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Abstract

The stepwise mutation model (SMM) is a simple, widely used model to describe the

evolutionary behaviour of microsatellites. We apply a Markov chain description of

the SMM and derive the marginal and joint properties of this process. In addition

to the standard SMM, we also consider the normalised allele process. In contrast

to the standard process, the normalised process converges to a stationary distribu-

tion. We show that the marginal stationary distribution is unimodal. The standard

and normalised processes capture the global and the local behaviour of the SMM,

respectively.
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1 Introduction

Microsatellites are successive iterations of a given short DNA sequence motif

(usually 2-6 nucleotides long) that is repeated 5-100 times (Tautz, 1993; Cham-

bers and MacAvoy, 2000). The number of iterations (the ”repeat number”)

serves to identify a given microsatellite allele. Microsatellites are abundant in

many species and have very high mutation rates (up to 10−2 per generation, Li

et al., 2002). Owing to their high degree of variability, microsatellites are fre-

quently used as markers in population genetics (Goldstein et al., 1999; Kashi

and King, 2006), DNA fingerprinting (Cassidy and Gonzales, 2005; Bindu et

al., 2007), whole genome mapping (Weissenbach et al., 1992) and genetic epi-

demiology (Thibodeau et al., 1993; Ashley and Warren, 1995).

The stepwise mutation model (SMM) was first introduced by Ohta and Kimura

(1973) to describe the behaviour of electrophoretically detectable alleles in a

population. Since then, the SMM has been widely used for modelling mi-

crosatellite mutation and evolution (Tishkoff et al., 1996; Zhivotovsky et al.,

2003; De Iorio et al., 2005; Vardo and Schall, 2007). The SMM assumes that,

in one generation, the repeat number can only increase or decrease by at most

one, usually with equal probability. More refined models have been proposed

that include mutations of greater length, mutation rates that depend upon

repeat number, or the additional introduction of point mutations (Di Rienzo

et al., 1994; Garza et al., 1995; Feldman et al., 1997; Zhivotovsky et al., 1997;
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Kruglyak et al., 1998; Durrett and Kruglyak, 1999; Falush and Iwasa, 1999;

Calabrese et al., 2001); for an overview, see Watkins (2007) or Calabrese and

Sainudiin (2005). As yet, however, it has remained controversial to what ex-

tent these models approximate the reality (Chambers and MacAvoy, 2000;

Whittaker et al., 2003; Sainudiin et al., 2004; Cornuet et al., 2006).

In the following, we will consider the classical SMM. In 1975, Moran discovered

that the distribution of the absolute frequencies ni(t) of alleles (as identified by

their repeat number i) at time t does not converge, but has bounded variance.

He subsequently conjectured that the distribution “remains in a bunch” and

characterised its behaviour as “wandering”, without being more specific as to

the existence of a limiting distribution (Moran, 1975). To investigate conver-

gence, Moran considered quantities Ck(t) := N−2∑
i ni(t)ni+k(t), where N is

the population size. For k = 0, this is the “effective number of neutral alleles

in the population” of Ohta and Kimura (1973). Moran was able to show that

“unlike most problems in population genetics that have been discussed in the

past, we do not obtain a limiting distribution or convergence in probability [of

Ck(t)].” (Moran, 1975). Shortly after Moran’s publication, Kingman investi-

gated the normalised Markov chain of the SMM, given by the repeat number

difference to the allele of the N-th (or any other) individual in each generation

(Kingman, 1976). Using characteristic functions, he could prove exponentially

fast convergence in distribution for a generalised model. He also obtained re-

sults about the limiting distribution of samples from a population when the
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population size tends to infinity conditioned that a certain relationship be-

tween time and population size holds.

Here, we will give a detailed analysis of the behaviour of the allele pro-

cess under the SMM, where our focus will be upon the resulting Markov

chain. Markov processes have been applied before to the characterisation of

microsatellite mutation models by Watkins (2007). In contrast to Kingman

(1976), who used the analytic tool of characteristic functions, we will apply

the stochastic method of recurrence of Markov chains. In Section 2 we will

introduce the stepwise mutation model which is the basis for all subsequent

results. In Section 3 the allele process X is investigated. We will make use of

the fact that every population which does not die out, such as under a Wright-

Fisher model, contains a genealogical lifeline that does not die out. Adding

independent mutations to the genealogy generates an inherent random walk,

and thereby results for the marginal distribution of X. In the second sub-

section, we will show that X is an irreducible, aperiodic and null recurrent

Markov chain. The behaviour of X represents the global aspect of the SMM.

