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Abstract.  

We investigate whether asymmetric fast migration can modify the predictions of classical 

competition theory and, in particular revert species dominance. We consider a model of two 

species competing for an implicit resource on a habitat divided into two patches. Both patches 

are connected through constant migration rates and in each patch local dynamics are driven by 

a Lotka-Volterra competition system.  

Local competition is asymmetric with the same superior competitor in both patches. 

Migration is asymmetric, species dependent and fast in comparison to local competitive 

interactions. The species and patches are taken to be otherwise similar: in both patches we 
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assume the same carrying capacities for both species, and the same growth rates and pair-wise 

competition coefficients for each species. 

We show that global dynamics can be described by a classical Lotka-Volterra competition 

model. We found that by modifying the ratio of intraspecific migration rates for both species 

all possible combinations of global species relative dominance can be achieved. We find 

specific conditions for which the local superior competitor is globally excluded. This is to our 

knowledge the first study showing that fast asymmetric migration can lead to inferior 

competitor dominance in a homogeneous environment. We conclude that disparity of 

temporal scales between migration and local dynamics may have important consequences for 

the maintenance of biodiversity in spatially structured populations. 

 

Keywords 

migration-competition trade-off; dominance reversal; time scales; aggregation methods 

Introduction  

Understanding the mechanisms underlying coexistence in spatially structured habitats (e.g. 

patchy environments) has been a central goal in theoretical and conservation ecology (Levins 

1969, 1970, Levin 1992). One of the most common and simple theoretical explanation for the 

coexistence of species in mosaic habitats is based on the so called competition-colonization 

trade-off. According to this mechanism, poorer competitors can stably coexist with 

competitively superior species by means of their greater colonizing ability. This is, traits 

linked to colonizing ability such as migration enable fugitive species to capture available sites 

at faster rate than competitors which favours coexistence in a heterogeneous environment (e.g. 

Horn & MacArthur 1972; Hasting 1980).  

The competition-colonization trade-off is the basis of the Patch Occupancy 

Metapopulation Theory (POT), a key theoretical framework for exploring population 

persistence and species coexistence in fragmented landscapes (Hanski, 1999). Applications of 
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POT have greatly contributed to bridge the gap between theory and field data leading to 

important contributions in conservation ecology (Hanski and Gilpin 1997). In the last decade, 

interest in metapopulation biology has rapidly increased covering a range of applications from 

metapopulation genetics and evolution to landscape ecology or ecosystem ecology. This 

development has lead to an accumulation of increasing empirical evidence on metapopulation 

dynamics but has also raised important issues related to the realism of underlying biological 

assumptions.  

As any other theoretical formalization, the POT involves a specific recognition of the 

temporal scales at which ecological processes operate, with an explicit separation of within 

patch and among patch dynamics. Specifically, POT focuses on the presence of local 

populations in habitat patches and it does not include any description of local dynamics. Also, 

implicit to POT there is the assumption that competition operates at a much faster time scale 

than colonization-extinction processes. All these assumptions preclude in fact local 

coexistence and imply that migration cannot influence local competitive interactions. 

Empirical studies of migration-competition trade-offs, however, have revealed a pattern that is 

at odds with this assumption, chiefly widespread presence of colonizers species and local 

coexistence. Amarasekare and Nisbet (2001) have shown that the mismatch between patch 

occupancy theory and data may arise from the separation of time scales inherent in the patch 

occupancy framework. Specifically it has been suggested that migration and competition can 

operate at similar temporal time scales and thus colonizing rates may influence the outcome of 

local competition. 

Mismatches between model assumptions and temporal scales at which ecological 

phenomena take place, suggest the need to revisit POT underlying assumptions to incorporate 

a more realistic description of the temporal scales at which key ecological processes operate. 

Understanding how ecological phenomena interact across temporal scales is indeed a key 
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need in theoretical ecology (O-Neill et al 1986; Levin 1992). Specifically differences in 

process time scales may be critical for system dynamical behaviour (Ludwig et al 1978; Lett 

et al 2005).  

