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Abstract. Many stochastic systems, including biological applications, use
Markov chains in which there is a set of absorbing states. It is then needed
to consider analogues of the stationary distribution of an irreducible chain. In
this context, quasi-stationary distributions play a fundamental role to describe
the long-term behavior of the system. The rationale for using quasi-stationary
distribution is well established in the abundant existing literature. The aim of
this study is to reformulate the ratio of means approach (Darroch and Seneta,
1965, 1967) which provides a simple alternative. We have a two-fold objective.
The first objective is viewing quasi-stationarity and ratio of expectations as two
different approaches for understanding the dynamics of the system before ab-
sorption. At this point, we remark that the quasi-stationary distribution and
a ratio of means distribution may give or not give similar information. In this
way, we arrive to the second objective; namely, to investigate the possibility of
using the ratio of expectations distribution as an approximation to the quasi-
stationary distribution. This second objective is explored by comparing both
distributions in some selected scenarios, which are mainly inspired in stochastic
epidemic models. Previously, the rate of convergence to the quasi-stationary
regime is taking into account in order to make meaningful the comparison.

1. Introduction

There exists a vast literature that uses Markov chains to model a biological
population. A good reference to find the underlying mathematical theory is
the textbook by Allen (2003) and its references. As examples of recent applica-
tions of continuous-time Markov chains in population biology, we mention some
papers published in this journal (Casagrandi and Gatto, 2006; Fouchet et al.,
2008; Stirk et al., 2008; Xu et al., 2007).

Stochastic biological models based on Markov chains typically consist of a
set ST of transient states where the process evolves until it escapes to a set

1



of absorbing states SA. In many applications SA reduces to the sole state 0.
Due to the reducible character of the Markov chain, the stationary distribution
becomes degenerate in the sense that it only assigns probability mass to the
absorbing states. This fact motivates the following fundamental problem:

There exist a need for probabilistic measures of the system behavior before ab-
sorption. Analogues of the stationary distribution of the irreducible case should
be considered and compared.

The above description of the problem under study reflects the spirit of the
seminal work by Darroch and Seneta (1965, 1967) who suggested several possi-
bilities including quasi-stationary distributions and ratio of means.

The term quasi-stationarity refers to the distribution of the Markov chain
by conditioning on the event that absorption has not occurred yet. Let us
assume that the Markov chain starts with the initial distribution on the transient
states {ui; i ∈ ST }. Then, the distribution {ui; i ∈ ST } is called a quasi-
stationary distribution when the distribution of the Markov chain, conditional
on it has not yet absorbed at time t, remains equal to {ui; i ∈ ST } over time.
On the other hand, the quasi-stationary distribution can also be presented as
a limiting conditional probability (Darroch and Seneta, 1967; Pollett, 2001).
This interpretation motivates the significant role of the quasi-stationarity as a
measure of the time spent by the process in the transient states when the time
to absorption is sufficiently long. For a formal definition of quasi-stationarity,
we refer the reader to Section 2.

If the transient set ST is finite and irreducible, then the existence of the
quasi-stationary distribution is guaranteed. However, even in the case of birth
and death processes, it is typically impossible to evaluate explicitly the quasi-
stationary distribution. One is therefore lead to consider iterative methods, ap-
proximations and asymptotic results for the quasi-stationary distribution. Many
satisfactory approximate results have been obtained, see N̊asell’s papers (1996,
1999a, 2001) and their references. There are important models in population
biology where the transient set ST is reducible. For a comprehensive treatment
of this case, see van Doorn and Pollett (2008). Roughly speaking, one could
say that the quasi-stationary distribution, if it exists, gives positive probability
to a certain subset ST+ of ST but the quasi-stationary probability of a state
i ∈ ST − ST+ is zero. This is a striking fact which merits some extra attention.
An example of this situation is given by the SIR epidemic model, see Subsection
3.2.1. If ST is infinite, the analysis is essentially more complicated. Conditions
for the existence of the quasi-stationary distribution are mathematically in-
volved. An attempt to summarize conditions given in terms of the infinitesimal
transition rates can be found in Pollett (2001). The book by Seneta (1981) is a
basic reference for the general mathematical theory.

The above discussion on the concept of quasi-stationarity, which will be
extended in Section 2, gave the authors an initial motivation to retrieve the
RE-distribution (ratio of expectations distribution) as another natural measure
of the behavior of absorbing Markov chains before absorption occurs. Given the
initial state, the RE-distribution will be defined as a ratio between the time that
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the process spends at each transient state and the expected time to absorption.
In the sequel, we will show how the RE-distribution has a meaningful interpre-
tation. Moreover, it exists and can be evaluated with a great generality. The
idea of presenting a ratio of means as an analogue of the stationary distribution
of an irreducible Markov chain was suggested in the early work by Ewens (1963)
and Darroch and Seneta (1965, 1967).

One of the fundamental reasons to study biological models is to provide
tools for getting insight of the underlying biological reality. Different models
and approaches can be considered, but the final objective is always to capture
the essential features of a biological system. It would be difficult and subjective
to decide which approach is preferable. In fact, stochastic models are based
on the concept of probability, whose basic roots are indeed subject to different
interpretations (see e.g. the different methods for quantifying uncertainty or the
different concepts of convergence of random variables). The existence of several
methods and approaches should be interpreted as an advantage rather than as
a problem. This open spirit inspires our comparative study in the paper. It
is clear that the quasi-stationarity is a well established concept and there is
no doubt about its usefulness. Our aim is to rescue the ratio of expectations
approach and show that it is worthy of some extra attention. The comparison
between the quasi-stationary distribution and the RE-distribution is justified
only if the convergence to quasi-stationarity is relatively fast. If this is the case,
the comparative analysis done in the sequel may lead to the conclusion that
both approaches give similar or different information. As a result, one may
see pros and cons. However, it is so far of our intention to suggest the possible
superiority of one approach over the other. The existence of different alternatives
to measure the system behavior before absorption enriches our knowledge and
provides complementary insight of the underlying biological problem.

The rest of the paper is organized as follows. In Section 2, the RE-distribution
is introduced in the context of a general absorbing continuous-time Markov
chain. Some emphasis is done on a general comparison with respect to the
quasi-stationary distribution. Section 3 explores applications to stochastic pop-
ulation models. More specifically, we first consider the irreducible unidimen-
sional case and deal with a class of birth and death processes including the
stochastic SIS epidemic model (Subsection 3.1.1) and a linear growth model
(Subsection 3.1.2). The SIR epidemic model (Subsection 3.2.1) provides a nice
example to deal with the reducible case. As an example of a bidimensional
tractable case where ST is irreducible, we consider a finite SIR model with
demography (Subsection 3.2.2). These models provide appropriate scenarios
to illustrate the tractability and interest of the RE-distribution as a measure
of the system behavior before absorption. Moreover, a comparison with results
based on the quasi-stationary distribution is performed. Our comparative study
includes some theoretical justifications and discussion on the related computa-
tional issues. Finally, in the discussion section (Section 4), the main features
of the quasi-stationary distribution and the RE-distribution are recapitulated.
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The discrete-time case is also briefly outlined.

2. Comparing quasi-stationarity and the RE-distribution

We shall employ an absorbing continuous-time Markov chain {X(t); t ≥ 0}
with countable state space S to model a biological population. Suppose that
SA denotes the set of absorbing states and ST is the set of transient states, so
S = SA ∪ ST . Let Q = [qij ] be the infinitesimal generator of the Markov chain.
Then, qi = −qii represents the rate of the exponential sojourn time at state i.
For states i ∈ SA, we define qi = 0.

