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Abstract

We review the theory and experimental knowledge of mixing in open flows
displaying chaotic advection, from a point of view of dynamical systems the-
ory. We show that the chaotic saddle and its stable and unstable manifolds
constitute the skeleton around which the dynamics are organised, and that
their fractal properties govern advection and mixing in open flows. The ef-
fects of KAM islands on the mixing is examined, as well as the interplay
between molecular diffusion and chaotic advection. We discuss what the
appropriate definition of mixing is in practical situations, and present ex-
periments motivated by industrial applications to back these discussions.
We also discuss applications of these concepts to plankton dynamics in the
oceans.
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1. Introduction

When one thinks of mixing, the image most likely to come to mind is
that of a liquid being stirred in a closed container. This is indeed a very
important scenario, which has been the focus of most studies on the dy-
namics of mixing since Aref’s pioneering work (Aref, 1984). That landmark
work and those which followed have established that stirring can give rise
to chaotic advection, which results in the continuous stretching and folding
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of any given portion of the fluid. This chaotic dynamics causes any blob of
fluid to be quickly deformed into a filamentary shape with very thin filaments
spreading all over the container (see Fig. 1). As the stirring continues, the
filaments become denser and denser in space as their total length increases,
until molecular diffusion mixes them homogeneously into the background.
This homogeneous mixing is the direct result of the fact that the container
is closed: the filaments are continuously stretched, and having nowhere else
to go, they end up filling the entire space in the container.

N

Figure 1: Shape of a dye droplet after stirring on the surface of a thin layer of
glycerol in a Petri dish. Experiment carried out by .M. Janosi, K.G. Szab0,
T. Tél, and M. Wells at the von Karméan Laboratory of E6tvos University,
Budapest. From (Tél et al., 2005).

The study of mixing in open flows — flows with constant inflow and
outflow, where fluid is not bound to a region of finite volume — has been less
thoroughly pursued. But open flows are extremely important in many areas
of science and engineering, and problems involving mixing in open flows are



crucial for many natural and man-made systems. Chaotic advection is also
present in open flows, such as in the flow of streams around obstacles, and
in situations where flow is stirred in the open, without walls restricting the
motion of the fluid. In open flows, chaos takes a different form compared
to the case of closed flows (Tél et al., 2005), because typical fluid particles
escape any given region of space in a finite time. There is, however, a set
of unstable “trapped” orbits which are bounded within a finite region and
which never escape. These non-escaping orbits constitute an invariant set of
the dynamical system associated with advection — the chaotic saddle. Even
though the orbits in the chaotic saddle have zero measure in space — that is,
the probability that an initial condition chosen randomly belongs to one of
the trapped orbits in the chaotic saddle is zero —, they are very important
for understanding the dynamics of open systems, because they determine the
asymptotic (¢ — oo) advection dynamics. The chaotic saddle has a fractal
geometry, and this gives rise to complex behaviour of fluid parcels in their
neighbourhood. Fluid particles near the chaotic saddle undergo successive
episodes of stretching and folding, just as in the closed container case. But
the difference is that the flow is escaping as well, and as a result the filaments
produced by stretching are not space-filling. The fractal structures generated
by the chaotic dynamics are limited by the outflow, and the situation of
homogeneous mixing found in the closed case is never reached in open flows;
instead a characteristic pattern of filaments with intricate structure reflecting
their underlying fractal geometry is formed, as illustrated in Fig. 2, which
shows the simulation of passive tracers being advected in a human blood
vessel (Schelin et al., 2009, 2010). An experimental example of a dye mixed
into an open fluid, a problem of great industrial interest, which is described
in Section 6.

It is clear that in an open system the flow is not mixed in the sense of
the closed case, since some of the fluid escapes through the outflow unmixed.
But the portions of fluid whose trajectories bring them close to the chaotic
saddle are stretched and folded many times before they escape, and in those
regions some mixing does take place. In other words, in open flows there is
partial mixing, due to the transient nature of the dynamics of open flows.

The importance of open flows for so many areas makes it important to
have a solid understanding of the dynamics of mixing in those systems. In
this work, we review the most important results in this area, and present the
major relevant concepts in a unified framework, and we also discuss some of
the most relevant applications of these concepts in physics and engineering.
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Figure 2: Simulation the advection of passive tracers for a 2D model of a
blood vessel with a large aneurysm. The flow was obtained by solving the
Navier-Stokes equation, with realistic boundary conditions. From (Schelin
et al., 2009).

The rest of this paper is organised as follows. In Sections 2 and 3, we in-
troduce the concept of chaotic advection, and discuss the role of the chaotic
saddle and its stable and unstable manifolds for the dynamics of open flows.
In Sec. 4, we show how fractal distributions arise in chaotic open flows due to
the chaotic saddle, and their consequences for the advection dynamics; and
we introduce the concept of fractal dimension as a measure of the sensitivity
to initial conditions and an indicator of strong mixing. In Section 5, the
non-hyperbolic case is examined, and the consequences of KAM islands to
mixing are explored. Section 6 takes molecular diffusion into account, and
discusses what are the appropriate measures of the efficiency of mixing for
real-world cases; the discussion is illustrated with experimental results in the
context of industrial mixing. Finally, in Section 7 the application of these
concepts to the dynamics of plankton in the ocean is presented.

2. Example of an open flow: the blinking vortex-sink system

We will now introduce a very simple open flow which exhibits chaotic
advection and is given analytically as a mapping, which means that there is
no need to solve Navier-Stokes equations to study and simulate it. We will
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use this flow to illustrate many of the concepts relevant to chaos and open
flows in the following.
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Figure 3: Illustration of the blinking-vortex flow. The sinks are indicated by
the black circles. During the first half of a period, the left sink is active and
flow spirals towards it (a), while during the second half half of the period, the
left sink is closed and the right sink is open, as shown in (b). This switching
from on sink to the other is iterated indefinitely.

Figure 4: Trajectories corresponding to two very close initial conditions in
the blinking vortex-sink flow. From (Tél et al., 2005).

The blinking vortex-sink flow (Aref et al., 1989; Karolyi and Tél, 1997)
is a generalisation of Aref’s blinking vortex flow (Aref, 1984). It is a 2D
incompressible flow on an infinite plane, with two sinks which open and close
periodically in alternation: in the first half of each cycle one sink is open



and the other one is closed, and in the second half the situation is reversed
(see Fig. 3). As fluid falls into the sink it spirals around it, and so each sink
is also a vortex. Each vortex-sink is modelled as a point-source of vorticity
superimposed to a localised sink, and we assume that the flow which falls
on either of the sinks disappears from the system and does not come back.
This is clearly an open flow, where the inflow region corresponds to the whole
space beyond the sinks. The outflow region is not modelled explicitly: fluid
particles are assumed to simply disappear when they fall into a sink. Being
a two-dimensional incompressible flow, advection in the blinking vortex-sink
system is Hamiltonian (see Sec. 3 below).

Consider first a single vortex-sink, in a coordinate system where the origin
coincides with it. It generates a velocity field with a radial component u, =
—C'/r corresponding to the sink, and a tangential component w, = K/r
modelling the spiralling motion of the fluid as it falls into the sink.

A fluid particle follows a trajectory determined by the following equations
of motion:

F=—Cfr. §=uyjr=K/r" (1
Solving these equations with initial conditions ry and ¢g, we get
K t
’(t) = (17— 2002, plt) = o — 1 . @)
C To

To get the blinking vortex-sink system (Aref et al., 1989; Karolyi and Tél,
1997), we just need to put two vortex-sink points on the plane and then turn
them on and off alternately for a duration 7'/2 as explained above, thereby
generating a time-periodic flow of period T. Without loss of generality, we
choose the positions of the vortices at x = +a, y = 0, where a is a parameter
of the system. Since we have an analytical expression for the motion of fluid
particles for each of the half-periods, it is not difficult to find an expression
for the new position r,, | after one period as a function of the position r,, at
the beginning of the period. This is best done using a complex representation
for the position of a fluid particle, 2 = x + 72y. The mapping from the initial
position z, to the new one z,,; is then given by

oT 1/2—iK/2C
a |zn + a|2)

1/2—iK/2C
CT

2
’Zn+1/2 - CL}

Znt1e = (2t a) (1

Znp1 = (Zng1j2 — a) (1 — (3)
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Here z,,1/2 is an intermediate variable representing the particle’s position
after the first half-period.

Dimensional analysis reveals that the dynamics is fully determined by the
two dimensionless parameters:

n=CT/a® and ¢=K/C, (4)

which can be interpreted as the dimensionless sink strength and the ratio of
the vortex to sink strength, respectively.

Fluid particles escape from the system when they are too close to one of
the vortex-sinks while it is active. It is easy to derive from Eq. (2) that the
portions of the fluid which are within a distance of R = v/CT of a sink, at the
instant when it starts to be active, will leave the system in the next half-cycle.
Two different trajectories of fluid particles in this system are illustrated in
Fig. 4.

3. Chaotic advection in open flows

Let us consider now an open flow of an incompressible fluid. A fluid
particle at a given point r at time ¢ has a velocity given by the velocity field
u(r,t) of the flow at that point. The equation of motion for fluid particles is

then
dr

= u(r(n), 1) @
Finding an explicit expression for u(r,t) involves solving the Navier-Stokes
equation with the boundary conditions corresponding to the given physical
system. It is usually not possible to solve the Navier-Stokes equation analyt-
ically in realistic scenarios, but here we will focus on the advection dynamics
for a given flow field, and from now on we will simply assume that u(r, ) is
given. The results we present here are completely independent on how one
goes about computing u(r,t).

Equation (5) defines a time-dependent dynamical system with the num-
ber of degrees of freedom equal to the spatial dimension of the flow. This
suggests the possibility that this dynamical system could be non-integrable,
and displays chaos. From the point of view of the theory of dynamical sys-
tems, advection in open flows is a scattering process: there is a well-defined
asymptotic region where the dynamics is simple — for example, in the flow
past an obstacle, the fluid in the upstream and downstream regions moves
at almost constant speed and direction; and there is a bounded region of
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space where the flow dynamics is complex — for example, in the wake of the
obstacle the motion can be very erratic and unpredictable. This latter region
is called the mixing region.