In this study we investigate whether explicit consideration of a mismatch of temporal 

scales between migration and local dynamics can fundamentally challenge the predictions of 

classical metapopulation theory on species coexistence. Specifically we examine the interplay 

of local dynamics and migration in a metapopulation for the specific case in which the 

migration process across patches operates at a faster scale relative to local dynamics. This 

situation can be found in a range of evolutionary and ecological processes in which gene flow 

and migration rate due to non sedentary habit can operate at a fast scale relative to selection or 

population interaction processes. We develop a general model of two species inhabiting two 

separate patches that are connected through density independent migrations at a fast time 

scale. Local within-patch competition is assumed to take place at a relatively slower time 

scale and it is represented by a Lotka-Volterra type competition model. 

Previous studies have mainly considered models where they omit disparity of temporal 

scales between migration and competition; and assume symmetric migrations and 

heterogeneous environments. For example, Takeuchi (1989) considered symmetric migrations 

and proved that the corresponding system can be made persistent under appropriate diffusion -

symmetric migrations- conditions, even if isolated patches are not persistent, Takeuchi and Lu 

(1995) extended these results by finding conditions to ensure the permanence and global 

stability of a positive equilibrium. Permanence indicates that if all species are initially present 

-even in low abundances- their abundances reach and remain henceforth over a sizeable 

threshold. Conditions for migration-mediated coexistence are also studied in the case of local 

communities where the source is explicitly considered, with symmetric migrations for the 



 5

competing consumers and no migration for the resource (Abrams and Wilson, 2004; Namba 

and Hashimoto, 2004) or with also symmetric migrations for the resource (Namba, 2007). 

Amarasekare and Nisbet (2001) considered spatial heterogeneity either by allowing for 

species refuges or by assuming variations in competitive rankings over space such that the 

superior competitor in some parts of the landscape becomes the inferior competitor in the 

remnant landscape. So, they establish a source-sink dynamics framework that yields 

coexistence due to spatial variance in fitness. On the other hand, they also show that under a 

spatially homogeneous competitive environment –asymmetric competition- differences in 

migration cannot explain coexistence with the absence of an inferior competitor refuge.  

In this study we specifically investigate the life-history trade-off between competitive 

abilities and migration strategies. Our main result is that fast asymmetric migration can 

promote dominance of poorer competitor even in a homogeneous environment.  

We assume, in contrast with previous studies, that competition is asymmetric, i.e. the 

same species are the superior and the inferior competitors all across the landscape, and also 

that migration is asymmetric and occurs on a faster time scale relative to local dynamics. In 

order to set a homogeneous environment no model parameter, apart from migration rates, is 

space dependent what allows isolating the relationship between competition abilities and 

migration strategies. 

The proposed model has the form of a four dimensional, two species and two patches, 

ordinary differential equations system with two time scales. Taking advantage of this last 

property the system is reduced into a two dimensional system for the total densities of the two 

species. The form of the reduced system is that of a classical Lotka-Volterra competition 

model what allows a complete analytical description of the competition outcome in terms of 

general migration rates and competition intensities. 
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1. Model structure. 

We consider a model with two species competing for an implicit resource on a habitat 

divided into two patches. Let ( )ijn t  be the density of species i  in patch j  at time t  with 

{ }, 1;2i j ∈ . 

Both patches are connected through constant migration rates and we suppose that locally, 

in each patch, there is a Lotka-Volterra competitive dynamics.  

Species 1 migrates from patch 1 to patch 2 at a rate k  and from patch 2 to patch 1 at a rate 

k . Similarly, the migration rate of species 2 from patch 1 to patch 2 is m  and from patch 2 to 

patch 1 is m ; so k , k , m  and m  are constant positive parameters. Migration rates are 

asymmetric and, in general, different for each species. 

We are interested in a life-history trade-off between competitive abilities and migration 

strategies. We describe such a trade-off in terms of competition coefficients and migration 

rates. 

