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Mixing and 
haos in open �owsAlessandro Mouraa,∗, Ulrike Feudelb, Emmanuelle Gouillart
aInstitute of Complex Systems and Mathemati
al Biology, King's College, University ofAberdeen, Aberdeen AB24 3UE, UKbInstitut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität, PF 2503,D-26111 Oldenburg, Germany
Surfa
e du Verre et Interfa
es, UMR 125 CNRS/Saint-Gobain, 93303 Aubervilliers,Fran
eAbstra
tWe review the theory and experimental knowledge of mixing in open �owsdisplaying 
haoti
 adve
tion, from a point of view of dynami
al systems the-ory. We show that the 
haoti
 saddle and its stable and unstable manifolds
onstitute the skeleton around whi
h the dynami
s are organised, and thattheir fra
tal properties govern adve
tion and mixing in open �ows. The ef-fe
ts of KAM islands on the mixing is examined, as well as the interplaybetween mole
ular di�usion and 
haoti
 adve
tion. We dis
uss what theappropriate de�nition of mixing is in pra
ti
al situations, and present ex-periments motivated by industrial appli
ations to ba
k these dis
ussions.We also dis
uss appli
ations of these 
on
epts to plankton dynami
s in theo
eans.Keywords: Chaoti
 adve
tion, Open �ows, Mixing1. Introdu
tionWhen one thinks of mixing, the image most likely to 
ome to mind isthat of a liquid being stirred in a 
losed 
ontainer. This is indeed a veryimportant s
enario, whi
h has been the fo
us of most studies on the dy-nami
s of mixing sin
e Aref's pioneering work (Aref, 1984). That landmarkwork and those whi
h followed have established that stirring 
an give riseto 
haoti
 adve
tion, whi
h results in the 
ontinuous stret
hing and folding
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of any given portion of the �uid. This 
haoti
 dynami
s 
auses any blob of�uid to be qui
kly deformed into a �lamentary shape with very thin �lamentsspreading all over the 
ontainer (see Fig. 1). As the stirring 
ontinues, the�laments be
ome denser and denser in spa
e as their total length in
reases,until mole
ular di�usion mixes them homogeneously into the ba
kground.This homogeneous mixing is the dire
t result of the fa
t that the 
ontaineris 
losed: the �laments are 
ontinuously stret
hed, and having nowhere elseto go, they end up �lling the entire spa
e in the 
ontainer.

Figure 1: Shape of a dye droplet after stirring on the surfa
e of a thin layer ofgly
erol in a Petri dish. Experiment 
arried out by I.M. Jánosi, K.G. Szabó,T. Tél, and M. Wells at the von Kármán Laboratory of Eötvös University,Budapest. From (Tél et al., 2005).The study of mixing in open �ows � �ows with 
onstant in�ow andout�ow, where �uid is not bound to a region of �nite volume � has been lessthoroughly pursued. But open �ows are extremely important in many areasof s
ien
e and engineering, and problems involving mixing in open �ows are2




ru
ial for many natural and man-made systems. Chaoti
 adve
tion is alsopresent in open �ows, su
h as in the �ow of streams around obsta
les, andin situations where �ow is stirred in the open, without walls restri
ting themotion of the �uid. In open �ows, 
haos takes a di�erent form 
omparedto the 
ase of 
losed �ows (Tél et al., 2005), be
ause typi
al �uid parti
leses
ape any given region of spa
e in a �nite time. There is, however, a setof unstable �trapped� orbits whi
h are bounded within a �nite region andwhi
h never es
ape. These non-es
aping orbits 
onstitute an invariant set ofthe dynami
al system asso
iated with adve
tion � the 
haoti
 saddle. Eventhough the orbits in the 
haoti
 saddle have zero measure in spa
e � that is,the probability that an initial 
ondition 
hosen randomly belongs to one ofthe trapped orbits in the 
haoti
 saddle is zero �, they are very importantfor understanding the dynami
s of open systems, be
ause they determine theasymptoti
 (t → ∞) adve
tion dynami
s. The 
haoti
 saddle has a fra
talgeometry, and this gives rise to 
omplex behaviour of �uid par
els in theirneighbourhood. Fluid parti
les near the 
haoti
 saddle undergo su

essiveepisodes of stret
hing and folding, just as in the 
losed 
ontainer 
ase. Butthe di�eren
e is that the �ow is es
aping as well, and as a result the �lamentsprodu
ed by stret
hing are not spa
e-�lling. The fra
tal stru
tures generatedby the 
haoti
 dynami
s are limited by the out�ow, and the situation ofhomogeneous mixing found in the 
losed 
ase is never rea
hed in open �ows;instead a 
hara
teristi
 pattern of �laments with intri
ate stru
ture re�e
tingtheir underlying fra
tal geometry is formed, as illustrated in Fig. 2, whi
hshows the simulation of passive tra
ers being adve
ted in a human bloodvessel (S
helin et al., 2009, 2010). An experimental example of a dye mixedinto an open �uid, a problem of great industrial interest, whi
h is des
ribedin Se
tion 6.It is 
lear that in an open system the �ow is not mixed in the sense ofthe 
losed 
ase, sin
e some of the �uid es
apes through the out�ow unmixed.But the portions of �uid whose traje
tories bring them 
lose to the 
haoti
saddle are stret
hed and folded many times before they es
ape, and in thoseregions some mixing does take pla
e. In other words, in open �ows there ispartial mixing, due to the transient nature of the dynami
s of open �ows.The importan
e of open �ows for so many areas makes it important tohave a solid understanding of the dynami
s of mixing in those systems. Inthis work, we review the most important results in this area, and present themajor relevant 
on
epts in a uni�ed framework, and we also dis
uss some ofthe most relevant appli
ations of these 
on
epts in physi
s and engineering.3



Figure 2: Simulation the adve
tion of passive tra
ers for a 2D model of ablood vessel with a large aneurysm. The �ow was obtained by solving theNavier-Stokes equation, with realisti
 boundary 
onditions. From (S
helinet al., 2009).The rest of this paper is organised as follows. In Se
tions 2 and 3, we in-trodu
e the 
on
ept of 
haoti
 adve
tion, and dis
uss the role of the 
haoti
saddle and its stable and unstable manifolds for the dynami
s of open �ows.In Se
. 4, we show how fra
tal distributions arise in 
haoti
 open �ows due tothe 
haoti
 saddle, and their 
onsequen
es for the adve
tion dynami
s; andwe introdu
e the 
on
ept of fra
tal dimension as a measure of the sensitivityto initial 
onditions and an indi
ator of strong mixing. In Se
tion 5, thenon-hyperboli
 
ase is examined, and the 
onsequen
es of KAM islands tomixing are explored. Se
tion 6 takes mole
ular di�usion into a

ount, anddis
usses what are the appropriate measures of the e�
ien
y of mixing forreal-world 
ases; the dis
ussion is illustrated with experimental results in the
ontext of industrial mixing. Finally, in Se
tion 7 the appli
ation of these
on
epts to the dynami
s of plankton in the o
ean is presented.2. Example of an open �ow: the blinking vortex-sink systemWe will now introdu
e a very simple open �ow whi
h exhibits 
haoti
adve
tion and is given analyti
ally as a mapping, whi
h means that there isno need to solve Navier-Stokes equations to study and simulate it. We will4



use this �ow to illustrate many of the 
on
epts relevant to 
haos and open�ows in the following.
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Figure 3: Illustration of the blinking-vortex �ow. The sinks are indi
ated bythe bla
k 
ir
les. During the �rst half of a period, the left sink is a
tive and�ow spirals towards it (a), while during the se
ond half half of the period, theleft sink is 
losed and the right sink is open, as shown in (b). This swit
hingfrom on sink to the other is iterated inde�nitely.
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tories 
orresponding to two very 
lose initial 
onditions inthe blinking vortex-sink �ow. From (Tél et al., 2005).The blinking vortex-sink �ow (Aref et al., 1989; Károlyi and Tél, 1997)is a generalisation of Aref's blinking vortex �ow (Aref, 1984). It is a 2Din
ompressible �ow on an in�nite plane, with two sinks whi
h open and 
loseperiodi
ally in alternation: in the �rst half of ea
h 
y
le one sink is open5



and the other one is 
losed, and in the se
ond half the situation is reversed(see Fig. 3). As �uid falls into the sink it spirals around it, and so ea
h sinkis also a vortex. Ea
h vortex-sink is modelled as a point-sour
e of vorti
itysuperimposed to a lo
alised sink, and we assume that the �ow whi
h fallson either of the sinks disappears from the system and does not 
ome ba
k.This is 
learly an open �ow, where the in�ow region 
orresponds to the wholespa
e beyond the sinks. The out�ow region is not modelled expli
itly: �uidparti
les are assumed to simply disappear when they fall into a sink. Beinga two-dimensional in
ompressible �ow, adve
tion in the blinking vortex-sinksystem is Hamiltonian (see Se
. 3 below).Consider �rst a single vortex-sink, in a 
oordinate system where the origin
oin
ides with it. It generates a velo
ity �eld with a radial 
omponent ur =
−C/r 
orresponding to the sink, and a tangential 
omponent uϕ = K/rmodelling the spiralling motion of the �uid as it falls into the sink.A �uid parti
le follows a traje
tory determined by the following equationsof motion:

ṙ = −C/r, ϕ̇ = uϕ/r = K/r2. (1)Solving these equations with initial 
onditions r0 and ϕ0, we get
r(t) = (r20 − 2Ct)1/2, ϕ(t) = ϕ0 −

K

C
ln

r(t)

r0
. (2)To get the blinking vortex-sink system (Aref et al., 1989; Károlyi and Tél,1997), we just need to put two vortex-sink points on the plane and then turnthem on and o� alternately for a duration T/2 as explained above, therebygenerating a time-periodi
 �ow of period T . Without loss of generality, we
hoose the positions of the vorti
es at x = ±a, y = 0, where a is a parameterof the system. Sin
e we have an analyti
al expression for the motion of �uidparti
les for ea
h of the half-periods, it is not di�
ult to �nd an expressionfor the new position rn+1 after one period as a fun
tion of the position rn atthe beginning of the period. This is best done using a 
omplex representationfor the position of a �uid parti
le, z = x+ iy. The mapping from the initialposition zn to the new one zn+1 is then given by

zn+1/2 = (zn + a)

(

1− CT

|zn + a|2
)1/2−iK/2C

− a;

zn+1 =
(

zn+1/2 − a
)

(

1− CT
∣

∣zn+1/2 − a
∣

∣

2

)1/2−iK/2C

+ a. (3)6



Here zn+1/2 is an intermediate variable representing the parti
le's positionafter the �rst half-period.Dimensional analysis reveals that the dynami
s is fully determined by thetwo dimensionless parameters:
η = CT/a2, and ξ = K/C, (4)whi
h 
an be interpreted as the dimensionless sink strength and the ratio ofthe vortex to sink strength, respe
tively.Fluid parti
les es
ape from the system when they are too 
lose to one ofthe vortex-sinks while it is a
tive. It is easy to derive from Eq. (2) that theportions of the �uid whi
h are within a distan
e of R =