The normalised allele process V is analysed in Section 4 characterising the

local view of the SMM. Again, marginal results such as moments and expo-

nential moments will be given in the first subsection. Then, it will be proven

that V is a positive recurrent Markov chain with exponentially fast conver-

gence to the invariant distribution. A central result is provided in the third

subsection where it will be shown that the marginal invariant distribution is
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unimodal. Finally, some simulation results for this distribution are given.

2 Wright-Fisher Model with Stepwise Mutations

The microsatellite allele process under neutral evolution will be studied using a

Wright-Fisher model with stepwise mutation. Let (Ω,A,P) be the underlying

probability space, and let N ∈ N := {1, 2, 3, ...} be the constant population

size. A microsatellite allele will be represented by the number of iterations of

the sequence motif, the repeat number. Alleles are normalised such that allele

0 corresponds to a particular basic state m ∈ N, e.g. the most commonly

observed repeat number. For simplicity in the classical SMM, which we apply

here, there are no length restrictions on the allele size and even negative repeat

numbers are theoretically possible. Thus, the set of possible alleles equals Z,

and an allele z ∈ Z then has repeat number m+ z.

a) Genealogy

The genealogy is assumed to be given by a Wright-Fisher model. For ease of

notation and terminology, we will consider only haploid individuals. How-

ever, our results can easily be transferred to diploid individuals by regarding

each of their two alleles separately.

Let Yn(i) be the direct ancestor of the ith individual in the nth generation,

i ∈ {1, ..., N}, n ∈ N. Clearly, Yn(i) is an individual of the (n− 1)th gener-

ation. According to the Wright-Fisher model, Yn : Ω→ {1, ..., N}N satisfies
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P(Yn(i) = j) = 1
N

for all i, j ∈ {1, ..., N} and the (Yn(i))i∈{1,...,N},n∈N are

independent.

b) Mutation process

Let Zn(i) be the mutational event preceding inheritance, from Yn(i), of the

allele of the ith individual in the nth generation. We only consider mutation

events that either increase or decrease the repeat number by 1, or leave

the repeat number unchanged, i.e. Zn(i) ∈ {−1, 0, 1}. Let μ ∈ (0, 1) be

the mutation rate, i.e. the probability of a change in repeat number per

generation and per individual. Then, Zn : Ω → {0, 1,−1}N is assumed to

satisfy P(Zn(i) = 0) = 1− μ, P(Zn(i) = 1) = P(Zn(i) = −1) = μ/2.

As usual, we assume an Independence Property for the genealogical and

mutational processes, namely that

the whole family Zn(i), Yn(i), n ∈ N, i ∈ {1, ..., N} is independent. (1)

c) Allele process

Let Xn(i) denote the allele of the ith individual in the nth generation. For

all n ∈ N0, Xn : Ω→ Z
N can be written as

Xn(ω)(i) := Xn−1(ω)(Yn(ω)(i)) + Zn(ω)(i) with X0 ≡ 0 . (2)

X := (Xn)n∈N0
is called the allele process of the Wright-Fisher SMM. The

distribution of the initial states X0 is arbitrary and does not influence the

asymptotic behaviour. For the sake of simplicity, we assume X0 ≡ 0 which

means that all alleles have the same repeat number m at time 0.
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d) Fundamental properties of the allele process X

LetAn := σ(Y1, ..., Yn, Z1, ..., Zn) be the σ algebra generated by Y1, ..., Yn, Z1, ..., Zn.

Then the following property follows directly from the definition of X.

Proposition 1

(i) Xn is An-measurable for all n ∈ N.

(ii) For all n ∈ N the family (Xn(i))i∈{1,...,N} is exchangeable. (Exchangeability

Property)

3 Global Behaviour: the Allele Process X

3.1 Marginal Properties of X

To investigate the marginal distribution of the allele process X, we will use an

immanent random walk. This is generated by the “lifeline” of the genealogy,

i.e. the line of descent that never dies out. Jn is the index, in generation n, of

the (unique) member of the lifeline.

