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Abstract

This paper investigates the relationship between innovation and the export behavior of firms

using data from a representative panel of Spanish firms over 1991-2002. It presents a simple the-

oretical model of the firm decision to export and innovate that guides the econometric analysis.

Consistent with the predictions of the theoretical model, the econometric results suggest a positive

effect of firm innovation on the probability of participation in export markets. The results further

reveal the heterogeneous effects of different types of innovations on the firm export participation.

In particular, product upgrading appears to have a larger effect on the firm export participation

than the introduction of cost-saving innovations. These findings are robust to firm unobserved het-

erogeneity, dynamic specifications, and to the use of instrumental variables to control for the potential

endogeneity between innovation and exporting.
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1 Introduction

The recent trade literature has unveiled a large heterogeneity among firms that trade. Most of this

literature has focused on the link between productivity and exporting and confirmed the empirical

regularity that more productive firms self-select into export markets (e.g. Aw and Hwang 1995; Bernard

and Jensen 1999, and for a recent literature review see Bernard et al. 2007). However, there is far

less evidence on the role of innovation, one potential driver of productivity differences among firms (e.g.

Griliches 1998) on the firm export behavior. A comprehensive study of the relationship between in-

novation and trade at the firm-level may improve our understanding of the drivers of firms’ exporting

decisions and the characteristics of firms that trade.

This paper aims at filling this gap by investigating the relationship between innovation and the export

behavior of firms. It presents a simple theoretical model of the decision to export and innovate by het-

erogeneous firms which is based on the work by Bustos (2005; 2009) to guide the empirical analysis

assessing the effect of innovation on firm export market participation. In the model firms are het-

erogeneous in terms of productivity and have the choice to invest in innovation to upgrade their technology.

The model predicts that innovating firms are more likely to participate in exporting than non-innovating

firms. Although innovating and non-innovating firms face similar fixed costs to access export markets, the

innovating firms generate higher expected profits from exporting, that makes them more likely to export.

I test this proposition for a panel of Spanish manufacturing firms over the period 1991-2002. There are

several advantages of the unique dataset I use in the analysis. It contains not only the information on

R&D investments as more commonly available in the literature (see Aw et al. 2007 and 2009), but also

the data on the output from the innovation process. In particular, the dataset contains time-varying in-

formation on product and process innovations of firms that allows a more precise investigation of different

channels through which the innovation efforts are linked to the returns to exporting.

My empirical analysis confirms the theoretical predictions summarized above. The results suggest

a positive effect of firm innovation on the probability of participation in export markets. Consistent

with the theoretical predictions, firms that introduce cost-saving innovations are more likely to export

than those firms that don’t innovate. This result is in line with the theoretical intuition that innovating

firms are more likely to export because they can charge lower prices and thus obtain higher returns

from foreign sales than non-innovating firms. Also firms that innovate by upgrading their products or

introducing completely new ones are more likely to export. This result supports the discussions in the

previous literature indicating that product upgrading is an important component of firms’ exporting

decisions (Bernard and Jensen 2004; Iacovone and Javorcik 2008).

The empirical results further disclose the heterogeneous effects of different types of innovations on the

firm export participation. The effects of product upgrading appear to weight more on the firm export

participation than those of introducing cost-reducing innovations. In particular, the results indicate that

current introduction of product innovations leads to greater probability of future exporting in the range

of 2 to 16 percent depending on the econometric specification, while the effect of process innovation is by

half smaller ranging between 1 to 8 percent, depending on the econometric specification. These results

suggest that product upgrading gives a greater advantage to Spanish firms in export markets than the

improvements in their production techniques. An interpretation of this result is that product upgrading

allows firms to differentiate their products from rival firms, which may give a better advantage over

competitors in export markets than cost-advantages gained though process innovation. These empirical

findings are robust to alternative regression techniques to control for firm unobserved heterogeneity,

an in particular to instrumental variables regressions to control for the potential endogeneity between

innovation and exporting.

My study relates to the literature on trade and firm heterogeneity by investigating the role of firm
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innovation efforts on their export market participation. Clerides et al. (1998) and Bernard and Jensen

(1999) were among the first to document the superior performance of exporters relative to purely domestic

firms. Following their research, an extensive literature has reached the consensus that exporter premia

can be explained by self-selection of best performers into export markets, rather than by learning by

exporting.1 These empirical findings have been incorporated into theoretical models of trade that consider

firm heterogeneity to explain differences in patterns of export participation as an interaction between firm

productivity and fixed costs to export (Bernard et al. 2003; Melitz 2003; Yeaple 2005).

The importance of innovation for productivity and exporting of firms has been only recently brought

into focus. A few empirical studies using micro-level data have documented a positive correlation between

investment in R&D and exporting (Aw et al. 2007; Bustos 2005 and 2009; Cassiman and Mart́ınez-Ros

2005; Girma et al. 2008; Iacovone and Javorcik 2008; Lileeva and Trefler 2007). And only since very

recently, a few theoretical papers have formalized the potential linkages between firm productivity, export

decisions and R&D efforts (Aw et al. 2009; Constantini and Melitz 2008). In particular, in a recent paper

Aw et al. (2009) develop a structural model of the firm decision to invest in R&D and participate in

the export market and estimate the model using plant level data for Taiwan. They find that the self-

selection of high productivity plants is the main driver of the decision to export and to undertake R&D.

Their study suggests further that both R&D and exporting have a positive effect on the plant’s future

productivity. However, they find little effect of investments in R&D on the export decision once they

control for the initial productivity differences.

In particular, my paper contributes to the above literature by investigating the effect of firm in-

novation activities on its export market participation. To characterize the linkages between the export

and innovation decisions of firms, I derive a theoretical trade model of heterogenous firms that builds

on the work of Bustos’ (2005;2009) and test its implications using a sample of Spanish manufacturing

firms. The main prediction of the model is that firms that innovate will also be more likely to export.

The empirical analysis investigates in depth this proposition by relating firm innovation in terms of R&D

investments (both internal and contracted) and the introduction of new processes and products to its

export participation decision.2 By contrast to other studies that assess the effect of R&D on exporting

(e.g. Aw et al. 2007 and 2009), my data allows me to empirically investigate the effect of actual in-

novation rather than R&D investments on the exporting decisions of firms. As such this study assesses

the heterogenous effects of different types of innovations on the export decisions of firms.

There are some previous studies analyzing the exporting activities of Spanish firms. Cassiman and

Mart́ınez-Ros (2005) have also studied the link between innovation and exporting for the Spanish case,

while Fariñas and Mart́ın-Marcos (2007) have documented the superior performance of exporters versus

non-exporters. Relative to these studies, this paper contributes to the understanding of the Spanish

economy by documenting systematic and significant differences between exporters and non-exporters in

terms of innovation efforts and outcomes. It also shows that previous innovation contributes to explain

the heterogenous participation of Spanish firms in foreign markets, and that these results appear to be

robust to a careful consideration of the econometric problems that concern the investigation of the link

between innovation and exporting at the firm-level, such as unobserved heterogeneity, endogeneity and

dynamic considerations.

The remainder of the paper is organized as follows. Section 2 presents the theoretical framework.

Section 3 presents the preliminary evidence and provides an overview of Spanish firms’ innovation and

1Evidence in favour of self-selection of better performing firms into export markets is provided by Clerides et al. (1998)
for Colombia, Mexico and Morocco; Bernard and Jensen (1999) for the US; and Delgado et al. (2002) for Spain. Some
papers find evidence of learning by exporting including Van Biesebroek (2006) for Côte-d’Ivoire and De Loecker (2007) for
Slovenia. For a review of this literature see Greenaway and Kneller (2007) and Wagner (2007).

2The paper does not explore the effects of other sources of knowledge acquisition such as acquired technology or purchases
of technology from abroad on exporting, which may arguably be also important for Spanish firms.
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exporting activities during 1991-2002. Section 4 describes the empirical strategy to estimate the effect of

innovation on firm export market participation. Section 5 presents the econometric results and discusses

the sensitivity checks. Section 6 concludes.