√
CT of a sink, at theinstant when it starts to be a
tive, will leave the system in the next half-
y
le.Two di�erent traje
tories of �uid parti
les in this system are illustrated inFig. 4.3. Chaoti
 adve
tion in open �owsLet us 
onsider now an open �ow of an in
ompressible �uid. A �uidparti
le at a given point r at time t has a velo
ity given by the velo
ity �eld

u(r, t) of the �ow at that point. The equation of motion for �uid parti
les isthen
dr

dt
= u(r(t), t). (5)Finding an expli
it expression for u(r, t) involves solving the Navier-Stokesequation with the boundary 
onditions 
orresponding to the given physi
alsystem. It is usually not possible to solve the Navier-Stokes equation analyt-i
ally in realisti
 s
enarios, but here we will fo
us on the adve
tion dynami
sfor a given �ow �eld, and from now on we will simply assume that u(r, t) isgiven. The results we present here are 
ompletely independent on how onegoes about 
omputing u(r, t).Equation (5) de�nes a time-dependent dynami
al system with the num-ber of degrees of freedom equal to the spatial dimension of the �ow. Thissuggests the possibility that this dynami
al system 
ould be non-integrable,and displays 
haos. From the point of view of the theory of dynami
al sys-tems, adve
tion in open �ows is a s
attering pro
ess: there is a well-de�nedasymptoti
 region where the dynami
s is simple � for example, in the �owpast an obsta
le, the �uid in the upstream and downstream regions movesat almost 
onstant speed and dire
tion; and there is a bounded region of7



spa
e where the �ow dynami
s is 
omplex � for example, in the wake of theobsta
le the motion 
an be very errati
 and unpredi
table. This latter regionis 
alled the mixing region.Another 
ru
ial feature of open �ows is that the dynami
s is transient : atypi
al �uid parti
le stays in the mixing region for some time after arrivingfrom the upstream region, and then es
apes again to the downstream region,never to return again. The type of 
haos displayed by su
h systems is termedtransient 
haos (Lai and Tél, 2011); it is also sometimes 
alled 
haoti
 s
at-tering. The subje
t of transient 
haos is part of the fundamental theory ofdynami
al systems, and we 
an take advantage of the substantial body ofresults in this �eld to shed some light at the behaviour of 
haoti
 open �ows,and what the 
onsequen
es of 
haos are to mixing in this kind of �ow.The dis
ussion of 
haos in open �ows be
omes parti
ularly simple in the
ase of two-dimensional in
ompressible �ows, and we fo
us on this 
ase forthe remainder of this paper, unless otherwise noted. This is not only for thesake of simplifying our presentation: many very important systems 
an bemodelled by 2D �ows, in
luding the Earth's o
eans and atmosphere (Ped-losky, 1979). The in
ompressibility 
ondition in 2D �ows is expressed by
∇ · u =

∂ux

∂x
+

∂uy

∂y
= 0. (6)This expression implies that there is a stream fun
tion Ψ(x, y, t) whi
h de-termines the �ow's velo
ity (Landau and Lifshits, 2000; Bat
helor, 1967):

ux(x, y, t) =
∂Ψ(x, y, t)

∂y
; uy(x, y, t) = −∂Ψ(x, y, t)

∂x
. (7)Using the above expressions, the equation of motion for an adve
ted parti
le
an be written in terms of the stream fun
tion:

ẋ =
∂Ψ

∂y
; ẏ = −∂Ψ

∂x
. (8)These two equations de�ne a Hamiltonian dynami
al system with one degreeof freedom, where the variable x plays the role of position, and y playsthe role of 
onjugate momentum, and the stream fun
tion Ψ(x, y, t) is theHamiltonian fun
tion (Landau and Lifshits, 2000; Bat
helor, 1967). Thephase-spa
e of this Hamiltonian system is therefore the physi
al 2D spa
e ofthe �ow, and 
an be dire
tly visualised in experiments by using dyes whi
hare passive tra
ers (Sommerer, 1996).8



In stationary �ows, the stream fun
tion is time-independent, and the �uidparti
le traje
tories 
oin
ide with the streamlines, whi
h are level 
urves of
Ψ. In this 
ase we have a time-independent Hamiltonian system with onlyone degree of freedom, and its dynami
s is always integrable (that is, non-
haoti
). This is similar to the 
ase of a simple pendulum of one degreeof freedom, whose dynami
s is known from elementary 
lassi
al me
hani
sto be always integrable. If the �ow is non-stationary, however, the systemis des
ribed by a time-dependent Hamiltonian, similar to that of a drivenpendulum. It is well-known that su
h driven non-linear systems 
ommonlyhave 
haoti
 dynami
s (Ott, 1993). In open systems this results in �uidparti
les having 
ompli
ated, errati
 motion for a transient period beforethey es
ape to the out�ow.Chaos is 
hara
terised by a sensitive dependen
e of the traje
tories tosmall perturbations in the initial 
onditions. This is illustrated in Fig. 4 forthe blinking sink-vortex system introdu
ed earlier. Two initially very 
losetraje
tories eventually separate and leave to the out�ow through di�erentpoints, and at di�erent times. This is a general property of 
haoti
 systems:the same sensitivity to initial 
onditions is present in any 
haoti
 �ow. As anexample, Fig. 5 shows the same phenomenon in a 2D �ow past a 
ylindri
alobsta
le.It is important to note here that even very simple time dependen
ies ofthe �ow 
an give rise to 
haoti
 adve
tion. For example, time-periodi
 �owsin general display 
haoti
 adve
tion (Aref, 1984; Ottino, 1989; Sommerer,1996).4. Mixing in the presen
e of 
haos: the 
haoti
 saddle and theappearan
e of fra
talsChaoti
 adve
tion is 
hara
terised by the presen
e of a 
haoti
 saddle,whi
h is a set of orbits trapped in the mixing region. These are orbits thatnever es
ape the mixing region, and 
onstitute an invariant set of the dy-nami
s. A 
haoti
 saddle has the property that none of its orbits es
ape themixing region either in the forward dynami
s (t → +∞) or in the reversedynami
s (t → −∞). There are in�nitely many orbits in the 
haoti
 saddle,in
luding a 
ountable set of periodi
 orbits of arbitrarily high periods, aswell as an un
ountable set of aperiodi
 orbits. These orbits are distributedin spa
e in a fra
tal 
on�guration, and this has a profound in�uen
e on thedynami
s of adve
tion. A snapshot of the 
haoti
 saddle for the blinking9
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Figure 5: Illustration of a sensitivity of traje
tories to initial 
onditions ina 
hannel �ow. Above: depi
tion of 
hannel �ow. Below: zoom-in on theregion in the wake of the 
ylinder, showing the simulation of two traje
tories
orresponding to very 
lose initial 
onditions. From (Tél et al., 2005).vortex-sink �ow is shown in Fig. 6. The self-similar stru
ture 
hara
teristi
of fra
tals is 
learly seen.The 
haoti
 saddle has zero measure, whi
h means that if we 
hooserandomly points in a region of spa
e, the probability of the 
hosen pointbeing on the 
haoti
 saddle is zero. In addition, the saddle is not an attra
tor:with probability 1, orbits not exa
tly on the 
haoti
 saddle will eventuallyes
ape to the out�ow region. This is in 
ontrast to strange attra
tors presentin many nonlinear dissipative systems, where traje
tories near the attra
tingset 
onverge to the attra
tor. In this latter 
ase it is easy to see why the10



Figure 6: Snapshot of the a) 
haoti
 saddle, b) stable manifold, and 
) un-stable manifold in the blinking vortex-sink �ow (η = 0.5, ξ = 10), taken atthe beginning of ea
h period. The 
ir
le in 
) shows the area of the �uid thatwill es
ape during the next half time period. From (Tél et al., 2005).fra
tal stru
ture of the attra
tor is important for the dynami
s. But the
haoti
 saddle is a non-attra
ting set, and although it is an invariant set ofthe dynami
s, it might appear that sin
e traje
tories do not 
onverge to it,it should not be important in pra
ti
e. But nothing 
ould be further fromthe truth: the 
haoti
 saddle is the skeleton of a transient 
haoti
 system,whi
h determines the most important dynami
al features of the system. Inorder to understand this, we must dis
uss the other invariant sets asso
iatedwith the 
haoti
 saddle. 11



4.1. The stable manifold of the 
haoti
 saddleFirst let us 
onsider the stable manifold of the 
haoti
 saddle (we willrefer to it as just the stable manifold, for 
on
iseness). It is the set of initial
onditions whose traje
tories approa
h asymptoti
ally the 
haoti
 saddle, inthe limit t → +∞. Fluid parti
les lying on the stable manifold enter themixing region and never leave it, be
oming `trapped' there. However, thestable manifold has zero measure, like the 
haoti
 saddle. This is a simple
onsequen
e of the in
ompressibility of the �uid: if a positive area of �uidbelonged to the stable manifold, it would 
onverge asymptoti
ally to the
haoti
 saddle, whi
h as we have seen has zero area; but this would violatethe in
ompressibility property. As a result, almost all orbits started in thein�ow region will leave the mixing region some �nite time after entering it,and only a set of initial 
onditions of zero measure 
orresponds to traje
torieswhi
h never leave.The stable manifold for the blinking vortex-sink system is shown in Fig.6. In spite of its zero measure, the stable manifold has a great in�uen
e onthe global dynami
s of the system. Orbits starting from points 
lose to it willspend a long time in the intera
tion region before es
aping, and these long-lived traje
tories are responsible for the sensitivity of the dynami
s to initial
onditions. To understand this point, 
onsider initial 
onditions lying on aone-dimensional segment whi
h 
rosses the stable manifold. Figure 7 showsthe es
ape time of �uid parti
les with initial 
onditions on su
h a segmentas a fun
tion of their positions (that is, how many periods it takes for agiven �uid parti
le to es
ape through one of the vortex-sinks). At the pointswhere the line interse
ts with the stable manifold, the es
ape time diverges,sin
e the 
orresponding traje
tories 
onverge to the 
haoti
 saddle and gettrapped in the mixing region. Be
ause the stable manifold is a fra
tal set,its interse
tions with the segment (and with any smooth 
urve) are in�niteand non-enumerable, and 
onstitute a Cantor set. This is the origin of themany peaks seen in Fig. 7, and also the origin of the wild appearan
e of thees
ape time fun
tion. Fig. 7 also shows a magni�
ation of a small region ofthe plot, and we see that the plot does not be
ome any smoother as we look
loser. This is a 
onsequen
e of the self-similar nature of the stable manifold:this intri
ate stru
ture of peaks and troughs is found at all s
ales.The sensitivity to the initial 
onditions 
an be understood as a dire
tresult of the fra
tal nature of the stable manifold. Figure 7 shows thatan observable quantity su
h as the es
ape time varies wildly in arbitrarily12
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Figure 7: Plot of the es
ape time as a fun
tion of the initial 
ondition in theblinking vortex-sink �ow, for parameters η = 0.5, ξ = 10. In the top �gure,the initial 
onditions are taken on the segment x0 = 0, y0 ∈ (−1.35,−0.7).The bottom �gure is the magni�
ation of a region of the top �gure.
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small s
ales, and is therefore impossible to predi
t in regions 
lose to thestable manifold. One way to understand this is 
onsidering that if there is a�lament of the stable manifold lies between two �uid parti
les, they will endup following 
ompletely di�erent traje
tories, even if they started very 
loseto ea
h other; and sin
e there is an un
ountable in�nity of these �laments,it is not di�
ult to see how the unpredi
table and errati
 behaviour of thetraje
tories near the stable manifold arises.4.2. The unstable manifoldThe other important set asso
iated with the 
haoti
 saddle is its unstablemanifold. This is the set of points whose traje
tories 
onverge asymptoti
allyto the 
haoti
 saddle in the reverse dynami
s, that is, as t → −∞. The un-stable manifold is also a fra
tal set, 
omposed of an intri
ate arrangement of�laments mu
h like the stable manifold. Fig. 6 shows the unstable manifoldfor the blinking vortex-sink system. The physi
al meaning and relevan
e ofthe unstable manifold is due to the fa
t that those traje
tories whi
h staya long time in the mixing region (that is, lying 
lose to the stable manifoldin the in�ow region) will tra
e out the unstable manifold on their way outtowards the out�ow region. As a 
onsequen
e, the unstable manifold 
an beobserved dire
tly in imaging experiments, by following a dye as it is adve
ted(Sommerer, 1996). On
e the bulk of the dye has es
aped, what still remainsin the observation region shadows the unstable manifold, and hen
e is dis-torted into a 
omplex �lamentary stru
ture whi
h be
omes �ner and �ner astime passes and more dye is lost to the out�ow. This pro
ess is illustratedin Fig. 8, and shown for the blinking vortex-sink �ow in Fig. 9.We remark that our dis
ussion so far has fo
used on the motion of �uidparti
les, whi
h 
oin
ides with the adve
tion of passive s
alars by the �uid inthe absen
e of mole
ular di�usion. But the unstable manifold also manifestsitself in the 
ase of non-zero di�usion: as we will see in Se
. 6, the spatial
on
entration distribution of the s
alar approa
hes a pattern whi
h shadowsthe unstable manifold, with a lower length s
ale set by the di�usion andthe mean stret
hing rate. Thus for small enough di�usion 
oe�
ients, theunstable manifold governs the long-time dynami
s of the adve
tion of s
alars.4.3. The fra
tal dimension and its physi
al meaningThe intri
ate fra
tal geometry of the invariant sets of 
haoti
 �ows, il-lustrated in Fig. 6 for the blinking vortex-sink �ow, is intimately 
onne
tedto the unpredi
tability of the dynami
s and with the intensity of mixing in14
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Figure 8: Illustration of a dye droplet rea
hing the mixing region of an open
haoti
 �ow. After some time, the remaining dye tra
es out the unstablemanifold of the 
haoti
 saddle. From (Tél et al., 2005).open �ows. In order to quantify this relation, we review here the 
on
ept offra
tal dimension (Halsey et al., 1986; Fal
oner, 2003), and we fo
us on itsphysi
al meaning and its 
onne
tion to the dynami
s of mixing.Consider �rst the stable manifold of the 
haoti
 saddle. It is 
omposedof a fra
tal set of 
urves, as in Fig. 6. Imagine now a grid of resolution ǫ ona given region of interest, whi
h interse
ts the stable manifold. Let N (ǫ) be15