Another crucial feature of open flows is that the dynamics is transient: a
typical fluid particle stays in the mixing region for some time after arriving
from the upstream region, and then escapes again to the downstream region,
never to return again. The type of chaos displayed by such systems is termed
transient chaos (Lai and Tél, 2011); it is also sometimes called chaotic scat-
tering. The subject of transient chaos is part of the fundamental theory of
dynamical systems, and we can take advantage of the substantial body of
results in this field to shed some light at the behaviour of chaotic open flows,
and what the consequences of chaos are to mixing in this kind of flow.

The discussion of chaos in open flows becomes particularly simple in the
case of two-dimensional incompressible flows, and we focus on this case for
the remainder of this paper, unless otherwise noted. This is not only for the
sake of simplifying our presentation: many very important systems can be
modelled by 2D flows, including the Earth’s oceans and atmosphere (Ped-
losky, 1979). The incompressibility condition in 2D flows is expressed by

Oty + %
ox dy

This expression implies that there is a stream function V(z,y,t) which de-
termines the flow’s velocity (Landau and Lifshits, 2000; Batchelor, 1967):

OV (z,y,1) . ~O¥(z,y,t) (7)
oy or

Using the above expressions, the equation of motion for an advected particle
can be written in terms of the stream function:

oy .oV
"8y YT Tor

These two equations define a Hamiltonian dynamical system with one degree
of freedom, where the variable x plays the role of position, and y plays
the role of conjugate momentum, and the stream function W(z,y,t) is the
Hamiltonian function (Landau and Lifshits, 2000; Batchelor, 1967). The
phase-space of this Hamiltonian system is therefore the physical 2D space of
the flow, and can be directly visualised in experiments by using dyes which
are passive tracers (Sommerer, 1996).

V-u=

~0. (6)

ug(x,y,t) = uy(z,y,t) =

(8)
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In stationary flows, the stream function is time-independent, and the fluid
particle trajectories coincide with the streamlines, which are level curves of
V. In this case we have a time-independent Hamiltonian system with only
one degree of freedom, and its dynamics is always integrable (that is, non-
chaotic). This is similar to the case of a simple pendulum of one degree
of freedom, whose dynamics is known from elementary classical mechanics
to be always integrable. If the flow is non-stationary, however, the system
is described by a time-dependent Hamiltonian, similar to that of a driven
pendulum. It is well-known that such driven non-linear systems commonly
have chaotic dynamics (Ott, 1993). In open systems this results in fluid
particles having complicated, erratic motion for a transient period before
they escape to the outflow.

Chaos is characterised by a sensitive dependence of the trajectories to
small perturbations in the initial conditions. This is illustrated in Fig. 4 for
the blinking sink-vortex system introduced earlier. Two initially very close
trajectories eventually separate and leave to the outflow through different
points, and at different times. This is a general property of chaotic systems:
the same sensitivity to initial conditions is present in any chaotic flow. As an
example, Fig. 5 shows the same phenomenon in a 2D flow past a cylindrical
obstacle.

It is important to note here that even very simple time dependencies of
the flow can give rise to chaotic advection. For example, time-periodic flows
in general display chaotic advection (Aref, 1984; Ottino, 1989; Sommerer,
1996).

4. Mixing in the presence of chaos: the chaotic saddle and the
appearance of fractals

Chaotic advection is characterised by the presence of a chaotic saddle,
which is a set of orbits trapped in the mixing region. These are orbits that
never escape the mixing region, and constitute an invariant set of the dy-
namics. A chaotic saddle has the property that none of its orbits escape the
mixing region either in the forward dynamics (¢ — +o00) or in the reverse
dynamics (¢ — —o0). There are infinitely many orbits in the chaotic saddle,
including a countable set of periodic orbits of arbitrarily high periods, as
well as an uncountable set of aperiodic orbits. These orbits are distributed
in space in a fractal configuration, and this has a profound influence on the
dynamics of advection. A snapshot of the chaotic saddle for the blinking



Figure 5: Tllustration of a sensitivity of trajectories to initial conditions in
a channel flow. Above: depiction of channel flow. Below: zoom-in on the
region in the wake of the cylinder, showing the simulation of two trajectories
corresponding to very close initial conditions. From (Tél et al., 2005).

vortex-sink flow is shown in Fig. 6. The self-similar structure characteristic
of fractals is clearly seen.

The chaotic saddle has zero measure, which means that if we choose
randomly points in a region of space, the probability of the chosen point
being on the chaotic saddle is zero. In addition, the saddle is not an attractor:
with probability 1, orbits not exactly on the chaotic saddle will eventually
escape to the outflow region. This is in contrast to strange attractors present
in many nonlinear dissipative systems, where trajectories near the attracting
set, converge to the attractor. In this latter case it is easy to see why the
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Figure 6: Snapshot of the a) chaotic saddle, b) stable manifold, and c) un-
stable manifold in the blinking vortex-sink flow (n = 0.5,& = 10), taken at
the beginning of each period. The circle in ¢) shows the area of the fluid that
will escape during the next half time period. From (Tél et al., 2005).

fractal structure of the attractor is important for the dynamics. But the
chaotic saddle is a non-attracting set, and although it is an invariant set of
the dynamics, it might appear that since trajectories do not converge to it,
it should not be important in practice. But nothing could be further from
the truth: the chaotic saddle is the skeleton of a transient chaotic system,
which determines the most important dynamical features of the system. In
order to understand this, we must discuss the other invariant sets associated
with the chaotic saddle.
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4.1. The stable manifold of the chaotic saddle

First let us consider the stable manifold of the chaotic saddle (we will
refer to it as just the stable manifold, for conciseness). It is the set of initial
conditions whose trajectories approach asymptotically the chaotic saddle, in
the limit ¢ — +4o00. Fluid particles lying on the stable manifold enter the
mixing region and never leave it, becoming ‘trapped’ there. However, the
stable manifold has zero measure, like the chaotic saddle. This is a simple
consequence of the incompressibility of the fluid: if a positive area of fluid
belonged to the stable manifold, it would converge asymptotically to the
chaotic saddle, which as we have seen has zero area; but this would violate
the incompressibility property. As a result, almost all orbits started in the
inflow region will leave the mixing region some finite time after entering it,
and only a set of initial conditions of zero measure corresponds to trajectories
which never leave.

The stable manifold for the blinking vortex-sink system is shown in Fig.

In spite of its zero measure, the stable manifold has a great influence on
the global dynamics of the system. Orbits starting from points close to it will
spend a long time in the interaction region before escaping, and these long-
lived trajectories are responsible for the sensitivity of the dynamics to initial
conditions. To understand this point, consider initial conditions lying on a
one-dimensional segment which crosses the stable manifold. Figure 7 shows
the escape time of fluid particles with initial conditions on such a segment
as a function of their positions (that is, how many periods it takes for a
given fluid particle to escape through one of the vortex-sinks). At the points
where the line intersects with the stable manifold, the escape time diverges,
since the corresponding trajectories converge to the chaotic saddle and get
trapped in the mixing region. Because the stable manifold is a fractal set,
its intersections with the segment (and with any smooth curve) are infinite
and non-enumerable, and constitute a Cantor set. This is the origin of the
many peaks seen in Fig. 7, and also the origin of the wild appearance of the
escape time function. Fig. 7 also shows a magnification of a small region of
the plot, and we see that the plot does not become any smoother as we look
closer. This is a consequence of the self-similar nature of the stable manifold:
this intricate structure of peaks and troughs is found at all scales.

The sensitivity to the initial conditions can be understood as a direct
result of the fractal nature of the stable manifold. Figure 7 shows that
an observable quantity such as the escape time varies wildly in arbitrarily
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Figure 7: Plot of the escape time as a function of the initial condition in the
blinking vortex-sink flow, for parameters n = 0.5, = 10. In the top figure,
the initial conditions are taken on the segment o = 0, yo € (—1.35, —0.7).
The bottom figure is the magnification of a region of the top figure.
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small scales, and is therefore impossible to predict in regions close to the
stable manifold. One way to understand this is considering that if there is a
filament of the stable manifold lies between two fluid particles, they will end
up following completely different trajectories, even if they started very close
to each other; and since there is an uncountable infinity of these filaments,
it is not difficult to see how the unpredictable and erratic behaviour of the
trajectories near the stable manifold arises.

4.2. The unstable manifold

The other important set associated with the chaotic saddle is its unstable
manifold. This is the set of points whose trajectories converge asymptotically
to the chaotic saddle in the reverse dynamics, that is, as ¢t — —oo. The un-
stable manifold is also a fractal set, composed of an intricate arrangement of
filaments much like the stable manifold. Fig. 6 shows the unstable manifold
for the blinking vortex-sink system. The physical meaning and relevance of
the unstable manifold is due to the fact that those trajectories which stay
a long time in the mixing region (that is, lying close to the stable manifold
in the inflow region) will trace out the unstable manifold on their way out
towards the outflow region. As a consequence, the unstable manifold can be
observed directly in imaging experiments, by following a dye as it is advected
(Sommerer, 1996). Once the bulk of the dye has escaped, what still remains
in the observation region shadows the unstable manifold, and hence is dis-
torted into a complex filamentary structure which becomes finer and finer as
time passes and more dye is lost to the outflow. This process is illustrated
in Fig. 8, and shown for the blinking vortex-sink flow in Fig. 9.

We remark that our discussion so far has focused on the motion of fluid
particles, which coincides with the advection of passive scalars by the fluid in
the absence of molecular diffusion. But the unstable manifold also manifests
itself in the case of non-zero diffusion: as we will see in Sec. 6, the spatial
concentration distribution of the scalar approaches a pattern which shadows
the unstable manifold, with a lower length scale set by the diffusion and
the mean stretching rate. Thus for small enough diffusion coefficients, the
unstable manifold governs the long-time dynamics of the advection of scalars.

4.3. The fractal dimension and its physical meaning

The intricate fractal geometry of the invariant sets of chaotic flows, il-
lustrated in Fig. 6 for the blinking vortex-sink flow, is intimately connected
to the unpredictability of the dynamics and with the intensity of mixing in
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Figure 8: Illustration of a dye droplet reaching the mixing region of an open
chaotic flow. After some time, the remaining dye traces out the unstable
manifold of the chaotic saddle. From (Tél et al., 2005).

open flows. In order to quantify this relation, we review here the concept of
fractal dimension (Halsey et al., 1986; Falconer, 2003), and we focus on its
physical meaning and its connection to the dynamics of mixing.