2 Theoretical Framework

This section presents a simple theoretical model of the decision to export and innovate by heterogenous

firms to give intuition in support of the empirical analysis of the effect of innovation on firms’ exporting

decisions. The model builds on the work of Bustos (2005; 2009) who extends the Melitz (2003) model

of heterogenous firms to include the possibility that firms make investments in innovation to reduce

their marginal costs of production and upgrade their technology. I extend Bustos (2005; 2009) model

by developing the predictions of Bustos’ model and directly comparing the exporting decisions of an

innovating firm versus a non-innovating one, to make it empirically tractable. In this setting firms are

heterogenous in productivity, so that more productive firms have an advantage over less productive firms,

for example inherent to their managerial ability. Firms have the choice to invest in innovation, which

implies incurring a fixed cost that brings a lower marginal cost of production. Only the most productive

firms will find it profitable to incur the fixed cost of innovation because the increase in revenues implied

by a reduction in marginal costs will be higher the higher is the initial level of productivity.

The main outcome of the model is that firms that innovate will also be more likely to export. The

reason is that innovators find exporting more profitable than non-innovators: as innovators have lower

marginal costs of production, they can charge a lower price which will increase total sales more than

proportionally because demand is assumed to be elastic.

2.1 Setup of the Model

2.1.1 Demand

The demand side of the economy is modelled following the standard set-up used in recent trade literature

(Bernard et al. 2003; Melitz 2003). Demand is characterized by a representative consumer with CES

preferences over a continuum of varieties i of a good q.

U =




N∫

0

q(i)ρdi




1/ρ

where 0 < ρ < 1 and i ∈ (0, N) (1)

In line with that literature it is assumed that consumers maximize their utility subject to the budget

constraint:
N∫

0

p(i)q(i)di = E ,where E is aggregate expenditure. Total demand for variety i can be then

written as:

q(i) =
E

P

(
p(i)

P

)
−σ

(2)

where σ = 1/(1 − ρ) > 1 is the constant elasticity of substitution across varieties, which also equals the

elasticity of demand η when the number of varieties N is large, and P =

[
N∫

0

p(i)1−σdi

] 1
1−σ

is the price

index, as in Bustos (2005; 2009).3

3For the case of many varieties N the firm i′s market share si is small and the elasticity of demand η is equal to the
elasticity of substitution σ: η = σ − si(σ − 1) because it is generally assumed that an individual firm i market share si is
small so the second term becomes negligible.

3



2.1.2 Supply

The supply side of the economy is characterized by a monopolistically competitive industry, where each

firm produces a single variety i of good q and there is free entry into the industry. Firms are heterogenous

in an underlying productivity parameter as in Melitz (2003), denoted by ϕi, with more productive firms

having a lower marginal cost of production and producing more output per unit of input. As in Melitz

(2003) to enter the industry firms pay a fixed cost and draw their productivity from a known Pareto

cumulative distribution function G(ϕ) = 1 − ϕ−k with k > 1. After observing their productivity firms

decide whether to exit, or to stay and produce. Following closely Bustos (2005; 2009), surviving firms

have the choice between two production technologies: either they can choose to innovate to decrease the

marginal costs of production and improve their production process, or stay as they are. Then in this

set-up there is a part of productivity that is due to luck, but firms can also improve their productivity by

investing in innovation. Firms that choose to innovate {I = 1} need to incur a fixed cost fI=1, which is

higher than the fixed cost of firms that choose not to innovate {I = 0} need to incur (fI=1 > fI=0) to keep

the current level of technology, but innovation leads to lower marginal costs of production cI=1 < cI=0.

Firms make a price and innovation choice that maximizes their profits. With CES preferences the

profit maximizing price ( pI) is a constant markup over marginal cost (cI), expressed more formally as:

pI(ϕi) =
1

ρ

cI

ϕi

(3)

Following Bustos (2005; 2009) the quantity sold (qI) the revenues (rI) and the profits (πI) are defined

by the following equations:

qI(ϕi) = EP σ−1

[
ρ
ϕi

cI

]σ

(4)

rI(ϕi) = pI(ϕi)q
I(ϕi) = E

[
Pρ

ϕi

cI

]σ−1

(5)

πI(ϕi) =
1

σ
rI(ϕi) − fI (6)

For the purpose of my research question I slightly modify the Bustos (2005; 2009) set-up to compare

the exporting decision of firms that innovate versus those that do not.

Innovation decision

Firms will choose to innovate {I = 1} as long as the profits from innovating (πI=1) will exceed the

non-innovating profits (πI=0), which can be formally expressed as:

πI=1(ϕi) > πI=0(ϕi) ⇐⇒
1

σ
E(Pρϕi)

σ−1
(
c1+σ
I=1

− c1+σ
I=0

)
> (fI=1 − fI=0) (7)

Taking into account the analysis of firms’ profits and cost functions the above expression shows that

firms will innovate when the benefits from innovation, the left hand-side of the equation, are larger than

the costs from innovation, the right hand side of the equation. Expression (7) suggests that there will be

a self-selection of the more productive firms into the decision to innovate as the benefits from innovation

are an increasing function of firm productivity ϕi,. More productive firms (larger ϕi) will invest in

innovation because the increase in revenues from a reduction in marginal costs will be higher the higher

is productivity ϕi.

Export decision

After entry and making the innovation choice, in addition to serving the domestic market, firms also

have the choice to export. International trade is costly and in order to export firms need to bear two
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types of trade costs: a fixed cost to export fx and a variable unit cost that takes form of an iceberg

transport cost, so that for a unit of good to arrive, τ > 1 need to be shipped. The fixed export cost

can be interpreted as distribution and servicing costs in the foreign market. The export profits can be

expressed as:

π∗I(ϕi) = τ1−σ∗

E∗(P ∗ρ∗)σ∗

−1 1

σ∗
c1−σ∗

I ϕσ∗

−1

i − fx (8)

where E∗ is foreign spending in good q, P ∗ is the price index in the foreign country, fx is the fixed

cost to export, and firms may face a different elasticity of demand in the domestic σ and foreign market

σ∗, where ρ∗ = σ∗

−1

σ∗
.4

Proposition: Innovators are more likely to export than non-innovators.

This proposition follows from comparing the increase in total profits from exporting for an innovator

to the increase in total profits from exporting for a non-innovator. A firm will export if the profits from

the domestic market and exporting are jointly larger than the profit from serving only the domestic

market:
[
πI(ϕi) + π∗I(ϕi)

]
> πI(ϕi) (9)

Then an innovator will choose to export if

[
τ1−σ∗

E∗(P ∗ρ∗)σ∗

−1 1

σ∗
ϕσ∗

−1

I=1

]
c1−σ∗

I=1
> fx (10)

while a non-innovator will choose to export if

[
τ1−σ∗

E∗(P ∗ρ∗)σ∗

−1 1

σ∗
ϕσ∗

−1

I=0

]
c1−σ∗

I=0
> fx (11)

Comparing Eqs. (10) and (11), the variable profits from exporting, the left hand side of Eqs. (10)

and (11), are larger for an innovator than for a non-innovator, while the fixed cost to export (fx) is

the same for both types of firms. This is because the productivity of an innovator is higher than the

productivity of a non-innovator (ϕI=1 > ϕI=0), while its marginal costs are lower cI=1 < cI=0. Note that

the causal link is from productivity to innovation and from innovation to exporting. The intuition for

this result is as follows. As explained above, more productive firms choose to innovate. By investing

in innovation innovators achieve a lower marginal cost of production than non-innovators cI=1 < cI=0.

For that reason innovators can charge a lower price than non-innovators, which will increase their total

sales more than proportionally because demand is assumed to be elastic. This result will always hold

since the productivity of a firm that chooses to innovate is strictly higher than the productivity of a

non-innovating firm, because by definition the innovating firm can profitably cover the higher fixed costs

to innovate (fI=1 > fI=0) as given by Eq. (7).5

To finalize the model I characterize the productivity thresholds that define firms’ exporting and

innovation decisions. As shown by Bustos (2005), there are two possible productivity configurations

depending on the size of the fixed innovation cost compared to the size of the fixed export cost. If the

fixed costs to innovate are sufficiently higher than the fixed costs to export [(fI=1 − fI=0) > fx], then

the minimum productivity level needed to innovate without incurring negative profits is higher than the

minimum productivity level needed to export profitably, i.e. ϕx < ϕI=1. In this case innovators will

export, and there will exist some middle productivity firms that do not innovate but manage to cover

the fixed costs to export. The other possible configuration is that ϕx > ϕI=1 that occurs when the fixed

4I would like to thank one of the referees for suggesting to consider different demand elasticities for the domestic and
export market.