Figure 9: Evolution of a set of parti
les in the blinking vortex-sink �ow.Compare the last pi
ture with Fig. 6
. From (Tél et al., 2005).16



the number of grid 
ells 
ontaining points in the stable manifold. The fra
taldimension D of the stable manifold is de�ned from the way N s
ales with ǫ.In general the s
aling follows a power law: N (ǫ) ∼ ǫ−D; D is de�ned as thefra
tal dimension. More pre
isely:
D = lim

ǫ→0

lnN (ǫ)

ln(1/ǫ)
. (9)For obje
ts of regular geometry, D 
orresponds to the usual notions of di-mension: a one-dimensional 
urve has D = 1, and a surfa
e has D = 2, forinstan
e. But for fra
tal entities su
h as the invariant manifolds of 
haoti
�ows, D is generally not an integer. For the stable (and unstable) manifold,
omposed of a fra
tal set of 
urves, the fra
tal dimension satis�es 1 < D ≤ 2in two dimensions.Equation (9) is in fa
t one of the many possible de�nitions of a fra
taldimension; it is 
alled the box-
ounting dimension, and also the 
apa
itydimension. Sin
e it is the only de�nition we will use in this work, we willrefer to D from now on as simply the fra
tal dimension.One of the reasons why the fra
tal dimension is su
h an important 
on
eptis that it 
an be interpreted as a measure of the un
ertainty of the dynami
sof a transient 
haoti
 system. In order to justify this interpretation, let ussay we have an un
ertainty δ in the determination of the initial 
ondition of aparti
le of a passive tra
er whose traje
tory we want to predi
t. For example,we would like to be able to tell when the parti
le will leave the mixing region,and where it will be in the out�ow region when it does leave. As dis
ussedin Se
. 4.1, traje
tories with initial 
onditions lo
ated in the vi
inity ofthe stable manifold are extremely hard to predi
t. There is therefore an�un
ertain region�, 
onsisting of the region in spa
e within a distan
e ofabout δ from points in the stable manifold, wherein predi
tion is e�e
tivelyimpossible. A good measure of the un
ertainty for the given a

ura
y δ isthen the area A(δ) of the un
ertainty region. From the de�nition of fra
taldimension in Eq. (9), the number of �boxes� of size δ interse
ting the stablemanifold s
ales as δ−D, for su�
iently small δ. Sin
e ea
h box has area δ2,the total area of the un
ertain region s
ales as

A(δ) ∼ δ2−D. (10)The exponent 2−D determines how the size of the un
ertainty region dependson the a

ura
y δ. In non-
haoti
 �ows, the stable manifold is a regular set17



of 
urves, with D = 1. In this 
ase, the un
ertainty area is proportional to δ,so that if we in
rease the a

ura
y by a fa
tor of, say, 10, A will de
rease bythe same fa
tor. But in 
haoti
 �ows, D > 1; A then de
reases more slowlywith δ, meaning that in
reases in a

ura
y have a mu
h redu
ed e�e
t onthe area of the un
ertainty region. This e�e
t be
omes extreme for values of
D 
lose to 2. For the 
ase of D = 1.9, for example, it would take a de
reaseof ten orders of magnitude in δ to redu
e A by a fa
tor of 10.The area A(ǫ) is proportional to the probability of a randomly 
hoseninitial 
ondition, when perturbed to a nearby initial 
ondition at a distan
e
ǫ away, to be on the other side of one of the �laments of the stable mani-fold, resulting in very di�erent out
omes for the two initial 
onditions. Thisobservation suggests a way of measuring D, by pi
king a large number ofrandomly 
hosen pairs of points separated from ea
h other by a distan
e ǫ,and simulating their orbits, to as
ertain if the two traje
tories are similar(for example, by 
omparing their es
ape times); those pairs whi
h do nothave similar orbits are labelled �un
ertain pairs�. By the dis
ussion above,the fra
tion f(ǫ) of un
ertain pairs is proportional to A(ǫ). The fun
tion
f(ǫ) 
an be found numeri
ally by 
omputing the fra
tion of un
ertain pairsfor several values of ǫ and plotting the result in a log-log plot; the slope ofthat plot gives the exponent 2 − D. More rigorously, the fra
tal dimensionand the un
ertain fra
tion are related by

D = 2− lim
ǫ→0

ln f(ǫ)

ln ǫ
. (11)An example of this 
al
ulation is shown for the blinking vortex-sink systemin Fig. 10.Although the dis
ussion above was 
entred on the stable manifold, by thetime-reversal property of Hamiltonian systems, the unstable manifold has thesame fra
tal dimension as the stable manifold. Sin
e the traje
tories whi
hspend long times in the mixing region 
onverge to the unstable manifold, thisis where most of the mixing takes pla
e. Therefore, the fra
tal dimension Dalso measures the strength of the mixing in open �ows: the greater the fra
taldimension, the greater the amount of mixing happening in the �ow.4.4. The Grassberger-Kantz relationDynami
al systems 
an be 
lassi�ed into hyperboli
 or non-hyperboli
,depending on the stability properties of the orbits in their 
haoti
 saddles. Inhyperboli
 systems, all orbits in the 
haoti
 saddle are unstable. A hallmark18
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Figure 10: Numeri
al 
al
ulation of the un
ertainty fra
tion f(ǫ) for theblinking vortex-sink system, with η = 0.5, ξ = 10. The fra
tal dimension isgiven from the slope s by D = 2− s ≈ 1.74.of hyperboli
 systems is that they have an exponential de
ay: that is, ifwe keep tra
k of the time evolution of a typi
al area of �ow, the amount
Q(t) of this initial area still remaining in the mixing region at time t de
aysexponentially with t for large t: Q(t) ∼ e−κt. κ is the es
ape rate of the�ow. It satis�es κ < λ, where λ is the 
haoti
 saddle's Lyapunov exponent.The physi
al meaning of the Lyapunov exponent is that it measures themean exponential rate of separation of nearby �uid parti
les while they arein the mixing region. The fra
tal dimension D of the unstable manifold, theLyapunov exponent λ and the es
ape rate κ are related by the Grassberger-19



Kantz formula (Grassberger and Kantz, 1985):
D = 2− κ

λ
. (12)More rigorously, we should have D1, the information dimension (Fal
oner,2003), instead of the box-
ounting D in the expression above, but sin
e Dand D1 are almost always very 
lose for open �ows, this approximation isvalid in most 
ases.4.5. Robustness of the 
haoti
 saddleIn all the dis
ussion above, and in most of what follows, we 
on
entrateon the 
ase of two-dimensional �ows. Furthermore, we have 
on
entrated onthe motion of �uid parti
les, that is, of passive tra
ers whi
h assume exa
tlythe velo
ity of the surrounding �uid. The fra
tal stru
ture of the 
haoti
saddle and its asso
iated invariant manifolds persist, however, in the 
aseof a
tual, �nite-sized parti
les, whi
h have inertia and whose velo
ities donot 
oin
ide with that of the �uid's velo
ity �eld (Vilela et al., 2006, 2007;Cartwright et al., 2010). There are some 
onsiderable di�eren
es betweenthe dynami
s of �uid parti
les and that of inertial parti
les, in parti
ular thepossibility of the appearan
e of attra
tors in the latter 
ase (Ben
zik et al.,2002; Motter et al., 2003; Cartwright et al., 2010). But even when the globaldynami
s has attra
tors, 
haoti
 saddles are still present, and the systemis still governed by fra
tal stru
tures in phase spa
e 
onne
ted to a 
haoti
saddle, as in the simpler 
ase of passive adve
tion.The same overall pi
ture remains valid for three-dimensional systems(Cartwright et al., 1996; Tuval et al., 2004; de Moura and Grebogi, 2004a); inthis 
ase, the stable and unstable manifolds are a fra
tal set of sheets, insteadof segments. Periodi
ity is also not required for the existen
e of the 
haoti
saddle: aperiodi
 and random �ows 
an also result in well-de�ned fra
talstru
tures in phase spa
e (Károlyi et al., 2004; Rodrigues et al., 2010).A 
on
lusion of the above dis
ussion is that the 
on
epts of 
haoti
 saddleand its stable and unstable manifolds are remarkably robust, and are not
onsequen
es of over-simpli�ed models of �ows. As a result, we expe
t fra
talsets to be features of real �ows whi
h are dominated by large-s
ale 
oherentstru
tures; if the �ow is dominated by well-developed turbulen
e, on theother hand, this is no longer true. 20



5. Transport barriers and KAM islands: the e�e
tive dimensionIn dis
ussions about 
haoti
 open �ows and the 
haoti
 saddle it is oftenassumed, sometimes ta
itly, that the dynami
s is hyperboli
. The reason ispartly that the hyperboli
 
ase is more treatable, and there are more rigorousresults available about that 
ase. For example, the Grassberger-Kantz rela-tion (12) is only valid for hyperboli
 systems. However, non-hyperboli
ityo

urs in many important 
ases, and is to be expe
ted in many very generals
enarios in �uid dynami
s. For example, it 
an be shown that the dynam-i
s of 2D adve
tion on a �ow past an obsta
le be
omes 
haoti
 immediatelyafter the transition of the �ow from stationary to time-dependent, as theReynolds number is in
reased beyond a 
riti
al value; furthermore, the dy-nami
s is non-hyperboli
 for a range of Reynolds numbers past the transitionpoint, independently of the shape of the obsta
le or the parti
ular featuresof the �ow (Biemond et al., 2008). Many other systems of interest are non-hyperboli
, and it is imperative that we understand the mixing dynami
s inthe non-hyperboli
 
ase.Non-hyperboli
ity is manifested through the appearan
e of stable orbitsin spa
e. These orbits are surrounded by stable islands, from whi
h �uiddoes not es
ape. These stable regions 
orrespond to persistent vorti
es inthe �ow. In dynami
al systems parlan
e, they are KAM islands (Ma
Kayand Meiss, 1987). KAM vorti
es are 
ommonly found in 2D �ows, and theyhave been observed in environmental �ows, su
h as the stratospheri
 polarvortex, whi
h plays a 
ru
ial role in the pro
ess of ozone depletion (Koh andLegras, 2002); and also in o
ean 
ir
ulation patterns (Abraham, 1998; Boydet al., 2000; Abraham et al., 2000). As is well known from the theory ofHamiltonian dynami
al systems, they form a fra
tal hierar
hi
al stru
ture,with big islands being surrounded by smaller islands, and these in turn aresurrounded by even smaller islands, and so on (see Fig. 11). The presen
eof KAM islands means that there is a �nite volume of initial 
onditions inthe mixing region whose orbits do not es
ape, 
orresponding to those initial
onditions lying in the islands. However, �uid parti
les with initial 
onditionsoutside the intera
tion region 
annot enter the islands. As a result, the set ofinitial 
onditions outside the mixing region whose traje
tories end up trappedthere still has zero measure, as in the hyperboli
 
ase. However, the islandshave deep 
onsequen
es for the s
attering dynami
s, resulting in importantdi�eren
es between the hyperboli
 and non-hyperboli
 