The quasi-stationary distributions have been widely used to measure the
distribution of the process given that the absorption has no yet taken place.
Thus, the starting point is the conditional probability

ui(t) = P{X(t) = i | T > t}, i ∈ ST ,

where T = sup{t ≥ 0: X(t) ∈ ST } denotes the absorption time.
Now suppose the Markov chain starts with the initial distribution ai =

P{X(0) = i}, for i ∈ ST . If there exists a starting distribution ai = ui such that

P{X(t) = i | T > t} = ui, i ∈ ST , (2.1)

for all t ≥ 0, then {ui; i ∈ ST } is called a quasi-stationary distribution.
From definition (2.1), it is clear that the quasi-stationary distribution is

independent of t if the Markov chain starts with initial distribution {ui; i ∈ ST }.
Let us first assume that ST is finite and irreducible. Then, it is well-

known (Darroch and Seneta, 1967) that the quasi-stationary distribution is a
left eigenvector corresponding to the eigenvalue with maximal real part of the
sub-generator QST

associated to the transient states. We denote such maximal
eigenvalue as −α. It is well-known that α is real and positive. This result
provides a first option for numerical computations.

There also exists a limiting interpretation of the quasi-stationary distribution
which states that

lim
t→∞P{X(t) = i | T > t} = ui, i ∈ ST , (2.2)

independently of the initial distribution {ai; i ∈ ST }.
The limiting result (2.2) supports the accepted idea that the quasi-stationary

distribution provides a good measure of the system dynamics before absorption,
but restricting only to those realizations in which the time to absorption is
sufficiently large. Another doubly-limiting approach to quasi-stationarity has
also been considered in the literature, see for instance Darroch and Seneta (1967)
and Pollett (2001).

There is no doubt about the useful information provided by the quasi-
stationary distribution in the case where the Markov chain is known to be in
the set ST after a very long time. However, there exists a second scenario in
which the quasi-stationary distribution is also helpful to describe the behavior
of the system before absorption. This is the case where the process reaches the
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quasi-stationary regime after a relatively short time and, after a substantially
longer period, absorption will occur.

At this point, a rule to identify the second scenario in practice is needed.
A natural solution is given in terms of a comparison between the rate of con-
vergence to absorption and the rate of convergence to the quasi-stationary dis-
tribution. The former is given by α, while the latter is α′ − α where −α′ is
the real part of the eigenvalue with the next smallest real part, see formulas
(1.1) and (3.3) in Darroch and Seneta (1967). As a result, the quasi-stationary
distribution should be used to describe the behavior before absorption only if
Ru = 2α/α′ < 1. Then, the comparison between the quasi-stationary distribu-
tion and the RE-distribution becomes meaningful.

It is well reported in the literature (N̊asell, 2001) that an analytical solution
to the quasi-stationary probabilities only exists in a few special cases. Among
them, we mention some birth and death processes where the birth and death
rates are either constants or linear functions of the state i ∈ ST . As a result,
approximations and numerical methods of computation are required.

If we focus on finite birth and death processes with absorbing state 0, then
the difficulties to obtain an analytical solution are related to the non-linear form
of the system of equations governing the quasi-stationary probabilities. How-
ever, one could use efficient iteration methods (Cavender, 1978; N̊asell, 2001),
approximations and asymptotic results. Kryscio and Lefèvre (1989) summarized
the first work on two popular approximations. The first one, denoted by p(0),
approximates the original birth and death process by assuming that μ1 = 0;
that is, the death rate of a population of size 1 is equal to 0 which amounts the
original process with the origin 0 removed. In the context of the SIS epidemic
model a second approximation, called p(1), is obtained by assuming the existence
of one permanently infected individual. The two approximations are birth and
death processes without absorbing states, so their stationary distributions can
be used to approximate the quasi-stationary distribution. In epidemiological
models, the goodness of the approximation depends on the so-called transmis-
sion factor, which is denoted by R0. The transmission factor is interpreted in
biological terms as the average number of contacts produced by one individ-
ual during the period of infectivity, when the individual is introduced into a
completely susceptible population (Allen, 2003). The literature for the SIS
model is particularly rich (see Subsection 3.1.1), but there also exists an im-
portant number of papers dealing with approximations and asymptotic results
for other stochastic epidemic models (e.g. the Verhulst logistic model (N̊asell,
2001), the SIR model with demography (N̊asell 1999b, 2001; van Herwaarden
and Grasman, 1995, etc.)).

We now concentrate on the case where ST is finite but reducible. This case
has been investigated in a recent paper by van Doorn and Pollett (2008). Some
preliminary notation is needed. Suppose that ST consists of L communicating
classes Sk, for 1 ≤ k ≤ L. A partial order on {Sk; 1 ≤ k ≤ L} is defined by
writing Si ≺ Sj when class Si is accessible from Sj . Let −αk be the (negative)
eigenvalue with maximal real part of the sub-generator Qk corresponding to the
states in Sk. Then, the eigenvalue of QST

with maximal real part is obtained

5



as −α, where α = min1≤k≤L αk. We also define I(α) = {k : αk = α} and
a(α) = min I(α).

We can now summarize the main results in van Doorn and Pollett (2008).
If −α has a geometric multiplicity one, then the Markov chain has a unique
quasi-stationary distribution {ui; i ∈ ST } from which Sa(α) is accessible. The
jth component of {ui; i ∈ ST } is positive (i.e., j ∈ ST+) if and only if state j is
accessible from Sa(α). A simple necessary and sufficient condition for establishing
that −α has geometric multiplicity one is that {Sk; k ∈ I(α)} is linearly ordered,
that is, Si ≺ Sj ⇐⇒ i ≤ j, for all i, j ∈ I(α).

Following an example given by van Doorn and Pollett (2008), we notice that
the quasi-stationary distribution of the pure death process on S = {0, 1, 2} with
absorbing state 0 and μi > 0, for i ∈ ST = {1, 2}, is given by

(u1, u2) =

{
(1, 0), if μ1 ≤ μ2,(

μ2
μ1

, 1− μ2
μ1

)
, if μ2 < μ1.

(2.3)

Suppose that X(0) = 2 and μ1 = μ2 = μ, then formula (2.3) says that the
process will be in state i = 1 with probability 1, if after a long time absorption
has not yet occurred. In other words, the set of states having positive mass
is reduced to ST+ = {1}. However, the absorption certainly occurs as far as
t → ∞, and the expected amount of time that the processes spends in state
i ∈ ST = {1, 2} is 1/μ, given that X(0) = 2. Thus, one could appeal to
a natural frequency interpretation of the concept of probability to conclude
that the even distribution that gives mass 0.5 to each state i ∈ ST = {1, 2}
provides the natural measure of the process behavior at an arbitrary time before
absorption. However, if one wishes to know the state distribution after a very
long time, given that the process is known to be in ST , then the quasi-stationary
distribution is the natural solution.

Comparing the dynamics of the pure death model versus most epidemic
models, one may conclude that they are so different. It is certainly true, but
our interest in the pure death model is just that it provides an extremely simple
scenario where the quasi-stationary distribution and the RE-distribution exhibit
drastically different solutions. The first, but not the unique, key to understand
this peculiar fact is that ST is reducible.