5Figure 1 panel A shows that the data supports this assumption. The figure shows that the productivity distribution
of innovating firms lies to the right of the productivity distribution of non-innovating firms, suggesting that innovators are
more productive as assumed by the theoretical model.
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costs to export are sufficiently higher than the fixed costs to innovate [(fI=1 − fI=0) < fx] . In this case

only innovators will export, while non-innovators will only serve the domestic market.6

If [(fI=1 − fI=0) > fx], then firms can be classified into three groups according to their productivity

level: high productivity firms which innovate and export (ϕi > ϕI=1); medium productivity firms which

do not innovate but export (ϕx < ϕi < ϕI=1); and low productivity firms which don’t innovate and serve

only the domestic market (ϕi < ϕx).

In the next section, I present the firm-level data that will be used to test the prediction of the model

that firms that innovate are more likely to export. The section describes the statistical evidence and

provides an overview of Spanish firms’ innovation activity and exporting behavior for the panel of 1991-

2002. It also provides preliminary empirical evidence on the positive relationship between innovation and

exporting, which motivates further the econometric analysis.

3 Innovation and Exporting of Spanish Firms

3.1 Data

This study uses annual firm-level survey data for the period 1990-2002 compiled from the Encuesta Sobre

Estrategias Empresariales (ESEE). The ESEE survey is sponsored by the Spanish Ministry of Industry

and includes the balance-sheet data and information on firm strategies for a representative sample of

Spanish manufacturing firms. In the first year of the survey in 1990, firms were chosen according to a

selective sampling scheme with different probabilities of participation depending on firm size. All firms

with more than 200 employees were asked to participate, and about 60% of all firms of this size category

answered. Firms that employed between 10 and 200 employees were sampled randomly by industry and

size strata, and the rate of participation was about 4%. To preserve the representativeness of the sample,

the initial characteristics of the survey have been maintained in subsequent years. Newly created firms

have been added to the survey every year and exits of firms have been recorded (for more details on the

survey design see Fariñas and Jaumandreu, 1999). After the cleaning process described in more detail in

the Appendix, the unbalanced panel of firms used in this study includes on average 1,890 firms with a

total number of 21,949 observations over the period 1991-2002.7

This dataset is unique in providing information on the inputs and outputs of firms’ innovative ac-

tivities. In particular, I observe each firm’s participation in R&D activities, R&D expenditures, and

introduction of product and process innovation in each year. Moreover, the dataset includes yearly in-

formation on each firm’s export sales. Given the richness of the ESEE data, I can estimate directly the

effect of different types of innovative activity on the exporting behavior of firms, without solely relying

upon the input measures of the innovation process. Before turning to the econometric analysis in Section

4, I first statistically describe the data and document the link between innovative activity and exporting

of Spanish firms.

3.2 Participation of Firms in Innovation and Exporting

I first provide a snapshot into the panel dimension of the dataset. Table 1 documents the distribution of

firms across different years according to their status of innovation and exporting. A firm is classified as

6The data does not support this case as we observe that about 60% of firms export compared to only about a third
of them that innovate, which tends to suggest that the fixed costs to innovate are higher than the fixed costs to export.
Therefore in the descriptive statistics that follow I will focus on the case where [(fI=1 − fI=0) > fx] .

7The data used in this study has been previously used by Delgado et al. (2002) to study the productivity of exporting
firms and Fariñas and Ruano (2005) to study firm heterogeneity and market selection. The data is cleaned with respect
to unlikely values and large spikes in the variables used in the empirical analysis. The first year of the sample is lost
because there is no data available for capital necessary to construct productivity. Due to this cleaning less than 2% of the
observations are lost, so the sample remains highly representative.
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innovating, if it reports positive R&D expenditures. Similarly, an exporter is a firm that reports positive

export sales.

[Insert Table 1]

Table 1 shows that on average almost two thirds (60%) of firms exported during 1991-2002. The share

gradually increased over time and while it represented 51% of firms in 1991, it rose to 64% in 2002.

Among all firms, only about one third (37%) of them innovate. The R&D intensity is also very low as

observed in the last column of Table 1, which reports the average R&D intensity measured as the ratio

of R&D expenditures to sales by year. In particular, the average R&D intensity was only 0.59% during

1991-2002. This descriptive micro-evidence is hardly surprising, as it is largely in line with the aggregate

figures on the low R&D intensity of the Spanish economy. For instance, business R&D statistics published

yearly by the OECD show that Spanish business R&D spending relative to value-added was only 0.70%

compared to the average values of 1.65% for the EU25 and 2.13% for the total of OECD countries during

1998-2002 (OECD 2004: Table 26).

I take a closer look at the sectoral composition in Table 2. The ESEE dataset covers all manufacturing

sectors and Table 2 presents the fraction of exporting and innovating firms over all firms in each sector

over the sample period. Sectors are classified according to their R&D intensity based on the firm-level

data and compared to the OECD classification based on the industry aggregate data.

[Insert Table 2]

Table 2 documents that exporting is quite common within most sectors. The lowest export par-

ticipation is in the publishing and printing industry, and still the participation is rather high with more

than one third of firms exporting in a given year (37%). By contrast the participation in innovation

is less frequent for each and every sector. As expected the innovation rates are high in high-technology

sectors, where innovation is particularly important to face competitive pressures and retain market shares,

compared to low-tech ones. For instance, in the chemical industry, which is known for its heavy reliance

on basic research, around 70% of firms innovate in a given year. In contrast, in the low-tech sectors only

one fourth of all firms (24%) innovate each year.

3.3 Differences between Exporters and Non-Exporters in Innovation

In this sub-section, I compare exporters to non-exporters with respect to their innovation and other

characteristics. This exercise is important to confirm whether there is a positive correlation between

innovation and exporting at the firm-level as suggested by the theoretical model in Section 2.

[Insert Table 3]

I first compare exporters to non-exporters in terms of average innovation in Panel (A) of Table 3 over

the sample period 1991-2002. Exporters are remarkably more innovative than non-exporters. Within

the exporters, the share of innovating firms (53%) is four times larger than the share of innovating firms

within non-exporters (13%). Exporters also have higher inputs into innovation process (0.83%), as they

spend four times more on R&D than non-exporters (0.25%). Henceforth, a larger share of exporters

introduce product (36%) and process (43%) innovations relative to non-exporters (13% for product and

23% for process innovation). Comparing the initial, middle and final sample year, the gap in innovation

activity between exporters and non-exporters is substantial and very stable across time and measures

of innovation - the percentage of innovating firms, R&D intensity and the share of firms that conduct

product or process innovations - as illustrated by the figures across three different time horizons further

reported in Panel (A) of Table 3 .
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Next, I conduct a more formal test to assess the differences in innovation between exporters and

non-exporters. For that purpose, I draw on the empirical approach used by Bernard and Jensen (1999)

to estimate the exporter premia of US firms in terms of productivity and estimate the exporter premia

in terms of innovation from the following panel fixed-effect regression:

ln(Zit) = ai + bYit + c ln(empit) + dY eart + eIndj + eit (12)

where Zit denotes the vector of characteristics of firm i at year t, including sequentially the firm’s

measures of innovation, size, productivity, input costs and capital intensity. The variable Yit is a dummy

variable equal to 1, if a firm i exports and zero otherwise, empit is the number of employees working in

firm i at year t, and Y eart and Indj are year and industry dummies. The exporter premium is captured

by the coefficient b that measures the percentage difference between exporters and non-exporters with

respect to innovation activity or other firm characteristics captured by Zit.

Panel (B) of Table 3 presents the estimation results from equation (12). The results support the

previous statistics from Panel (A) of Table 3, that is, exporters are on average more innovative than non-

exporters. Exporters are 15% more likely to innovate than non-exporters, spend 19% more in innovation,

13% and 7% more of exporters introduce product and process innovations than non-exporters during

1991-2002.