Proposition 2

(i) There exists an almost surely unique J : Ω→ {1, ..., N}N such that Yn(Jn) =

Jn−1 for all n ∈ N, and Jn is σ (Yk, k ∈ N, k > n) measurable. Furthermore,

for n ∈ N, Xn(Jn) has the same distribution as Xn(1).

(ii) (Xn(Jn))n∈N0
is a random walk. For k ∈ Z, the transition probabilities are

P(Xn(Jn) = k|Xn−1(Jn−1) = k) = 1−μ and P(Xn(Jn) = k−1|Xn−1(Jn−1) =
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k) = P(Xn(Jn) = k + 1|Xn−1(Jn−1) = k) = μ/2.

Proof. (ii) follows from the definition of X once the existence of J has been

established. Let τn be the first generation (after n) in which all individuals

have a common ancestor in generation n, i.e.

τn := inf{k > n : ∀i, j ∈ {1, ..., N} Yn+1 ◦ ... ◦ Yk(i) = Yn+1 ◦ ... ◦ Yk(j)} .

τn is σ (Yk, k ∈ N, k > n) measurable and almost surely finite.

Then, for n ∈ N0, define on τn <∞

Jn := Yn+1 ◦ Yn+2 ◦ ... ◦ Yτn−1 ◦ Yτn(1) .

Jn is almost surely well defined. For τn = τn−1 the equality Yn(Jn) = Jn−1 is

clear. For τn > τn−1 define Z := Yτn−1+1 ◦ ... ◦ Yτn(1). Then

Yn(Jn) = Yn ◦ Yn+1 ◦ ... ◦ Yτn−1
(Z) = Jn−1 .

Hence Jn satisfies the required properties. �

The first and second moment of the marginal distribution of X and a recur-

rence equation follow immediately from this proposition and from Prop. 1(i).

A limit result for the first absolute moment can be derived by applying the

central limit theorem to the random walk (Xn(Jn))n∈N0
. For all n ∈ N, z ∈ Z

define

ρn(z) := P(Xn(i) = z) .
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Note that, owing to the exchangeability property of Prop. 1(ii), ρn(z) is inde-

pendent of the choice of i ∈ {1, ..., N}.

Lemma 3 For any i ∈ {1, ..., N}, n ∈ N

(i) E (Xn(i)) = 0

(ii) Var (Xn(i)) = μn

(iii) ρn(z) = (1− μ)ρn−1(z) + μ/2 (ρn−1(z − 1) + ρn−1(z + 1))

(iv) lim
m→∞

E |Xm(i)| =∞

Note that limn→∞Var (Xn(i)) =∞.

Lemma 4 For any i, j ∈ {1, ..., N}, i 	= j, n ∈ N

Cov (Xn(i), Xn(j)) = μ

(
n+

(N − 1)n −Nn

Nn−1

)
.

A proof of Lemma 4 is given in the appendix.

3.2 Characterisation of X as a Markov chain

The following theorem shows that, in our new representation as a Markov

chain, the allele process X is null recurrent (see Breiman (1992), p. 140, for

the definition of null recurrent). Therefore, no asymptotic distribution exists.

In the following, we will write 0N for (0, ..., 0) ∈ Z
N . For the definition of An,

see Prop. 1.
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Theorem 5

(i) The allele process X is an irreducible, aperiodic Markov chain on Z
N with

respect to (An)n∈N0
.

(ii) The allele process X is null recurrent.

Proof. (i) follows directly from the definition of X. For the proof of the recur-

rence, it suffices to verify recurrence for state 0N ∈ Z
N because of irreducibility.

Remember that X0 ≡ 0N . We will prove the criterion
∑∞

n=1 P (Xn = 0N) =∞

(Chung, 1967, p.23, Theorem 4). One possibility for process X to get from

state 0N at time 0 to state 0N at time 2n+1, is that X2n(1) = 0, Y2n+1(i) = 1

and Z2n+1(i) = 0 for all i ∈ {1, ..., N}. Therefore,

P (X2n+1 = 0N) ≥ P (X2n(1) = 0)
(
1

N

)N

(1− μ)N .