We assume that local competition is asymmetric with species 1 being the superior 

competitor in both patches. The species and patches are supposed to be otherwise similar: the 

same carrying capacity, K , for both species in both patches, the same growth rates for each 

species in both patches, 1r  for species 1 and 2r  for species 2, and the same pair-wise 

competition coefficients, a  and b , in both patches, measuring the competitive effect of 

species 2 on species 1 and species 1 on species 2, respectively. To ensure the aforementioned 

asymmetric competition we assume that 1a b< < . 

According to the previous assumptions, the complete model reads as follows: 
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To study this system we first apply aggregation methods to transform it into a reduced 

system with two ordinary differential equations governing the dynamics of the global 

variables: the total density of species 1, 1 11 12( ) ( ) ( )n t n t n t= + , and the total density of species 

2, 2 21 22( ) ( ) ( )n t n t n t= + . Both are adequate candidates to global variables because they are 

constants of motion of the migration process, i.e., they keep constant at the fast time scale. If 

we forget the competitive interactions, global densities will not change but the distribution of 

each species between the two patches will evolve and tend towards certain equilibrium 

proportions. To calculate them let us suppose fixed values of 1n  and 2n  and find the equilibria 

of the fast part of system (1). We obtain for species 1 

* * * *
11 1 1 1 12 1 2 1  and   k kn n n n n n

k k k k
ϑ ϑ= = = =

+ +
 (2) 

and for species 2 

* * * *
21 2 1 2 22 2 2 2  and  m mn n n n n n

m m m m
μ μ= = = =

+ +
 (3) 

where constants *
1ϑ and *

2ϑ  represent the fast equilibrium proportions of species 1 on each 

patch while the constants *
1μ  and *

2μ represent the fast equilibrium proportions of species 2 

on each patch. It is immediate to prove that these equilibria are stable for fast dynamics. 

Now, coming back to the complete model (1), we can write a system for the two global 

variables just by adding up the corresponding equations and substituting the former state 

variables by the fast equilibria ((2), (3)) as follows: 
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*
11 1 1n nϑ= , *

12 2 1n nϑ= , *
21 1 2n nμ=  and *

22 2 2n nμ=  

Obtaining the following aggregated system at the slow time scale: 
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( ) ( )

1
1 1 2

2
2 1 2
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1 2 1 1 2 2

1
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1 21 1 2 2

2

1

1

dn
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dt
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r n b

dt

n n
K K

n n
K K

ϑ ϑ ϑ μ ϑ μ

μ μϑ μ ϑ μ

= − −

= − −

� � �+ +� ��
� ��

� � 	



� �� ++� ��
� �� � 	�

 (4) 

According to aggregation methods (Auger et al. 2008a, Auger et al. 2008b), we can study 

the dynamics of the complete system (1) by carrying out the study of the aggregated model (4) 

(see appendix A). 

The aggregated model (4) is a classical Lotka-Volterra competition model (Murray 2002) 

and its asymptotic behaviour is better described by performing the following change of 

variables: 

( ) ( )2 2* *
1 2

1 1u n
K

ϑ ϑ+
=  y 

( ) ( )2 2* *
1 2

2 2u n
K

μ μ+
= , 

that yields 

( )

( )

1
1 1 2

2
2 1 2

1 12

2 21

1

1

du
r u a

dt
du

r a u
dt

u u

u u

= − −

= −

�
��


� −��

 

where  

( ) ( )
* * * *

1 1 2 2
12 2 2* *

1 2

a a ϑ μ ϑ μ
μ μ

+=
+

 and 
( ) ( )

* * * *
1 1 2 2

21 2 2* *
1 2

a b ϑ μ ϑ μ
ϑ ϑ

+=
+

 (5) 

Now, the asymptotic behaviour of the solutions of system (4), i.e. the long term outcome 

of competition, is determined by the positive parameters 12a  and 21a  being greater or smaller 

than one (Murray 2002). If 12 1a <  (resp. 21 1a < ) then species 1 (resp. 2) can invade when rare 

while it is excluded when rare for 12 1a >  (resp. 21 1a > ). The possible outcomes of 
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competition are thus coexistence via niche partitioning if 12 1a <  and 21 1a < , exclusion via 

priority effects (the excluded species depend on initial conditions, the species that gains an 

early advantage wins) if 12 1a >  and 21 1a > , species 1 outcompetes species 2 if 12 1a <  and 

21 1a > , and species 2 out-competes species 1 if 12 1a >  and 21 1a < . 