Exporters appear to be significantly different from non-exporters with respect to other firm charac-

teristics as well. Panel (B) of Table 3 further shows that Spanish exporters are on average twice larger,

more productive (7%), pay higher wages (11%) and are more capital intensive (40%) than non-exporters.

These figures are in line with the estimates of exporter premia previously reported by Fariñas and Mart́ın-

Marcos (2007) for Spain. And are also in line with the findings of Bernard and Jensen (1995; 1999) for

the US, Bernard and Wagner (2001) for Germany, and De Loecker (2007) for Slovenia among others (For

a review of this literature see Wagner (2007).

3.4 Evidence on Productivity Ordering

The theoretical model outlined in Section 2 gives insights into the productivity ordering we can expect

from the data according to firms’ status of exporting and/or innovating. To investigate whether these

predicted productivity orderings are confirmed by the data, I compute firm-level productivity and compare

different groups of firms classified according to their innovation and export status with respect to their

productivity.

I estimate total factor productivity (TFP) using the firm-level data drawn from the ESEE. The firm

i technology at time t is described by a Cobb-Douglas production function of the following form where

all variables are expressed in natural logarithms:

yit = β0 + βllit + βmmit + βkkit + εit (13)

The dependent variable yit is real output at the firm-level, deflated by individual output price indices

for each firm constructed based on information drawn from the ESEE; lit is the log of the number

of employees; mit is the log of materials deflated by individual intermediate inputs price indices for

each firm constructed based on information drawn from the ESEE, and kit denotes the log of capital

measured by total fixed tangible assets deflated by capital deflator and εit is the residual. An important

advantage of the data used in this paper is that it contains firm-level information on variation of output

and intermediate input prices. This allows to compute real/physical output (yit) by deflating nominal

output with individual firm-output price index and circumvent the bias introduced by deflating nominal

firm-level output by industry wide price indices, which is a common approach in the literature because
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firm-level data on prices are rarely available (See Klette and Griliches 1996 for a discussion of these

issues and Mairesse and Jaumandreu 2005 for a comparison of estimates with wide industry deflators and

firm-level deflators using the same data as in this paper).

As a baseline model to estimate equation (13) I use the Olley and Pakes methodology (1996). This

estimation procedure is standard in the recent trade literature (De Loecker 2007; Konings and Van-

denbussche 2008). The Olley and Pakes method takes account of the simultaneity between input choice

and productivity shocks as well as sample selection bias (See Ackenberg et al. 2008; Van Beveren 2007;

Van Biesebroeck 2007 for a discussion of these biases).8 I estimate the production function given by Eq.

(13) for firms in each 2-digit sector separately. Table 4 reports the estimates of equation (13) using the

Olley and Pakes (1996) method together with the OLS estimates for comparison. In line with priors, the

labor and materials coefficients tend to be typically overestimated with OLS in most sectors in Table 4,

while the capital coefficient tends to be underestimated. Using the estimates of the coefficients of the

production function, the log of TFP of firm i at time t can be calculated as the residual of the production

function:

tfpit = yit − β̂llit + β̂mmit + β̂kkit (14)

Figure 1 plots the distribution of average total factor productivity for different groups of firms across all

sectors in 2002. The first panel (A) plots the distribution of productivity for the group of firms that report

to do R&D (innovators) versus the group of firms that report not to do any R&D (non-innovators). The

figure shows that the productivity distribution of innovators is to the right of non-innovators indicating

that on average firms than spend in R&D are more productive than those that do not. This is in

line with the theoretical model which suggests that innovators will be generally more productive than

non-innovators if there are some fixed costs to innovate.

[Insert Table 4 and Figure 1]

The second panel (B) of Figure 1 compares the distribution of productivity for exporting and non-

exporting firms. As expected from the theoretical model the figure shows that more productive firms

export: the productivity distribution of exporters lies clearly to the right of that of purely domestic

firms. In the light of the theoretical model and Melitz’s (2003) model, exporters are more productive

than domestic firms because they are able to cover the fixed costs to export compared to less productive

firms.

Finally, the theoretical model suggests a third productivity ordering with productivity being the

highest for firms that do both innovate and export, intermediate for firms that export but do not innovate,

and the lowest for firms that do neither of the activities. The third panel (C) of Figure 1 supports

this intuition. It clearly shows that there are two distinct groups of firms in the population. On the

one hand, innovating exporters appear to have the highest productivity, while on the other hand non-

innovating domestic firms appear to have the lowest productivity levels. In between both groups of firms,

the productivity distribution of domestic-innovators and non-innovating exporters tends to overlap. The

theoretical model suggests that if the costs to innovate are higher than the costs to export, we would expect

domestic innovators to have higher productivity than non-innovating exporters. The figure, however,

shows that the productivity distributions of both groups tend to overlap, which suggests that on average

firms in these groups appear to be similar in terms of productivity.

In conclusion, the descriptive statistics presented above are in line with the predictions of the the-

oretical model and clearly show a positive relationship between firms’ innovative activities and exporting

8The Olley and Pakes (1996) methodology controls for the endogeneity in input choice by using the firm investment
decision to proxy for unobserved productivity shocks and for firm survival introducing a survival rule into the estimation
method. The endogeneity of input choice and the selection bias are well-known to the literature and have been documented
extensively. For a review of the main methodological issues see Ackerberg et al. (2008).
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behavior. Based on the descriptive statistics and the exporter premia regressions, exporters appear to be

significantly more innovative than non-exporters. Also the model finds support in the data with respect

to the various productivity ordering across the different groups of firms. In what follows, I investigate

more formally the positive relationship between innovation and exporting, using regression analysis to

investigate the effect of innovation on the probability of exporting controlling for other potential de-

terminants of exporting including differences in productivity across firms. In addition, I also assess the

heterogenous effects of different types of innovation on firms’ export decisions.

4 Empirical Analysis

In this section I define the empirical approach to test the main prediction of the theoretical model that

firms that innovate are more likely to export. To verify this theoretical implication, I estimate a reduced

linear version of the export participation choice described by equation (9) following a similar approach as

Roberts and Tybout (1997) and Bernard and Jensen (2004). Following the description of the theoretical

model in Section 2, a firm will decide to export (Yit = 1) if profits made by exporting exceed the profits

from serving only the domestic market ( π∗

it > 0). This condition can be specified formally as the following

binary choice model of export market participation, where the export profits of firm i at time t π∗

it are

expressed as a reduced function of the firm’s and market characteristics:

Yit = 1 if π∗

it = βIit + αTFPit + γZit + ηt + ρj + u
i
+ ωit︸ ︷︷ ︸
εit

> 0 (15)

Yit = 0 otherwise

where Yit denotes the export status of firm i at time t, taking the value 1 when the firm exports and

0 otherwise. Following Eq. (8) the main determinants of exporting are the firm productivity, denoted

by TFPit, and the firm innovation activity denoted by Iit. The coefficient of main interest β measures

the effect of innovation on the firm export status (Yit). Following the intuition provided by Eqs. (10)

and (11) in the theoretical model, innovating firms are expected to produce at lower marginal costs, and

consequently to have higher expected profits. This would be reflected in a positive and significant β

coefficient indicating that firms that innovate are more likely to export. In addition, the firm exporting

decision crucially depends on the level of firm’s productivity, TFPit. As the theoretical model suggests,

most productive firms self-select into the decision to export, which would be captured by a positive

and significant effect of productivity on exporting, α > 0. The vector Zit further denotes other firm

characteristics influencing export profits and thus the firm decision to export, such as for example firm’s

size or age. The variable ηt is a time specific-component that takes into account business cycles and

macroeconomic effects that could affect the export decision in the model. The variable ρj is a sector-

specific component that measures differences across sectors in terms of technological capabilities or export

market opportunities. The remaining error term εit is made up of two components: u
i

is a firm-specific

effect which captures time-invariant unobserved firm heterogeneity (such as managerial ability) that may

affect the export decision; and ωit is an unobserved shock. This last term can be rationalized as demand

or profit shocks in the export market that are not observed by the econometrician but may affect the

firm decision to export in a given year.

