointed out in Se. 4.2, anbe resolved in a better way. For a detailed desription of the integrationsheme see (Sandulesu et al., 2008).In the following we will disuss only one example for the biologial andhydrodynamial models in order to demonstrate how the onept of haotiadvetion an be used to explain the emergene of phytoplankton patterns46



as they are observed in satellite pitures. The �lamentary and vortex-likestrutures seen in satellite observations an be largely explained as imprints ofmesosale hydrodynamial strutures whih enhane the emergene of plank-ton blooms. Partiularly, we will highlight the role of the haoti saddle,whih as we have pointed out, is the most important feature of the mixingregion in open �ows (see Se. 3).The mixing regions in oeani �ows are haraterised by mesosale hy-drodynami strutures. To study the impat of these mesosale strutures onplankton growth various kinemati models for the �ow have been onsideredin literature. In general, only two-dimensional horizontal �ow patterns havebeen studied so that the veloity �eld an be desribed by a stream funtion.This approah an be justi�ed by the argument that vertial veloities in theoean are often one order of magnitude smaller than the horizontal ones. Twoparadigmati models have been used to study the interplay between plank-ton dynamis and hydrodynami �ows: (i) the blinking vortex �ow (Neufeldet al., 2002) depited in Fig. 9, and (ii) the �ow in the wake of an island(Jung et al., 1993), similar to the hannel �ow shown in Fig. 5. Both �owsare periodially fored to ensure haoti advetion of passive traers, as wehave disussed in the previous setions. Eah of them fouses on partiularproperties of a real �ow. While (i) introdues a temporarily hanging mixingregion, (ii) mimis the dynamis of a von Kármán vortex street in the wakeof an obstale, whih in geophysial �ows an be onsidered as an islandloated in an oean urrent.Sine the blinking vortex (i) �ow is very idealised, only the �ow in thewake of an island (ii) is disussed here in detail: The island is modelled as aylinder loated in a horizontal bakground �ow. In the wake of this ylindera von Kármán vortex street (f. Fig.23) appears whih is phenomenologiallydesribed by the following stream funtion Ψ (Jung et al., 1993):
Ψ(x, y, t) = f(x, y)g(x, y, t). (22)The �rst fator f(x, y) ensures the orret boundary onditions at theylinder, whereas the seond fator g(x, y, t) models the vorties in the wake,the bakground �ow, and the Ekman �ow:

g(x, y, t) = wh1(t)g1(x, y, t) + wh2(t)g2(x, y, t) + u0s(x, y)y + uEΘ(x− 1)x.(23)The vorties in the wake detah periodially from the island and their vor-tiity is of opposite sign. Their maximum vortex strengths denoted by w47



Figure 23: Sketh of the �ow in the wake of an island. The upper border ofthe piture denotes the oastline.are equal, and their shape is desribed by the funtions gi(i = 1, 2) (see de-tails in (Sandulesu et al., 2006)). Eah vortex travels along the x diretionfor a time Tc before it disappears due to dissipation. The bakground �owmoves in the same diretion with a speed u0. The fator s(x, y) desribesthe shielding of the bakground �ow by the ylinder in a phenomenologialmanner. The Ekman drift, whih is intended to model the �ow from theoast towards the oean interior, is introdued by onsidering an additionalveloity of onstant strength uE in the y diretion whih is perpendiular tothe bakground �ow and whih is ating only at x oordinates larger than 1,i.e. just behind the island. This orresponds to a stream rossing the vortexstreet towards negative y values beyond the ylinder.The veloity omponents in x and y diretion are then given by Eqs. (8),(22) and (23). The parametrisation of the model has been hosen in suh away that the hydrodynami �ow mimis the �ow patterns around the Canaryislands (Aristegui et al., 1997, 2004; Sandulesu et al., 2006).From the large variety of marine eosystem models we use a simple foodhain to illustrate the interplay between hydrodynami motion and biologial48



growth. This model system is based on a three omponent model developedby Steele & Henderson (Steele and Henderson, 1992) and later modi�ed byEdwards & Brindley (Edwards and Brindley, 1996) Pasquero et al. (Pasqueroet al., 2004) and Oshlies & Garon (Oshlies and Garon, 1999). The marinemodel eosystem ontains three di�erent trophi levels, namely nutrients N ,phytoplankton P and zooplankton Z, whose onentrations evolve in time.The biologial proesses taken into aount an be modelled as:
dN

dt
= upwelling − uptake + recycling

dP

dt
= uptake − grazing −mortality

dZ

dt
= grazing −mortality.Expressed in mathematial terms this reads:

dN

dt
= FN = ΦN − β

N

kN +N
P + µN

[

(1− γ)
αηP 2

α+ ηP 2
Z + µPP + µZ2

]

dP

dt
= FP = β

N

kN +N
P − αηP 2

α+ ηP 2
Z − µPP (24)