Now choose J according to Prop. 2(i). Then

∞∑
n=1

P (Xn = 0N) ≥
∞∑
n=1

P (X2n(J2n) = 0)
(
1

N

)N

(1− μ)N =∞

since the random walk of Prop. 2(ii) is known to be recurrent.

Let τ := inf{n ∈ N : Xn = 0N}. For null recurrence, it remains to be shown

that E (τ) =∞. This follows from τ ≥ inf{n ∈ N : Xn(Jn) = 0} and from the

fact that the random walk of Prop. 2(ii) is null recurrent. �
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4 Local Behaviour: the Normalised Allele Process V

Since no asymptotic distribution exists for the allele process X, we will now

consider the normalised allele process V , corresponding to the differences be-

tween the repeat numbers of each allele and the allele of the N-th individual in

each generation. Note that because of the exchangeability, any other individual

may take the place of the N-th individual.

Definition 6 The process V := (Vn)n∈N0
, defined by

Vn : Ω→ Z
N−1 with Vn(i) := Xn(i)−Xn(N) ,

is called the normalised allele process.

4.1 Marginal properties of V

In this subsection several marginal properties of V are derived. The proofs are

given in the appendix.

The first and second moments of the marginal distribution of V can be calcu-

lated directly from the corresponding moments of X (see appendix). Because

of the exchangeability property, the distribution of Vn(i) is symmetric around

zero.
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Lemma 7 For any i, j ∈ {1, ..., N − 1}, i 	= j, n ∈ N

(i) E (Vn(i)) = 0,

(ii) Var (Vn(i)) = 2μN
(
1−

(
1− 1

N

)n)
,

(iii) Cov (Vn(i), Vn(j)) =
1
2
Var (Vn(i)).

Note that, in contrast to the behaviour of process X (see Lemma 3),

limn→∞Var (Vn(i)) = 2μN is finite.

We now derive a recursion for the marginal distribution of V . Note that,

because of the exchangeability property of Proposition 1(ii), the distribution

of Vn(i) is independent of i for i ≤ N − 1. Thus, define

ηn(z) := P(Vn(i) = z) for all n ∈ N0, z ∈ Z . (3)

For k ∈ Z let r(k) := P (Zn(1)− Zn(2) = k) . (4)

Obviously r does not depend on n, r(0) = 1−2μ+ 3
2
μ2, r(1) = r(−1) = μ−μ2,

r(2) = r(−2) = 1
4
μ2 and r(k) = 0 for any other k.

Lemma 8 For any n ∈ N, z ∈ Z

ηn(z) =
N − 1

N

2∑
k=−2

r(k) ηn−1(z − k) +
1

N
r(z) .

The next lemma provides a recursion for the higher moments and allows de-

termination of the exponential moments of Vn(i). For λ > 0 and i ≤ N − 1,

define c(λ) := E (exp (λ (Zn(i)− Zn(N)))). Then

c(λ) = r(0) + (exp(λ) + exp(−λ)) r(1) + (exp(2λ) + exp(−2λ)) r(2).
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Lemma 9 Let i ∈ {1, ..., N − 1}, n,m ∈ N, λ > 0.

(i) All moments of Vn(i) are finite and emerge from the following recursion:

E (Vn(i))
m = 0 for odd m.

E (Vn(i))
m =

1

N

(
2μ+ μ2

(
2m−1 − 2

))

+
(
1−

1

N

) m∑
k=0

k even

(
m

k

)(
2μ+ μ2

(
2m−k−1 − 2

))
E

(
Vn−1(i)

k
)

for even m.

(ii) All exponential moments of Vn(i) are finite and are given by

E exp (λVn(i)) =
1

N

n−1∑
k=0

(
1−

1

N

)k

c(λ)k+1 +
(
1−

1

N

)n

c(λ)n

=
c(λ)

N

1−
(
1− 1

N

)n
c(λ)n

1−
(
1− 1

N

)
c(λ)

+
(
1−

1

N

)n

c(λ)n .

The following corollary is straightforward and reveals the behaviour of the

moments of Vn(i) for n→∞.