The concept of quasi-stationarity becomes more complicated when ST is infi-
nite. Then, a natural question of interest is to find finite approximations. Let us
assume that ST is irreducible. Then, under appropriate conditions (Breyer and
Hart, 2000) there exists an increasing sequence of finite irreducible truncations
whose quasi-stationary distributions are used to approximate the corresponding
one of the original infinite process. The parallel discrete-time results can be
found in Seneta (1981).

We now turn our attention to the reformulation of the RE-distribution.
Let Tj be the time that process {X(t); t ≥ 0} spends in state j ∈ ST before
absorption. Then, given that X(0) = i ∈ ST , we define
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Pi(j) =
Ei [Tj ]
Ei [T ]

, i, j ∈ ST . (2.4)

In the light of (2.4), we notice that the RE-distribution always exists whether
ST is finite or infinite, provided that the expected time to absorption Ei [T ] =
E [T | X(0) = i ] is finite. Moreover, it should be pointed out that the RE-
distribution assigns positive probability to all state j accessible from the initial
state i. Compared to the quasi-stationary distribution, this is an important
difference.

The RE-distribution has a meaningful probabilistic interpretation. Let us
construct the ideal replicated model obtained by assuming that at each extinc-
tion the biological model restarts in the same initial state i ∈ ST . This replicated
model is a regenerative process so its limiting distribution equals the expected
amount of time the process spends in the state j during one regeneration cy-
cle divided by the expected length of one cycle, see Theorem 8.26 in Kulkarni
(1995). In Subsection 3.1.1, we will explore in more detail the relationship be-
tween the quasi-stationary and ratio of expectation distributions, and the model
that immediately restarts in state i.

The ratio of means distribution studied in the early literature is now obtained
as the following unconditional version of the RE-distribution (2.4):

P (j) =

∑
i∈ST

aiEi [Tj ]∑
i∈ST

aiEi [T ]
, j ∈ ST . (2.5)

In the next section we deal with a variant of P (j) in (2.5) obtained by
replacing the initial distribution {ai; i ∈ ST } by weights {ωi; i ∈ ST }, which do
not preserve the interpretation as initial probabilities at time t = 0.

Darroch and Seneta (1965, 1967) do not pursue the use of {P (j); j ∈ ST }
further because it depends on the initial distribution {ai; i ∈ ST }. More con-
cretely, they clearly stated that the reason for the dependence of the ratio of
means on the initial distribution is that the absorption time is not long enough
for the dependence on the initial distribution to wear off. Darroch and Seneta
(1965, Section 4) also explain that the quasi-stationary distributions do not
depend on the initial distribution and are derived, roughly speaking, by consid-
ering only those realizations in which the absorption time is long. Since then,
the ratio of means distribution has been largely ignored.

There is no doubt that the dependence on the initial distribution is a sig-
nificant conceptual difference between both approaches. In population biology,
it is often known that a certain population has been evolving for a long time,
and that it has not reached the extinction yet. Furthermore, it may be very
difficult, or even impossible, to know the exact initial distribution. From this
perspective, the quasi-stationary distribution gives a very satisfactory approxi-
mation of the system state before absorption (i.e., the first objective mentioned
in the abstract). However, we think that, whenever it can be possible, the effect
of the initial distribution should be taken into account. We note that formula
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(2.4) allows the use of the RE-distribution not only when the time to absorp-
tion is large (i.e., the region R0 > 1 in epidemic models) but also in cases where
absorption is reached soon. If the absorption time is not long enough, then the
initial distribution influences the current system state. In this case, the efforts
to deal with the RE-distribution are welcome. For example, an outbreak of
head lice (pediculosis capitis) in a school should end within a not so long time
horizon, and the school administrators should have some knowledge about the
number of pupils infected when the outbreak was detected. Despite of whether
it can be observed or not, it seems reasonable to assume that an outbreak of
many epidemics starts with a single infective who introduces the infection into
the population. Bayesian methods (Clancy and O’Neill, 2008) and the maxi-
mum entropy principle can be helpful for estimating initial distributions. On
the other hand, in those situations where the system parameters lead to long
absorption times, the effect of the initial state X(0) = i is weak. The numer-
ical examples in Section 3 illustrate that the quasi-stationary distribution and
the RE-distribution are in fact close when the absorption time is long. In this
important case, the RE-distribution can be used as a simple approximation to
the quasi-stationary distribution (i.e., the second objective in this paper).

To conclude this section, we next discuss how to compute the RE-distribution.
Obviously, Ei [T ] = ∞ if P {T < ∞| X(0) = i} < 1. In the case P {T < ∞
| X(0) = i} = 1 (i.e., absorption occurs with probability 1), the expectations
{Ei [T ] ; i ∈ ST } are given by the smallest non-negative solution to the system
of linear equations (see Theorem 6.19 in Kulkarni, 1995)

Ei [T ] =
1
qi

+
∑

j∈ST
j �=i

qij

qi
Ej [T ] , i ∈ ST . (2.6)

Then, by expressing (2.6) in matrix form, we obtain

QST
m = −e,

where m and e are column vectors with dimension the cardinality of the subset
ST . The entries of m are Ei [T ] , whereas all entries of e are all equal to 1.

For a fixed j ∈ ST , we employ a first-step argument to find that

Ei [Tj ] =
δij

qi
+

∑
k∈ST

k �=i

qik

qi
Ek [Tj ] , i ∈ ST , (2.7)

where δij denotes Kronecker’s delta which is defined as follows:

δij =
{

1, if i = j,
0, otherwise.

Thus, the matrix form version of equation (2.7) is

QST
mj = −ej , (2.8)
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where mj is now the column vector with entries Ei [Tj ] , for i ∈ ST , and ej is a
column vector such that all entries are equal to 0, except the jth which is equal
to 1.

3. Applications to stochastic population models

In Section 2 we introduced the RE-distribution in the context of an absorb-
ing continuous-time Markov chain with countable state space. In this section we
provide applications to some selected population models: the classical SIS epi-
demic model, a linear growth model, the classical SIR model and a finite SIR
model with demography. A comparison with the quasi-stationary distribution
is done. Our results include a few theoretical findings and numerical experi-
ments. The main results for the classical SIS and SIR epidemic models can be
found in several textbooks (Andersson and Britton, 2000; Allen, 2003; Bailey,
1990; Daley and Gani, 1999). For discussions about variants and generaliza-
tions, please consult some recent papers (Allen, 2008; Clancy, 2005; Fouchet et
al., 2008; Lindholm, 2008; Xu et al., 2007) and the references therein.

3.1. General birth and death processes

We consider a birth and death process {X(t); t ≥ 0} with state space S =
{0, 1, ..., N}. Both the finite case (N < ∞) and the case of infinite state space
(N = ∞) can be studied. The infinitesimal transition rate from state i to state
i+1 is denoted by λi > 0 (birth rate), for 1 ≤ i ≤ N −1, whereas the transition
rate from state i to state i − 1, for 1 ≤ i ≤ N , is denoted by μi > 0 (death
rate). We assume that the origin is an absorbing state, so λ0 = 0. Moreover, if
N < ∞ then we take λN = 0 to be consistent with the assumption that S is
finite. Figure 1 shows the state space and transitions.