4.1 Baseline Econometric Model

The baseline econometric model follows from equation (15). It is defined as a random effects probit model

with variables expressed in logarithms and specified as:
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P (Yit = 1) = Φ(βIit−1 + αTFPit−1 + γZit−1 + φYit−1 + ρj + ηt + u
i
+ ωit︸ ︷︷ ︸)
εit

(16)

where ω ∼ N(0, 1) and u ∼ N(0, σu)

The subscript i indexes firms and the subscript t time. Yit is a binary variable equal to 1 if the firm

exports in t and 0 otherwise. Iit−1 is a variable measuring firm innovation activities. As will be explained

in the following subsection, I use different measures of firm innovation activities that capture both the

inputs from firm innovation activities, such as R&D expenditures, and more direct measures of innovation

outputs, such as process and product innovations. Firm-level productivity is measured by total factor

productivity, TFPit−1.

The rest of the explanatory variables included in the vector Zit−1 control for a set of firm charac-

teristics, which have been shown in the statistical comparisons of exporters and non-exporters in Section

3 to likely to be related to export behavior. Sizeit−1 represents the size of the firm i at time t−1 measured

in terms of the total number of employees. Ageit−1 measures firm’s i experience in terms of the number

of years since the establishment of the firm. Foreignit−1 is a binary variable taking values 1 if the firm

has foreign capital participation, and 0 otherwise. ρj are 2-digit industry fixed-effects for each of the 20

manufacturing sectors described in Table 2 and control for differences across sectors in terms of product

markets, technology, demand characteristics and other common sectoral effects. The estimated results

can thus be interpreted as within sector effects. Finally, ηt denotes year fixed effects that control for the

macro effects described in the empirical model (13), such as aggregate exchange rate effects in the data

as well as any other macroeconomic shifts. All time varying regressors are lagged one period to avoid

potential simultaneity problems.9

Although the empirical model given by Eq. (15) is static, a large body of empirical evidence suggests

that sunk exporting costs induce persistence in the firm exporting decision and that past export experience

by the firm may influence future export decisions (e.g. Campa 1998; Das et al. 2007; Máñez et al.

2008). To account for this possibility Equation (16) includes the lagged export status of the firm Yit−1,

which equals 1 if firm i exports in the previous year and 0 otherwise.10 This measure of experience

has been typically interpreted as capturing the importance of sunk costs on export market participation

(e.g. Roberts and Tybout 1997). A positive and significant φ indicates that sunk costs are present, the

underlying intuition being that if past export status positively affects the probability to export, then

the presence of entry costs induces persistence in export participation. In the empirical results below

I compare the results from estimating the two alternative specifications of Eq.(16). The simple period

static case, which does not include the past exporting decision Yit−1, and the multi-period dynamic case,

which does.

As a baseline regression model I use a random-effect probit, which has been shown by the recent

literature to be the best approach to model such binary choice model with unobserved firm heterogeneity

(Roberts and Tybout 1997). The advantage of the random-effect probit is that it explicitly controls for

firm-unobserved heterogeneity by allowing the error term to be composed by a time-invariant unobserved

firm specific effect u
i

and by a random unobserved shock ωit that varies both across firms and time.

However, it has been suggested that the use of the random-effect probit may come at a cost if the firm-

specific effects ui are correlated with the regressors (Bernard and Jensen 2004). To show that the baseline

results are robust to alternative estimation techniques in the sensitivity analysis presented below I will

9The results are robust to alternative specifications where the explanatory variables are lagged two periods. These
results are available from the author upon request.

10By including only one lag of the export status variable, I assume that firms completly loose their sunk start-up costs
if they are absent from market 1 year. This is in line with previous empirical evidence suggesting that sunk start-up costs
depreciate very quickly and that firms that most recently exported 2 years ago have to pay nearly as much to re-renter
foreign markets as first time exporters (Das et al. 2007; Máñez et al. 2008; Roberts and Tybout 1997).
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also present results from the following alternative methods proposed by the recent literature. First, from

probit and linear probability models with robust standard errors clustered at the firm-level. Clustering is

an alternative approach to deal with firm unobserved heterogeneity because it controls for the fact that

observations for the same firm are related over time (Greenaway et al. 2007). And second, I will also

present results from a linear probability model with fixed-effects. The advantage of the fixed-effect linear

probability model is that it does not require the firm effects ui to be uncorrelated with the regressors.

However, it suffers from some known shortcomings, such as non-normal distributed error terms or non-

sensical predictions that can create the predicted values to come outside the zero and one range (Green

2008).11

4.2 Identification of Innovation Measures

The choice of innovation measures is motivated by the previous literature described in the introduction

and the richness of the dataset. The advantage of the dataset is that it includes not only information on

the firm-level innovation inputs but also on direct outputs from the innovation process. Regarding the

inputs, the survey annually asks firms whether or not they conducted R&D activities in a given year.12

I label this variable R&D dummy, which takes the value 1 whenever the firm replied yes to the question

and 0 whenever it replied no. In addition the dataset includes information on the total R&D expenditures

of firms, which allows to compute a more conventional measure of innovation inputs represented by R&D

intensity, which is measured as the ratio of total R&D spending (internal and contracted) over total sales

of each firm in a given year.

The dataset is unique in that it also includes information on introduction of process and product

innovation that I can use to measure innovation outputs and to investigate the differential effect of each

type of innovation on the firm export participation. In particular, it includes information on whether

or not the firm introduced a process innovation in a given year, represented by the implementation of

a new or significantly improved production process, and whether or not the firm introduced a product

innovation, that is the introduction of a good that is new or significantly improved with respect to

its characteristics or intended uses.13 Based on this information I construct dummy variables process

innovation and product innovation, which take values 1 when the firm introduced innovations and 0

when not.

Process innovations allow firms to reduce marginal costs and to gain a cost advantage over competitors.

Process innovations can be intended to decrease unit costs of production or delivery, to increase quality or

to produce a new significantly improved product. An illustration of a process innovation may shed light

on the difference between process and product innovations. For instance, a well-known process innovation

in the retail industry is the introduction of just-in-time manufacturing capabilities by Inditex, an Spanish

clothing company. By introducing this system of well coordinated logistics and vertical integration Inditex

has been able to reduce costs and adjust fast to changes in market trends, which has led the firm to gain

an edge over its competitors in foreign markets (Guillén 2005). This example fits well the economic

intuition from the theoretical model: by improving its production process an innovator can reduce its

costs, charge a lower price than its competitors and be more likely to enter foreign markets because it

11Some of the known shortcomings of the linear probability model are: non-normal errors, non-constant error variance,
non-linearity and non-sensical predictions that can create predicted values that are not bounded between zero and one. For
further insights into the advantages of the probit model versus the linear probability model see Green (2008).

12The definition of research and development (R&D) used by the ESEE survey is the standard international definition
as given by the Frascati Manual. I verified that all the firms that answered yes to the question whether they conducted
R&D activities in a given year also reported some positive R&D expenditures.

13The process innovation variable takes value 1 if the firm says that it has introduced a process innovation (new machinery,
new organization methods, or both) during the survey year. Following this definition, the introduction of a process innovation
may be the result of imitation. Evidence by Huergo and Jaumandreu (2004) using the same dataset however shows that
firms tend not to report changes which are generalised in the market as innovative productive modifications.
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can reap higher profits than firms that do not innovate.

A firm can also gain a competitive edge in the export market by introducing a new product. Firms

can increase the demand for their products through product differentiation, by targeting new markets

and by influencing demand for new products. An example of this is the case of Freixenet, a Spanish

producer of sparkling wines. In the late eighties Freixenet wanted to export cava to the US, the largest

export market for sparkling wines. After substantial market research Freixenet identified a market niche

in the mid-quality market segment and developed a new cava, the ”Cordón Negro” or black bottle. The

new product was intended to appeal to young American professionals and was specially developed by

Freixenet to penetrate the US market (Guillén 2005). In line with this illustration, the introduction of

a product innovation is expected to positively affect the probability of exporting if firms upgrade their

products to meet foreign demand preferences and market conditions. Iacovone and Javorcik (2008) find

empirical evidence supporting this casual observation using data from Mexican plants. They find that

firms upgrade the quality of their products preceding an expansion into foreign markets. Bernard and

Jensen (1999, 2004) further suggest that product upgrading may increase the probability of exporting if

the product attributes determine the firm decision to export.