Corollary 10 Let i ∈ {1, ..., N − 1}, m ∈ N, λ > 0.

(i) lim
n→∞

E (Vn(i))
m <∞.

(ii) lim
n→∞

E exp (λVn(i)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

<∞ if
(
1− 1

N

)
c(λ) < 1

=∞ if
(
1− 1

N

)
c(λ) ≥ 1

.
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4.2 Characterisation of V as a Markov chain

Like the original allele process X, the normalised process V is a Markov chain.

Contrary to X, however, V can be shown to be positive recurrent (see below;

for the definition of positive recurrent see Breiman (1992), p. 140). Therefore,

there is an invariant distribution that characterises the asymptotic behaviour

of V , and V can even be shown to converge to this distribution exponentially

fast. It should be pointed out that, whereas our Markov chain characterisation

of the normalised allele process V is new, the convergence result was already

obtained by Kingman, using characteristic functions (Kingman, 1976).

Theorem 11

(i) V is an irreducible, aperiodic Markov chain on Z
N−1, with respect to (An)n∈N0

.

(ii) V is positive recurrent.

(iii) V converges exponentially fast to the unique invariant distribution.

Proof. Using Eq. (2), section (i) follows from the fact that

Vn(i) = Xn(i)−Xn(N) = Xn−1(Yn(i)) + Zn(i)−Xn−1(Yn(N))− Zn(N)

= Vn−1(Yn(i))− Vn−1(Yn(N)) + Zn(i)− Zn(N) .

For the proof of (ii) and (iii), write 0N−1 for (0, ..., 0) ∈ Z
N−1 and note that,

for every z ∈ Z
N−1,

P (Vn = 0N−1 |Vn−1 = z) ≥

P (∀i, j ∈ {1, ..., N} : Yn(i) = Yn(j), Zn(i) = Zn(j)) > 0 .

15



Thus, process V fulfills the Doeblin condition and sections (ii) and (iii) follow

(see, e.g. Doob (1953), pp. 192 ff., case b). �

4.3 Unimodality of the asymptotic marginal distribution of V

Theorem 11 implies that the distribution ηn of Vn(i) (see Eq. (3)) converges

in distribution as n → ∞. Let η = limn→∞ ηn. We will now show that η is a

unimodal discrete distribution, which is one of our main novel results.

Following Keilson and Gerber (1971), we call a distribution p on Z unimodal,

if at least one M ∈ Z exists such that

p(z) ≥ p(z − 1) for all z ≤M

p(z + 1) ≤ p(z) for all z ≥M .

For proving the unimodality of η we need the following preparatory lemma,

the proof of which can be found in the appendix.

Lemma 12 Let R
+ denote the set of strictly positive real numbers and R

+
0

the set of positive real numbers including zero. If

M := {ν : Z→ R
+
0 |∃ n ∈ N; a1, . . . , an ∈ R

+; b1, . . . , bn ∈ N0 :

ν =
n∑

i=1

ai · 1{−bi,−bi+1,...,bi}},

then M is closed under convolution.
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With this, we can show that η is unimodal. The critical assumption of the

following theorem, namely that μ ≤ 0.8, can safely be assumed for microsatel-

lites.

Theorem 13

(i) If r : Z→ R is defined as in Eq. (4), then η1 = r and for all n ∈ N\{1}

ηn =
1

N
r ∗

(
n−2∑
i=0

(
N − 1

N

)i

ri
)
+
(
N − 1

N

)n−1

rn, (5)

where ∗ denotes the convolution of two functions and ri the ith convolution

of r.

(ii) If μ ≤ 0.8, then η is unimodal and symmetric around zero.