Fig. 1. States and transitions of the birth and death model

• • • • •
0 1 2 N − 1 N

�
μ1 �λ1�

μ2 �λ2 · · · �
μN−1 �λN−1�

μN

For each fixed j ∈ {1, ..., N}, equation (2.7) yields

E0 [Tj ] = 0, (3.1)
(λi + μi)Ei [Tj ] = μiEi−1 [Tj ] + λiEi+1 [Tj ] , i �= j, 1 ≤ i ≤ N, (3.2)

(λj + μj)Ej [Tj ] = μjEj−1 [Tj ] + λjEj+1 [Tj ] + 1. (3.3)

Using methods of finite difference equations, we find that the solution of the
system (3.1)-(3.3) is given by

Ei [Tj ] =
1
μj

min(i,j)∑
k=1

j−1∏
n=k

λn

μn

, 1 ≤ i, j ≤ N. (3.4)
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Since (T | X(0) = i ) =
∑N

j=1 (Tj | X(0) = i ), summing (3.4) over j we ob-
tain

Pi(j) =
Ei [Tj ]
Ei [T ]

=

1
μj

min(i,j)∑
k=1

j−1∏
n=k

λn

μn

N∑
j=1

1
μj

min(i,j)∑
k=1

j−1∏
n=k

λn

μn

, 1 ≤ i, j ≤ N. (3.5)

We emphasize that explicit formula (3.5) for the RE-distribution applies
both for N < ∞ and N = ∞. Furthermore, after simple algebraic manipu-
lations, it is easy to observe that the expression given in the denominator for
Ei [T ] is in agreement with the well-known expression for the expected time
until extinction, see formula (5.7) in Norden (1982) and formula (6.22) in Allen
(2003).

We conclude this subsection by noticing that the whole probability distribu-
tion of the variables Tj | X(0) = i can be easily determined in terms of a system
of linear equations for the Laplace transforms E [exp {−sTj} | X(0) = i ] . Once
the Laplace transforms have been computed, the corresponding density func-
tions, or the survival probabilities Pi{Tj > x}, can be obtained by numerical
inversion methods (Cohen, 2007). Equations for higher moments Ei

[
T k

j

]
follow

by direct differentiation of the Laplace equations.

3.1.1. The classical SIS model

The general formulation given in Subsection 3.1 includes as particular cases
many stochastic population models. In particular, for the case N < ∞, we men-
tion the stochastic version of the Verhulst logistic model and the stochastic SIS
epidemic model (Allen, 2003). The latter model corresponds to the following
specification:

λi =
β

N
i(N − i), 0 ≤ i ≤ N,

μi = (γ + b)i, 1 ≤ i ≤ N,

where β, γ and b respectively denote the contact, recovery and birth-death rates.
We assume that b = 0. Then, the transmission factor is R0 = β/γ.

The quasi-stationary distribution of the SIS model cannot be obtained ex-
plicitly. However, the probabilities {ui; 1 ≤ i ≤ N} can be computed by using
the recursive procedure proposed by Cavender (1978). Two methods for im-
plementing the recursion are summarized by N̊asell (2001). In addition, the
two approximations p(0) and p(1) described in Section 2 are often useful. The
quality of the approximations is discussed with respect to the three parameter
regions where R0 > 1 (R0 is distinctly larger than 1), R0 < 1 (R0 is distinctly
smaller than 1) and R0 is close to 1 (transient region), as N → ∞. Following
N̊asell (1999a), we notice that in the regions R0 > 1 and R0 < 1 the quasi-
stationary distribution is well approximated by p(0) and p(1), respectively. N̊asell
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(1999a) derives a more sophisticated approximation for the intricate transient
case. From a practical point of view, the transmission factor R0 is parametrized
as R0 = 1 + ρ/

√
N. Then, N̊asell proposes to use the somewhat arbitrary value

ρ = 3 to determine the boundaries of the three regions.
On the other hand, in the case of the SIS model, the RE-distribution (3.5)

reduces to

Pi(j) =

1
j

min(i,j)∑
k=1

(
R0
N

)j−k (N−k)!
(N−j)!

N∑
j=1

1
j

min(i,j)∑
k=1

(
R0
N

)j−k (N−k)!
(N−j)!

, 1 ≤ i, j ≤ N. (3.6)

At a first glance, we easily derive from (3.6) the epidemic behavior as far
as the transmission factor increases but the population size remains constant.
Then, we expect long absorption times while the mass probability is concen-
trated on the state N . This yields

lim
R0→∞

Ei [T ] =∞, 1 ≤ i ≤ N,

lim
R0→∞

Pi(j) = δjN , 1 ≤ i, j ≤ N,

lim
R0→∞

N∑
j=1

jPi(j) = N, 1 ≤ i ≤ N.

We next summarize a set of stochastic ordering results which are useful
to compare the quasi-stationary distribution, the RE-distribution and the birth
and death approximations p(0) and p(1). For notational convenience, in the sequel
we employ the bold notation u, Pi, for 1 ≤ i ≤ N, p(0) and p(1) to denote the
row vectors containing the probabilities of the corresponding distribution. The
symbol ≤st will denote the usual stochastic order relation with respect to the
distribution function.

First, we notice that

P1 = p(0), (3.7)

as it was to be expected from the probabilistic interpretation of both distribu-
tions.

We now observe that

p(0) ≤st u ≤st p(1), (3.8)
P1 ≤st u ≤st PN , (3.9)

Pi ≤st Pi′ , 1 ≤ i ≤ i′ ≤ N. (3.10)

Relation p(0) ≤st u was proved by Cavender (1978) for the general birth
and death process. For the SIS model, Kryscio and Lefèvre (1989) observed
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empirically that p(1) is an upper bound of u. This conjecture has been proved by
Clancy and Pollett (2003) with the help of an auxiliary process that, whenever
the system reaches the absorption, it automatically restarts in state j, for 1 ≤
j ≤ N , with probability νj . In particular, by assigning unit mass to a fixed state
i (i.e., we take νj = δij), we obtain formula (3.9); see Corollary 1 in Clancy and
Pollett (2003). The result in (3.10) follows from Theorem 1 in that paper. It
turns out that formulas (3.9) and (3.10) hold for the general birth and death
process.

At this point, we also observe that the RE-distribution Pi is in fact equal to
the stationary distribution of the auxiliary process with νj = δij , for 1 ≤ j ≤ N .
In this way, we complete the circle arriving again at the probabilistic interpre-
tation for Pi already given in Section 2, where we appealed to the relationship
with the regenerative processes.

Formulas (3.8) and (3.9) show that p(1) and PN are upper bounds of the
quasi-stationary distribution u. Thus, it is appropriate to study the relation
between them. To this end, for N fixed, we find that

lim
R0→∞

∑l
j=1 p

(1)
j∑l

j=1 PN (j)
=

l

N
≤ 1, 1 ≤ l ≤ N,

lim
R0→0

∑l
j=1 p

(1)
j∑l

j=1 PN (j)
=

∑N
j=1

1
j∑l

j=1
1
j

≥ 1, 1 ≤ l ≤ N,

which amounts to the following relations:

PN ≤st p(1), for N fixed and R0 sufficiently large, (3.11)

p(1) ≤st PN , for N fixed and R0 sufficiently small. (3.12)

From (3.9) we see that the extreme RE-distributions P1 and PN are respec-
tively lower and upper bounds of the quasi-stationary distribution u. Moreover,
formula (3.10) shows that the RE-distributions are stochastically monotone
with respect to the initial state. Therefore, one may conjecture that either
any appropriate choice of i or the consideration of a mixture P̃ =

∑N
i=1 ωiPi

would lead to some improvement, if one wishes to consider the RE-distribution
as an approximation of the quasi-stationary distribution. In order to explore
numerically this possibility, we next suggest two RE-approximations.