ases.The transport of �uid in the vi
inity of the islands is dominated by Can-21



Figure 11: Illustration of the hierar
hi
al stru
ture of KAM islands andCantori. Solid 
ir
les represent KAM tori, and Cantori are represented bythe 
ir
les with holes. From (Tél et al., 2005).tori, whi
h are remnants of broken up KAM tori. Cantori are also invariantsets of the dynami
s, as are KAM islands; but in 
ontrast with those, �uidparti
les 
an 
ross from one side of a Cantorus to the other. However, it takestypi
ally very long times to do so, and as a 
onsequen
e the Cantori a
t aspartial transport barriers. The overall pi
ture of non-hyperboli
 transport issket
hed in Figure 11.As we mentioned above, it is very 
ommon to �nd KAM islands in �uid�ows, the blinking sink-vortex �ow is no ex
eption. Figure 12 shows strobo-s
opi
 traje
tories for a set of parameters for whi
h the �ow is non-hyperboli
,and an island is 
learly visible. The magni�
ation in Fig. 12 shows the strik-ing self-similar organisation of the islands. The e�e
t of Cantori on theadve
tion dynami
s 
an be seen in the 
loud of points surrounding the sub-22



islands on the upper right and to the left of the main island in the magni�ed�gure. These points are snapshots taken at the start of every period of asingle orbit whi
h meanders inside the Cantorus surrounding these islands.This orbit eventually es
apes, after thousands of 
y
les. Another Cantorus
an just be seen surrounding the main island. These Cantori are in turnsurrounded by a bigger Cantorus en
ir
ling the whole stru
ture, whi
h is ap-parent from the higher density of points in the region around the 
omplex ofislands in the bottom �gure 12.An example of KAM islands visualised in an a
tual experiment is seen inFig. 22.5.1. Dynami
al 
onsequen
es of non-hyperboli
ityThe partition of spa
e by the KAM islands and Cantori into distin
tdomains separated by transport barriers has no 
ounterpart in hyperboli
systems, and is the 
ause of the profound di�eren
es in the dynami
s of hy-perboli
 and non-hyperboli
 �ows. A dire
t 
onsequen
e of the self-similarstru
ture of the transport barriers depi
ted in Fig. 11 is the phenomenonknown as sti
kiness: in non-hyperboli
 �ows, many traje
tories spend ex-tremely long times inside Cantori, leading to very long typi
al es
ape times
ompared to hyperboli
 dynami
s. Be
ause of the self-similar organisationof the Cantori, on
e inside, an orbit may enter an inner Cantorus lo
atedwithin another Cantorus, and so on to arbitrarily high levels in the Cantorushierar
hy. So on
e a �uid parti
le is inside a Cantorus, it will wander withina fra
tal labyrinth from whi
h es
ape is likely to take a very long time.Even in non-hyperboli
 �ows it is still true that �uid parti
les with initial
onditions outside of KAM islands will eventually es
ape with 100% prob-ability: the 
omponent of the 
haoti
 saddle outside the islands has zeromeasure. But sti
kiness makes es
ape sub-exponential, in marked 
ontrastwith hyperboli
 �ows, where es
ape is exponential. In non-hyperboli
 �ows,the number N(t) of parti
les, with initial 
onditions 
hosen randomly in aregion with no interse
tion with KAM islands, that have not es
aped up totime t, follows a power law (Meiss and Ott, 1985):
N(t) ∼ t−γ , (13)with γ > 0.A dire
t 
onsequen
e of the slower es
ape dynami
s des
ribed by Eq. (13)is that the fra
tal dimension D of the stable (and unstable) manifold is equal23
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Figure 12: Strobos
opi
 map of the blinking vortex-sink �ow, with η = 1,
ξ = 18, parameters for whi
h the �ow is non-hyperboli
. The map showsthe orbits of a few �uid parti
les, with positions taken at dis
rete times, atthe beginning of every period of the �ow. The pi
ture on the bottom is amagni�
ation of a small region of the top pi
ture, and shows the self-similarstru
ture of the KAM islands.
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to the dimension of the embedding spa
e, D = 2 (Lau et al., 1991). This is notin
onsistent with the fa
t that the stable and unstable manifolds have zeromeasure, sin
e fra
tal sets 
an have fra
tal dimension equal to the dimensionof the phase spa
e and still have zero measure (Fal
oner, 2003); and thisis indeed the 
ase of the stable and unstable manifold of non-hyperboli
transient systems. However, from the interpretation of the fra
tal dimensionas a measure of un
ertainty of transient systems, expressed mathemati
allyby Eq. (11), the fa
t that D assumes the maximum possible value in non-hyperboli
 systems suggests that these systems have an extreme sensitivityto initial 
onditions. Indeed, the exponent in Eq. (11) vanishes for D = 2,whi
h means that the �un
ertainty probability� f(ǫ) de
reases more slowlythan a power law for small ǫ.This extreme sensitivity of the dynami
s is apparent from the plot of thees
ape time as a fun
tion of the initial 
onditions. This is shown in Fig.13, with initial 
onditions taken in the interior of the outermost Cantorus ofFig. 12. The es
ape time is a very irregular fun
tion, with wild os
illationsnearly everywhere; and the magni�
ation shows that this irregular behaviouris present down to arbitrarily small s
ales.5.2. The e�e
tive dimensionA glimpse at Fig. 13 suggests that predi
ting asymptoti
 properties oftraje
tories in this system is an almost impossible task. The reason for thisunpredi
tability is the very long time it takes initial 
onditions inside Cantorito es
ape: two initially very 
lose traje
tories will have mu
h more time tospend in the mixing region to separate and follow independent paths beforethey es
ape. Figs. 11 and 12 also suggest that the unpredi
tability is greaterfor initial 
onditions lo
ated in deeper levels of the Cantorus hierar
hy, asthey have longer es
ape times. To measure the un
ertainty, we 
ompute theun
ertainty plot f(ǫ), as done in Se
. 4.3, using initial 
onditions inside theoutermost Cantorus, and inside the inner Cantorus indi
ated by the 
loud ofpoints in the left plot of Fig. 12. Fig. 14. shows the result of this 
al
ulationfor initial 
onditions pi
ked in two di�erent regions: inside the outermostCantorus, and inside one of the inner Cantori seen in Fig. (12).Figure 14 may seem to 
ontradi
t the assertion made in Se
. 5.1 that
D = 2 for non-hyperboli
 systems, as this would predi
t that the plot of f(ǫ)versus ǫ should be a �at line with zero slope. But in non-hyperboli
 systems,the ǫ → 0 limit in Eq. (11) 
onverges extremely slowly. For extremely small25
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Figure 13: Es
ape time plot for the blinking vortex-sink �ow, with η = 1,
ξ = 18. Initial 
onditions are taken on a segment with x0 = 1.75.values of ǫ, the slope does in fa
t approa
h 0 for ǫ small enough; but rea
h-ing this limit usually requires values of ǫ so small they are not physi
allyrelevant. Any model of a physi
al system has a lower s
ale below whi
h the26
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Figure 14: Fra
tion of un
ertain pairs as a fun
tion of separation ǫ betweenpoints in a pair for the blinking vortex-sink �ow, with η = 1, ξ = 18; seeSe
tion 4.3. Initial 
onditions are for the bottom 
urve are taken in theoutermost Cantorus, on the segment x0 = 1.75, y0 ∈ (−1.18,−1.175); forthe top 
urve, initial 
onditions are in an inner Cantorus, on x0 = 1.75, y0 ∈
(−1.193,−1.192). The numbers beside ea
h 
urve are the slope 
oe�
ientsobtained from �tting, f(ǫ) ∼ ǫs.model is no longer valid; this may be given, for example, by the size of ad-ve
ted parti
les we are following in an experiment, of by the �nite resolutionof our measurements. This implies that the dimension that is relevant inrealisti
 systems is not the mathemati
al de�nition (11) with its unrea
hablelimit, but is given instead by an e�e
tive dimension Deff (de Moura and Gre-bogi, 2004b; Motter et al., 2005), de�ned as an approximation of the fra
taldimension for a �nite range of ǫ (see Fig. 15):

Deff(ǫ) = 2− d ln f(ǫ)

d ln ǫ
≈ 
onst. for ǫ1 < ǫ < ǫ2, (14)valid in a range (ǫ1, ǫ2), with ǫ1 ≪ ǫ2. Deff satis�es Deff(ǫ) → 2 as ǫ → 0, ina

ordan
e with Eq. (11).From Eq. (14), the results in Fig. 14 
an be interpreted as yielding27



Figure 15: Illustration of the 
on
ept of e�e
tive dimension, the slope of thetangent to the lnN vs. ln 1/ε 
urve.the e�e
tive fra
tal dimension of the stable and unstable manifold for twodi�erent lo
ations in spa
e: Deff = 1.86 inside the outermost Cantorus, and
Deff = 1.98 inside one of the inner Cantori. The e�e
tive dimension thereforedepends on the position in non-hyperboli
 systems, in 
ontrast to the a
tualfra
tal dimension, whi
h is 2 anywhere. The greater es
ape time in innerCantori means that the invariant manifolds of the 
haoti
 saddle have �moretime� to be stret
hed and folded and distorted by adve
tion, hen
e the greatere�e
tive dimension.Be
ause of time-reversal symmetry, the stable and unstable manifoldshave the same fra
tal dimensions � and also the same e�e
tive fra
tal di-mensions. We argued in Se
tion 4.3 that the fra
tal dimension of the unstablemanifold is a measure of lower-s
ale mixing e�
ien
y for open �ows. Thismeans that the �uid in regions of spa
e surrounded by Cantori will be ex-tremely well-mixed, and the e�
ien
y of mixing in
reases as we go deeperinto the Cantorus stru
ture, and rea
hes the maximum limit of Deff → 2 forregions buried deep within the Cantori. This pi
ture is somewhat at oddswith the prevalent idea in mu
h of the literature of this �eld that the pres-en
e of KAM islands is an impediment to mixing. This assertion is validin 
losed �ows, for whi
h optimal mixing requires mixing the �uid homoge-28



neously throughout the 
ontainer; this is obviously not possible with KAMislands. In open �ows, however, the �uid to be mixed usually 
omes from thein�ow region, and thus from outside the KAM islands, and so this is not aproblem. Instead, the islands 
ause �uid to spend very long times within theCantori, and be very well mixed as a result. Therefore, in 
ontrast to 
losed�ows, in open �ows KAM islands 
an be said to enhan
e mixing. However,it is important to note that our measure of mixing only takes into a

ountthe small-s
ale limit, and it ignores mole
ular di�usion. It also ignores thetime it takes to a
hieve good mixing, sin
e the stable and unstable manifoldare all de�ned in the asymptoti
 dynami
s. In industrial appli
ations andother 
ases of interest all these fa
tors must be taken into a

ount, and other,more pra
ti
al de�nitions of mixing e�
ien
y are desirable. These will beintrodu
ed in Se
tion 6.6. Mixing �uids by stirring in 
ontinuous-�ow pro
essesIn the previous se
tions we fo
used on the purely adve
tive aspe
ts ofmixing, ignoring mole
ular di�usion entirely. In this Se
tion, we take mole
-ular di�usion into a

ount, and investigate how di�usion in an open �ow isa�e
ted by its 
haoti
 dynami
s, and what 
onsequen
es this has for the e�-
ien
y of mixing. We will also revisit the de�nition of �good� mixing, takingdi�usion into a

ount.6.1. What does good mixing mean for a di�usive dye in an open �ow?How are di�erent �uids mixed together and homogenised in industrial
ontinuous-�ow devi
es? The elaboration of pulp and paper, 
osmeti
s orpro
essed food often involves a mixing step whi
h is part of an integrated
ontinuous-�ow system of rea
tors (Paul et al., 2003). Continuous-�ow man-ufa
turing allows redu
ing waiting times and the handling of materials. At asmaller s
ale, some mi
ro�uidi
s devi
es also integrate open-�ow mi
romix-ers (Lee et al., 2001; Stroo
k et al., 2002; Okkels and Tabeling, 2004) inlabs-on-a-
hip. For all these appli
ations, it is 
ru
ial both to understandthe physi
al me
hanisms at play, and to use relevant measures of mixingquality (Dan
kwerts, 1952; Bryant, 1977; Ehrfeld et al., 1999; Aubin et al.,2003; Kukukova et al., 2009).In su
h systems, inhomogeneous �uid enters the mixing rea
tor, and �uidthat is 
ontinuously �owing out of the rea
tor has to satisfy some desiredproperty � su
h as su�
ient 
hemi
al homogeneity, a maximal 
on
entration29