5 Empirical Results

This section describes the empirical results and provides the sensitivity analysis to validate the accuracy

and consistency of the baseline results. I first discuss the baseline results obtained through the estimation

of Eq. (16) using a random-effects probit. In the sensitivity analysis, I focus on the main econometric

issues discussed in the previous literature (e.g. Bernard and Jensen 2004; Das et al. 2007; Grossman and

Helpman 1991) to provide the results that are robust with respect to alternative econometric methods

and the potential endogeneity between firm’s exporting and innovation.

5.1 Baseline Regression Results on Innovation and Exporting

Table 5 presents the baseline results obtained through estimation of Eq. (16) using a random-effects

probit. The columns in Table 5 refer individually to different input and output measures of innovation.

The first four columns report the results for the simple period case, where sunk entry costs are not

explicitly modelled and left out as unobserved firm characteristics. And the last four columns report the

results for the multi-period case, which includes the lagged export status as explanatory variable. The

results confirm the hypothesis that innovative firms are more likely to export in both versions of the

empirical model, the simple period static version and the dynamic multi-period one. The coefficients on

innovation are positive and strongly significant at the 1 percent level for all specifications, regardless of

the proxy used to measure innovative activity.

[Insert Table 5]

The variables of main interest are the measures of innovative activities of firms. On the one hand,

I estimate the role of inputs into the innovation process. Following directly the theoretical model the

decision to innovate is captured by a dichotomus variable taking value 1 if a firm reports R&D activity

and 0 if it does not. As predicted by theory, the coefficient on the R&D dummy variable is positive and

highly significant at the 1 percent level, given in columns (1) and (5). This result suggests that the firms

with R&D activities are more likely to export. In particular, the result in columns (2) and (6) shows that

the probability to export increases with the R&D intensity of an average firm.

On the other hand, I capture the role of different outputs from the innovation process. The coefficient

on the process innovation dummy is positive and highly significant at the 1 percent level, given columns
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(3) and (7). A firm that has introduced process innovations during the last year is on average more likely

to export in the current year than a non-innovating firm. The point estimate implies that introducing

cost-reducing process innovations on average increases the export probability by about 3 percentage

points, given columns (3) and (7) of Table 5. This result confirms the hypothesis of the theoretical model

that the firms which introduce cost-reducing innovations are more likely to export.

Similarly, the statistically significant coefficient on the product innovation dummy suggests a positive

effect of introducing product innovation on the probability of exporting in the next period, as given

by columns (4) and (8) of Table 5. The corresponding point estimates imply that introducing product

innovations today would increase the probability of exporting tomorrow by about 4 to 7 percentage

points. This result suggests that the firms producing upgraded products are more likely to serve foreign

markets as they produce goods, which appear to be adapted to foreign market characteristics or demand

preferences. This result is in line with the findings of Bernard and Jensen (2004) for the US suggesting

that product attributes affect the firm decision to enter foreign markets.

With regard to the other firm-level determinants of exporting, the results are consistent with those

found in the previous literature for countries other than Spain (see Greenaway and Kneller (2007) for

a literature review). The first result, is that size, as measured by the log of total employment, always

has a positive significant effect on the probability of exporting. This result indicates the importance

of scale-effects on exporting as suggested by the trade literature on scale-economy based exporting.14

Second, the positive and significant estimates on the age variable indicate that older firms are more likely

to export. Studies of industrial evolution suggest that efficient producers are more likely to survive and

grow, so age may be picking-up the efficiency differences across producers.15

Third, the positive and significant effect of the foreign-ownership dummy suggests that foreign-

owned firms are more likely to export than domestically owned firms. This result is in line with the

literature on multinational firms suggesting that subsidiaries of foreign firms will find it easier to penetrate

foreign markets because they can take advantage of the intra-industry distribution channels and contacts

(Markusen 2002). Finally, the positive and highly significant coefficient on TFP suggests that more

productive firms are also more likely to export, which is consistent with the theoretical model in Section

2 and depicted by Figure 1. This result suggests more productive firms self-select into foreign markets,

which is in line with the empirical findings of Bernard and Jensen (1999; 2004) for the US and other

authors for a wide set of developed and developing countries discussed in the introduction.

The results from the dynamic model show that past exporting matters for the firm current decision

to export, as reflected by the positive and significant coefficient of the lagged dependent variable at the

bottom of Table 5, columns (5) to (8). As discussed above this suggests that firms face costs associated

with entering foreign markets which appear to be sunk in nature. The point estimates of the lagged

export dummy measuring the size of the sunk costs are large, about 0.80, and in line with the previous

evidence reported by Campa (1998) and Máñez et al. (2008). These coefficients suggest that current

exporters are 80% more likely to export next year than non-exporters. Comparing the effect of innovation

on exporting in the simple period static case to the multi-period dynamic case, the effect of innovation is

slightly smaller in the dynamic model when proxied by the innovation dummy and R&D intensity, and

slightly larger when proxied by the process and product innovation dummies.

The above results are in line with the theoretical model showing that innovating firms are more likely

to export. Moreover, the results reveal the heterogeneous effects of different types of innovation on the

firm export participation. Firms that introduce a product innovation are between 4% and 7% more likely

14This literature suggests that acess to larger markets increases the efficiency of firms as they can exploit scale economies.
There are several papers that investigate the scale effects of opening-up to trade among others, for example, Trefler (2004)
analyzes the effects of the Canada-US Free Trade Agreement on the efficiency of Canadian firms.

15For a review of the empirical literature on firm dynamics see Barteslman and Dom (2000). In particular for Spain,
Fariñas and Ruano (2005) show that continuing firms are systematically more efficient than exiting and new firms.
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to export next period than firms that do not innovate, while firms that improve their production process

are 3% more likely to export than those that do not innovate. The slightly stronger effect of product

innovation on exporting may be due to the fact that product upgrading is often a necessary step for firms

to serve foreign markets. Firms typically need to adjust their products to foreign market standards and

regulations. Furthermore, as shown by Iacovone and Javorcik (2008), firms may also improve the quality

of their products to differentiate from competitors and better meet consumer preferences. On the other

hand, improvements in the production process give cost-advantage to firms, but these advantages may

take longer time to manifest and to give advantages to firms in various ways such as price cuts, higher

markups or increased survival probability.

5.2 Sensitivity Analysis

This section shows that the baseline results are robust with respect to alternative econometric approaches

and not sensitive to the potential endogeneity between innovation and exporting using instrumental

variables and the GMM Arellano Bond (1991) estimator.

5.2.1 Alternative Econometric Methods

Table 6 shows that the baseline results are robust with respect to alternative econometric methods used to

estimate equation (16). As discussed above, the recent literature proposes several econometric methods to

estimate such a binary choice model with unobserved firm heterogeneity as the one described by equation

(16) (e.g. Bernard and Jensen 2004; Greenaway et al. 2007). Each row in Table 6 reports the results from

alternative regression methods for the simple period static model (columns (1)-(4)), and the multi-period

dynamic model (columns (5) to (8)). Row (1) gives the results from a probit model with robust standard

errors clustered at the firm-level, while row (2) and row (3) give the results from a linear probability

model with clustered errors at the firm level, and from a fixed-effect linear probability model respectively.

The table focuses on the estimates of the innovation variables of interest to facilitate the discussion on

the sensitivity of the results to alternative regression methods.

[Insert Table 6]

The effect of innovation on the probability of exporting is positive and highly significant at the 1%

across the four different innovation measures when using the probit and the linear probability model

with clustered errors at the firm-level in rows (1) and (2) of Table 6. The evidence from a positive and

significant effect from innovation on exporting is weaker if the estimation method includes fixed effects.

In the simple period case, the results from the R&D dummy and the process innovation dummy confirm

a positive and significant effect of innovation on exporting, columns (1) and (3) of Table 6. However,

when proxied by R&D intensity and the product innovation dummy innovation does not affect exporting,

columns (2) and (4). In the multi-period case, only the process innovation has a positive and significant

effect on exporting (column (7)), while the other three innovation proxies do not significantly affect

exporting, columns (5), (6) and (8). One possible explanation for the weaker significance of the results

when controlling for firm fixed-effects may be that including fixed-effects in the model over-controls for

firm time-invariant characteristics making some of the innovation proxies non-significant. The literature

analyzing the innovation activities of firms has shown that firms’ innovation activity tends to be highly

persistent and that firms that innovate one period tend to innovate once again the next period (e.g.