2. Model analyses and results 

We study the outcome of global competition in terms of the four independent parameters 

involved in the model. Firstly, a  and b , representing competition abilities of species 2 and 1, 

respectively, which verify 1a b< <  due to the assumption of local dominance of species 1 on 

species 2. Secondly, we represent migration through parameters *
1ϑ  and *

1μ (called x  and y , 

resp., in figures 1, 2 and 3) which are the proportions of species 1 and 2 in patch 1, 

respectively. The closer to 1 (resp. 0) these parameters are the more biased the distribution of 

the corresponding species is towards patch 1 (resp. 2) or, analogously, the greater the ratio 

/k k  or /m m , depending of the species, is (see appendix B for calculations). 

The ability of species 1 to invade when rare depends on parameter a , which represents 

species 2 competitive ability, but it is independent of parameter b , which represents species 1 

competitive ability. There is a threshold value ( )2 2 1 0.8284a∗ = − ≈  so that if a a∗<  then 

species 1 can invade when rare for any values of migration parameters. Figure 1 shows in the 

migration parameter space the region (dark) for which species 1 is unable to invade when rare 

(values of a  0.75, 0.85 and 0.95). We find no region for 0.75a a∗= < , for 0.85a a∗= >  there 

are two small sub-regions -symmetric with respect to the point (0.5,0.5)  because of the 

equivalence of the two patches-, that enlarge when 0.95a = . 

A similar analysis can be done to evaluate species 2 global invasibility -the local inferior 

competitor- , when rare. The only competition related parameter involved is b . For any value 
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of 1b > , a region in the migration parameter space can be found for which species 2 can 

invade when rare. The size of this region decreases as expected for increasing values of 

species 1 competition ability b , (dark region in figure 2; 1.1b = , 1.5b =  and 2.5b = ). We 

notice that species 2 can never invade if it is almost uniformly distributed between patches. As 

b  increases the range of distributions that prevent species 2 from invading also increases. 

Regions amenable to invasion exhibit an opposite distribution to that of species 1. That is, if 

species 1 has a fairly high competitive ability then species 2 invasion requires that the 

distribution of species 1 is clearly biased towards one of the patches while the distribution of 

species 2 is concentrated in the other patch. 

To analyse the outcome of competition we need to consider simultaneously invasion and 

non-invasion regions for both species. If a a∗< (region I of the parameters a  and b  space, 

fig. 4) the region of species 1 invasion is the whole migration parameter space and thus dark 

regions in figure 2 render species coexistence. The light region then indicates where species 1 

outcompetes species 2. 

To analyse the cases a a∗>  we examine the intersections between regions where species 1 

cannot invade (fig. 1) with regions where species 2 can invade (fig. 2). In appendix B we 

prove that for each particular value of a a∗>  three different cases depending on b  are found.  

First we assume rather low b values, 2
* 1 /2 4 4/2b b a a a< = + − + −  (region II of the 

parameters a  and b  space, fig. 4). We have then (fig. 3, 1.1b = ), that the region where 

species 1 cannot invade (white) is included in the region where species 2 invades, thus 

becoming a region (light) where the competition outcome results in species 1 exclusion. We 

also observe a coexistence region (dark) and a species 2 exclusion region (light grey). 

For 2
* 1 /2 4 4/2b b b a a a∗< < = + + + −  (region III of the parameters a  and b  space, fig. 4) 

the increase in b  (fig. 3, 1.5b = ) entails that a part of the species 1 non-invasion region is 
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now included in the species 2 non-invasion region resulting in a new region (dark grey) where 

we find exclusion via priority effects. 

The last case is when b b∗ <  (region IV of the parameters a  and b  space, fig. 4). For 

these values (fig. 3, 2.5b = ) the species 1 non-invasion region is now completely included in 

the species 2 non-invasion region and so there is no region of species 1 exclusion although it 

might be excluded in the dark grey region via priority effects. 