in some 
hemi
al spe
ies, a target rheology, et
.. An example of open-�owrea
tor is shown in Fig. 16. It 
onsists in a free-surfa
e 
hannel of shallowre
tangular se
tion, where vis
ous �uid (
ane-sugar syrup) �ows 
ontinu-ously at a �xed �ow rate. Fluid parti
les 
ross a mixing region, where tworod-stirrers (
ir
led in blue in Fig. 16 (a)) move on interse
ting traje
tories(dashed lines in Fig. 16 (a)) and stret
h passing �uid parti
les thanks tothe 
haoti
 adve
tion. The experimental apparatus has been des
ribed else-where (Gouillart et al., 2009). In the following, we make use of experimentsrealised with this rod-stirring proto
ol to explain how a di�usive dye is mixedin open �ows; the me
hanisms presented here apply nevertheless to the wider
lass of open �ows with a mixing region with a limited spatial extent.In the experiment of Fig. 16, �uid in�owing into the mixing region is nothomogeneous, as a blob of bla
k dye 
ontrasts with the surrounding dye-free �uid (Fig. 16 a)). In industrial systems also, the 
omposition of thein�owing �uid is usually heterogeneous; it may for example 
onsist in twoparallel streams of di�erent liquids, or in a su

ession of pat
hes of di�erentliquids that have to be blended together. The out�owing �uid, however, isrequired to be �mixed�. Let us �rst examine the di�erent snapshots in Fig. 16in order to spe
ify what this somewhat vague term of mixed en
ompasses. In
ontrast to the segregated state in the in�ow, where bla
k (dyed) and white(dye-free) �uid are well separated, the mixed state 
an be de�ned as a dye
on
entration pattern where all white �uid parti
les are 
lose to bla
k �uidparti
les, and vi
e versa. The snapshot of Fig. 16 b) has been taken a fewrotation periods of the rods after the arrival of the blob inside the mixingregion shown in Fig. 16 a). Filaments of dyed and dye-free �uid that �ow outof the mixing region in the upper part of Fig. 16 b) are better mixed thanthe �uid in�owing in Fig. 16 a), be
ause the �laments are thinner than thepat
hes in Fig. 16 a). However, parti
les inside the white and bla
k �lamentsare still surrounded by �uids parti
les that all have the same 
olour, as inthe initial pat
hes in the in�ow. This means that the dye 
on
entrationlevels are the same as in the in�ow (that is, the initial 
on
entration ofthe blob of dye, and the null 
on
entration). This may be a problem if,for example, the appli
ation requires that there is a maximal a

eptable
on
entration of one spe
ies (here, the dye) in the �nal produ
t. In thesnapshot of Fig. 16 
) that was taken a few stirring periods after b), dyeparti
les look mu
h better mixed than in Fig. 16 b), be
ause dye �lamentswere smeared out by mole
ular di�usion with dye-free �uid, resulting inintermediate grey 
on
entration levels. Mole
ular di�usion ensures that the30



Figure 16: Snapshots of a blob of dye passing through an open-�ow mixer,taken at di�erent times. The main open �ow is the upward dire
tion. Tworods (
ir
led in blue in a)) stret
h and fold passing �uid parti
les. (a) Arrivalof the dye blob in the mixing region (b) Three rotation periods of the rodsafter the entry of the blob (a)), unmixed dark �laments are �owing out ofthe mixing region, while the remainder of the initial blob keeps on beingstret
hed by the rods. (
) Eight rotation periods after a), dye �lamentsinside the mixing region have been stret
hed enough to di�use with dye-less�uid; hen
e �uid �owing out of the mixing region is well mixed. (d) Later on,the same pattern as in 
) repeats, with the intensity of the dye that de
aysbe
ause of the open �ow.
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Figure 17: S
hemati
 time-evolution of a pat
h of di�usive dye inside the mix-ing region. The pat
h is stret
hed and folded into many thin �laments by
haoti
 adve
tion. Mole
ular di�usion starts to be e�
ient on
e the width ofdye �laments rea
hes the Bat
helor s
ale wB, at whi
h the e�e
ts of 
haoti
stret
hing and di�usion balan
e. Dye �laments then di�use with the sur-rounding �uid, and the 
ontrast of the dye be
omes weaker with time.proximity between �uid parti
les, that were in di�erent regions of spa
e in thein�ow, is realised at the mole
ular s
ale. In the following, we thus de�ne goodmixing for a pat
h of �uid as a state where all its �uid parti
les have beensmeared out by mole
ular di�usion with �uid parti
les 
oming from di�erentregions, that were bearing di�erent 
on
entration levels in the in�ow. Asthis de�nition depends on the distribution of dye and inhomogeneities inthe in�ow, one may require for more generality that a �uid parti
le di�useswith other �uid parti
les that enter the mixing region at a di�erent periodof rotation of the rods.How does an open-�ow mixer su
h as the devi
e in Fig. 16 a
hieve thedi�usion-indu
ed smearing of di�erent dye 
on
entration levels that is visiblein Fig. 16 
) and d)? In �uid at rest, the times
ale ne
essary for di�usion tobe e�
ient at the s
ale of the rea
tor width ℓ is ℓ2/κdiff , with κdiff the mole
u-lar di�usivity. As κdiff takes very small values in liquids (10−8−10−10m2.s−1in water, and even lower values in more vis
ous �uids), su
h times
ales areunrealisti
 for mixing in industrial large-s
ale installations. On the otherhand, shears indu
ed by a �ow greatly in
rease the e�e
tive di�usivity. Afamous example of this phenomenon is Taylor dispersion (Taylor, 1953). Tay-lor showed that a Poiseuille �ow through a pipe in
reases mole
ular di�usionin the dire
tion of the �ow, be
ause the shear in
reases the rate at whi
h
on
entration gradients are smeared out by di�usion. However, this e�e
t ofa simple shear is too weak for most large-s
ale pra
ti
al appli
ations, and isine�
ient in the dire
tion transverse to the �ow.Chaoti
 adve
tion a
hieves a more e�
ient enhan
ement of di�usion. Thee�e
t of 
haoti
 adve
tion on a pat
h of a di�usive dye is sket
hed in Fig. 17.32



Inside the mixing region where 
haoti
 adve
tion is at play, a pat
h of dye iselongated into �laments that get thinner and thinner with time as they arestret
hed more and more. After a short while, �laments rea
h the so-
alledBat
helor s
ale of the �ow (Bat
helor, 1959), at whi
h di�usion starts to bee�
ient. The value of the Bat
helor s
ale is given by
wB =

√

κdiff

λ
, (15)with λ the Lyapunov exponent introdu
ed before, whi
h is the mean stret
h-ing rate inside the mixing region. Dark and white �laments therefore startto di�use into neighbouring �laments as it is sket
hed in Fig. 17, and 
on
en-tration gradients are smeared out. The Bat
helor s
ale 
orresponds to thes
ale at whi
h the e�e
ts of di�usion and stret
hing balan
e, (Villermaux andDuplat, 2003) so that the width of dye �laments is stabilised at this s
ale,whereas they are smeared out with other �laments that are 
ompressed intothe same �box� of width the Bat
helor s
ale (Fig. 17). The Bat
helor s
ale istherefore a di�usive 
ut-o� s
ale, whi
h is the smallest length s
ale that 
anbe observed in mixing patterns. This s
ale 
orresponds to the width of thethinnest �laments in Fig. 16 b-d.With this understanding of the interplay between di�usion and 
haoti
adve
tion, the de�nition of good mixing 
an now be spe
i�ed as follows: apat
h of dye is well mixed if it stret
hed enough by 
haoti
 adve
tion so thatall the resulting �laments rea
h the Bat
helor s
ale and are smeared out bydi�usion (as in Fig. 17).The above de�nition of good mixing applies for mixing in 
losed �owsas well. In open �ows, however, an additional 
hallenge 
omes from thetransient nature to 
haoti
 adve
tion, and the variety of residen
e times of�uid parti
les in the mixing region. In a 
losed vessel, all �uid parti
les stayinside the vessel for the whole duration of the mixing step. In an open-�owdevi
e su
h as in Fig. 16, �uid is 
onstantly �owing out of the vi
inity of therods, due to the 
onservation of �ow rate. Some of the es
aping �uid has onlyspent a short while in the mixing region, be
ause 
haoti
 adve
tion shu�esrapidly an in
oming pat
h of dye onto the whole mixing region, in
luding thepart 
lose to the out�ow that goes with the main �ow. This results in thedark dye �laments in Fig. 16 b), that have es
aped shortly after their arrivalin the mixing region and were not stret
hed enough to rea
h the Bat
helors
ale: mixing is therefore ine�
ient for su
h �laments with short residen
etimes. On the other hand, �uid parti
les that stay for a longer time in the33



mixing region, as in Fig. 16 
) and d), are given enough time to rea
h theBat
helor s
ale and to di�use with other 
on
entration levels. Therefore, anymeasure of the e�
ien
y of mixing of an open-�ow proto
ol must fo
us onthe fra
tion of �uid parti
les that es
ape the mixing region before they rea
hthe Bat
helor s
ale, like in Fig. 16 b); of 
ourse, this fra
tion should be assmall as possible for a good quality of mixing.6.2. The geometry of dye mixing in open �ows: 
haoti
 saddle and strangeeigenmodeWe have shown above that qualifying the mixing e�
ien
y of an open-�owdevi
e imposes a distin
tion between short and long residen
e times, morepre
isely between weak and strong stret
hing, the limit being the stret
hingne
essary for a pat
h of �uid to rea
h the Bat
helor s
ale and di�use. Theorganisation of the pattern of dye �laments and the transport in and outof the mixing region, in
luding ill-mixed �laments, stems in fa
t from thegeometry of the manifolds of the 
haoti
 saddle, that were introdu
ed inSe
. 3.Fluid parti
les that are 
lose to the stable manifold of the 
haoti
 sad-dle approa
h the orbits of the 
haoti
 saddle and shadow during some timetheir periodi
 traje
tory. In a mixing experiment su
h as in Fig. 16, a fewperiods after the pat
h of dye entered the mixing region, only parti
les thatwere initially very 
lose to the stable manifold of the 
haoti
 saddle remaininside the mixing region. Therefore, the long-time dye �lamentary patterntra
es out the unstable manifold of the 
haoti
 saddle, as in Fig. 16 (
) and(d). This me
hanism was also sket
hed in Fig. 8 for a non-di�usive droplet.Nevertheless, the unstable manifold is a fra
tal one-dimensional set of zeromeasure, that is self-similar at all s
ales. Here, be
ause of di�usion, grey �l-aments lie on the unstable manifold thi
kened to a width the Bat
helor s
ale,whi
h is the smallest length s
ale that 
an be observed in the pattern. Hen
e,the support of the dye is always this same set at long residen
e times. More-over, we have shown in (Gouillart et al., 2009) that not only the support ofthe dye, but also the whole dye 
on
entration �eld C(x, t), repeats perfe
tlyover time, as in Fig. 16 (
) and (d). Only the global 
ontrast of the pattern
hanges with time, be
ause of the main �ow that takes away a fra
tion ofthe �uid inside the mixing region at ea
h stirring period.
C(x, t) = 〈C〉(t)× C̃(x) (16)34