Peters, 2009). In that case the effect of innovation could be picked-up by the firm fixed-effect in the

estimation of Eq. (16), which captures firm characteristics that are persistent over time.
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5.2.2 Addressing Potential Endogeneity Concerns

It has been argued that exporting firms will be more likely to innovate if, for instance, there is learning-

by-exporting and exporters are more likely to innovate than domestic firms because they are exposed

to knowledge inputs not available to incumbent firms serving the domestic market (e.g. Grossman and

Helpman 1991). In what follows I show the results are robust to this endogeneity concern by instrumenting

the firm innovation status when estimating the baseline econometric model.

Table 7 reports the results from estimating equation (16) instrumenting firm innovation. The first four

columns of Table 7 report the results from the simple-period static case using two stages least squares

(2SLS) estimation. Columns 5 to 8 report the results from the multi-period dynamic case using the

Arellano Bond (1991) difference GMM estimator.16 As an instrument of the firm innovation status, I use

a variable measuring whether or not the firm is a recipient of public support for R&D. Public policies

promoting R&D are aimed at increasing firm innovation activities and are unrelated to firms’ exporting

activities, so they provide a good instrument to measure the exogenous effect of innovation on exporting.

Indeed the instrument is significantly correlated with firm-level innovative status (0.51) and uncorrelated

with the firm exporting status (0.20).17 It is also a sufficiently strong instrument from a statistical point

of view, as it provides a good fit in the first stage regressions of the 2SLS and comfortably passes the

F-test, as reported in Table 7.

[Insert Table 7]

To further address the validity of the instrument, I take a closer look at the composition of firms that

have received R&D subsidies. Blanes and Busom (2004) analyze how R&D support is allocated between

firms and projects in Spain and their research shows that eligibility rules are not restrictive nor biased

towards specific groups of firms. Columns (1) to (4) of Table 7 show the results from the second stage

2SLS regression for the simple-period case. The coefficients on the instrumented innovation variables

are positive and statistically significant as the baseline results reported in Table 5. The results from

the GMM estimation of the multi-period dynamic case are reported in columns (5) to (8). The GMM

estimator takes into account the econometric problems that arise when estimating the dynamic version

of equation (16) with firm fixed-effects and endogenous explanatory variables. First, in addition to using

the exogenous instrument discussed above also includes lagged levels of the endogenous regressors, which

makes the endogenous innovation variable predetermined and therefore not correlated with the error

term in equation (16). Second, to cope with the problem of the potential correlation between the firm

fixed-effects and the explanatory variables, the GMM estimates Eq. (16) in first differences and therefore

eliminates the fixed-effect from the estimated equation. And finally, the lagged dependent variable Yit−1

is also instrumented with its past levels to control for the autocorrelation that may arise when including

dynamics into the model. The results from the dynamic GMM estimations confirm a positive and highly

significant effect of innovation on exporting from Table 5. Because of the clear advantages of the GMM

outlined before in the text, I conclude that the positive relationship between innovation and exporting is

robust.

16In the instrumental variables estimations I estimate linear models rather probit models because instrumental variables
regressions (IV) within the probit framework require very strong assumptions (See Carrasco (1998) for details on IV
estimation in the probit framework).

17The variable motivated directly by the theoretical model is the R&D dummy for which the instrument of public R&D
support is strongly correlated with. Although intuitive and significant in the first stage 2SLS (Table 7, columns 2, 3, and
4), the other three proxies for innovation should be interpreted with caution, because their correlation with the instrument
is weaker than for the R&D dummy.
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6 Conclusion

This paper evaluates the role of innovation for the firms’ participation in the export markets. Building

upon the most recent literature, this paper develops a simple theoretical model that links the firm’s

exporting and innovating activities in support of the empirical analysis. The focus of this paper is

primarily empirical with a working hypothesis that innovation has a positive effect on the firm’s export

decision. Consistent with the model predictions, the results show that previous innovation by firms

enhances their probability of exporting.

This finding appears to be robust to alternative specifications and different measures of innovation.

An important aspect of this paper is that it explores in detail the Spanish firm-level data on firm-specific

innovation. One of the main advantages of our dataset is that it allows an individual treatment of firm’s

introduction of process and product innovations for a representative panel of Spanish manufacturing

firms. After controlling for productivity differences across firms, the results indicate that regardless of

the innovation activity considered in the model, the innovating Spanish firms have a higher probability

of exporting than non-innovating firms.

A further insight into the innovation activities of firms reveals some interesting issues. When dis-

tinguishing between the effects of different types of innovation, the return in terms of future exporting

appears to be higher for the firms that introduce product innovations than for the firms that introduce

process innovations. There are several possible interpretations. First, product upgrading could give

Spanish firms the competitive edge in terms of future probability of exporting compared to the cost-

reducing innovations. Since the main destination market of Spanish firms is the intra-EU market with

a relatively high level of product quality and standards, this result indicates that product differentiation

seems to be a superior strategy for entering the foreign market than cost-reducing innovation. During

the investigation period, Spanish firms had to undergo product upgrading simply to meet the rapidly

evolving standards of the EU. Moreover, as suggested by Bernard and Jensen (2004), product upgrading

is an important component of firms’ strategy to penetrate foreign markets. Consistently, Iacovone and

Javorcik (2008) find empirical evidence of product quality upgrading preceding entry into foreign markets

for a sample of Mexican plants.
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Appendix: Data Appendix

1. Data Cleaning: The data is cleaned from unlikely values, large spikes and missing values according
to the following criteria. First, I dropped observations with negative real value added (305 of them).
Second, I dropped the observations with unrealistically large spikes: a) Employment growth of more than
200%, when there was no merger in the previous or next year (38). b) Sales growth of more than 500%
when there was no merger in the previous or next year (27). And c) Output growth of more than 500%
when there was no merger in the pervious or next year (18). Third, I dropped firms that exhibit irregular
exit patterns. That is firms for which one cannot be certain that they did not exit the sample before it
was recorded in the data such as firms that i) do not answer or ii) do not collaborate in the year previous
to exit the sample (5). Finally, I dropped observations with export intensity (ratio of exports to sales)
larger than 1 (2). As a result of the cleaning process described above, less than 2% of observations are
lost, so the sample remains highly representative of the population of Spanish manufacturing firms.

2. Definition of variables: All variables are measured annually at the firm-level and are taken from the
ESEE survey, unless otherwise stated. All monetary variables are in real terms and have been deflated
using the appropriate deflators used below.

Age: age in a given year, computed as t minus the year of birth (as declared in the questionnaire)
plus 1, since firms report the information at the end of the natural year.

Export dummy : equal to 1 if the firms reports positive export sales and 0 otherwise.
Export intensity : export sales over total sales.
Export sales: export sales as reported by the firm. Real exports are calculated deflating nominal

values using the firm-specific output deflator described below.
Foreign ownership dummy : equal to 1 if the firm has a foreign participation share of equal to at least

20% of total capital, and 0 otherwise.
Industry dummies: 20 industry dummies. Each dummy takes the value 1 if the firm main activity is

in that industry, and zero otherwise. See Table 2 for the industry breakdown.
R&D dummy : a dummy equal to 1 when the firm reports to conduct R&D activities and 0 when it

reports not to do R&D.
R&D expenditure: total research and development (R&D) expenditure by the firm, including both

intramural and extramural expenditures as defined by the Frascati manual, deflated using the consumer
price index.

R&D intensity : R&D expenditure over total sales in percentage.
Product innovation dummy : a dummy equal to 1 when the firm reports to introduce a product

innovation, and 0 otherwise. Product innovations are completely new products, or with such modifications
that they are different from those produced earlier. For instance, such that it incorporates new materials,
new intermediate products, new design, or new functions of the product.

Process innovation dummy : a dummy equal to 1 when the firm reports to introduce a process in-
novation, and 0 otherwise. For instance, changes in the process such as the introduction of new machinery,
new methods of organizing the work, or both.