3. Discussion 

The issue of scale is a recurrent topic in the development of theoretical ecology. The 

metapopulation framework involves a specific recognition of the temporal scales at which 

ecological processes operate, with an explicit separation of within- and among patch dynamics 

(Amarasekare and Nisbet, 2001). When the migration process across patches operates at a 

faster scale relative to local dynamics the interplay of local dynamics and migration can differ 

from the case in which both processes operate at the same time scale.  

The fact that migration acts at a faster scale than local dynamics brings new dimensions to 

metapopulation dynamics. Specifically, previous to local dynamics regulation each species 

distributes between patches proportionally to its own migration rates and therefore 

independently from migration rates of competing species and from both species demographic 

parameters. Once species distributions are set, then the outcome of competition depends on 

demographic parameters. When migration and local competitive interactions occur at the 

same time scale it is expected that under asymmetric competition the locally superior 

competitor (LSC) tends to dominate globally, this is particularly true in a homogeneous 

environment (Amarasekare and Nisbet, 2001). Notwithstanding, as we prove, the proposed 

time scale separation entails, for any values of competitive abilities, the existence of a range 

of migration strategies which outcome is coexistence. Also, when the competitive abilities of 
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the locally inferior competitor (LIC) and the LSC are not very far from each other, LIC can 

both locally and globally outcompete LSC depending on migration strategies. Thus migration 

traits should covary with competitive related traits to have an impact on species fitness. 

Long et al. (2007) study the effects of immigration and environmental variability on the 

persistence of an inferior competitor by means of an experimental microcosm, proposing that 

this persistence in closed systems is possible if environmental variability makes a sink for the 

inferior competitor become temporally a source. We show through our mathematical model 

that this is also the case when the only environmental variability is due to changes in 

populations densities as a result of constant asymmetric migration rates.  

In our model migration rates establish species distributions between patches and then 

parameters a , LIC competitive ability, and b , LSC competitive ability, decide the outcome of 

competition. Parameter a  governs by itself the possibility of LSC invading when rare, if 

0.8284a a∗< ≈  then it has no influence and LSC can invade in any case, on the other hand, 

for a a∗>  the closer a  is to 1 the larger the choice of possible species distributions for which 

LSC cannot invade (fig. 1). In its turn, whether LIC can invade or not depends on parameter 

b ; we stress that there always exists a region in the parameter space of species distributions 

where LIC can invade, so that the outcome of competition is either coexistence or exclusion 

of the LSC, and, as expected, the larger (resp. the closer to 1) b  the smaller (resp. the larger) 

this region (fig. 2). 

As a rule of thumb even distributions of species between patches (IFD would fall into this 

category) result in global dominance of the LSC. This LSC dominance may depend just in its 

own distribution, e.g., for a rather high LIC competitive ability 0.9a =  and a moderate LSC 

competitive ability 1.5b = , LIC is excluded, independently of its distribution, provided that 

LSC does not exceed 64% of its number in each patch (fig. 3). Also, if both species are 

skewed towards the same patch, what can be called coincident uneven distributions, LSC has 
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an advantage to outcompete LIC, e.g., even for a rather high 0.9a =  and low 1.13b =  LIC is 

excluded provided that * *
1 11/ 2 0.11ϑ μ< < + , that is, in the most inhabited patch the 

percentage of LIC is not below the percentage of LSC by more than 11%. Finally, if both 

species are skewed towards different patches there is a propensity to coexistence. The smaller 

b the larger is the region in the migration parameter space where coexistence is met; in the 

limit case, i.e. b  approaching 1, general non coincident uneven distributions ( * *
1 11/ 2ϑ μ< <  

or * *
1 11/ 2μ ϑ< < ) imply coexistence. 

Let us remark here that in our setting, global coexistence implies local coexistence which 

is not the case in the patch occupancy metapopulation approach. Necessary conditions for 

LSC to be globally, and therefore locally, excluded are, on the one hand, that the competitive 

ability of LIC be rather high, a a∗> , and the one of LSC rather low b b∗<  (region II, fig. 4). 