dZ

dt
= FZ = γ

αηP 2

α + ηP 2
Z − µZ2.To provide some insight into the biologial model we brie�y disuss themeaning of the di�erent terms in the model equations. For details we re-fer to (Oshlies and Garon, 1999; Pasquero et al., 2004). The dynamis ofthe nutrients is determined by three proesses, namely nutrient supply dueto vertial mixing ΦN , onsumption by phytoplankton P , and reyling bybateria whih are not expliitly taken into aount as speies in this model.Vertial mixing whih brings nutrients from deeper nutrient-rih layers ofthe oean into the mixed layer is parametrised in the biologial model us-ing the funtion ΦN , whih depends on the abundane of nutrients N . Thisparametrisation is neessary beause the two-dimensional hydrodynamialmodel takes only horizontal transport of nutrients into aount. The uptakeof nutrients by phytoplankton is desribed by a funtion whih ontains asaturation e�et when nutrients are highly abundant. The reyling of nutri-ents from organi material (dead phytoplankton and zooplankton, exudatesfrom zooplankton) is modelled by the term in brakets.49



The term desribing the uptake of nutrients repeats as a growth term inthe dynamial equation for phytoplankton P . Phytoplankton is diminisheddue to grazing by zooplankton and due to natural mortality.Again the grazing term in the phytoplankton equation shows up as thegrowth term in the dynamial equation for the zooplankton Z, together withthe onversion fator γ, whih aounts for the fat that not all onsumedphytoplankton are onverted into biomass of zooplankton. The natural mor-tality of zooplankton is assumed to be quadrati beause this term doesnot only model natural mortality but also the existene of higher predatorswhih are not expliitly onsidered (Edwards and Bees, 2001). The param-eters used in this model are taken from (Pasquero et al., 2004) and aountfor a situation in the open oean.Coupling the biologial and the hydrodynamial model demonstrates howthe onepts of haoti advetion an be used to ontribute to the under-standing of biogeohemial proesses in the oean. This simple oneptualmodel provides some insight into the mehanism of the interplay of mesosalehydrodynami strutures, in this ases the vorties behind the island, andthe biologial growth of plankton speies in the region of the vortex street.Depending on the onentrations of nutrients and plankton in the in�ow intothe area around the island one an distinguish two senarios: (i) If the in�owof nutrients and plankton is rather high orresponding to a eutrophi oeanone observes an enhaned plankton growth in areas related to a large up-welling of nutrients (f. Fig.24). Nutrients are entrained from the loalisedupwelling region where more nutrients are available due to higher vertialmixing rates and lead to enhaned plankton growth in this nutrient plume.This plankton bloom is essentially found in the exterior of the vorties. (ii)If the in�ow of nutrients and plankton is rather low orresponding to anoligotrophi oean the opposite behaviour is obtained. Instead of a plank-ton bloom surrounding the vorties one observes a loalised plankton bloomwithin a vortex (f. Fig.25). This rather di�erent senario whih an be alsoobserved in satellite pitures results from an intriate interplay between thetime sales of the hydrodynami and biologial proesses involved. Nutrientsand plankton are entrained into the vorties in whih the exhange of wa-ter with its surroundings is rather low. Hene, the plankton is on�ned tothe vortex for a rather long time leading to an enhaned biologial growthwithin the vortex. This way the vortex ats like an inubator for a planktonbloom. To unravel the mehanism how the nutrients and the plankton aretransported into the vortex it is useful to study the details of the haoti50
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λ±(x, t, δ0, δf) =

1

τ±
log

δf
δ0

(25)The positive subsripts indiate that the traers are adveted forward intime, while for the negative subsript they are adveted bakward in time.
λ± is a salar measure for the strething/ontrating rate in the �ow given bythe inverse of the separation time τ±. Maxima in the spatial distribution of
λ+, the positive or expanding FSLE, approximate the underlying stable man-ifold of the haoti �ow (Joseph and Legras, 2002; d'Ovidio et al., 2004), thediretion along whih traers approah the saddle. The ontrating FSLE,52
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λ−, detets the underlying unstable manifold in the �ow, the diretion alongwhih traers leave the saddle. The stable and unstable manifolds are inter-twined around the vortex ores and at the island (Fig. 26). Their omplexstruture allows for transport of traers aross the vortex street as well asof nutrients and plankton into the interior of the vortex. The results of thisapproah reveal one possible mehanism for the emergene of loalised plank-ton blooms whih an be observed by satellite in many di�erent areas aroundthe globe.8. SummaryThe transient nature of haoti advetion in open �ows results in partialmixing organised around persistent (non-spae-�lling) fratal patterns in themixing region. These fratal strutures are aused by the presene of thehaoti saddle in the mixing region, and the invariant manifolds assoiatedwith the haoti saddle govern the dynamis of the system. The haotisaddle is felt not only in pure advetion, but also in the ase of transportedsalars subjet to moleular di�usion; the strange eigenmode whih appearsin the asymptoti dynamis of the salar onentration shadows the unstablemanifold for low di�usion. The haoti saddle and its unstable manifoldare also the key to understanding the dynamis of hemial and biologialproesses in �uids, as most of the reations take plae in the viinity ofthe unstable manifold. In onlusion, the onept of the haoti saddle is53
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