Consider first the stable manifold of the chaotic saddle. It is composed
of a fractal set of curves, as in Fig. 6. Imagine now a grid of resolution € on
a given region of interest, which intersects the stable manifold. Let N (€) be
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Figure 9: Evolution of a set of particles in the blinking vortex-sink flow.
Compare the last picture with Fig. 6¢. From (Tél et al., 2005).
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the number of grid cells containing points in the stable manifold. The fractal
dimension D of the stable manifold is defined from the way N scales with e.
In general the scaling follows a power law: A (e) ~ e P; D is defined as the
fractal dimension. More precisely:

. InN{(e)
D=l a/e

. 9)

For objects of regular geometry, D corresponds to the usual notions of di-
mension: a one-dimensional curve has D = 1, and a surface has D = 2, for
instance. But for fractal entities such as the invariant manifolds of chaotic
flows, D is generally not an integer. For the stable (and unstable) manifold,
composed of a fractal set of curves, the fractal dimension satisfies 1 < D < 2
in two dimensions.

Equation (9) is in fact one of the many possible definitions of a fractal
dimension; it is called the boz-counting dimension, and also the capacity
dimension. Since it is the only definition we will use in this work, we will
refer to D from now on as simply the fractal dimension.

One of the reasons why the fractal dimension is such an important concept
is that it can be interpreted as a measure of the uncertainty of the dynamics
of a transient chaotic system. In order to justify this interpretation, let us
say we have an uncertainty ¢ in the determination of the initial condition of a
particle of a passive tracer whose trajectory we want to predict. For example,
we would like to be able to tell when the particle will leave the mixing region,
and where it will be in the outflow region when it does leave. As discussed
in Sec. 4.1, trajectories with initial conditions located in the vicinity of
the stable manifold are extremely hard to predict. There is therefore an
“uncertain region”, consisting of the region in space within a distance of
about 0 from points in the stable manifold, wherein prediction is effectively
impossible. A good measure of the uncertainty for the given accuracy 0 is
then the area A(J) of the uncertainty region. From the definition of fractal
dimension in Eq. (9), the number of “boxes” of size 0 intersecting the stable
manifold scales as 6, for sufficiently small §. Since each box has area 62,
the total area of the uncertain region scales as

A() ~ 5*7P. (10)

The exponent 2— D determines how the size of the uncertainty region depends
on the accuracy 0. In non-chaotic flows, the stable manifold is a regular set

17



of curves, with D = 1. In this case, the uncertainty area is proportional to 4,
so that if we increase the accuracy by a factor of, say, 10, A will decrease by
the same factor. But in chaotic flows, D > 1; A then decreases more slowly
with §, meaning that increases in accuracy have a much reduced effect on
the area of the uncertainty region. This effect becomes extreme for values of
D close to 2. For the case of D = 1.9, for example, it would take a decrease
of ten orders of magnitude in ¢ to reduce A by a factor of 10.

The area A(e) is proportional to the probability of a randomly chosen
initial condition, when perturbed to a nearby initial condition at a distance
€ away, to be on the other side of one of the filaments of the stable mani-
fold, resulting in very different outcomes for the two initial conditions. This
observation suggests a way of measuring D, by picking a large number of
randomly chosen pairs of points separated from each other by a distance ¢,
and simulating their orbits, to ascertain if the two trajectories are similar
(for example, by comparing their escape times); those pairs which do not
have similar orbits are labelled “uncertain pairs”. By the discussion above,
the fraction f(e) of uncertain pairs is proportional to A(e). The function
f(e) can be found numerically by computing the fraction of uncertain pairs
for several values of € and plotting the result in a log-log plot; the slope of
that plot gives the exponent 2 — D. More rigorously, the fractal dimension
and the uncertain fraction are related by

D=2 1m0

e—0 Ine

(11)

An example of this calculation is shown for the blinking vortex-sink system
in Fig. 10.

Although the discussion above was centred on the stable manifold, by the
time-reversal property of Hamiltonian systems, the unstable manifold has the
same fractal dimension as the stable manifold. Since the trajectories which
spend long times in the mixing region converge to the unstable manifold, this
is where most of the mixing takes place. Therefore, the fractal dimension D
also measures the strength of the mixing in open flows: the greater the fractal
dimension, the greater the amount of mixing happening in the flow.

4.4. The Grassberger-Kantz relation

Dynamical systems can be classified into hyperbolic or non-hyperbolic,
depending on the stability properties of the orbits in their chaotic saddles. In
hyperbolic systems, all orbits in the chaotic saddle are unstable. A hallmark
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Figure 10: Numerical calculation of the uncertainty fraction f(e) for the
blinking vortex-sink system, with n = 0.5, £ = 10. The fractal dimension is
given from the slope s by D =2 — s ~ 1.74.

of hyperbolic systems is that they have an exponential decay: that is, if
we keep track of the time evolution of a typical area of flow, the amount
Q(t) of this initial area still remaining in the mixing region at time ¢ decays
exponentially with ¢ for large ¢: Q(t) ~ e **. k is the escape rate of the
flow. It satisfies k < A, where ) is the chaotic saddle’s Lyapunov exponent.
The physical meaning of the Lyapunov exponent is that it measures the
mean exponential rate of separation of nearby fluid particles while they are
in the mixing region. The fractal dimension D of the unstable manifold, the
Lyapunov exponent A and the escape rate x are related by the Grassberger-
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Kantz formula (Grassberger and Kantz, 1985):

K
D=2——. 12
. (12
More rigorously, we should have Dy, the information dimension (Falconer,
2003), instead of the box-counting D in the expression above, but since D
and D; are almost always very close for open flows, this approximation is
valid in most cases.

4.5. Robustness of the chaotic saddle

In all the discussion above, and in most of what follows, we concentrate
on the case of two-dimensional flows. Furthermore, we have concentrated on
the motion of fluid particles, that is, of passive tracers which assume exactly
the velocity of the surrounding fluid. The fractal structure of the chaotic
saddle and its associated invariant manifolds persist, however, in the case
of actual, finite-sized particles, which have inertia and whose velocities do
not coincide with that of the fluid’s velocity field (Vilela et al., 2006, 2007;
Cartwright et al., 2010). There are some considerable differences between
the dynamics of fluid particles and that of inertial particles, in particular the
possibility of the appearance of attractors in the latter case (Benczik et al.,
2002; Motter et al., 2003; Cartwright et al., 2010). But even when the global
dynamics has attractors, chaotic saddles are still present, and the system
is still governed by fractal structures in phase space connected to a chaotic
saddle, as in the simpler case of passive advection.

The same overall picture remains valid for three-dimensional systems
(Cartwright et al., 1996; Tuval et al., 2004; de Moura and Grebogi, 2004a); in
this case, the stable and unstable manifolds are a fractal set of sheets, instead
of segments. Periodicity is also not required for the existence of the chaotic
saddle: aperiodic and random flows can also result in well-defined fractal
structures in phase space (Karolyi et al., 2004; Rodrigues et al., 2010).

A conclusion of the above discussion is that the concepts of chaotic saddle
and its stable and unstable manifolds are remarkably robust, and are not
consequences of over-simplified models of flows. As a result, we expect fractal
sets to be features of real flows which are dominated by large-scale coherent
structures; if the flow is dominated by well-developed turbulence, on the
other hand, this is no longer true.

20



5. Transport barriers and KAM islands: the effective dimension

In discussions about chaotic open flows and the chaotic saddle it is often
assumed, sometimes tacitly, that the dynamics is hyperbolic. The reason is
partly that the hyperbolic case is more treatable, and there are more rigorous
results available about that case. For example, the Grassberger-Kantz rela-
tion (12) is only valid for hyperbolic systems. However, non-hyperbolicity
occurs in many important cases, and is to be expected in many very general
scenarios in fluid dynamics. For example, it can be shown that the dynam-
ics of 2D advection on a flow past an obstacle becomes chaotic immediately
after the transition of the flow from stationary to time-dependent, as the
Reynolds number is increased beyond a critical value; furthermore, the dy-
namics is non-hyperbolic for a range of Reynolds numbers past the transition
point, independently of the shape of the obstacle or the particular features
of the flow (Biemond et al., 2008). Many other systems of interest are non-
hyperbolic, and it is imperative that we understand the mixing dynamics in
the non-hyperbolic case.

Non-hyperbolicity is manifested through the appearance of stable orbits
in space. These orbits are surrounded by stable islands, from which fluid
does not escape. These stable regions correspond to persistent vortices in
the flow. In dynamical systems parlance, they are KAM islands (MacKay
and Meiss, 1987). KAM vortices are commonly found in 2D flows, and they
have been observed in environmental flows, such as the stratospheric polar
vortex, which plays a crucial role in the process of ozone depletion (Koh and
Legras, 2002); and also in ocean circulation patterns (Abraham, 1998; Boyd
et al., 2000; Abraham et al., 2000). As is well known from the theory of
Hamiltonian dynamical systems, they form a fractal hierarchical structure,
with big islands being surrounded by smaller islands, and these in turn are
surrounded by even smaller islands, and so on (see Fig. 11). The presence
of KAM islands means that there is a finite volume of initial conditions in
the mixing region whose orbits do not escape, corresponding to those initial
conditions lying in the islands. However, fluid particles with initial conditions
outside the interaction region cannot enter the islands. As a result, the set of
initial conditions outside the mixing region whose trajectories end up trapped
there still has zero measure, as in the hyperbolic case. However, the islands
have deep consequences for the scattering dynamics, resulting in important
differences between the hyperbolic and non-hyperbolic cases.

The transport of fluid in the vicinity of the islands is dominated by Can-
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Figure 11: Tlustration of the hierarchical structure of KAM islands and
Cantori. Solid circles represent KAM tori, and Cantori are represented by
the circles with holes. From (Tél et al., 2005).

tori, which are remnants of broken up KAM tori. Cantori are also invariant
sets of the dynamics, as are KAM islands; but in contrast with those, fluid
particles can cross from one side of a Cantorus to the other. However, it takes
typically very long times to do so, and as a consequence the Cantori act as
partial transport barriers. The overall picture of non-hyperbolic transport is
sketched in Figure 11.