On the other hand, there are also necessary conditions on both species between patches 

distributions that can be summarized, depending on the patch, as * *
1 11/ 2 μ ϑ< <  (resp. 

* *
1 1 1/ 2ϑ μ< < ), that is, both species distributions are skewed towards patch 1 (resp. 2) but 

LIC distribution is less skewed than the one of LSC ( 1.1b = , fig. 3). These distributions 

conditions tend to be sufficient as a  and b  tend to 1, that is, their local competitive abilities 

tend to be equal to each other. With the same distributions considerations but with b b∗>  

(region IV, fig. 4), LSC can still be excluded via priority effects. We can finally add that the 

same distributions with a a∗<  and b  close to 1 give coexistence as outcome of competition. 

When migration and competition take place at a similar time scale the existence of a 

refuge for the LIC species can lead to global coexistence (Amarasekare and Nisbet, 2001). In 

our setting, fast migration can create a refuge-like effect when species tend to concentrate in 

different patches. As we show in section 2 there is always a region in the parameter space of 

species distributions where LIC can invade.  
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We observe that fast migrations can also achieve dominance reversal, i.e. LSC can be 

excluded globally and thus locally. We state in section 2 the general conditions that in terms 

of asymmetric migrations rates and competition abilities must meet so that LIC species 

becomes the superior competitor on a spatially homogeneous environment. . Some other 

works show that in a spatially heterogeneous environment competitive reversal can be found 

with symmetric migration rates running on the same time scale than local dynamics (Takeuchi 

1989; Takeuchi and Lu 1995). Other mechanisms of competitive reversal can also be found in 

competition models with continuous space and diffusion (Pacala and Roughgarden 1982, 

Cantrell et al 1998).  

The key role of species distributions in final species dominance suggest a strong selective 

force for directed migration. Although adaptations linked to directed migration may be 

unlikely (Herrera 1985), directed migration may be a common phenomena even in the 

absence of adaptive traits (Wenny 2001). Specifically, directed migration may be ecologically 

meaningful if one migration vector has a disproportionate effect on plant recruitment (e.g. 

Purves et al 2007) which can improve species persistence in response to habitat loss (Montoya 

et al. 2008). As the metapopulation framework is applied to new problems and empirical 

evidence builds up key underlying assumptions are challenged. A number of biological 

processes can take place in which movement across patches can in fact operate at a faster time 

scale than local dynamics (Amarasekare 1998, 2000a, 2000b). Migration and competition 

processes can operate at similar temporal time scales and thus colonizing rates may influence 

the outcome of local competition (Amarasekare and Nisbet 2001). For example in long lived 

organisms such as trees, gene flow through pollination or migration can take place at a much 

faster time scale than selection process (García-Ramos & Kirkpatrick 1997). In host-parasite 

systems -in which the individual host is the patch- the interplay between within-patch and 

among-patch evolutionary dynamics drives the evolution of intermediate levels of virulence 
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(Levin and Pimentel 1981). Also, asymmetries in migration across patches can have profound 

implications for species global dominance. For example, preferential migration towards 

suitable habitat and towards unoccupied patches has important consequences for estimating 

species response to habitat loss which can be overestimated in the classical Levins (1969, 

1970) model (Purves & Dushoff 2005)  

The problem of aggregation is inextricably link to the problem of model simplicity (Levin 

1992). Convenient separation of spatial and temporal scales is thus implicit in almost any 

analytical formulation. The challenge for any given system will be to determine the 

appropriate levels of aggregation and simplification of the system that provides an accurate 

representation of the biological scales implied and that are in agreement with experimental 

evidence. 
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Appendix A 

Results in aggregation methods are valid provided there exists a large enough ratio of time 

scales. The analytical study of the necessary ratio has only been performed in the context of 

linear discrete systems (Sanz and Bravo de la Parra, 2002). For nonlinear systems, numerical 

simulations have shown in different applications (Nguyen-Huu et al, 2006; Auger et al., 2008; 

Poggiale et al., 2008; Nguyen-Huu et al, 2008; Auger et al., 2009) that the approximation is 

appropriate for a qualitative analysis whenever the ratio of the fast to the slow time scale, 

represented by ε , is less than 0.1. This ratio of one order of magnitude appears to be a 

reasonable assumption in many particular applications. 