Proof. Recalling that X0 ≡ 0N , it follows that, for all z ∈ Z,

η1(z) = P(V1(1) = z) = P(X1(1)−X1(N) = z) = P(Z1(1)−Z1(N) = z) = r(z),

according to the definition of r, see Eq. (4). Since by definition

∑
k∈Z r(k)ηn−1(z−k) = (r∗ηn−1)(z), we can reformulate the recursive equation

in Lemma 8 as follows:

ηn =
N − 1

N
r ∗ ηn−1 +

1

N
r. (6)

We will now prove Eq. (5) by induction. For n = 2, Eq. (5) follows from Eq.
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(6). Now, let n ∈ N\{1, 2}. Assuming that Eq. (5) holds for n− 1, we have

ηn =
N − 1

N
r ∗ ηn−1 +

1

N
r

=
1

N
r +

N − 1

N
r ∗

(
1

N
r ∗

n−3∑
i=0

(
N − 1

N

)i

ri +
(
N − 1

N

)n−2

rn−1
)

=
1

N
r ∗

(
1 +

n−3∑
i=0

(
N − 1

N

)i+1

ri+1

)
+
(
N − 1

N

)n−1

rn

=
1

N
r ∗

n−2∑
i=0

(
N − 1

N

)i

ri +
(
N − 1

N

)n−1

rn.

To prove section (ii), we will first show that ηn is unimodal for all n ∈ N.

Since 0 < μ ≤ 0.8, the following inequalities hold:

1− 2μ+
3

2
μ2 > μ− μ2 ≥

1

4
μ2.

Thus, in the notation of Lemma 12, r ∈M with n = 3, b1 = 0, b2 = 1, b3 = 2,

a1 = 1−2μ+ 3
2
μ2−(μ−μ2), a2 = −

1
4
μ2+(μ−μ2), a3 =

1
4
μ2. Now, considering

Eq. (5), Lemma 12 implies that ηn ∈ M for all n ∈ N, and all elements of

M are clearly unimodal. Unimodality of η follows from the fact that the limit

of a convergent sequence of unimodal discrete distributions is itself unimodal

(see “Statement 4” in Keilson and Gerber (1971)). �

4.4 Simulation of the asymptotic marginal distribution η

Lemma 8 can be used to simulate the marginal distribution of Vn(i). From

Theorem 11, we know that Vn(i) converges in distribution as n → ∞. Figs.

1 and 2 show the behaviour in time of the distribution of Vn(i), assuming

μ = 0.01 and either N = 100 or N = 1000, respectively. For N = 100, the
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distribution of Vn(i) is close to the stationary distribution at n = 100, and

the domain is mainly concentrated in the interval [−7, 7]. For N = 1000,

convergence is slower and the domain is larger. The distribution of Vn(i) is

close to the stationary distribution at n = 1000, and the domain is mainly

concentrated in [−13, 13].

5 Discussion

We have shown that the allele process of the stepwise mutation model is char-

acterised by two different types of behaviour. The expectation of the absolute

value of the repeat number of a given individual converges to infinity. This

signifies the global behaviour, where no convergence occurs. However, when

the allelic state of an individual is chosen as a reference point for the other

individuals of the population, then a limiting invariant distribution of the re-

sulting allele difference process emerges. This is the local behaviour of the

allele process, which implies that the alleles stay “clumped together” dur-

ing convergence to infinity. These results confirm Moran’s notion of the term

“wandering distributions” (Moran, 1975).

The convergence of the allelic differences is exponentially fast, as was already

noted by Kingman (Kingman, 1976). This is reassuring because it means that

estimates or test statistics obtained from the allele differences not only ap-

proach a limiting distribution, but do so very quickly. As we showed, the

resulting limiting marginal distribution is unimodal.
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It should be noted that the SMM is a very simple model of microsatellite

mutation. In some cases, it would be reasonable to assume not only mutations

that change the repeat number by one unit but to allow a wider range of

mutations (Huang et al., 2002). Kingman also considered generalised forms of

mutations (Kingman, 1976). As long as the individual mutation events Zn(i)

remain independent, which is biologically plausible, central Theorem 11 of

this paper will hold true. If the random walk corresponding to the mutation

process Z is null recurrent, Theorem 5 will apply. Another limitation of the

SMM is the unboundedness of the state space whereas, in reality, negative

repeat numbers cannot occur. Also, very large repeat numbers can result in

physically unstable microsatellites and stop the evolutionary process at certain

thresholds. One way to account for these limitations would be to restrict the

state space of the allele process X by reflecting boundaries. The result would

be a Markov chain with finite state space, and convergence to an invariant

distribution would follow even for the non-normalised process X. However,

differences between the normalised and non-normalised behaviour of the allele

process remain possible, for instance, in the form of different convergence

rates or different shapes of the invariant distribution. Because of the Markov

structure and the assumed one-unit-up-or-down mutations, the process would

only “realise” the existence of boundaries when it would be very close to them.