As we mentioned above, it is very common to find KAM islands in fluid
flows, the blinking sink-vortex flow is no exception. Figure 12 shows strobo-
scopic trajectories for a set of parameters for which the flow is non-hyperbolic,
and an island is clearly visible. The magnification in Fig. 12 shows the strik-
ing self-similar organisation of the islands. The effect of Cantori on the
advection dynamics can be seen in the cloud of points surrounding the sub-
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islands on the upper right and to the left of the main island in the magnified
figure. These points are snapshots taken at the start of every period of a
single orbit which meanders inside the Cantorus surrounding these islands.
This orbit eventually escapes, after thousands of cycles. Another Cantorus
can just be seen surrounding the main island. These Cantori are in turn
surrounded by a bigger Cantorus encircling the whole structure, which is ap-
parent from the higher density of points in the region around the complex of
islands in the bottom figure 12.

An example of KAM islands visualised in an actual experiment is seen in
Fig. 22.

5.1. Dynamical consequences of non-hyperbolicity

The partition of space by the KAM islands and Cantori into distinct
domains separated by transport barriers has no counterpart in hyperbolic
systems, and is the cause of the profound differences in the dynamics of hy-
perbolic and non-hyperbolic flows. A direct consequence of the self-similar
structure of the transport barriers depicted in Fig. 11 is the phenomenon
known as stickiness: in non-hyperbolic flows, many trajectories spend ex-
tremely long times inside Cantori, leading to very long typical escape times
compared to hyperbolic dynamics. Because of the self-similar organisation
of the Cantori, once inside, an orbit may enter an inner Cantorus located
within another Cantorus, and so on to arbitrarily high levels in the Cantorus
hierarchy. So once a fluid particle is inside a Cantorus, it will wander within
a fractal labyrinth from which escape is likely to take a very long time.

Even in non-hyperbolic flows it is still true that fluid particles with initial
conditions outside of KAM islands will eventually escape with 100% prob-
ability: the component of the chaotic saddle outside the islands has zero
measure. But stickiness makes escape sub-exponential, in marked contrast
with hyperbolic flows, where escape is exponential. In non-hyperbolic flows,
the number N(t) of particles, with initial conditions chosen randomly in a
region with no intersection with KAM islands, that have not escaped up to
time ¢, follows a power law (Meiss and Ott, 1985):

N(t) ~t7, (13)
with v > 0.

A direct consequence of the slower escape dynamics described by Eq. (13)
is that the fractal dimension D of the stable (and unstable) manifold is equal
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Figure 12: Stroboscopic map of the blinking vortex-sink flow, with n = 1,
¢ = 18, parameters for which the flow is non-hyperbolic. The map shows
the orbits of a few fluid particles, with positions taken at discrete times, at
the beginning of every period of the flow. The picture on the bottom is a
magnification of a small region of the top picture, and shows the self-similar
structure of the KAM islands.
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to the dimension of the embedding space, D = 2 (Lau et al., 1991). This is not
inconsistent with the fact that the stable and unstable manifolds have zero
measure, since fractal sets can have fractal dimension equal to the dimension
of the phase space and still have zero measure (Falconer, 2003); and this
is indeed the case of the stable and unstable manifold of non-hyperbolic
transient systems. However, from the interpretation of the fractal dimension
as a measure of uncertainty of transient systems, expressed mathematically
by Eq. (11), the fact that D assumes the maximum possible value in non-
hyperbolic systems suggests that these systems have an extreme sensitivity
to initial conditions. Indeed, the exponent in Eq. (11) vanishes for D = 2,
which means that the “uncertainty probability” f(e) decreases more slowly
than a power law for small e.

This extreme sensitivity of the dynamics is apparent from the plot of the
escape time as a function of the initial conditions. This is shown in Fig.
13, with initial conditions taken in the interior of the outermost Cantorus of
Fig. 12. The escape time is a very irregular function, with wild oscillations
nearly everywhere; and the magnification shows that this irregular behaviour
is present down to arbitrarily small scales.

5.2. The effective dimension

A glimpse at Fig. 13 suggests that predicting asymptotic properties of
trajectories in this system is an almost impossible task. The reason for this
unpredictability is the very long time it takes initial conditions inside Cantori
to escape: two initially very close trajectories will have much more time to
spend in the mixing region to separate and follow independent paths before
they escape. Figs. 11 and 12 also suggest that the unpredictability is greater
for initial conditions located in deeper levels of the Cantorus hierarchy, as
they have longer escape times. To measure the uncertainty, we compute the
uncertainty plot f(¢), as done in Sec. 4.3, using initial conditions inside the
outermost Cantorus, and inside the inner Cantorus indicated by the cloud of
points in the left plot of Fig. 12. Fig. 14. shows the result of this calculation
for initial conditions picked in two different regions: inside the outermost
Cantorus, and inside one of the inner Cantori seen in Fig. (12).

Figure 14 may seem to contradict the assertion made in Sec. 5.1 that
D = 2 for non-hyperbolic systems, as this would predict that the plot of f(e)
versus € should be a flat line with zero slope. But in non-hyperbolic systems,
the € — 0 limit in Eq. (11) converges extremely slowly. For extremely small
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Figure 13: Escape time plot for the blinking vortex-sink flow, with n = 1,
¢ = 18. Initial conditions are taken on a segment with xq = 1.75.

values of €, the slope does in fact approach 0 for € small enough; but reach-
ing this limit usually requires values of € so small they are not physically
relevant. Any model of a physical system has a lower scale below which the
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Figure 14: Fraction of uncertain pairs as a function of separation € between
points in a pair for the blinking vortex-sink flow, with n = 1, £ = 18; see
Section 4.3. Initial conditions are for the bottom curve are taken in the
outermost Cantorus, on the segment xy = 1.75, yo € (—1.18,—1.175); for
the top curve, initial conditions are in an inner Cantorus, on xg = 1.75, yg €
(—1.193, —1.192). The numbers beside each curve are the slope coefficients
obtained from fitting, f(e) ~ €.

model is no longer valid; this may be given, for example, by the size of ad-
vected particles we are following in an experiment, of by the finite resolution
of our measurements. This implies that the dimension that is relevant in
realistic systems is not the mathematical definition (11) with its unreachable
limit, but is given instead by an effective dimension Deg (de Moura and Gre-
bogi, 2004b; Motter et al., 2005), defined as an approximation of the fractal
dimension for a finite range of € (see Fig. 15):

dln f(e
Degi(e) =2 — dlirji(e) ~ const. for €; < € < ey, (14)
valid in a range (e, €2), with €; < 5. Doy satisfies Deg(€) — 2 as € — 0, in
accordance with Eq. (11).
From Eq. (14), the results in Fig. 14 can be interpreted as yielding
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Figure 15: Illustration of the concept of effective dimension, the slope of the
tangent to the In V vs. In1/e curve.

the effective fractal dimension of the stable and unstable manifold for two
different locations in space: D.g = 1.86 inside the outermost Cantorus, and
D.g = 1.98 inside one of the inner Cantori. The effective dimension therefore
depends on the position in non-hyperbolic systems, in contrast to the actual
fractal dimension, which is 2 anywhere. The greater escape time in inner
Cantori means that the invariant manifolds of the chaotic saddle have “more
time” to be stretched and folded and distorted by advection, hence the greater
effective dimension.

Because of time-reversal symmetry, the stable and unstable manifolds
have the same fractal dimensions — and also the same effective fractal di-
mensions. We argued in Section 4.3 that the fractal dimension of the unstable
manifold is a measure of lower-scale mixing efficiency for open flows. This
means that the fluid in regions of space surrounded by Cantori will be ex-
tremely well-mixed, and the efficiency of mixing increases as we go deeper
into the Cantorus structure, and reaches the maximum limit of D.g — 2 for
regions buried deep within the Cantori. This picture is somewhat at odds
with the prevalent idea in much of the literature of this field that the pres-
ence of KAM islands is an impediment to mixing. This assertion is valid
in closed flows, for which optimal mixing requires mixing the fluid homoge-
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neously throughout the container; this is obviously not possible with KAM
islands. In open flows, however, the fluid to be mixed usually comes from the
inflow region, and thus from outside the KAM islands, and so this is not a
problem. Instead, the islands cause fluid to spend very long times within the
Cantori, and be very well mixed as a result. Therefore, in contrast to closed
flows, in open flows KAM islands can be said to enhance mixing. However,
it is important to note that our measure of mixing only takes into account
the small-scale limit, and it ignores molecular diffusion. It also ignores the
time it takes to achieve good mixing, since the stable and unstable manifold
are all defined in the asymptotic dynamics. In industrial applications and
other cases of interest all these factors must be taken into account, and other,
more practical definitions of mixing efficiency are desirable. These will be
introduced in Section 6.

6. Mixing fluids by stirring in continuous-flow processes

In the previous sections we focused on the purely advective aspects of
mixing, ignoring molecular diffusion entirely. In this Section, we take molec-
ular diffusion into account, and investigate how diffusion in an open flow is
affected by its chaotic dynamics, and what consequences this has for the effi-
ciency of mixing. We will also revisit the definition of “good” mixing, taking
diffusion into account.

6.1. What does good mixing mean for a diffusive dye in an open flow?

How are different fluids mixed together and homogenised in industrial
continuous-flow devices? The elaboration of pulp and paper, cosmetics or
processed food often involves a mixing step which is part of an integrated
continuous-flow system of reactors (Paul et al., 2003). Continuous-flow man-
ufacturing allows reducing waiting times and the handling of materials. At a
smaller scale, some microfluidics devices also integrate open-flow micromix-
ers (Lee et al., 2001; Stroock et al., 2002; Okkels and Tabeling, 2004) in
labs-on-a-chip. For all these applications, it is crucial both to understand
the physical mechanisms at play, and to use relevant measures of mixing
quality (Danckwerts, 1952; Bryant, 1977; Ehrfeld et al., 1999; Aubin et al.,
2003; Kukukova et al., 2009).

In such systems, inhomogeneous fluid enters the mixing reactor, and fluid
that is continuously flowing out of the reactor has to satisfy some desired
property — such as sufficient chemical homogeneity, a maximal concentration
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in some chemical species, a target rheology, etc.. An example of open-flow
reactor is shown in Fig. 16. It consists in a free-surface channel of shallow
rectangular section, where viscous fluid (cane-sugar syrup) flows continu-
ously at a fixed flow rate. Fluid particles cross a mizing region, where two
rod-stirrers (circled in blue in Fig. 16 (a)) move on intersecting trajectories
(dashed lines in Fig. 16 (a)) and stretch passing fluid particles thanks to
the chaotic advection. The experimental apparatus has been described else-
where (Gouillart et al., 2009). In the following, we make use of experiments
realised with this rod-stirring protocol to explain how a diffusive dye is mixed
in open flows; the mechanisms presented here apply nevertheless to the wider
class of open flows with a mixing region with a limited spatial extent.