We include in figures 5 and 6 a more detailed simulation than those appearing in the 

mentioned references. For the same set of parameters values, taking 0.1ε = , and two different 

sets of initial conditions, we calculate numerically the solution of system (1) and the 

corresponding solution of system (4). Then, for each of the four state variables of system (1), 

we put together its evolution in time t  and the one predicted by the aggregated system 

through the equalities *
11 1 1n nϑ= , *

12 2 1n nϑ= , *
21 1 2n nμ=  and *

22 2 2n nμ= . We can observe in 

figures 5 and 6 that the long term behaviour of both is very similar. 

 

Appendix B 

Firstly we study when species 1 can or cannot invade when rare. For that we need to solve 

12 1a <  and 12 1a >  where we use the expression in (5) 

( ) ( ) ( )( )2 2* * * * * *
12 1 1 2 2 1 2/a a ϑ μ ϑ μ μ μ= + + . Let us do the notation changes 1x ϑ∗=  and 1y μ∗= , 

so 2 1 xϑ∗ = − , 2 1 yμ∗ = −  and so 12 2

(2 1) 1
2 2 1

x y ya a
y y

− − +=
− +

. We now study the line 12 1a =  which 

can be written as an explicit function of x  in terms of y : 

( ) ( )
( )

22 2 1
( )

2 1
y a y a

x f y
a y

+ − + −
= =

−
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The graph of f  is symmetrical with respect to the point ( )1/ 2,1/ 2 , has two asymptotes: 

1/ 2y =  and 1/ ( 1/ 2) 1/ 2x a y= − + , and it is composed of two branches which have a non-

void intersection with the square [0,1] [0,1]×  provided they exist real values of y  for 0x = . 

The roots of equation ( ) ( )22 2 1 0y a y a+ − + − =  are 
2

1
2 4 4

4
a a ay − − + −=  and 

2

2
2 4 4

4
a a ay − + + −=  which are real if 2 4 4 0a a+ − > , that is  

( )* 2 2 1a a≥ = −  

For every ( )* 2 2 1a a> = −  there are two symmetric regions enclosed by lines ( )x f y=  and 

either 0x =  or 1x =  which corresponds to the solution of 12 1a > , i.e. parameter values for 

which species 1 cannot invade when rare. The rest of the square [0,1] [0,1]×  corresponds to 

the case of species 1 invasion.  

A similar analysis can be done to study when species 2 can or cannot invade when 

rare. We need to solve 21 1a <  and 21 1a > , and so we look at the line 21 1a =  which is 

expressed in terms of x  and y  as  

( ) ( )
( )

22 2 1
( )

2 1
x b x b

y g x
b x

+ − + −
= =

−
. 

The graph of g  is also symmetrical with respect to the point ( )1/ 2,1/ 2  and has two 

asymptotes and two branches. In this case it is straightforward to prove that the intersection 

with the square [0,1] [0,1]×  exists for any value of 1b >  and there are two symmetric regions 

surrounding points (0,1)  and (1,0)  which corresponds to the solution of 21 1a < , parameter 

values for which species 2 invades when rare, letting the rest of the square [0,1] [0,1]×  for the 

region of non invasion. 
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To obtain the parameter values regions corresponding to the different competition outcomes 

we need to put together the regions described previously. In particular we should find 

conditions so that those regions intersect. We know that line 21 1a =  has the point 

3(0, ) (0,( 1) / )y b b= −  on the y axis, The intersection between regions 12 1a >  and 21 1a <  

depends on the relative position of 3y  with respect to 1y  and 2y : (i) if 3 1y y<  the region 

21 1a <  includes the region 12 1a > ; (ii) if 1 3 2y y y< <  there is an intersection without 

inclusions between regions 21 1a <  and 12 1a > ; (iii) if 2 3y y<  there is no intersection between 

regions 21 1a <  and 12 1a > . To distinguish these three cases in terms of the values of 

parameters a  and b  we see when 3y  coincides with either 1y  or 2y  by substituting 3y  in 