A first approximation, denoted by P̂, approximates u by a single appropriate
RE-distribution Pi. The choice of the appropriate index î depends on the three
parameter regions described earlier. When R0 is distinctly larger than 1, we use
the good approximation p(0) to determine the starting state as î =

〈〈
E[p(0)]

〉〉
,

where 〈〈x〉〉 is the nearest integer function defined as the closest integer to x. In
the parameter region where R0 is distinctly smaller than 1, we use p(1) to get
î =

〈〈
E[p(1)]

〉〉
. In the more involved transient region, we start from a rough

but simple interpolation approximation p = R0
1+R0

p(0) + 1
1+R0

p(1). Large values
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of the first weight give support to long extinction times, in agreement with the
use of the approximation p(0). Then, we take î = 〈〈E[p]〉〉 .

As a second approximation, we propose to employ a mixture of the RE-
distributions, where the weights ωi are given by the first RE-approximation
P̂. In this way, we construct the distribution P̃, which assigns probabilities
P̃j =

∑N
i=1 P̂iPi(j), for 1 ≤ j ≤ N.

R0 0.5 0.9 1.0 1.3 1.5 2.0
E[u]
σ(u)
u1

um

1.9284
1.3152
0.5141

1

5.0459
3.9497
0.1732

1

7.0314
5.2233
0.1091

1

19.7010
8.9718
0.0092

20

30.8972
8.7257

4.2168× 10−4

32

48.93045166
7.23418980

7.8067× 10−9

49
E[p(1)]
σ(p(1))

p
(1)
1

p(1)
m

1.9444
1.3312
0.5097

1

5.5674
4.2725
0.1501

1

8.1900
5.7378
0.0819

1

23.2472
8.5418
0.0022

24

33.3362
8.1589

4.4058× 10−5

34

50.00000001
7.07106775

3.2606× 10−10

50
E[P1]
σ(P1)
P1(1)
Pm

1

1.4251
0.8602
0.7264

1

2.8837
2.7819
0.4328

1

4.0986
4.0950
0.3356

1

17.9807
9.7311
0.0398

20

30.7926
8.8501
0.0013

32

48.93044999
7.23419422

1.5954× 10−8

49
E[PN ]
σ(PN )
PN (1)
Pm

N

17.7858
22.1172
0.1292

1

16.2558
18.3569
0.0703

1

16.0297
16.7672
0.0538

1

20.8561
10.4969
0.0083

21

30.9337
8.7764

4.1967× 10−4

32

48.93045195
7.23419022

7.8065× 10−9

49
E[P̂]
σ(P̂)
P̂1

P̂m

1.8270
1.0522
0.4678

1

4.3226
3.2331
0.1736

1

6.4074
4.6079
0.1038

1

19.7563
8.8935
0.0087

20

30.8989
8.7229

4.2016× 10−4

32

48.93045167
7.23418979

7.8065× 10−9

49

E[P̃]
σ(P̃)
P̃1

P̃m

1.7397
1.1181
0.5672

1

4.2893
3.5146
0.2232

1

6.2809
4.9186
0.1383

1

19.6495
8.9897
0.0096

20

30.8970
8.7258

4.2217× 10−4

32

48.93045166
7.23418980

7.8065× 10−9

49
E1[T ]
EN [T ]

1.3765
7.7396

2.3101
14.2113

2.9789
18.5840

25.1182
120.4356

737.0896
2382.7997

62678430.2
128096977.8

Table 1. Comparing the characteristics of the SIS model with N = 100

Some numerical results are summarized in Tables 1 and 2. All codes have
been done using Fortran. In Table 1 we compare six distributions, namely the
quasi-stationary distribution u, the birth and death approximation p(1), the
extreme RE-distributions P1 and PN , and the two RE-approximations P̂ and
P̃. From (3.7), we recall that p(0) = P1. We choose the population size as
N = 100 and normalize the recovery rate to be equal to one. Then, we take
R0 = 0.5, 0.9, 1.0, 1.3, 1, 5 and 2.0. The choice here covers the three parameter
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regions. More concretely, we interpret that the cases R0 = 0.9 and 1.0 belong
to the transient region, while R0 = 1.3 is somewhat in the boundary with the
region where R0 is distinctly larger than 1. Each entry in the table gives, from
top to bottom, the mean value, the standard deviation, the first probability and
the mode, for the corresponding distribution. For example, in the case of u
the notation of these characteristics is E[u], σ(u), u1 and um. Moreover, the
last row gives the expected time to extinction from the states 1 and N. The
numbers in bold indicate what is the closest distribution to the quasi-stationary
one, with respect to the corresponding characteristic.

As a supplement to Table 1, we notice that Ru decreases from the value
0.95899, for R0 = 0.5, to the value 1.79× 10−8, corresponding to R0 = 2.0. In
fact, Ru = 0.99999, for R0 = 10−9. Thus, we conclude that the quasi-stationary
regime in the SIS model is always reached faster than the eventual absorption.

A summary of the observations inferred from Table 1 is given below.

• It is clear that p(1) gives the best approximation in the region where R0

is distinctly smaller than 1.

• Regarding the transient region, we remark the interest of an asymptotic
approximation due to N̊asell (1999a), which is clearly better than p(0) and
p(1). For the sake of simplicity, we have avoided the implementation of that
approximation. Among the distributions under comparison here, we notice that
the RE-approximations P̂ and P̃ are satisfactorily close to u in the cases R0 =
1.0 and 1.3. Thus, it seems reasonable to consider the use of P̂ and P̃ in the
interval 0 ≤ ρ ≤ 3, specially when N is moderate or small and there exist doubt
about the applicability of asymptotic results.

• It is remarkable that all the distributions, except p(1), are satisfactory
approximations of u in the important practical region where R0 is distinctly
larger than 1. However, the best comparative indicators correspond to the
distribution P̃. The differences among the distributions are more notorious as
far as ρ tends to 3. In this case, it would be possible to use either P̃ or P̂.

• Combining the stochastic ordering relationships (3.8)-(3.12) and the known
asymptotic results (N̊asell 1996, 1999a), it is easy to conclude that the mean
values of the six distributions under study are asymptotically equivalent to
N(R0−1)/R0, in the region R0 > 1. The numerical results in the table support
this observation.

• Note that formula (7.3) in N̊asell (1996) gives the approximation ũ1 =
√

N(R0 − 1)2ϕ(β1)/R0, where ϕ(β1) = 1√
2π

e
−N log R0−R0−1

R0 . When R0 = 1.3,

we have ũ1 = 0.0169, while ũ1 = 8.1583 × 10−9 for R0 = 2.0. An explanation
of the superiority of the RE-approximations over ũ1 is the following. From
the approximation (8.4) for EN [T ] in N̊asell (1996), we find that PN (1) can be
approximated by P̃N (1) =

√
NRN−1

0 (R0− 1)2ϕ(β1)/(RN
0 − 1). Now we observe

that ũ1 < P̃N (1) but this disagrees with formula (3.9), which implies the exact
relation PN (1) ≤ u1. The interest in the first probability u1 comes from its
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relation with the expected time to extinction when the initial distribution is u.
Denoting the latter as E[Tu], we recall that both quantities are related through
the formula E[Tu] = (γu1)−1.

In Table 2, we employ the maximum pointwise distance to compare the distri-
butions under consideration versus the quasi-stationary distribution. For exam-
ple, in the case of p(1), the distance is defined by

∣∣p(1) − u
∣∣ = max

1≤j≤N

∣∣∣p(1)
j − uj

∣∣∣.
The entry marked in bold is again associated with the distribution providing
the minimum distance and, consequently, the best global approximation.