In the experiment of Fig. 16, fluid inflowing into the mixing region is not
homogeneous, as a blob of black dye contrasts with the surrounding dye-
free fluid (Fig. 16 a)). In industrial systems also, the composition of the
inflowing fluid is usually heterogeneous; it may for example consist in two
parallel streams of different liquids, or in a succession of patches of different
liquids that have to be blended together. The outflowing fluid, however, is
required to be “mixed”. Let us first examine the different snapshots in Fig. 16
in order to specify what this somewhat vague term of mized encompasses. In
contrast to the segregated state in the inflow, where black (dyed) and white
(dye-free) fluid are well separated, the mixed state can be defined as a dye
concentration pattern where all white fluid particles are close to black fluid
particles, and vice versa. The snapshot of Fig. 16 b) has been taken a few
rotation periods of the rods after the arrival of the blob inside the mixing
region shown in Fig. 16 a). Filaments of dyed and dye-free fluid that flow out
of the mixing region in the upper part of Fig. 16 b) are better mixed than
the fluid inflowing in Fig. 16 a), because the filaments are thinner than the
patches in Fig. 16 a). However, particles inside the white and black filaments
are still surrounded by fluids particles that all have the same colour, as in
the initial patches in the inflow. This means that the dye concentration
levels are the same as in the inflow (that is, the initial concentration of
the blob of dye, and the null concentration). This may be a problem if]
for example, the application requires that there is a maximal acceptable
concentration of one species (here, the dye) in the final product. In the
snapshot of Fig. 16 ¢) that was taken a few stirring periods after b), dye
particles look much better mixed than in Fig. 16 b), because dye filaments
were smeared out by molecular diffusion with dye-free fluid, resulting in
intermediate grey concentration levels. Molecular diffusion ensures that the
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Figure 16: Snapshots of a blob of dye passing through an open-flow mixer,
taken at different times. The main open flow is the upward direction. Two
rods (circled in blue in a)) stretch and fold passing fluid particles. (a) Arrival
of the dye blob in the mixing region (b) Three rotation periods of the rods
after the entry of the blob (a)), unmixed dark filaments are flowing out of
the mixing region, while the remainder of the initial blob keeps on being
stretched by the rods. (c¢) Eight rotation periods after a), dye filaments
inside the mixing region have been stretched enough to diffuse with dye-less
fluid; hence fluid flowing out of the mixing region is well mixed. (d) Later on,
the same pattern as in c) repeats, with the intensity of the dye that decays
because of the open flow.
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Figure 17: Schematic time-evolution of a patch of diffusive dye inside the mix-
ing region. The patch is stretched and folded into many thin filaments by
chaotic advection. Molecular diffusion starts to be efficient once the width of
dye filaments reaches the Batchelor scale wg, at which the effects of chaotic

stretching and diffusion balance. Dye filaments then diffuse with the sur-
rounding fluid, and the contrast of the dye becomes weaker with time.

proximity between fluid particles, that were in different regions of space in the
inflow, is realised at the molecular scale. In the following, we thus define good
mixing for a patch of fluid as a state where all its fluid particles have been
smeared out by molecular diffusion with fluid particles coming from different
regions, that were bearing different concentration levels in the inflow. As
this definition depends on the distribution of dye and inhomogeneities in
the inflow, one may require for more generality that a fluid particle diffuses
with other fluid particles that enter the mixing region at a different period
of rotation of the rods.

How does an open-flow mixer such as the device in Fig. 16 achieve the
diffusion-induced smearing of different dye concentration levels that is visible
in Fig. 16 ¢) and d)? In fluid at rest, the timescale necessary for diffusion to
be efficient at the scale of the reactor width ¢ is /% /k g, with kg the molecu-
lar diffusivity. As kg takes very small values in liquids (1078 — 10719 m?.s~!
in water, and even lower values in more viscous fluids), such timescales are
unrealistic for mixing in industrial large-scale installations. On the other
hand, shears induced by a flow greatly increase the effective diffusivity. A
famous example of this phenomenon is Taylor dispersion (Taylor, 1953). Tay-
lor showed that a Poiseuille flow through a pipe increases molecular diffusion
in the direction of the flow, because the shear increases the rate at which
concentration gradients are smeared out by diffusion. However, this effect of
a simple shear is too weak for most large-scale practical applications, and is
inefficient in the direction transverse to the flow.

Chaotic advection achieves a more efficient enhancement of diffusion. The
effect of chaotic advection on a patch of a diffusive dye is sketched in Fig. 17.
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Inside the mixing region where chaotic advection is at play, a patch of dye is
elongated into filaments that get thinner and thinner with time as they are
stretched more and more. After a short while, filaments reach the so-called
Batchelor scale of the flow (Batchelor, 1959), at which diffusion starts to be
efficient. The value of the Batchelor scale is given by

Rdiff

N
with A the Lyapunov exponent introduced before, which is the mean stretch-
ing rate inside the mixing region. Dark and white filaments therefore start
to diffuse into neighbouring filaments as it is sketched in Fig. 17, and concen-
tration gradients are smeared out. The Batchelor scale corresponds to the
scale at which the effects of diffusion and stretching balance, (Villermaux and
Duplat, 2003) so that the width of dye filaments is stabilised at this scale,
whereas they are smeared out with other filaments that are compressed into
the same “box” of width the Batchelor scale (Fig. 17). The Batchelor scale is
therefore a diffusive cut-off scale, which is the smallest length scale that can
be observed in mixing patterns. This scale corresponds to the width of the
thinnest filaments in Fig. 16 b-d.

With this understanding of the interplay between diffusion and chaotic
advection, the definition of good mixing can now be specified as follows: a
patch of dye is well mixed if it stretched enough by chaotic advection so that
all the resulting filaments reach the Batchelor scale and are smeared out by
diffusion (as in Fig. 17).

The above definition of good mixing applies for mixing in closed flows
as well. In open flows, however, an additional challenge comes from the
transient nature to chaotic advection, and the variety of residence times of
fluid particles in the mixing region. In a closed vessel, all fluid particles stay
inside the vessel for the whole duration of the mixing step. In an open-flow
device such as in Fig. 16, fluid is constantly flowing out of the vicinity of the
rods, due to the conservation of flow rate. Some of the escaping fluid has only
spent a short while in the mixing region, because chaotic advection shuffles
rapidly an incoming patch of dye onto the whole mixing region, including the
part close to the outflow that goes with the main flow. This results in the
dark dye filaments in Fig. 16 b), that have escaped shortly after their arrival
in the mixing region and were not stretched enough to reach the Batchelor
scale: mixing is therefore inefficient for such filaments with short residence
times. On the other hand, fluid particles that stay for a longer time in the

wp = (15)
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mixing region, as in Fig. 16 c¢) and d), are given enough time to reach the
Batchelor scale and to diffuse with other concentration levels. Therefore, any
measure of the efficiency of mixing of an open-flow protocol must focus on
the fraction of fluid particles that escape the mixing region before they reach
the Batchelor scale, like in Fig. 16 b); of course, this fraction should be as
small as possible for a good quality of mixing.

6.2. The geometry of dye mizing in open flows: chaotic saddle and strange
etgenmode

We have shown above that qualifying the mixing efficiency of an open-flow
device imposes a distinction between short and long residence times, more
precisely between weak and strong stretching, the limit being the stretching
necessary for a patch of fluid to reach the Batchelor scale and diffuse. The
organisation of the pattern of dye filaments and the transport in and out
of the mixing region, including ill-mixed filaments, stems in fact from the
geometry of the manifolds of the chaotic saddle, that were introduced in
Sec. 3.

Fluid particles that are close to the stable manifold of the chaotic sad-
dle approach the orbits of the chaotic saddle and shadow during some time
their periodic trajectory. In a mixing experiment such as in Fig. 16, a few
periods after the patch of dye entered the mixing region, only particles that
were initially very close to the stable manifold of the chaotic saddle remain
inside the mixing region. Therefore, the long-time dye filamentary pattern
traces out the unstable manifold of the chaotic saddle, as in Fig. 16 (c¢) and
(d). This mechanism was also sketched in Fig. 8 for a non-diffusive droplet.
Nevertheless, the unstable manifold is a fractal one-dimensional set of zero
measure, that is self-similar at all scales. Here, because of diffusion, grey fil-
aments lie on the unstable manifold thickened to a width the Batchelor scale,
which is the smallest length scale that can be observed in the pattern. Hence,
the support of the dye is always this same set at long residence times. More-
over, we have shown in (Gouillart et al., 2009) that not only the support of
the dye, but also the whole dye concentration field C(x,t), repeats perfectly
over time, as in Fig. 16 (c¢) and (d). Only the global contrast of the pattern
changes with time, because of the main flow that takes away a fraction of
the fluid inside the mixing region at each stirring period.

C(x,t) = (C)(t) x C(x) (16)
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Figure 18: Typical evolution of the dye concentration mean and standard
deviation for an open-flow protocol, inside the mixing region (MR, black
symbols) and in the outflow (DS, grey symbols). Both moments of the con-
centration field have an exponential evolution with the same exponent after a
short initial transient, because the dye concentration field takes a permanent
form (Eq. (17)).
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Self-similar concentration patterns that repeat over time are observed in
closed flows as well, where they have been termed strange eigenmodes (Pier-
rehumbert, 1994), because they correspond to the slowest eigenmode (ex-
cept for the first trivial eigenmode, that is uniform) of the Perron-Frobenius
advection-diffusion operator. Here, the permanent concentration pattern can
be interpreted as well as an eigenmode of the advection-diffusion operator.
Contrary to closed flows, the mean concentration inside the mixing region is
not conserved because of the open flow. The time evolution of the open-flow
eigenmode describes therefore the decay of the mean concentration of dye
inside the mixing region:

C(x,t) = Oy exp(—kt)C(x), (17)

where k is the escape rate that appears in the Grassberger-Kantz relation
(12). However, x characterises likewise the decay of all moments of the con-
centration field, as shown in Fig. 18 for the evolution of the mean (C) and
the standard deviation o(C') of the concentration field. When measured in-
side the mixing region or in the outflow region, both quantities follow an
exponential decay with the same decay rate, as imposed by Eq. (17). The
constant ratio o(C)/(C') is a measure of the normalised intensity of fluctua-
tions inside the eigenmode pattern; this quantity can be used for defining a
relevant measure of mixing efficiency, as we shall see later.