Figure 18: Typi
al evolution of the dye 
on
entration mean and standarddeviation for an open-�ow proto
ol, inside the mixing region (MR, bla
ksymbols) and in the out�ow (DS, grey symbols). Both moments of the 
on-
entration �eld have an exponential evolution with the same exponent after ashort initial transient, be
ause the dye 
on
entration �eld takes a permanentform (Eq. (17)).
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Self-similar 
on
entration patterns that repeat over time are observed in
losed �ows as well, where they have been termed strange eigenmodes (Pier-rehumbert, 1994), be
ause they 
orrespond to the slowest eigenmode (ex-
ept for the �rst trivial eigenmode, that is uniform) of the Perron-Frobeniusadve
tion-di�usion operator. Here, the permanent 
on
entration pattern 
anbe interpreted as well as an eigenmode of the adve
tion-di�usion operator.Contrary to 
losed �ows, the mean 
on
entration inside the mixing region isnot 
onserved be
ause of the open �ow. The time evolution of the open-�oweigenmode des
ribes therefore the de
ay of the mean 
on
entration of dyeinside the mixing region:
C(x, t) = C∞ exp(−κt)C̃(x), (17)where κ is the es
ape rate that appears in the Grassberger-Kantz relation(12). However, κ 
hara
terises likewise the de
ay of all moments of the 
on-
entration �eld, as shown in Fig. 18 for the evolution of the mean 〈C〉 andthe standard deviation σ(C) of the 
on
entration �eld. When measured in-side the mixing region or in the out�ow region, both quantities follow anexponential de
ay with the same de
ay rate, as imposed by Eq. (17). The
onstant ratio σ(C)/〈C〉 is a measure of the normalised intensity of �u
tua-tions inside the eigenmode pattern; this quantity 
an be used for de�ning arelevant measure of mixing e�
ien
y, as we shall see later.As the support of the strange eigenmode shadows the unstable manifoldof the 
haoti
 saddle, its 
on
entration �eld also takes the fra
tal stru
turethat was des
ribed in Se
tion 3. In parti
ular, holes in the support of theeigenmode (see Fig. 16 (
)) have a large variety of widths (the smallest pos-sible width being the Bat
helor s
ale). These holes do not 
ontain any orbitof the 
haoti
 saddle, neither portions of its unstable manifold. They 
orre-spond to the iterates of pat
hes of �uid that entered the mixing region a shortwhile ago: the larger the width, the more re
ent the entry time, as stret
hingby 
haoti
 adve
tion redu
es the width of su
h pat
hes. Fluid lo
ated insu
h holes, be it a pat
h of dyed or dye-less �uid, either ends up being 
om-pressed onto the unstable manifold fattened at a s
ale wB if it stays in themixing region for a su�
ient time, or leaves the mixing region without havingdi�used with pat
hes of �uid that entered the mixing region at a di�erenttime. In the out�ow, the holes in the long-time permanent pattern therefore
orrespond to lo
ations of ill-mixed �uid (no matter the 
omposition of thein�ow), while grey �laments 
orrespond to well-mixed �uid.36



The fra
tion of well-mixed �uid may therefore be determined by mea-suring the fra
tion A of the out�ow o

upied by the support of the strangeeigenmode, that is by the unstable manifold fattened by di�usion. In Fig. 6(
) for example, the value of the well-mixed fra
tion for the blinking vortex-sink �ow is given by the fra
tion of the 
ir
le that leaves the mixing regionat ea
h half-period, that is o

upied by the unstable manifold thi
kened to a�nite di�usive width. In the 
hannel rod-mixer of Fig. 16 (
), the well-mixedfra
tion is given in the same way by the fra
tion of the out�ow pattern 
ov-ered by grey �laments. In the in�ow, �uid parti
les that will be well mixedare found within a distan
e wB of the stable manifold. This is the un
er-tain region des
ribed in Se
tion 4.3, with an un
ertainty distan
e given bythe di�usive length wB, and the unpredi
tability of traje
tories that ensuresgood mixing for su
h �uid parti
les.One should not measure the dye 
overage inside the mixing region to
ompute the value of the well-mixed fra
tion, be
ause in the mixing regionsome of the �uid inside the holes of the strange eigenmode pattern stays therefor a time long enough to rea
h the Bat
helor s
ale and be in
orporated ontothe strange eigenmode support. As a fra
tion of the mixing region is takenaway to the out�ow at ea
h period (as the 
ir
le in Fig. 6 (
), or the upper partof the mixing region in Fig. 16 (
)), there is nevertheless a strong 
orrelationbetween the long-time dye 
overage inside the mixing region and the dye
overage in the out�ow, that is, the well-mixed fra
tion. The strength ofthe 
orrelation depends of the geometry of transport inside and out of themixing region, that determines whether �uid in the largest holes leaves themixing region before, after, or at the average residen
e time. In the sameway, the fra
tal dimension of the unstable manifold that was introdu
ed inSe
tion 4 is 
orrelated to the well-mixed fra
tion, as it measures the 
overageof spa
e by the unstable manifold; however, the large-s
ale organisation ofthe pattern and the sizes of its largest holes are not exa
tly 
hara
terised bythe fra
tal dimension, whi
h is de�ned at the small-s
ale limit.An extreme 
ounter-example of the 
orrelation between the strength ofmixing inside the mixing region and in the out�ow is shown in Fig. 19. Forthis mixing experiment, the sense of rotation of the rods has been reversed
ompared with Fig. 16, while the dire
tion of the main �ow has been kept thesame. Here, the motion of the rods a

elerates �uid along the walls, so thatan important fra
tion of the �uid never enters the mixing region and is notstret
hed by 
haoti
 adve
tion. We observe indeed on the long-time pattern(that is, the eigenmode pattern) in Fig. 19 that the unstable manifold 
overs37



Figure 19: (a) Long-time dye pattern (strange eigenmode) for an open-�owproto
ol where rods a

elerate �uid along the 
hannel walls. Despite goodmixing around the 
haoti
 saddle, only a 
entral strip of the out�ow is wellmixed, whereas �uid on the 
hannel sides is not mixed at all. (b) Contraryto intuition, the quality of mixing de
reases when the stirring frequen
y isin
reased, be
ause the a

eleration of �uid along the sides is enhan
ed. (
)Example of a pat
h of dye that 
rosses the 
hannel without being mixed,be
ause its initial position did not interse
t the stable manifold of the 
haoti
saddle.less than half the width of the 
hannel � �uid �owing on the sides of the
hannel is hardly mixed at all. On the other hand, mixing inside the mixingregion is very good, as the mixing region is 
overed very densely by dye�laments, with only a few thin holes. Measures of mixing should thereforebe taken always in the out�ow.6.3. The eigenmode index as a measure of mixing e�
ien
yThe knowledge gained on the link between the eigenmode and the di�erentpossible fates of �uid parti
les 
an now be used to derive a measure of mixingquality in open �ows, that was dubbed eigenmode index in previous work(Gouillart et al., 2011). We have mentioned earlier that the fra
tion of theout�ow A o

upied by the support of the eigenmode is a dire
t measureof the fra
tion of �uid parti
les stret
hed to the Bat
helor s
ale, and 
antherefore be used as a dire
t measure of mixing quality. In pra
ti
e, thismeasure requires a hard threshold of the 
on
entration value, and is thereforenot a very robust one. The eigenmode index σSE de�ned below over
omesthis problem, sin
e it uses only the two �rst moments of the 
on
entration38



distribution:
σSE =

σ(CSE)
〈CSE〉 , (18)with CSE(x) the 
on
entration �eld of the eigenmode. σSE and A are ap-proximately related by

σSE ≃
√

1−A
A . (19)

σSE goes from zero for perfe
t mixing, to in�nity for no mixing at all. As thede�nition of σSE uses only the eigenmode pattern, σSE does not depend onthe position or size of an initial blob used for a mixing experiment (as long asthe blob interse
ts the stable manifold of the 
haoti
 saddle, so that the dyepattern tra
es out the strange eigenmode at long times � unlike the blob inFig. 19 
), for example). For a �xed proto
ol of dye inje
tion, it was shownin (Gouillart et al., 2011) that the eigenmode index is related to the intensityof segregation of 
hemi
al engineering (Dan
kwerts, 1952, 1953), a measureof mixing that 
ompares the intensity of �u
tuations in the out�ow and inthe in�ow. The eigenmode index is nevertheless a more generi
 measure, asit does not depend on a spe
i�
 in�ow 
ondition.In theory, the eigenmode index 
an be measured from the 
on
entrationpattern in the out�ow at any time after the Bat
helor s
ale has been rea
hedfor all dye �laments that enter the out�ow. In pra
ti
e, it should be measuredshortly after this di�usion time in order to keep a signal to noise ratio as highas possible, noise being inevitably present in any experiment. If possible, the
ontribution of noise (Gaussian white noise from the 
amera, bubbles or dust�owing with the �uid, et
.) to the standard deviation should be estimated,and removed from the measure of the standard deviation for the 
omputationof σSE. Also, σSE should be estimated on a region of the �uid that �ows outof the mixing region during a single stirring period.6.4. Qualitative trends in mixing e�
ien
yLet us now examine shortly the in�uen
e of a few physi
al parametersthat 
ontrol the e�
ien
y of mixing.First of all, Fig. 19 illustrates that the large-s
ale geometry of the �ow isof paramount importan
e (here, only reverting the sense of rotation of therods de
reases greatly the e�
ien
y of mixing). Bypasses around the mixingregion should be avoided, as it is ne
essary that a parti
le passes 
lose to anorbit of the 
haoti
 saddle (if possible, at a distan
e less than the Bat
helors
ale) for being well mixed. 39



Figure 20: Mixing patterns at di�erent stirring frequen
ies (f = 1, 2, 4, 8rpm). The dye-
overage of the out�ow in
reases with the stirring frequen
y.
40



Figure 21: Eigenmode index σSE measured at di�erent stirring frequen
ies
f for the rod-stirring proto
ol of Fig. 16 (
ir
les). σSE is plotted against anapproximate measure of the mean number of stirring periods N spent by a�uid parti
le inside the mixing region. N is 
omputed from the extent ofthe traje
tory of the rods d, and the mean velo
ity of the �uid U in themain �ow. The eigenmode index in
reases when the average residen
e timein
reases, sin
e a greater fra
tion of the �uid rea
hes the Bat
helor s
ale.Nevertheless, the geometry of the �ow is also an important fa
tor for thevalue of the eigenmode index, as shown by the high value (bla
k triangle) of
σSE when the dire
tion of rotation of the rods is reversed (
f. Fig. 19)Another important fa
tor than 
an be easily tuned in an industrial setupis the average time of residen
y inside the mixing region. The mean number ofstirring periods spent by a �uid parti
le inside the mixing region is 
ontrolledby the average velo
ity of the main �ow U , the spatial extent of the mixingregion d, and the stirring frequen
y f :

N =
df

U
. (20)In
reasing the average residen
e time inside the mixing region in
reases thefra
tion of �uid parti
les that are smeared by di�usion. We see indeed inFig. 20 that the 
overage of the out�ow by the eigenmode (hen
e the e�
ien
yof mixing) in
reases with the stirring frequen
y. This trend 
an be quanti�edby 
omputing the eigenmode index, as shown in Fig. 21.Slow stret
hing arising from non-hyperboli
ity: ellipti
al islands and no-slipwalls. Chaoti
 adve
tion o

urs in the vi
inity of the orbits of the 
haoti
41



saddle, that 
ause exponential stret
hing of �uid parti
les. Nevertheless, forsome proto
ols the dynami
s of stret
hing are slower than exponential in apart of the mixing region, be
ause of a non-hyperboli
 
haoti
 saddle. A �rst
ase 
orresponds to KAM islands (see Se
tion 5), that are segregated regionsinside whi
h �uid moves on regular traje
tories and never es
apes to theout�ow, but for the weak a
tion of di�usion only. KAM islands are observedin Fig. 22 (a-b) (one of them is pointed at by the red arrow in Fig. 22 a)),as small regions of dye-less �uid where dye never penetrates throughout thewhole experiment. This is be
ause �uid 
annot 
ross the boundary betweenthe 
haoti
 region, and the islands. In Fig. 22 (a-b), we observe the sti
kinessof KAM islands that was illustrated in Se
tion 5. The sti
kiness is shown bythe dark dye �laments around the islands, that have been mu
h less mixedwith dye-less �uid than in the remainder of the 
haoti
 region. At very longtimes (Fig. 22 (b)), the only visible �u
tuations of the dye pattern are foundaround the sti
ky islands. Nevertheless, even if unmixed �uid stays aroundthe islands, �uid parti
les are stret
hed to very �ne �laments when they leavethe vi
inity of the islands, be
ause the es
ape rate out of these regions is veryweak. In Fig. 22 (b), dye �laments bear a high 
on
entration level aroundthe islands, yet no signi�
ant 
on
entration �u
tuation due to the es
ape ofdye out of this region 
an be seen in the out�ow. Ellipti
al islands thereforeare only a minor issue in open �ows.A se
ond 
ase of non-hyperboli
ity is shown in Fig. 22 
). When therods pass 
lose to the 
hannel walls and the velo
ity of the main �ow is small
ompared to the velo
ity of the rods, no �uid �ows through the mixing regionalong the 
hannel walls. The mixing region therefore extends to the walls ofthe 
hannel, and the separation between the in�ow and the mixing region ismarked by two separation points on the 
hannel walls (see Fig. 22 
)), andtheir unstable manifold. These separation points are paraboli
 points, whi
his a degenerate 
ase, between hyperboli
 orbits and ellipti
 KAM islands.Be
ause of the �xed walls and the no-slip boundary 
ondition, the stret
hingof �uid is very slow in the neighbourhood of the walls inside the mixingregion. As a result, after a given time dye �laments have been mu
h lessmixed with dye-less �uid near the wall than in the bulk of the mixing region,as 
an be shown by the greater 
ontrast of dye �laments near the wall (Fig. 22
)). In 
losed �ows, many authors (Chertkov and Lebedev, 2003; Gouillartet al., 2007, 2008; Salman and Haynes, 2007; Popovy
h et al., 2007; Bo�ettaet al., 2009) have shown that slow stret
hing at the wall has a dramati
 e�e
ton the rate of mixing. This is observed even in the bulk of the mixing region,42