Most of the time, the process would stay away from the boundaries and behave

according to the stationary distribution of the normalised process V , as if no

boundaries would exist.
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Regarding the simplicity of the SMM, our results are only a first step towards

a better understanding of the real-life situation, and investigations of how the

allele process behaves under more realistic models incorporating, for example,

variable mutation rates or migration, are warranted.
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Appendix

In order to calculate the respective covariances of Lemma 4 from Eq. (2), we

need the following little lemma that can be proven by induction.

Lemma 14 Let a, b ∈ R, b 	= 1. Then, for the real valued sequence (xn)n∈N0

defined by xn = (n− 1)a+ bxn−1 and x0 = 0,

xn = a
bn + n(1− b)− 1

(1− b)2
.

Proof of Lemma 4

Note that the exchangeability property implies that P(Xn(i) = y,Xn(j) =

z) is independent of i, j ∈ {1, ..., N} as long as i 	= j. We can calculate a

recursion for the covariances using Eq. (2), Prop. 1(i), Lemma 3(i), (ii) and

the independence property (1):

Cov (Xn(i), Xn(j)) = Cov (Xn−1(Yn(i)), Xn−1(Yn(j)))

=
N∑

k,l=1

Cov (Xn−1(k), Xn−1(l))P(Yn(i) = k, Yn(j) = l)

=
1

N2

N∑
k,l=1

∑
y,z∈Z

yz P(Xn−1(k) = y,Xn−1(l) = z)

=
1

N2

N∑
k=1

∑
y∈Z

y2 P(Xn−1(k) = y)

+
1

N2

N∑
k,l=1

k �=l

∑
y,z∈Z

yz P(Xn−1(k) = y,Xn−1(l) = z)

=
1

N
Var(Xn−1(1)) +

N − 1

N
Cov(Xn−1(i), Xn−1(j))

=
1

N
μ(n− 1) +

N − 1

N
Cov(Xn−1(i), Xn−1(j)) .
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Therefore, from Lemma 14,

Cov (Xn(i), Xn(j)) =
μ

N

(
N−1
N

)n
+ n(1− N−1

N
)− 1

(1− N−1
N

)2

= μ

(
n+

(N − 1)n −Nn

Nn−1

)
. �

Proof of Lemma 7

(i) follows directly from the definition of V . Variance and covariance can be

derived using Lemmata 3 and 4:

Var (Vn(i)) = Var (Xn(i)) + Var (Xn(N))− 2Cov (Xn(i), Xn(N))

= 2μn− 2μ

(
n +

(N − 1)n −Nn

Nn−1

)

Cov (Vn(i), Vn(j)) = Var (Xn(N))− Cov (Xn(N), Xn(j))

− Cov (Xn(i), Xn(N)) + Cov (Xn(i), Xn(j))

= Var (Xn(N))− Cov (Xn(N), Xn(j)) �

Proof of Lemma 8

Using recursion (2), it follows that

ηn(z) = P (Xn(1)−Xn(N) = z) = P (Xn(1)−Xn(2) = z)

= P (Xn−1(Yn(1)) + Zn(1)− (Xn−1(Yn(2)) + Zn(2)) = z)

= P (Yn(1) 	= Yn(2))

· P (Xn−1(Yn(1)) + Zn(1)−Xn−1(Yn(2))− Zn(2) = z |Yn(1) 	= Yn(2))

+ P (Yn(1) = Yn(2)) · P (Zn(1)− Zn(2) = z |Yn(1) = Yn(2))
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=
N − 1

N

∑
k∈Z

P (Zn(1)− Zn(2) = k)

· P
(
Xn−1(Yn(1)) + Zn(1)−Xn−1(Yn(2))− Zn(2) = z

∣∣∣Yn(1) 	= Yn(2), Zn(1)− Zn(2) = k
)

+
1

N
P (Zn(1)− Zn(2) = z)

=
N − 1

N

∑
k∈Z

r(k)P (Xn−1(1)−Xn−1(2) = z − k) +
1

N
r(z)