As the support of the strange eigenmode shadows the unstable manifold
of the chaotic saddle, its concentration field also takes the fractal structure
that was described in Section 3. In particular, holes in the support of the
eigenmode (see Fig. 16 (c)) have a large variety of widths (the smallest pos-
sible width being the Batchelor scale). These holes do not contain any orbit
of the chaotic saddle, neither portions of its unstable manifold. They corre-
spond to the iterates of patches of fluid that entered the mixing region a short
while ago: the larger the width, the more recent the entry time, as stretching
by chaotic advection reduces the width of such patches. Fluid located in
such holes, be it a patch of dyed or dye-less fluid, either ends up being com-
pressed onto the unstable manifold fattened at a scale wg if it stays in the
mixing region for a sufficient time, or leaves the mixing region without having
diffused with patches of fluid that entered the mixing region at a different
time. In the outflow, the holes in the long-time permanent pattern therefore
correspond to locations of ill-mixed fluid (no matter the composition of the
inflow), while grey filaments correspond to well-mixed fluid.
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The fraction of well-mixed fluid may therefore be determined by mea-
suring the fraction A of the outflow occupied by the support of the strange
eigenmode, that is by the unstable manifold fattened by diffusion. In Fig. 6
(c) for example, the value of the well-mixed fraction for the blinking vortex-
sink flow is given by the fraction of the circle that leaves the mixing region
at each half-period, that is occupied by the unstable manifold thickened to a
finite diffusive width. In the channel rod-mixer of Fig. 16 (c), the well-mixed
fraction is given in the same way by the fraction of the outflow pattern cov-
ered by grey filaments. In the inflow, fluid particles that will be well mixed
are found within a distance wg of the stable manifold. This is the uncer-
tain region described in Section 4.3, with an uncertainty distance given by
the diffusive length wg, and the unpredictability of trajectories that ensures
good mixing for such fluid particles.

One should not measure the dye coverage inside the mixing region to
compute the value of the well-mixed fraction, because in the mixing region
some of the fluid inside the holes of the strange eigenmode pattern stays there
for a time long enough to reach the Batchelor scale and be incorporated onto
the strange eigenmode support. As a fraction of the mixing region is taken
away to the outflow at each period (as the circle in Fig. 6 (¢), or the upper part
of the mixing region in Fig. 16 (c)), there is nevertheless a strong correlation
between the long-time dye coverage inside the mixing region and the dye
coverage in the outflow, that is, the well-mixed fraction. The strength of
the correlation depends of the geometry of transport inside and out of the
mixing region, that determines whether fluid in the largest holes leaves the
mixing region before, after, or at the average residence time. In the same
way, the fractal dimension of the unstable manifold that was introduced in
Section 4 is correlated to the well-mixed fraction, as it measures the coverage
of space by the unstable manifold; however, the large-scale organisation of
the pattern and the sizes of its largest holes are not exactly characterised by
the fractal dimension, which is defined at the small-scale limit.

An extreme counter-example of the correlation between the strength of
mixing inside the mixing region and in the outflow is shown in Fig. 19. For
this mixing experiment, the sense of rotation of the rods has been reversed
compared with Fig. 16, while the direction of the main flow has been kept the
same. Here, the motion of the rods accelerates fluid along the walls, so that
an important fraction of the fluid never enters the mixing region and is not
stretched by chaotic advection. We observe indeed on the long-time pattern
(that is, the eigenmode pattern) in Fig. 19 that the unstable manifold covers
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Figure 19: (a) Long-time dye pattern (strange eigenmode) for an open-flow
protocol where rods accelerate fluid along the channel walls. Despite good
mixing around the chaotic saddle, only a central strip of the outflow is well
mixed, whereas fluid on the channel sides is not mixed at all. (b) Contrary
to intuition, the quality of mixing decreases when the stirring frequency is
increased, because the acceleration of fluid along the sides is enhanced. (c)
Example of a patch of dye that crosses the channel without being mixed,
because its initial position did not intersect the stable manifold of the chaotic
saddle.

less than half the width of the channel — fluid flowing on the sides of the
channel is hardly mixed at all. On the other hand, mixing inside the mixing
region is very good, as the mixing region is covered very densely by dye
filaments, with only a few thin holes. Measures of mixing should therefore
be taken always in the outflow.

6.3. The eigenmode index as a measure of mixing efficiency

The knowledge gained on the link between the eigenmode and the different
possible fates of fluid particles can now be used to derive a measure of mixing
quality in open flows, that was dubbed eigenmode indez in previous work
(Gouillart et al., 2011). We have mentioned earlier that the fraction of the
outflow A occupied by the support of the eigenmode is a direct measure
of the fraction of fluid particles stretched to the Batchelor scale, and can
therefore be used as a direct measure of mixing quality. In practice, this
measure requires a hard threshold of the concentration value, and is therefore
not a very robust one. The eigenmode index osg defined below overcomes
this problem, since it uses only the two first moments of the concentration
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with Cgsg(x) the concentration field of the eigenmode. ogp and A are ap-

proximately related by
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osk goes from zero for perfect mixing, to infinity for no mixing at all. As the
definition of ogg uses only the eigenmode pattern, ogg does not depend on
the position or size of an initial blob used for a mixing experiment (as long as
the blob intersects the stable manifold of the chaotic saddle, so that the dye
pattern traces out the strange eigenmode at long times — unlike the blob in
Fig. 19 c), for example). For a fixed protocol of dye injection, it was shown
in (Gouillart et al., 2011) that the eigenmode index is related to the intensity
of segregation of chemical engineering (Danckwerts, 1952, 1953), a measure
of mixing that compares the intensity of fluctuations in the outflow and in
the inflow. The eigenmode index is nevertheless a more generic measure, as
it does not depend on a specific inflow condition.

In theory, the eigenmode index can be measured from the concentration
pattern in the outflow at any time after the Batchelor scale has been reached
for all dye filaments that enter the outflow. In practice, it should be measured
shortly after this diffusion time in order to keep a signal to noise ratio as high
as possible, noise being inevitably present in any experiment. If possible, the
contribution of noise (Gaussian white noise from the camera, bubbles or dust
flowing with the fluid, etc.) to the standard deviation should be estimated,
and removed from the measure of the standard deviation for the computation
of osg. Also, osg should be estimated on a region of the fluid that flows out
of the mixing region during a single stirring period.

6.4. Qualitative trends in mizing efficiency

Let us now examine shortly the influence of a few physical parameters
that control the efficiency of mixing.

First of all, Fig. 19 illustrates that the large-scale geometry of the flow is
of paramount importance (here, only reverting the sense of rotation of the
rods decreases greatly the efficiency of mixing). Bypasses around the mixing
region should be avoided, as it is necessary that a particle passes close to an
orbit of the chaotic saddle (if possible, at a distance less than the Batchelor
scale) for being well mixed.
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Figure 20: Mixing patterns at different stirring frequencies (f = 1, 2, 4, 8
rpm). The dye-coverage of the outflow increases with the stirring frequency.
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Figure 21: Eigenmode index osg measured at different stirring frequencies
f for the rod-stirring protocol of Fig. 16 (circles). osp is plotted against an
approximate measure of the mean number of stirring periods N spent by a
fluid particle inside the mixing region. N is computed from the extent of
the trajectory of the rods d, and the mean velocity of the fluid U in the
main flow. The eigenmode index increases when the average residence time
increases, since a greater fraction of the fluid reaches the Batchelor scale.
Nevertheless, the geometry of the flow is also an important factor for the
value of the eigenmode index, as shown by the high value (black triangle) of
osg when the direction of rotation of the rods is reversed (cf. Fig. 19)

Another important factor than can be easily tuned in an industrial setup
is the average time of residency inside the mixing region. The mean number of
stirring periods spent by a fluid particle inside the mixing region is controlled
by the average velocity of the main flow U, the spatial extent of the mixing
region d, and the stirring frequency f:

_df
-2

Increasing the average residence time inside the mixing region increases the
fraction of fluid particles that are smeared by diffusion. We see indeed in
Fig. 20 that the coverage of the outflow by the eigenmode (hence the efficiency
of mixing) increases with the stirring frequency. This trend can be quantified
by computing the eigenmode index, as shown in Fig. 21.

N (20)

Slow stretching arising from non-hyperbolicity: elliptical islands and no-slip
walls. Chaotic advection occurs in the vicinity of the orbits of the chaotic
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saddle, that cause exponential stretching of fluid particles. Nevertheless, for
some protocols the dynamics of stretching are slower than exponential in a
part of the mixing region, because of a non-hyperbolic chaotic saddle. A first
case corresponds to KAM islands (see Section 5), that are segregated regions
inside which fluid moves on regular trajectories and never escapes to the
outflow, but for the weak action of diffusion only. KAM islands are observed
in Fig. 22 (a-b) (one of them is pointed at by the red arrow in Fig. 22 a)),
as small regions of dye-less fluid where dye never penetrates throughout the
whole experiment. This is because fluid cannot cross the boundary between
the chaotic region, and the islands. In Fig. 22 (a-b), we observe the stickiness
of KAM islands that was illustrated in Section 5. The stickiness is shown by
the dark dye filaments around the islands, that have been much less mixed
with dye-less fluid than in the remainder of the chaotic region. At very long
times (Fig. 22 (b)), the only visible fluctuations of the dye pattern are found
around the sticky islands. Nevertheless, even if unmixed fluid stays around
the islands, fluid particles are stretched to very fine filaments when they leave
the vicinity of the islands, because the escape rate out of these regions is very
weak. In Fig. 22 (b), dye filaments bear a high concentration level around
the islands, yet no significant concentration fluctuation due to the escape of
dye out of this region can be seen in the outflow. Elliptical islands therefore
are only a minor issue in open flows.