be
ause poorly-mixed �uid from the wall region periodi
ally leaves the wallto be adve
ted in the remainder of the 
haoti
 region; in 
losed �ows, ithas therefore been argued that mixing 
an be more e�
ient if the 
haoti
region is insulated from the wall by a thin non-
haoti
 region (Gouillart et al.,2010). In open �ows, however, the e�e
t of walls is less dramati
, be
auseeven if poorly-mixed �uid is stored 
lose to the walls, �laments that es
apethe vi
inity of the wall do not �ow dire
tly to the out�ow, but rather spenda few periods stret
hed inside the 
haoti
 mixing region, exa
tly in the sameway as other �uid parti
les that do not visit the vi
inity of the walls. Themain e�e
t of walls is to redu
e slightly the average value of stret
hing of themixing region. Walls, therefore, may be 
onsidered as a slight in
onvenien
e,but not as a primary 
ause of poor mixing in open �ows, as they are in 
losed�ows.Note that regions with very long residen
e times are nevertheless an im-portant drawba
k if almost stagnant pat
hes of �uid evolve in an undesiredway for long times (for example as a result of 
hemi
al evolution, or rheolog-i
al evolution as for thixotropi
 �uids). A mixing region with more homoge-neous stret
hing should be preferred for su
h 
ases.Non-hyperboli
 regions of anomalously slow (non-exponential) stret
hingalso prevent the existen
e of a true 
on
entration eigenmode, sin
e �uid doesnot es
ape su
h regions at the same rate as for the remainder of the mixingregion. Therefore, dye stays trapped there for longer times. For intermedi-ate times, an almost invariant pattern is observed on
e dye �laments haverea
hed the Bat
helor s
ale in the bulk of the mixing region (Fig. 22 a) or 
))where stret
hing is exponential. At longer times however, the 
ontrast of thedye pattern is lo
alised on the regions of slow stret
hing (Fig. 22 b)). It hasbeen observed indeed that 
on
entration patterns do not 
onverge on a per-manent pattern in su
h 
ases, hen
e that the evolution of the 
on
entrationmean and standard deviation in the out�ow do not obey exa
tly the sameexponential law (Gouillart et al., 2009). For su
h proto
ols, the eigenmodeindex should be 
omputed only at the intermediate times, where the main
ontribution to the standard deviation 
omes from the 
ontrast between dye�laments of the bulk, and white holes of unmixed �uid.In 
on
lusion, good mixing, whi
h is the stret
hing of �uid parti
les downto the Bat
helor di�usion s
ale, is a di�
ult task in open �ows be
ause ofthe transient stay of �uid parti
les inside the mixing regions. While �uidparti
les with short residen
e times are often insu�
iently mixed, �uid par-ti
les with long residen
e times are mixed mu
h more than ne
essary. The43



(a) (b)

(
)Figure 22: Mixing patterns with non-hyperboli
 zones. (a) KAM islands(red arrows) are pat
hes of �uid that stay forever inside the mixing region.Dye therefore never enters the islands. Islands have a �sti
ky� boundarywhere stret
hing is very low (hen
e the greater intensity of the dye) anddye is trapped for longer times than in the remainder of the mixing region.(b) At very long times after the entry of a blob of dye, dye is found onlyaround the ellipti
al islands. (
) When the �ow of the stirrers takes overthe e�e
t of the main 
hannel �ow near the walls of the 
hannel, the mixingregions extends to the 
hannel walls. Two paraboli
 separation points (red
ir
les) and their unstable manifolds (red lines) de�ne the limit between thein�ow and the mixing region. Be
ause of the no-slip 
ondition, �uid parti
les
lose to the walls stay for long times inside the mixing region being hardlystret
hed. Therefore, unmixed �uid is stored near the walls and reinje
tedalong the unstable manifold of the separation points, as shown by the darker�laments. 44



support of the eigenmode pattern, whi
h is the unstable manifold of the
haoti
 saddle fattened at the di�usion s
ale, tra
es out the region where�uid is well-mixed, while its 
omplementary 
orresponds to ill-mixed �uid.The normalised standard deviation of the eigenmode is therefore a relevantmeasure of mixing e�
ien
y, 
alled the eigenmode index.7. Chaoti
 adve
tion in the o
ean: plankton dynami
sAn important appli
ation of 
haoti
 adve
tion in open �ows is the study ofthe interplay between mesos
ale hydrodynami
 motion and the distributionof marine organisms like phytoplankton and zooplankton. Sin
e the semi-nal paper by Abraham (Abraham, 1998) this biologi
al-physi
al intera
tionhas been addressed in various studies (Mann and Lazier, 1991; Denman andGargett, 1995; Peters and Marrasé, 2000; Károlyi et al., 2000; López et al.,2001a; Martin et al., 2002; Tél et al., 2005; Sandules
u et al., 2008). Severaldi�erent aspe
ts of plankton growth have been dis
ussed, su
h as the emer-gen
e of sustainable plankton blooms (Hernández-Gar
ía and López, 2004),lo
alised plankton blooms in vorti
es (Sandules
u et al., 2007), the 
oexis-ten
e (S
heuring et al., 2003) and dominan
e (Bastine and Feudel, 2010) ofspe
ies.One of the major requirements for the growth of phytoplankton in theworld's o
eans is the availability of nutrients whi
h is strongly dependent onthe �ow patterns in the o
eans. Hen
e, the essential fa
tors 
ontrolling theprimary produ
tion, i.e. the growth of plankton, are horizontal and verti
altransport of nutrients. Horizontal transport is in�uen
ed by the mesos
alehydrodynami
 �ow stru
tures su
h as vorti
es and jet 
urrents, while verti-
al transport is often related to 
oastal upwelling. The latter o

urs usuallywhen wind-driven 
urrents, in 
ombination with the Coriolis for
e, produ
esEkman transport, by whi
h surfa
e waters are driven away from the 
oastand are repla
ed by nutrient-ri
h deep waters. Due to this upwelling theprimary produ
tion in these areas is strongly enhan
ed, giving rise also to anin
rease of zooplankton and �sh populations. Horizontal transport, mixingand stirring and its impa
t on plankton blooms has been investigated in sev-eral studies (Abraham, 1998; López et al., 2001b; Hernández-Gar
ía et al.,2002, 2003; Martin, 2003). On the one hand, horizontal stirring by mesos
alestru
tures like vorti
es and jets is responsible for the redistribution of plank-ton and nutrients and may therefore enhan
e primary produ
tion. On theother hand, horizontal transport 
an even 
ause the emergen
e of phytoplank-45



ton blooms (Károlyi et al., 2000). Furthermore, it in�uen
es 
ompetition and
oexisten
e of di�erent plankton spe
ies (Bra

o et al., 2000).The basi
 equations whi
h govern the dynami
s of plankton in the o
ean
ontain three pro
esses: (i) rea
tions modelling the biologi
al growth ofspe
ies, (ii) adve
tion des
ribing the adve
tion of spe
ies by the �ow, and(iii) di�usion a

ounting for the small s
ale turbulen
e not taken expli
itlyinto a

ount by the velo
ity �eld. The governing equations are rea
tion-di�usion-adve
tion equations, whi
h in 
ase of a simple food 
hain model forthe marine e
osystem 
onsist of three equations for nutrients N , phytoplank-ton P and zooplankton Z:
∂N

∂t
+ v · ∇N = FN +D∆N

∂P

∂t
+ v · ∇P = FP +D∆P (21)

∂Z

∂t
+ v · ∇P = FZ +D∆Z.To study the biologi
al-physi
al intera
tions di�erent models for the growthof the spe
ies FN , FP , FZ and di�erent velo
ity �elds v have been used. Theplankton dynami
s in
lude models whi
h des
ribe the plankton in terms ofex
itable systems (Trus
ott and Brindley, 1994; Neufeld et al., 2002) as wellas of systems 
apable of exhibiting steady state and os
illatory behaviour(Edwards and Brindley, 1996). The velo
ity �elds are either given by sim-ple two-dimensional kinemati
 �ows (Hernández-Gar
ía and López, 2004) orin more realisti
 studies by o
ean 
ir
ulation models (Pasquero et al., 2004;Bra

o et al., 2000). The di�usion term des
ribes eddy di�usion, hen
e, alldi�usion 
onstants have the same value. Equations (21) are solved numeri-
ally by a semi-Lagrangian algorithm. That means, that the three pro
esses,adve
tion, rea
tion and di�usion, are performed sequentially. While the bi-ologi
al growth terms are treated as 
on
entration 
hanges on an Euleriangrid, the adve
tion of �uid par
els is 
omputed in a Lagrangian frame. Theadvantage of this pro
edure is that �lamentary stru
tures whi
h are impor-tant features of 
haoti
 adve
tion of tra
ers, as pointed out in Se
. 4.2, 
anbe resolved in a better way. For a detailed des
ription of the integrations
heme see (Sandules
u et al., 2008).In the following we will dis
uss only one example for the biologi
al andhydrodynami
al models in order to demonstrate how the 
on
ept of 
haoti
adve
tion 
an be used to explain the emergen
e of phytoplankton patterns46



as they are observed in satellite pi
tures. The �lamentary and vortex-likestru
tures seen in satellite observations 
an be largely explained as imprints ofmesos
ale hydrodynami
al stru
tures whi
h enhan
e the emergen
e of plank-ton blooms. Parti
ularly, we will highlight the role of the 
haoti
 saddle,whi
h as we have pointed out, is the most important feature of the mixingregion in open �ows (see Se
. 3).The mixing regions in o
eani
 �ows are 
hara
terised by mesos
ale hy-drodynami
 stru
tures. To study the impa
t of these mesos
ale stru
tures onplankton growth various kinemati
 models for the �ow have been 
onsideredin literature. In general, only two-dimensional horizontal �ow patterns havebeen studied so that the velo
ity �eld 
an be des
ribed by a stream fun
tion.This approa
h 
an be justi�ed by the argument that verti
al velo
ities in theo
ean are often one order of magnitude smaller than the horizontal ones. Twoparadigmati
 models have been used to study the interplay between plank-ton dynami
s and hydrodynami
 �ows: (i) the blinking vortex �ow (Neufeldet al., 2002) depi
ted in Fig. 9, and (ii) the �ow in the wake of an island(Jung et al., 1993), similar to the 
hannel �ow shown in Fig. 5. Both �owsare periodi
ally for
ed to ensure 
haoti
 adve
tion of passive tra
ers, as wehave dis
ussed in the previous se
tions. Ea
h of them fo
uses on parti
ularproperties of a real �ow. While (i) introdu
es a temporarily 
hanging mixingregion, (ii) mimi
s the dynami
s of a von Kármán vortex street in the wakeof an obsta
le, whi
h in geophysi
al �ows 
an be 
onsidered as an islandlo
ated in an o
ean 
urrent.Sin
e the blinking vortex (i) �ow is very idealised, only the �ow in thewake of an island (ii) is dis
ussed here in detail: The island is modelled as a
ylinder lo
ated in a horizontal ba
kground �ow. In the wake of this 
ylindera von Kármán vortex street (
f. Fig.23) appears whi
h is phenomenologi
allydes
ribed by the following stream fun
tion Ψ (Jung et al., 1993):
Ψ(x, y, t) = f(x, y)g(x, y, t). (22)The �rst fa
tor f(x, y) ensures the 
orre
t boundary 
onditions at the
ylinder, whereas the se
ond fa
tor g(x, y, t) models the vorti
es in the wake,the ba
kground �ow, and the Ekman �ow:

g(x, y, t) = wh1(t)g1(x, y, t) + wh2(t)g2(x, y, t) + u0s(x, y)y + uEΘ(x− 1)x.(23)The vorti
es in the wake deta
h periodi
ally from the island and their vor-ti
ity is of opposite sign. Their maximum vortex strengths denoted by w47