R0 0.5 0.9 1.0 1.3 1.5 2.0∣∣p(1) − u
∣∣ 0.004405 0.050911 0.087469 0.161472 0.111504 0.058900

|P1 − u| 0.212319 0.303681 0.302958 0.078784 0.003570 4.2672× 10−8

|PN − u| 0.588294 0.375155 0.288864 0.032600 0.001074 1.0384× 10−8∣∣∣P̂− u
∣∣∣ 0.051347 0.091901 0.063566 0.005462 1.4852× 10−4 9.2142× 10−10∣∣∣P̃− u
∣∣∣ 0.055082 0.086271 0.064538 0.002328 5.5914× 10−6 9.0205× 10−16

Table 2. Distributions distances with respect to u

In the light of the table, we see that the best approximation starts being
p(1), in the region R0 < 1, but passes by P̂, in the transient region, and finally
becomes P̃, in the region R0 > 1. It should be pointed out the significant
improvement obtained in the region R0 > 1 when we use P̃.

3.1.2. A linear growth model

As an example of the infinite case N = ∞, we next consider the linear growth
model with transition rates

λi = λi, i ≥ 0,

μi = μi, i ≥ 1.

Linear transition rates arise often in combination with catastrophes, see for
instance Lee (2000). Moreover, the linear growth model is one of the few cases
where both the quasi-stationary distribution and the RE-distribution can be
determined explicitly (N̊asell, 2001). This fact facilitates a rapid comparison
between both distributions.

We assume that R0 = λ/μ < 1. Then, the quasi-stationary distribution
follows the geometric law:

uj = (1−R0)R
j−1
0 , j ≥ 1.

On the other hand, formula (3.5) for the RE-distribution yields
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Pi(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1−Rj

0)j
−1

(1−δ1i)
i−1

j=1

1−R
j−i
0

j − 1−Ri
0

Ri
0

ln(1−R0)

, if 1 ≤ j < i,

Rj−i
0 (1−Ri

0)j
−1

(1−δ1i)
i−1

j=1

1−R
j−i
0

j − 1−Ri
0

Ri
0

ln(1−R0)

, if 1 ≤ i ≤ j.

It is easy to show that both distributions have a unique mode at the point
um = Pm

i = 1, for i ≥ 1, whereas the expected values are given by

∞∑
j=1

juj =
1

1−R0
,

∞∑
j=1

jPi(j) = i

⎛⎝(1− δ1i)
i−1∑
j=1

1−Rj−i
0

j
− 1−Ri

0

Ri
0

ln(1−R0)

⎞⎠−1

, i ≥ 1.

We are interested in the limiting behavior as R0 → 1. Then, we obtain the
following limiting results:

lim
R0→1

Ei [T ] = ∞, i ≥ 1, (3.13)

lim
R0→1

∞∑
j=1

juj =∞, (3.14)

lim
R0→1

∞∑
j=1

jPi(j) =∞, i ≥ 1, (3.15)

lim
R0→1

∑∞
j=1 jPi(j)∑∞
j=1 jPi′ (j)

= 1, 1 ≤ i, i′ ≤ N, (3.16)

lim
R0→1

∑∞
j=1 jPi(j)∑∞

j=1 juj
= 0, i ≥ 1. (3.17)

Formula (3.13) says that the expected absorption time becomes arbitrarily
long, as far as R0 → 1, so the comparison is meaningful. In agreement with
the intuition, formulas (3.14) and (3.15) show that the mean value of the two
distributions tends to infinity. From (3.15), we also notice that the influence of
the initial state i vanishes when the time to absorption is long. Formula (3.16)
says that the mean values of the RE-distribution obtained for two different
initial states are asymptotically equivalent, when R0 → 1. Finally, the limiting
ratio in (3.17) illustrates the important fact that the mean value of the quasi-
stationary distribution converges to infinity faster than the mean value of the
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RE-distribution. In this average sense, a similar limiting behavior of both
distributions cannot be concluded.

3.2. SIR epidemic models

The SIR formalism categorizes individuals within a closed population as
susceptible, infective and removed individuals. The main difference between
SIS and SIR models is that, in the SIR model, individuals recover and develop
permanent immunity. We are concerned with the classical SIR model and
with a finite SIR model with demography. The classical SIR model refers
to the standard formulation as it can be found in many textbooks (Andersson
and Britton, 2000; Allen, 2003; Bailey, 1990; Daley and Gani, 1999). The
introduction of demographic forces in the epidemiological formalism was already
proposed by Bartlett (1956). Slight variants of Bartlett’s model lead to what
is known as the SIR model with demography (van Herwaarden and Grasman,
1995; N̊asell, 1999b). These models and their generalizations (see e.g. N̊asell,
2002) are based on Markov chains with infinite state space. In Subsection
3.2.2, we introduce a finite SIR model with demography. The finitess of the
state space makes the model enough tractable, which is needed to deal with
our objective of comparing the quasi-stationary distribution and the ratio of
expectations distribution.

The existence of a finite state space, which can be partitioned into two
classes of absorbing and transient states, is a common feature for the two SIR
models under study, and even for the classical SIS model. However, the quasi-
stationary behavior of these models is completely different due to the different
dynamics of the transitions among the transient states.

3.2.1. The classical SIR model

Let {(X(t), Y (t)); t ≥ 0} be the bidimensional continuous-time Markov chain
describing the SIR epidemic model. At time t, the population consists of X(t)
infectives, Y (t) susceptibles and Z(t) = N −X(t) − Y (t) immune individuals,
where N is the constant population size. The initial condition is (X(0), Y (0)) =
(m, n). When in state (i, j), for i ≥ 1, the population state moves either to
(i + 1, j − 1) at rate λij (λi0 = 0) due to an infection, or to (i − 1, j) at rate
μi (μ0 = 0) due to the removal of an infective. The state space of the SIR
epidemic model is S = {(i, j); 0 ≤ i ≤ m + n, 0 ≤ j ≤ min{n, m + n− i}}. We
notice that states (0, j), for 0 ≤ j ≤ n, are absorbing states, so it is reasonable
to assume that m ≥ 1. Fig. 2 illustrates the transitions among the states for
the case (m, n) = (3, 3).
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Fig. 2. States and transitions of the SIR epidemic model

• • • • • • •

• • • • • •

• • • • •

• • • •

�μ1 �μ2 �μ3 �μ4 �μ5 �μ6

�μ1 �μ2 �μ3 �μ4 �μ5

�μ1 �μ2 �μ3 �μ4

�μ1 �μ2 �μ3

�
��

�
�

λ11
�

��

�
�

λ21
�

��

�
�

λ31
�

��

�
�

λ41
�

��

�
�

λ51

�
��

�
�

λ12
�

��

�
�

λ22
�

��

�
�

λ32
�

��

�
�

λ42

�
��

�
�

λ13
�

��

�
�

λ23
�

��

�
�

λ33

A typical choice for the transition rates is (Allen, 2003)

λij =
β

N
ij, (i, j) ∈ S,

μi = γi, 0 ≤ i ≤ m + n,

where β and γ denote the contact and the recovery rates.
From the results summarized in Section 2 it follows easily that the quasi-

stationary distribution only assigns positive probabilities to the states (i, 0)
with 1 ≤ i ≤ i∗, where i∗ is the minimum i, for 1 ≤ i ≤ m + n, such that
μi = min1≤k≤m+n μk. In particular, if μi = γi, for 1 ≤ i ≤ m + n, then i∗ = 1
and the quasi-stationary distribution has the trivial form

u(i,j) = δ(1,0)(i,j), 0 ≤ j ≤ n, 1 ≤ i ≤ m + n− j,

that is, all the probability mass is concentrated at the state (1, 0).
On the other hand, the RE-distribution of the SIR epidemic model has the

form

P(m,n)(i, j) =
E(m,n)

[
T(i,j)

]
E(m,n) [T ]

, 0 ≤ j ≤ n, 1 ≤ i ≤ m + n− j. (3.18)

Define Aij to be the probability of reaching the state (i, j) ∈ S starting from
(m, n) before the extinction occurs. Considering that each state (i, j) can be
visited at most one time, we write formula (3.18) as follows:

P(m,n)(i, j) =
Aij

λij+μi

n∑
j=0

m+n−j∑
i=1

Aij

λij+μi

, 0 ≤ j ≤ n, 1 ≤ i ≤ m + n− j.
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Next we summarize the recursive scheme for the computation of the proba-
bilities Aij (Neuts and Li, 1996).