A second case of non-hyperbolicity is shown in Fig. 22 ¢). When the
rods pass close to the channel walls and the velocity of the main flow is small
compared to the velocity of the rods, no fluid flows through the mixing region
along the channel walls. The mixing region therefore extends to the walls of
the channel, and the separation between the inflow and the mixing region is
marked by two separation points on the channel walls (see Fig. 22 ¢)), and
their unstable manifold. These separation points are parabolic points, which
is a degenerate case, between hyperbolic orbits and elliptic KAM islands.
Because of the fixed walls and the no-slip boundary condition, the stretching
of fluid is very slow in the neighbourhood of the walls inside the mixing
region. As a result, after a given time dye filaments have been much less
mixed with dye-less fluid near the wall than in the bulk of the mixing region,
as can be shown by the greater contrast of dye filaments near the wall (Fig. 22
c)). In closed flows, many authors (Chertkov and Lebedev, 2003; Gouillart
et al., 2007, 2008; Salman and Haynes, 2007; Popovych et al., 2007; Boffetta
et al., 2009) have shown that slow stretching at the wall has a dramatic effect
on the rate of mixing. This is observed even in the bulk of the mixing region,
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because poorly-mixed fluid from the wall region periodically leaves the wall
to be advected in the remainder of the chaotic region; in closed flows, it
has therefore been argued that mixing can be more efficient if the chaotic
region is insulated from the wall by a thin non-chaotic region (Gouillart et al.,
2010). In open flows, however, the effect of walls is less dramatic, because
even if poorly-mixed fluid is stored close to the walls, filaments that escape
the vicinity of the wall do not flow directly to the outflow, but rather spend
a few periods stretched inside the chaotic mixing region, exactly in the same
way as other fluid particles that do not visit the vicinity of the walls. The
main effect of walls is to reduce slightly the average value of stretching of the
mixing region. Walls, therefore, may be considered as a slight inconvenience,
but not as a primary cause of poor mixing in open flows, as they are in closed
flows.

Note that regions with very long residence times are nevertheless an im-
portant drawback if almost stagnant patches of fluid evolve in an undesired
way for long times (for example as a result of chemical evolution, or rheolog-
ical evolution as for thixotropic fluids). A mixing region with more homoge-
neous stretching should be preferred for such cases.

Non-hyperbolic regions of anomalously slow (non-exponential) stretching
also prevent the existence of a true concentration eigenmode, since fluid does
not escape such regions at the same rate as for the remainder of the mixing
region. Therefore, dye stays trapped there for longer times. For intermedi-
ate times, an almost invariant pattern is observed once dye filaments have
reached the Batchelor scale in the bulk of the mixing region (Fig. 22 a) or ¢))
where stretching is exponential. At longer times however, the contrast of the
dye pattern is localised on the regions of slow stretching (Fig. 22 b)). It has
been observed indeed that concentration patterns do not converge on a per-
manent pattern in such cases, hence that the evolution of the concentration
mean and standard deviation in the outflow do not obey exactly the same
exponential law (Gouillart et al., 2009). For such protocols, the eigenmode
index should be computed only at the intermediate times, where the main
contribution to the standard deviation comes from the contrast between dye
filaments of the bulk, and white holes of unmixed fluid.

In conclusion, good mixing, which is the stretching of fluid particles down
to the Batchelor diffusion scale, is a difficult task in open flows because of
the transient stay of fluid particles inside the mixing regions. While fluid
particles with short residence times are often insufficiently mixed, fluid par-
ticles with long residence times are mixed much more than necessary. The
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Figure 22: Mixing patterns with non-hyperbolic zones. (a) KAM islands
(red arrows) are patches of fluid that stay forever inside the mixing region.
Dye therefore never enters the islands. Islands have a “sticky” boundary
where stretching is very low (hence the greater intensity of the dye) and
dye is trapped for longer times than in the remainder of the mixing region.
(b) At very long times after the entry of a blob of dye, dye is found only
around the elliptical islands. (c¢) When the flow of the stirrers takes over
the effect of the main channel flow near the walls of the channel, the mixing
regions extends to the channel walls. Two parabolic separation points (red
circles) and their unstable manifolds (red lines) define the limit between the
inflow and the mixing region. Because of the no-slip condition, fluid particles
close to the walls stay for long times inside the mixing region being hardly
stretched. Therefore, unmixed fluid is stored near the walls and reinjected
along the unstable manifold of the se]aaration points, as shown by the darker
filaments.



support of the eigenmode pattern, which is the unstable manifold of the
chaotic saddle fattened at the diffusion scale, traces out the region where
fluid is well-mixed, while its complementary corresponds to ill-mixed fluid.
The normalised standard deviation of the eigenmode is therefore a relevant
measure of mixing efficiency, called the eigenmode index.

7. Chaotic advection in the ocean: plankton dynamics

An important application of chaotic advection in open flows is the study of
the interplay between mesoscale hydrodynamic motion and the distribution
of marine organisms like phytoplankton and zooplankton. Since the semi-
nal paper by Abraham (Abraham, 1998) this biological-physical interaction
has been addressed in various studies (Mann and Lazier, 1991; Denman and
Gargett, 1995; Peters and Marrasé, 2000; Karolyi et al., 2000; Lopez et al.,
2001a; Martin et al., 2002; Tél et al., 2005; Sandulescu et al., 2008). Several
different aspects of plankton growth have been discussed, such as the emer-
gence of sustainable plankton blooms (Hernandez-Garcia and Lopez, 2004),
localised plankton blooms in vortices (Sandulescu et al., 2007), the coexis-
tence (Scheuring et al., 2003) and dominance (Bastine and Feudel, 2010) of
species.

One of the major requirements for the growth of phytoplankton in the
world’s oceans is the availability of nutrients which is strongly dependent on
the flow patterns in the oceans. Hence, the essential factors controlling the
primary production, i.e. the growth of plankton, are horizontal and vertical
transport, of nutrients. Horizontal transport is influenced by the mesoscale
hydrodynamic flow structures such as vortices and jet currents, while verti-
cal transport is often related to coastal upwelling. The latter occurs usually
when wind-driven currents, in combination with the Coriolis force, produces
Ekman transport, by which surface waters are driven away from the coast
and are replaced by nutrient-rich deep waters. Due to this upwelling the
primary production in these areas is strongly enhanced, giving rise also to an
increase of zooplankton and fish populations. Horizontal transport, mixing
and stirring and its impact on plankton blooms has been investigated in sev-
eral studies (Abraham, 1998; Lopez et al., 2001b; Hernandez-Garcia et al.,
2002, 2003; Martin, 2003). On the one hand, horizontal stirring by mesoscale
structures like vortices and jets is responsible for the redistribution of plank-
ton and nutrients and may therefore enhance primary production. On the
other hand, horizontal transport can even cause the emergence of phytoplank-
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ton blooms (Karolyi et al., 2000). Furthermore, it influences competition and
coexistence of different plankton species (Bracco et al., 2000).

The basic equations which govern the dynamics of plankton in the ocean
contain three processes: (i) reactions modelling the biological growth of
species, (ii) advection describing the advection of species by the flow, and
(iii) diffusion accounting for the small scale turbulence not taken explicitly
into account by the velocity field. The governing equations are reaction-
diffusion-advection equations, which in case of a simple food chain model for
the marine ecosystem consist of three equations for nutrients /N, phytoplank-
ton P and zooplankton Z:

88—];]+1J~VN — Fy+ DAN
%—1;+U~VP — Fp+DAP (21)
%—fﬂ-vp — Fy+ DAZ.

To study the biological-physical interactions different models for the growth
of the species Fy, Fp, F'7 and different velocity fields v have been used. The
plankton dynamics include models which describe the plankton in terms of
excitable systems (Truscott and Brindley, 1994; Neufeld et al., 2002) as well
as of systems capable of exhibiting steady state and oscillatory behaviour
(Edwards and Brindley, 1996). The velocity fields are either given by sim-
ple two-dimensional kinematic flows (Hernandez-Garcia and Lopez, 2004) or
in more realistic studies by ocean circulation models (Pasquero et al., 2004;
Bracco et al., 2000). The diffusion term describes eddy diffusion, hence, all
diffusion constants have the same value. Equations (21) are solved numeri-
cally by a semi-Lagrangian algorithm. That means, that the three processes,
advection, reaction and diffusion, are performed sequentially. While the bi-
ological growth terms are treated as concentration changes on an Eulerian
grid, the advection of fluid parcels is computed in a Lagrangian frame. The
advantage of this procedure is that filamentary structures which are impor-
tant features of chaotic advection of tracers, as pointed out in Sec. 4.2, can
be resolved in a better way. For a detailed description of the integration
scheme see (Sandulescu et al., 2008).

In the following we will discuss only one example for the biological and
hydrodynamical models in order to demonstrate how the concept of chaotic
advection can be used to explain the emergence of phytoplankton patterns
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as they are observed in satellite pictures. The filamentary and vortex-like
structures seen in satellite observations can be largely explained as imprints of
mesoscale hydrodynamical structures which enhance the emergence of plank-
ton blooms. Particularly, we will highlight the role of the chaotic saddle,
which as we have pointed out, is the most important feature of the mixing
region in open flows (see Sec. 3).

The mixing regions in oceanic flows are characterised by mesoscale hy-
drodynamic structures. To study the impact of these mesoscale structures on
plankton growth various kinematic models for the flow have been considered
in literature. In general, only two-dimensional horizontal flow patterns have
been studied so that the velocity field can be described by a stream function.
This approach can be justified by the argument that vertical velocities in the
ocean are often one order of magnitude smaller than the horizontal ones. Two
paradigmatic models have been used to study the interplay between plank-
ton dynamics and hydrodynamic flows: (i) the blinking vortex flow (Neufeld
et al., 2002) depicted in Fig. 9, and (ii) the flow in the wake of an island
(Jung et al., 1993), similar to the channel flow shown in Fig. 5. Both flows
are periodically forced to ensure chaotic advection of passive tracers, as we
have discussed in the previous sections. Each of them focuses on particular
properties of a real flow. While (i) introduces a temporarily changing mixing
region, (ii) mimics the dynamics of a von Karman vortex street in the wake
of an obstacle, which in geophysical flows can be considered as an island
located in an ocean current.