Figure 23: Sket
h of the �ow in the wake of an island. The upper border ofthe pi
ture denotes the 
oastline.are equal, and their shape is des
ribed by the fun
tions gi(i = 1, 2) (see de-tails in (Sandules
u et al., 2006)). Ea
h vortex travels along the x dire
tionfor a time Tc before it disappears due to dissipation. The ba
kground �owmoves in the same dire
tion with a speed u0. The fa
tor s(x, y) des
ribesthe shielding of the ba
kground �ow by the 
ylinder in a phenomenologi
almanner. The Ekman drift, whi
h is intended to model the �ow from the
oast towards the o
ean interior, is introdu
ed by 
onsidering an additionalvelo
ity of 
onstant strength uE in the y dire
tion whi
h is perpendi
ular tothe ba
kground �ow and whi
h is a
ting only at x 
oordinates larger than 1,i.e. just behind the island. This 
orresponds to a stream 
rossing the vortexstreet towards negative y values beyond the 
ylinder.The velo
ity 
omponents in x and y dire
tion are then given by Eqs. (8),(22) and (23). The parametrisation of the model has been 
hosen in su
h away that the hydrodynami
 �ow mimi
s the �ow patterns around the Canaryislands (Aristegui et al., 1997, 2004; Sandules
u et al., 2006).From the large variety of marine e
osystem models we use a simple food
hain to illustrate the interplay between hydrodynami
 motion and biologi
al48



growth. This model system is based on a three 
omponent model developedby Steele & Henderson (Steele and Henderson, 1992) and later modi�ed byEdwards & Brindley (Edwards and Brindley, 1996) Pasquero et al. (Pasqueroet al., 2004) and Os
hlies & Gar
on (Os
hlies and Gar
on, 1999). The marinemodel e
osystem 
ontains three di�erent trophi
 levels, namely nutrients N ,phytoplankton P and zooplankton Z, whose 
on
entrations evolve in time.The biologi
al pro
esses taken into a

ount 
an be modelled as:
dN

dt
= upwelling − uptake + recycling

dP

dt
= uptake − grazing −mortality

dZ

dt
= grazing −mortality.Expressed in mathemati
al terms this reads:

dN

dt
= FN = ΦN − β

N

kN +N
P + µN

[

(1− γ)
αηP 2

α+ ηP 2
Z + µPP + µZ2

]

dP

dt
= FP = β

N

kN +N
P − αηP 2

α+ ηP 2
Z − µPP (24)

dZ

dt
= FZ = γ

αηP 2

α + ηP 2
Z − µZ2.To provide some insight into the biologi
al model we brie�y dis
uss themeaning of the di�erent terms in the model equations. For details we re-fer to (Os
hlies and Gar
on, 1999; Pasquero et al., 2004). The dynami
s ofthe nutrients is determined by three pro
esses, namely nutrient supply dueto verti
al mixing ΦN , 
onsumption by phytoplankton P , and re
y
ling byba
teria whi
h are not expli
itly taken into a

ount as spe
ies in this model.Verti
al mixing whi
h brings nutrients from deeper nutrient-ri
h layers ofthe o
ean into the mixed layer is parametrised in the biologi
al model us-ing the fun
tion ΦN , whi
h depends on the abundan
e of nutrients N . Thisparametrisation is ne
essary be
ause the two-dimensional hydrodynami
almodel takes only horizontal transport of nutrients into a

ount. The uptakeof nutrients by phytoplankton is des
ribed by a fun
tion whi
h 
ontains asaturation e�e
t when nutrients are highly abundant. The re
y
ling of nutri-ents from organi
 material (dead phytoplankton and zooplankton, exudatesfrom zooplankton) is modelled by the term in bra
kets.49



The term des
ribing the uptake of nutrients repeats as a growth term inthe dynami
al equation for phytoplankton P . Phytoplankton is diminisheddue to grazing by zooplankton and due to natural mortality.Again the grazing term in the phytoplankton equation shows up as thegrowth term in the dynami
al equation for the zooplankton Z, together withthe 
onversion fa
tor γ, whi
h a

ounts for the fa
t that not all 
onsumedphytoplankton are 
onverted into biomass of zooplankton. The natural mor-tality of zooplankton is assumed to be quadrati
 be
ause this term doesnot only model natural mortality but also the existen
e of higher predatorswhi
h are not expli
itly 
onsidered (Edwards and Bees, 2001). The param-eters used in this model are taken from (Pasquero et al., 2004) and a

ountfor a situation in the open o
ean.Coupling the biologi
al and the hydrodynami
al model demonstrates howthe 
on
epts of 
haoti
 adve
tion 
an be used to 
ontribute to the under-standing of biogeo
hemi
al pro
esses in the o
ean. This simple 
on
eptualmodel provides some insight into the me
hanism of the interplay of mesos
alehydrodynami
 stru
tures, in this 
ases the vorti
es behind the island, andthe biologi
al growth of plankton spe
ies in the region of the vortex street.Depending on the 
on
entrations of nutrients and plankton in the in�ow intothe area around the island one 
an distinguish two s
enarios: (i) If the in�owof nutrients and plankton is rather high 
orresponding to a eutrophi
 o
eanone observes an enhan
ed plankton growth in areas related to a large up-welling of nutrients (
f. Fig.24). Nutrients are entrained from the lo
alisedupwelling region where more nutrients are available due to higher verti
almixing rates and lead to enhan
ed plankton growth in this nutrient plume.This plankton bloom is essentially found in the exterior of the vorti
es. (ii)If the in�ow of nutrients and plankton is rather low 
orresponding to anoligotrophi
 o
ean the opposite behaviour is obtained. Instead of a plank-ton bloom surrounding the vorti
es one observes a lo
alised plankton bloomwithin a vortex (
f. Fig.25). This rather di�erent s
enario whi
h 
an be alsoobserved in satellite pi
tures results from an intri
ate interplay between thetime s
ales of the hydrodynami
 and biologi
al pro
esses involved. Nutrientsand plankton are entrained into the vorti
es in whi
h the ex
hange of wa-ter with its surroundings is rather low. Hen
e, the plankton is 
on�ned tothe vortex for a rather long time leading to an enhan
ed biologi
al growthwithin the vortex. This way the vortex a
ts like an in
ubator for a planktonbloom. To unravel the me
hanism how the nutrients and the plankton aretransported into the vortex it is useful to study the details of the 
haoti
50
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−3Figure 24: Snapshot of the phytoplankton 
on
entration in the wake of anisland with high in�ow 
on
entrations from the surrounding o
ean. Con-
entrations from low to high are denoted by 
olours from blue via green tored.adve
tion of tra
ers in the �ow Eqs. (8), (22) and (23).Jung et al. (Jung et al., 1993) have shown that there exists a 
haoti
saddle in between the island and the vortex street. As pointed out in Se
.3, a 
haoti
 saddle is an unstable invariant 
haoti
 set possessing stableand unstable manifolds in a similar way as �xed point or periodi
 orbitsof saddle type. Tra
ers in the neighbourhood of the stable manifolds movetowards the 
haoti
 saddle while tra
ers 
lose to the 
haoti
 saddle leaveits neighbourhood along its unstable manifolds. Hen
e this 
haoti
 saddleembedded in the �ow 
an be 
onsidered as a �bridge� between the islandand the vortex. Nutrients and plankton are transported along the stablemanifolds from the vi
inity of the island towards the 
haoti
 saddle andfrom there into the vortex along its unstable manifolds. The 
haoti
 saddlebuilds the ba
kbone of transport between the immediate neighbourhood ofthe island and the interior of the vortex.The transport of tra
ers along this path 
an be visualised using a 
on
eptfrom nonlinear dynami
s, namely �nite-size Lyapunov exponents (FSLE).This method has been proven to be very useful to investigate transportin open �ows and illuminates the me
hanism of the emergen
e of lo
alisedplankton blooms. The FSLEs allow for a 
hara
terisation of dispersion pro-
esses and for the dete
tion of Lagrangian stru
tures, su
h as barriers and51
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−3Figure 25: Snapshot of the phytoplankton 
on
entration in the wake of anisland with low in�ow 
on
entrations from the surrounding o
ean. Con
en-trations from low to high are denoted by 
olours from blue via green to red.vorti
es. Therefore the algorithm of their 
omputation is brie�y sket
hed inthe following.In dynami
al systems theory the exponential divergen
e of initially nearbytraje
tories is in general measured by the 
omputation of Lyapunov expo-nents. In order to adjust this 
on
ept to lo
al pro
esses in open �ows, one
omputes �nite size Lyapunov exponents (FSLE) whi
h are based on the ideathat one 
al
ulates the time whi
h is ne
essary to rea
h a �nal pres
ribeddistan
e δf starting from an initial distan
e δ0 (Artale et al., 1997; d'Ovidioet al., 2004). The FSLE are 
omputed by starting two tra
ers in the �ow attime t 
lose to the point x but at a small distan
e δ0, and let them evolveuntil their separation ex
eeds δf . From the elapsed time, τ±, the FSLE is
al
ulated as
λ±(x, t, δ0, δf) =

1

τ±
log

δf
δ0

(25)The positive subs
ripts indi
ate that the tra
ers are adve
ted forward intime, while for the negative subs
ript they are adve
ted ba
kward in time.
λ± is a s
alar measure for the stret
hing/
ontra
ting rate in the �ow given bythe inverse of the separation time τ±. Maxima in the spatial distribution of
λ+, the positive or expanding FSLE, approximate the underlying stable man-ifold of the 
haoti
 �ow (Joseph and Legras, 2002; d'Ovidio et al., 2004), thedire
tion along whi
h tra
ers approa
h the saddle. The 
ontra
ting FSLE,52
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Figure 26: Snapshot of the stable (red) and unstable (blue) manifolds in thewake of the island.
λ−, dete
ts the underlying unstable manifold in the �ow, the dire
tion alongwhi
h tra
ers leave the saddle. The stable and unstable manifolds are inter-twined around the vortex 
ores and at the island (Fig. 26). Their 
omplexstru
ture allows for transport of tra
ers a
ross the vortex street as well asof nutrients and plankton into the interior of the vortex. The results of thisapproa
h reveal one possible me
hanism for the emergen
e of lo
alised plank-ton blooms whi
h 
an be observed by satellite in many di�erent areas aroundthe globe.8. SummaryThe transient nature of 
haoti
 adve
tion in open �ows results in partialmixing organised around persistent (non-spa
e-�lling) fra
tal patterns in themixing region. These fra
tal stru
tures are 
aused by the presen
e of the
haoti
 saddle in the mixing region, and the invariant manifolds asso
iatedwith the 
haoti
 saddle govern the dynami
s of the system. The 
haoti
saddle is felt not only in pure adve
tion, but also in the 
ase of transporteds
alars subje
t to mole
ular di�usion; the strange eigenmode whi
h appearsin the asymptoti
 dynami
s of the s
alar 
on
entration shadows the unstablemanifold for low di�usion. The 
haoti
 saddle and its unstable manifoldare also the key to understanding the dynami
s of 
hemi
al and biologi
alpro
esses in �uids, as most of the rea
tions take pla
e in the vi
inity ofthe unstable manifold. In 
on
lusion, the 
on
ept of the 
haoti
 saddle is53



the unifying prin
iple behind the theoreti
al and experimental approa
hes tophenomena related to 
haoti
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