Step 1. Set Aij = δ(i,j)(m,n).

Step 2. For i = m− 1, m− 2, ..., 0 calculate

Ain = Ai+1,n
μi+1

λi+1,n + μi+1

.

Step 3. For k = 1, calculate
3.a.

Am+k,n−k = Am+k−1,n−k+1
λm+k−1,n−k+1

λm+k−1,n−k+1 + μm+k−1

.

3.b. For i = m + k − 1, m + k − 2, ..., 2 compute

Ai,n−k = Ai+1,n−k
μi+1

λi+1,n−k + μi+1

+ Ai−1,n−k+1
λi−1,n−k+1

λi−1,n−k+1 + μi−1

.

3.c For i = 0, 1 calculate

Ai,n−k = Ai+1,n−k
μi+1

λi+1,n−k + μi+1

.

Step 4. Set k = k + 1. If k ≤ n go to Step 3.a.

We notice that the above recursive scheme also provides a method for com-
puting the final size of the epidemic. In fact, A0j , for 0 ≤ j ≤ n, gives the
probability that there are j susceptible individuals at the extinction time. Thus,
the final size of the epidemic is N − j.

At this point, we would like to note that the RE-distribution gives positive
probability to all transient states ST = S − {(0, j); 0 ≤ j ≤ n}. In contrast,
the typical choice of the SIR gives all the quasi-stationary probability mass to
(1, 0). As in the example for the simple death process showed in Section 2, the
explanation is related to the fact that ST is reducible, but also to the fact that
state (1, 0) has the lowest exit rate (i.e., min(i,j)∈ST

(λij + μi) = λ10 + μ1 =
γ). Moreover, once a state has been visited, the system leaves it forever. In
this sense, the SIR formalism is more appropriate to model acute infections
including chickenpox, measles, mumps and rubella (Keeling and Rohani (2008)),
where in a relatively rapid period the extinction time is reached. The ratio Ru

gives support to the same idea. It is easy to prove that the eigenvalues of QST

in the SIR model are given by −(λij +μi), for 0 ≤ j ≤ n and 1 ≤ i ≤ m+n− j.
Then, we readily find that Ru ≥ 1. More concretely, we have

Ru =
{

1, if γ ≤ β/N,
2γ

β/N+γ , if γ > β/N.
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In the light of the above comments, it should be erroneous to conclude that
the concentration of the mass in a single point is a drawback of the quasi-
stationarity. The correct interpretation is that it is not meaningful to study
the quasi-stationary distribution in this case, because probably the time to
absorption is not long enough. In contrast, the RE-distribution can be used
despite how long the absorption time is, so it provides a natural approach to
measure the behavior of the SIR model before absorption. Fortunately, we have
more than one option to cover our basic objective.

3.2.2. A finite SIR model with demography

In the SIR model with demography (N̊asell, 1999b), the population is sub-
ject to immigration and deaths. It is usual to assume a constant birth rate μN
and a linear death rate μj, proportional to the number j of susceptibles. Note
that N is not the total population size. In fact, the population size varies along
the time, but N can be viewed as the mean equilibrium population size when the
infection has been eradicated. The state space of the Markov chain modelling
the SIR model with demography is S = N × N and the states {(0, j); j ≥ 0}
form the absorbing set SA. In this context, the quasi-stationary distribution
cannot be determined neither explicit nor recursively. The study of the time to
extinction is also intricate, even to prove almost sure extinction is an involved
problem. The existing work (N̊asell, 1999b, 2002) is mainly concerned with the
determination of asymptotic approximations of the quasi-stationary distribu-
tion and the time to extinction, when the ratio R0 is distinctly larger than 1.
We next consider alternative demographic rates leading to a Markov chain with
finite state space S = {(i, j); 0 ≤ i+j ≤ N}. With this state space, the compar-
ative study of the quasi-stationary and the ratio of expectations distributions
can be numerically implemented.

We consider a bidimensional process {(X(t), Y (t)); t ≥ 0}, where X(t) de-
notes the number of infected individuals, while Y (t) represents the number of
susceptibles at time t. When in state (i, j), the dynamics of the system is de-
fined by the following four transitions. Due to an infection the population size
moves to (i + 1, j − 1) at rate λij = βij/N , while the removal of an infective
causes a transition to (i− 1, j) at rate μi = (γ +μ+ θ)i. Here β and γ represent
the contact and the recovery rate, as in the classical SIR model. The rates μ
and θ correspond to natural death and death due to the infection, respectively.
Due to the demographic forces the system moves either to state (i, j +1) at rate
αij = ( λ

N (i+ j)+ ξ)(N − i− j), when a birth takes places, or to (i, j−1) at rate
δj = μj, due to the death of a susceptible. The rate αij can be decomposed into
two contributions. The first term λ

N (i + j)(N − i − j) shows that the internal
births follow a logistic growth. With this rate, the population cannot growth
beyond the carrying capacity N . On the other hand, the term ξ(N − i − j)
gives the rate of the external (immigration) births. We assume that the arrival
of immigrants decreases as far as the population tends to its ideal carrying ca-
pacity. The transition among states are represented in Figure 3, for the simple
case N = 3.
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Fig. 3. States and transitions of the SIR model with demography
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As a partially related work, we mention the papers by Swift (2001) and Allen
and Burgin (2000). The former deals with a model operating in the presence
of logistic growth with immigration. In the latter, an SIR model with finite
triangular state space is considered. In that paper, each death is accompanied
by a birth so that the population size remains constant.