=
N − 1

N

∑
k∈Z

r(k)ηn−1(z − k) +
1

N
r(z) . �

Proof of Lemma 9

(i): From Eq. (2), we obtain

E (Vn(i))
m = P (Yn(i) = Yn(N)) E (Zn(i)− Zn(N))m +

N∑
k,l=1

k �=l

P (Yn(i) = k, Yn(N) = l)

· E (Xn−1(k) + Zn(i)−Xn−1(l)− Zn(N))m

=
1

N
E ((Zn(i)− Zn(N))m) +

(
1−

1

N

)
E ((Vn−1(i) + Zn(i)− Zn(N))m)

=
1

N
E ((Zn(i)− Zn(N))m)

+
(
1−

1

N

) m∑
k=0

(
m

k

)
E

(
(Zn(i)− Zn(N))m−k

)
E

(
Vn−1(i)

k
)
.

Using E ((Zn(i)− Zn(N))m) = 0 for m odd and E ((Zn(i)− Zn(N))m) =

2μ+ μ2 (2m−1 − 2) for m even, section (i) follows by induction and Lemma 7.
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(ii): Treating the exponential moments in the same way yields

dn := E (exp (λVn(i)))

=
1

N
E (exp (λ (Zn(i)− Zn(N))))

+
(
1−

1

N

)
E (exp (λVn−1)) E (exp (λ (Zn(i)− Zn(N))))

=
1

N
c(λ) +

(
1−

1

N

)
c(λ) dn−1 . �

Proof of Lemma 12

Let ∗ denote the convolution of two functions and define fb := 1{−b,−b+1,...,b}

for b ∈ N0. First note that, for all b ≤ b′ ∈ N0 and for all z ∈ Z, the following

equation holds:

(fb ∗ fb′)(z) =
∑
i∈Z

fb(i) · fb′(z − i) =
b∑

i=−b

fb′(z − i) =
b∑

i=−b

1{−b′+i,...,b′+i}(z).

Dropping argument z and decomposing the sum on the right-hand side,

fb ∗ fb′ = fb′ +
b∑

i=1

1{−b′+i,...,b′+i} +
−1∑

i=−b

1{−b′+i,...,b′+i}

= fb′ +
b∑

i=1

(1{−b′+i,...,b′+i} + 1{−b′−i,...,b′−i})

= fb′ +
b∑

i=1

(fb′+i + fb′−i).

Now let ν, ν ′ ∈M , which can be written as ν =
∑n

i=1 ai·fbi and ν ′ =
∑n′

i=1 a
′
i·fb′i .

Let m(ij) := max{bi, b
′
j}. Taking into account the distributivity and linearity
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of the convolution, the above implies that

ν ∗ ν ′ =

(
n∑

i=1

ai · fbi

)
∗

⎛
⎝ n′∑

i=1

a′i · fb′i

⎞
⎠ =

n∑
i=1

n′∑
j=1

aia
′
j · (fbi ∗ fb′j )

=
n∑

i=1

n′∑
j=1

aia
′
j ·

⎛
⎜⎝fm(ij) +

min{b′
j
,bi}∑

k=1

(
fm(ij)+k + fm(ij)−k

)⎞⎟⎠

=
n∑

i=1

n′∑
j=1

aia
′
j · fm(ij) +

n∑
i=1

n′∑
j=1

min{b′
j
,bi}∑

k=1

aia
′
j · fm(ij)+k

+
n∑

i=1

n′∑
j=1

min{b′
j
,bi}∑

k=1

aia
′
j · fm(ij)−k .

Since all the characteristic functions in the last expression are symmetrical

around zero, it follows that ν ∗ ν ′ ∈M . �
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Figure legends

Figure 1: Convergence of the marginal distribution of the normalised allele process V .

For illustration, the discrete probabilities P(Vt(i) = z) obtained for integer z

are connected by lines.

N=100, μ = 0.01, t: number of generations

Figure 2: Convergence of the marginal distribution of the normalised allele process V .

For illustration, the discrete probabilities P(Vt(i) = z) obtained for integer z

are connected by lines.

N=1000, μ = 0.01, t: number of generations
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