Since the blinking vortex (i) flow is very idealised, only the flow in the
wake of an island (ii) is discussed here in detail: The island is modelled as a
cylinder located in a horizontal background flow. In the wake of this cylinder
a von Karman vortex street (cf. Fig.23) appears which is phenomenologically
described by the following stream function ¥ (Jung et al., 1993):

U(z,y,t) = f(z,y)9(x,y,1). (22)

The first factor f(x,y) ensures the correct boundary conditions at the
cylinder, whereas the second factor g(x,y,t) models the vortices in the wake,
the background flow, and the Ekman flow:

g([L‘, Y, t) = whl(t)gl (l’, Y, t) + wh?(t)QQ(xa Y, t) + UOS(:Ea y)y + uE@("L‘ - 1)1‘

(23)
The vortices in the wake detach periodically from the island and their vor-
ticity is of opposite sign. Their maximum vortex strengths denoted by w
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Figure 23: Sketch of the flow in the wake of an island. The upper border of
the picture denotes the coastline.

are equal, and their shape is described by the functions g;(i = 1,2) (see de-
tails in (Sandulescu et al., 2006)). Each vortex travels along the x direction
for a time T, before it disappears due to dissipation. The background flow
moves in the same direction with a speed ug. The factor s(x,y) describes
the shielding of the background flow by the cylinder in a phenomenological
manner. The Ekman drift, which is intended to model the flow from the
coast towards the ocean interior, is introduced by considering an additional
velocity of constant strength ug in the y direction which is perpendicular to
the background flow and which is acting only at x coordinates larger than 1,
i.e. just behind the island. This corresponds to a stream crossing the vortex
street towards negative y values beyond the cylinder.

The velocity components in z and y direction are then given by Eqgs. (8),
(22) and (23). The parametrisation of the model has been chosen in such a
way that the hydrodynamic flow mimics the flow patterns around the Canary
islands (Aristegui et al., 1997, 2004; Sandulescu et al., 2006).

From the large variety of marine ecosystem models we use a simple food
chain to illustrate the interplay between hydrodynamic motion and biological
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growth. This model system is based on a three component model developed
by Steele & Henderson (Steele and Henderson, 1992) and later modified by
Edwards & Brindley (Edwards and Brindley, 1996) Pasquero et al. (Pasquero
et al., 2004) and Oschlies & Garcon (Oschlies and Garcon, 1999). The marine
model ecosystem contains three different trophic levels, namely nutrients IV,
phytoplankton P and zooplankton Z, whose concentrations evolve in time.
The biological processes taken into account can be modelled as:

dN . .
v upwelling — uptake + recycling
dP . .
i uptake — grazing — mortality
az . .

il grazing — mortality.

Expressed in mathematical terms this reads:

dN N anpP? 9
— = =0y — P 1l—vy)———Z2 P Z

dt N N ﬁkN‘i‘N + N ( ’Y)a_'_npg + ppl + [

dP N anP?

— = Fp= — Z — upP 24
i P BkN—l—N atnp? Kp (24)
dz anpP? 9

— = =7 —uZ".

dt g ’Yoz+77P2 a

To provide some insight into the biological model we briefly discuss the
meaning of the different terms in the model equations. For details we re-
fer to (Oschlies and Garcon, 1999; Pasquero et al., 2004). The dynamics of
the nutrients is determined by three processes, namely nutrient supply due
to vertical mixing ® 5, consumption by phytoplankton P, and recycling by
bacteria which are not explicitly taken into account as species in this model.
Vertical mixing which brings nutrients from deeper nutrient-rich layers of
the ocean into the mixed layer is parametrised in the biological model us-
ing the function ® 5, which depends on the abundance of nutrients N. This
parametrisation is necessary because the two-dimensional hydrodynamical
model takes only horizontal transport of nutrients into account. The uptake
of nutrients by phytoplankton is described by a function which contains a
saturation effect when nutrients are highly abundant. The recycling of nutri-
ents from organic material (dead phytoplankton and zooplankton, exudates
from zooplankton) is modelled by the term in brackets.
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The term describing the uptake of nutrients repeats as a growth term in
the dynamical equation for phytoplankton P. Phytoplankton is diminished
due to grazing by zooplankton and due to natural mortality.

Again the grazing term in the phytoplankton equation shows up as the
growth term in the dynamical equation for the zooplankton Z, together with
the conversion factor 7, which accounts for the fact that not all consumed
phytoplankton are converted into biomass of zooplankton. The natural mor-
tality of zooplankton is assumed to be quadratic because this term does
not only model natural mortality but also the existence of higher predators
which are not explicitly considered (Edwards and Bees, 2001). The param-
eters used in this model are taken from (Pasquero et al., 2004) and account
for a situation in the open ocean.

Coupling the biological and the hydrodynamical model demonstrates how
the concepts of chaotic advection can be used to contribute to the under-
standing of biogeochemical processes in the ocean. This simple conceptual
model provides some insight into the mechanism of the interplay of mesoscale
hydrodynamic structures, in this cases the vortices behind the island, and
the biological growth of plankton species in the region of the vortex street.
Depending on the concentrations of nutrients and plankton in the inflow into
the area around the island one can distinguish two scenarios: (i) If the inflow
of nutrients and plankton is rather high corresponding to a eutrophic ocean
one observes an enhanced plankton growth in areas related to a large up-
welling of nutrients (cf. Fig.24). Nutrients are entrained from the localised
upwelling region where more nutrients are available due to higher vertical
mixing rates and lead to enhanced plankton growth in this nutrient plume.
This plankton bloom is essentially found in the exterior of the vortices. (ii)
If the inflow of nutrients and plankton is rather low corresponding to an
oligotrophic ocean the opposite behaviour is obtained. Instead of a plank-
ton bloom surrounding the vortices one observes a localised plankton bloom
within a vortex (cf. Fig.25). This rather different scenario which can be also
observed in satellite pictures results from an intricate interplay between the
time scales of the hydrodynamic and biological processes involved. Nutrients
and plankton are entrained into the vortices in which the exchange of wa-
ter with its surroundings is rather low. Hence, the plankton is confined to
the vortex for a rather long time leading to an enhanced biological growth
within the vortex. This way the vortex acts like an incubator for a plankton
bloom. To unravel the mechanism how the nutrients and the plankton are
transported into the vortex it is useful to study the details of the chaotic
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Figure 24: Snapshot of the phytoplankton concentration in the wake of an
island with high inflow concentrations from the surrounding ocean. Con-

centrations from low to high are denoted by colours from blue via green to
red.

advection of tracers in the flow Eqgs. (8), (22) and (23).

Jung et al. (Jung et al., 1993) have shown that there exists a chaotic
saddle in between the island and the vortex street. As pointed out in Sec.
3, a chaotic saddle is an unstable invariant chaotic set possessing stable
and unstable manifolds in a similar way as fixed point or periodic orbits
of saddle type. Tracers in the neighbourhood of the stable manifolds move
towards the chaotic saddle while tracers close to the chaotic saddle leave
its neighbourhood along its unstable manifolds. Hence this chaotic saddle
embedded in the flow can be considered as a “bridge” between the island
and the vortex. Nutrients and plankton are transported along the stable
manifolds from the vicinity of the island towards the chaotic saddle and
from there into the vortex along its unstable manifolds. The chaotic saddle
builds the backbone of transport between the immediate neighbourhood of
the island and the interior of the vortex.

The transport of tracers along this path can be visualised using a concept
from nonlinear dynamics, namely finite-size Lyapunov exponents (FSLE).
This method has been proven to be very useful to investigate transport
in open flows and illuminates the mechanism of the emergence of localised
plankton blooms. The FSLEs allow for a characterisation of dispersion pro-
cesses and for the detection of Lagrangian structures, such as barriers and
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Figure 25: Snapshot of the phytoplankton concentration in the wake of an
island with low inflow concentrations from the surrounding ocean. Concen-
trations from low to high are denoted by colours from blue via green to red.

vortices. Therefore the algorithm of their computation is briefly sketched in
the following.

In dynamical systems theory the exponential divergence of initially nearby
trajectories is in general measured by the computation of Lyapunov expo-
nents. In order to adjust this concept to local processes in open flows, one
computes finite size Lyapunov exponents (FSLE) which are based on the idea
that one calculates the time which is necessary to reach a final prescribed
distance d; starting from an initial distance dy (Artale et al., 1997; d’Ovidio
et al., 2004). The FSLE are computed by starting two tracers in the flow at
time t close to the point x but at a small distance §y, and let them evolve
until their separation exceeds ;. From the elapsed time, 71, the FSLE is
calculated as

1. o
Ay (x,t,00,07) = —log — (25)
T+ do

The positive subscripts indicate that the tracers are advected forward in
time, while for the negative subscript they are advected backward in time.
Az is a scalar measure for the stretching/contracting rate in the flow given by
the inverse of the separation time 7. Maxima in the spatial distribution of
A, the positive or expanding FSLE, approximate the underlying stable man-
ifold of the chaotic flow (Joseph and Legras, 2002; d’Ovidio et al., 2004), the
direction along which tracers approach the saddle. The contracting FSLE,
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Figure 26: Snapshot of the stable (red) and unstable (blue) manifolds in the
wake of the island.

A_, detects the underlying unstable manifold in the flow, the direction along
which tracers leave the saddle. The stable and unstable manifolds are inter-
twined around the vortex cores and at the island (Fig. 26). Their complex
structure allows for transport of tracers across the vortex street as well as
of nutrients and plankton into the interior of the vortex. The results of this
approach reveal one possible mechanism for the emergence of localised plank-
ton blooms which can be observed by satellite in many different areas around
the globe.

8. Summary

The transient nature of chaotic advection in open flows results in partial
mixing organised around persistent (non-space-filling) fractal patterns in the
mixing region. These fractal structures are caused by the presence of the
chaotic saddle in the mixing region, and the invariant manifolds associated
with the chaotic saddle govern the dynamics of the system. The chaotic
saddle is felt not only in pure advection, but also in the case of transported
scalars subject to molecular diffusion; the strange eigenmode which appears
in the asymptotic dynamics of the scalar concentration shadows the unstable
manifold for low diffusion. The chaotic saddle and its unstable manifold
are also the key to understanding the dynamics of chemical and biological
processes in fluids, as most of the reactions take place in the vicinity of
the unstable manifold. In conclusion, the concept of the chaotic saddle is
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the unifying principle behind the theoretical and experimental approaches to
phenomena related to chaotic advection.
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