In Table 3, we illustrate the main characteristics of the quasi-stationary
probabilities uij , for (i, j) ∈ ST = {(i, j); 1 ≤ i+j ≤ N}, which can be computed
from the fact that the quasi-stationary distribution u is the left eigenvector of
QST

with maximal real part. The finite SIR model with demography has seven
system parameters: N, β, γ, μ, θ, λ and ξ. In our numerical experiment, we fix
N = 100, γ = 499/500, μ = 1/500, θ = 0 and ξ = 0.1. The choice of γ and μ
normalizes γ +μ as 1, and reflects that the expected life is much longer than the
expected time to recovery. The internal birth rate λ is chosen to be multiple of
ξ; that is, we consider λ = 0.1, 0.5, 1.0, 5.0 and 10.0. Finally, the transmission
factor R0 = β/(γ + μ) = β takes values R0 = 0.5, 1.0, 1.25, 1.5 and 2.0.
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E[ui.]
E[u.j ]
σ(ui.)
um

ij

R0 = 0.5 R0 = 1.0 R0 = 1.25 R0 = 1.5 R0 = 2.0

λ = 0.1

1.782729
89.880561
1.157914
(1, 92)

3.358695
75.847244
2.531369
(1, 82)

4.310522
68.015593
3.200962
(1, 76)

5.197538
60.676247
3.745675
(1, 69)

6.548307
48.776272
4.447316
(2, 55)

λ = 0.5

1.868709
95.195758
1.247307
(1, 97)

4.580918
85.992502
3.416681
(1, 94)

7.014187
78.088749
4.718968
(1, 92)

9.664507
69.072884
5.681166
(7, 74)

13.639154
53.392711
6.534392
(14, 50)

λ = 1.0

1.893701
96.527713
1.274471
(1, 98)

5.279383
89.140401
3.913796
(1, 97)

9.141594
80.996214
5.704721
(1, 97)

13.925720
70.534363
6.792541
(13, 72)

21.204501
52.768775
7.085032
(22, 51)

λ = 5.0

1.920373
97.753647
1.305275
(1, 99)

6.495080
92.160278
4.813970
(1, 99)

14.149327
82.903763
7.704323
(1, 99)

25.043827
69.670016
8.319430
(25, 70)

39.970584
51.334353
7.237475
(40, 52)

λ = 10.0

1.924342
97.912692
1.310106
(1, 99)

6.744306
92.561982
5.003532
(1, 99)

15.386401
83.026944
8.137786
(1, 99)

27.732683
69.391751
8.526345
(27, 71)

44.159848
51.195365
7.238408
(45, 51)

Table 3. Characteristics of the quasi-stationary distribution

For each pair (R0, λ), we compute the marginal expected values of the num-
ber of infectives, E[ui.], and the number of susceptibles, E[u.j ], the standard
deviation of the number of infectives, σ(ui.), and the mode um

ij (i.e., the bidi-
mensional pair (i, j) with highest quasi-stationary mass). An examination of
the table reveals that E[ui.] is an increasing function of R0 and λ. The mean
value E[u.j ] decreases as a function of R0 and it has a mode as a function of λ,
in the region R0 > 1. The standard deviation σ(ui.) and the mode um

ij exhibit
higher magnitudes in the southeastern corner of the table.

In Table 4 we are concerned with the P̂ distribution obtained by starting
the RE-distribution P(m,n)(i, j) at the point (m̂, n̂), such that m̂ = 〈〈E[ui.]〉〉
and n̂ = 〈〈E[u.j ]〉〉. The P̂ distribution can be computed by solving numerically
the systems of linear equations that govern the expectations E(m,n)

[
T(i,j)

]
and

E(m,n) [T ] . The block tridiagonal structure of the infinitesimal generator might
be exploited to this end.
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E[P̂i.]
E[P̂.j ]
σ(P̂i.)
P̂m

ij

R0 = 0.5 R0 = 1.0 R0 = 1.25 R0 = 1.5 R0 = 2.0

λ = 0.1

1.761919
90.365396
0.972266
(2, 90)

3.069476
77.185894
2.149048
(3, 76)

4.085833
69.161475
2.854446
(4, 68)

5.080829
61.606620
3.446865
(5.61)

6.600214
48.957257
4.186577
(7, 49)

λ = 0.5

1.802639
95.409072
1.021293
(2, 95)

4.563704
86.440183
3.140335
(5, 86)

7.013047
78.341271
4.523125
(7, 78)

9.768168
68.935081
5.568556
(10, 69)

13.674764
53.309221
6.477212
(14, 53)

λ = 1.0

1.815385
96.899195
1.036569
(2, 97)

5.001877
89.731851
3.514131
(1, 97)

9.140858
81.066132
5.529311
(9, 81)

13.982033
70.447300
6.734425
(14, 71)

21.206802
52.764619
7.080823
(22, 51)

λ = 5.0

1.824432
97.895901
1.048449
(1, 99)

6.076221
92.652233
4.294910
(1, 99)

14.174662
82.874674
7.556473
(1, 99)

25.049965
69.662724
8.310091
(25, 70)

39.970584
51.334353
7.237474
(40, 52)

λ = 10.0

1.825670
98.026322
1.050229
(1, 99)

6.547522
92.785416
4.542308
(1, 99)

15.398180
83.013491
7.996709
(13, 86)

27.736629
69.387390
8.520852
(27, 71)

44.159848
51.195365
7.238408
(45, 51)

Table 4. Characteristics of the P̂ distribution

From our numerical experiments, we now observe that Ru < 1 for all choices
of the pair (R0, λ) in the tables, except for the case (R0, λ) = (0.5, 0.1), where
Ru = 1.41443. As a result, the comparison between P̂ and u is meaningful in a
broad domain of the considered parameters.

By comparing the entries in Tables 3 and 4, we may conclude that P̂ pro-
vides an acceptable approximation of u in the whole range of the pair (R0, λ).
The quality of the approximation is improved when R0 and λ simultaneously
increase and, consequently, the time to extinction becomes longer. In fact, both
distributions present identical values in the case (R0, λ) = (2.0, 10.0). Numerical
experiments, not reported here, show that the characteristics of the P̂ distribu-
tion are almost insensitive with respect to the initial state, as far as R0 and λ
increase.

4. Concluding comments

Our aim in this paper is to provide a comparative analysis of the quasi-
stationary and the ratio of expectation distributions. The motivation for this
study comes from the need of understanding the behavior of a biological stochas-
tic system before absorption. For many applications, it is certain that the ab-
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sorption occurs but this may take a very long time. Then, the quasi-stationary
distribution gives an excellent measure of the long-term behavior of the sys-
tem. Due to the non-linear structure of the quasi-stationary equations, it is
usually impossible to obtain explicit expressions for the quasi-stationary distri-
bution. However, there exists a number of helpful results including recursive
methods, approximations and asymptotic analysis. The RE-distribution gives
an alternative to measure the system dynamics before absorption, despite of
how long the absorption time is. Since the RE-distribution is governed by lin-
ear equations, it can typically be evaluated more simply. The main problem of
the RE-distribution concerns the practical difficulties for managing information
about the initial distribution.

Several scenarios (classical SIS model, a linear growth model, classical SIR
model, a finite SIR model with demography) are considered along the paper
to investigate a two-fold objective: i) to consider the quasi-stationarity and the
ratio of expectations as two conceptually different approaches for measuring the
behavior of a biological system before reaching the absorbing states, and ii) to
evaluate the possibility of using the RE-distribution as an approximation to
the quasi-stationary distribution provided that the quasi-stationary regime has
already been reached.

The study can be continued in several directions. For example, it would be
interesting to get asymptotic expansions for the expectations Ei [Tj ] . If we allow
absorption in one transition we arrive to the consideration of biological models
with killing and catastrophes (Coolen-Schrijner and van Doorn, 2006; Artalejo
et al., 2007). In the present paper, the applications of the RE-distribution were
oriented to epidemic models but a forthcoming study might explore other impor-
tant stochastic biological models including competition and predation (Allen,
2003).

We also notice that the approach can be easily extended to the discrete-
time case. Similar arguments to those given in Section 2 lead to a system of
equations for the number of visits to state j before absorption. In fact, the
discrete counterpart follows by replacing the infinitesimal rates qij by the one-
step transition probabilities. Then, the analogue to equation (2.8) takes the
form

(I − PST
)mj = ej ,

where PST
denotes the one-step transition probability sub-matrix corresponding

to the transient states.
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