( ) ( )22 2 1 0y a y a+ − + − = , thus obtaining: 

2
* 1 / 2 4 4 / 2b a a a= + − + −  and 21 / 2 4 4 / 2b a a a∗ = + + + − , 

what yields case (i) if *1 b b< < , case (ii) if *b b b∗< < and case (iii) if b b∗ < .  
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 FIGURE LEGENDS 529

530

Figure 1: Influence of species 2 competition ability, a , on species 1 being able to invade 531

when rare. Each diagram represents the space of parameters x , proportion in patch 1 of 532

species 1, and y , proportion in patch 1 of species 2, i.e. the square [0,1] [0,1]� . For three 533

different values of a  (0.75, 0.85 and 0.95) we draw in white the region where species 1 can 534

invade and in black where it cannot. 535

536

Figure 2: Influence of species 1 competition ability, b , on species 2 being able to invade 537

when rare. Each diagram represents the space of parameters x , proportion in patch 1 of 538

species 1, and y , proportion in patch 1 of species 2, i.e. the square [0,1] [0,1]� . For three 539

different values of b  (1.1, 1.5 and 2.5) we draw in black the region where species 2 can 540

invade and in white where it cannot. 541

Competition outcomes for � �2 2 1 0.8284a a�� � � 	 . For theses cases the same diagrams 542

represent in black the regions of coexistence and in white the region of species 1 543

outcompeting species 2.544

545

Figure 3: Competition outcomes for � �2 2 1 0.8284a a�
 � � 	 : influence of b . Each 546

diagram represents the space of parameters x , proportion in patch 1 of species 1, and y ,547

proportion in patch 1 of species 2, i.e. the square [0,1] [0,1]� . For fixed 0.9a �  and three 548

different values of b  (1.1, 1.5 and 2.5) we draw in black the region where we find species 549

coexistence, in light grey where species 1 outcompetes species 2, in white where species 2 550

outcompetes species 1 and in dark grey where there is exclusion via priority effects.  551

552
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Figure 4: Regions of the parameters a  and b  space with different competition diagrams in 553

terms of migration parameters. Region I, a a�� , the diagram corresponds to the ones in 554

figure 2. Region II, a a�
  and 2
*1 1 /2 4 4/2b b a a a� � � � � � � , the diagram corresponds to 555

the one in figure 3 1.1b � . Region III, a a�
  and 2
* 1 /2 4 4/2b b b a a a�� � � � � � � , the 556

diagram corresponds to the one in figure 3 1.5b � . Region IV, a a�
  and b b� � , the diagram 557

corresponds to the one in figure 3 2.5b � .558

559

Figure 5. Comparison of solutions of system (2) with their approximations through the 560

aggregated system (5). This figure shows the evolutions in time of each of the four state 561

variables of system (1) ( 11 12 21, ,n n n  and 22n ) and their approximations obtained from the 562

aggregated system (4) ( *
1 1n
 , *

2 1n
 , *
1 2n�  and *

2 2n� , respectively) for the parameters values 563

0.1� � , 0.9k � , 0.1k � , 0.7m � , 0.3m � , 1 0.3r � , 2 0.2r � , 5K � , 0.9a �  and 1.5b � ,564

and initial conditions 11(0) 0.7n � , 12 (0) 0.3n � , 21(0) 0.4n �  and 22 (0) 0.6n � .565

566

Figure 6. Comparison of solutions of system (2) with their approximations through the 567

aggregated system (5). This figure shows the evolutions in time of each of the four state 568

variables of system (1) ( 11 12 21, ,n n n  and 22n ) and their approximations obtained from the 569

aggregated system (4) ( *
1 1n
 , *

2 1n
 , *
1 2n�  and *

2 2n� , respectively) for the same parameters 570

values as in figure 5 and initial conditions 11(0) 0.2n � , 12 (0) 0.3n � , 21(0) 4n �  and 571

22(0) 6n � .572

573
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