Public support for innovation dummy : a dummy equal to 1 when the firm reports to have received
support for innovation from any public institution, which may include the Spanish central government,
the regional governments, or other institutions like the European Union, and 0 otherwise.

Wage: average wage calculated as labor costs over the total number of employees.
Total factor productivity (TFP): is estimated using the Olley and Pakes (1996) employing the following

variables. Ouput is measured by the sales minus production costs. Real output is constructed by deflating
the nominal value using the firm-specific output deflator described below. Materials are measured by the
cost of material inputs. Real material input is constructed deflating the nominal value using the firm-
specific material input deflator described below. Capital is measured by total capital assets. Real capital
is constructed by deflating the nominal value using the capital deflator described below. Investment is
constructed using the perpetual inventory method and the capital variable. Real investment is constructed
by deflating the nominal value using the investment deflator described below. And Labor is the number
of workers multiplied by the number of hours per worker (normal hours of work plus overtime minus idle
working hours).

3. Deflators:
Output deflator : individual price indices for each firm are constructed using the information on output

price changes in the firm’s main market drawn from the ESEE.
Material input deflator : individual price indices for each firm are constructed using information on the

price changes and the costs of material inputs drawn from the ESEE; which include raw materials, energy
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and purchases of external services. The index is then constructed using the formula: Pmat = Cserv

Cmat

Pserv +
Craw+ener

Cmat

Praw+ener, where Cserv stands for the cost of external services purchased by the firm, Pserv is
the price index of external services, Craw+ener is the cost of raw materials and energy, Cmat represents the
total cost of materials, and Praw+eneris the price index of raw materials and energy. Since the available
data does not allow to distinguish between the relative weight of raw materials and energy, I took the
geometric mean of both prices giving fixed weights to each component: Praw+ener = [Praw]0.95[Pener]

0.05

following the procedure commonly used by the ESEE survey.
Capital deflator : average annual equipment goods component of the index of industry prices published

by the Instituto Nacional de Estad́ıstica.
Investment deflator : average annual equipment goods component of the index of industry prices

published by the Instituto Nacional de Estad́ıstica.
Producer price index (PPI): the gross output price indices at the industry-level are taken from the

EU KLEMS database (March, 2007). Since the industrial classification used by the ESEE does not
exactly match the one used by the EU KLEMS database, I aggregate from the original 20 sectors in the
ESEE to 17. I aggregate sectors: [151]-Production, processing and preserving of meat, [152-158, 160]-Food
products and tobacco and [151]-Beverages that are merged together into ”Food, Beverages and Tobacco”.
And sectors [361]-Furniture and [362-633; 371-372]-Other manufacturing into ”Manufacturing nec and
recycling”. The other sectors remain the same. The gross output price indices for the aggregated sectors
are constructed by weighting the individual sector indices with their output shares over the aggregated
sector output. To compute the weights I use information on gross output at current basic prices from EU
KLEMS 2007. For the aggregated sectors, I then use information on gross output at current basic prices
from EU KLEMS to compute the shares of the individual sectors over the aggregated sectoral output.
Those shares are used to weight each of the individual output price index to obtain an output deflator
at the aggregated sector level.

Consumer price index (CPI): average annual general consumer price index published by the Instituto
Nacional de Estad́ıstica.
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Table 1. Export and innovation patterns in the data

Year All firms
a

Exporters
b

Innovators
c

R&D intensity
d

1991 2,058 1,056 772 0.75%

1992 1,976 1,039 704 0.70%

1993 1,869 989 653 0.76%

1994 1,876 1,053 682 0.71%

1995 1,702 1,019 610 0.68%

1996 1,716 1,033 614 0.67%

1997 1,920 1,188 671 0.67%

1998 1,776 1,138 677 0.72%

1999 1,754 1,099 667 0.80%

2000 1,870 1,218 706 0.77%

2001 1,724 1,123 633 0.73%

2002 1,708 1,099 640 0.63%

Average 1,829 1,088 669 0.72%

Note:
a

All firms refer to all Spanish manufacturing firms. -
b

Exporters are those firms that

report positive export sales.
c
- Innovators are firms that report positive R&D expenditures.

d 

- R&D intensity is the ratio of total R&D expenditures to sales calculated across all sectors

and firms for each year and is expressed in nominal terms. 
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Table 2. Export and innovation participation rates by sector in the data

Sector Firm level
a 

OECD
b

Exporters
c

Innovators
d

1 Production, processing meat Low-tech Low-tech 52% 22%

2 Food products and tobacco Low-tech Low-tech 49% 28%

3 Beverages Low-tech Low-tech 55% 35%

4 Textiles and wearing apparel Low-tech Low-tech 52% 26%

5 Leather and leather products Low-tech Low-tech 58% 23%

6 Wood and wood products Low-tech Low-tech 41% 13%

7 Pulp, paper and paper products Low-tech Low-tech 68% 36%

8 Publishing and printing Low-tech Low-tech 37% 11%

9 Chemicals and chemical products High-tech Medium-high-tech 79% 69%

10 Rubber and plastic products Low-tech Medium-low-tech 64% 36%

11 Non-metallic mineral products Low-tech Medium-low-tech 50% 32%

12 Basic metals Low-tech Medium-low-tech 83% 56%

13 Fabricated metal products Low-tech Medium-low-tech 52% 27%

14 Machinery and equipment High-tech Medium-high-tech 72% 54%

15 Office machinery, computers High-tech High-tech 75% 61%

16 Electrical machinery and apparatus High-tech Medium-high-tech 62% 55%

17 Motor vehicles, trailers High-tech Medium-high-tech 81% 57%

18 Other transport equipment High-tech Medium-high-tech 70% 46%

19 Furniture Low-tech Low-tech 50% 20%

20 Other manufacturing Low-tech Low-tech 74% 28%

Total manufacturing 59% 37%

Technological classification 

Note: A sector is defined at the 2-digit level in the NACE rev. 1 classification.
a

- Sectoral classification based on

the firm-level data, a sector is classified as high-tech if the sector’s R&D intensity is equal or above the average

R&D intensity over all manufacturing sectors.
b

- Sectors are classified according to their technological intensity

based on the OECD classification.
c

- A firm is classified as an exporter if it reports positive export sales.
d

- A firm

is classified as an innovator if it reports positive R&D expenditures. 
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Table 3. Innovation characteristics of exporters versus non-exporters 

Panel A. Mean characteristics (%)

Exporters Non-exporters

Average 1991-2002

R&D dummy  (yes=1, no=0) 53 13

R&D intensity 0.83 0.25

Product innovation dummy (yes=1, no=0) 36 13

Process innovation dummy (yes=1, no=0) 43 23

1991

R&D dummy  (yes=1, no=0) 58 16

R&D intensity 1.04 0.41

Product innovation dummy (yes=1, no=0) 37 17

Process innovation dummy (yes=1, no=0) 47 26

1997

R&D dummy  (yes=1, no=0) 49 12

R&D intensity 0.78 0.16

Product innovation dummy (yes=1, no=0) 36 14

Process innovation dummy (yes=1, no=0) 43 25

2002

R&D dummy  (yes=1, no=0) 52 11

R&D intensity 0.62 0.19

Product innovation dummy (yes=1, no=0) 33 8

Process innovation dummy (yes=1, no=0) 38 16

Panel B. Regression analysis

R&D dummy (yes=1, no=0)

R&D intensity

Product innovation dummy (yes=1, no=0)

Firm characteristic
Exporter premium

a

0.150***

0.190***

0.130***

(1)
b

Product innovation dummy (yes=1, no=0)

Process innovation dummy (yes=1, no=0)

Number of employees

Total factor productivity (TFP)

Wage

Sales per worker

Capital per worker

Observations 

Note: Panel B presents the results from estimating the exporter premia equation (12) over the years

1991-2002. *** indicate significance at the 1% level.
a

- Measures the % difference between

exporters and non-exporters.
b

- Reports the coefficients for the basic specification of Equation

(12) where the dependent variable is the firm characteristic (Z) and the explanatory variable is a

binary variable taking the value 1 when a firm exports and zero otherwise. All the regressions

include a control for the number of employees, except for the employment regression. All firm

characteristics are in logs except the dummy variables and the ratios. All monetary variables are in

real terms, deflated by the appropriate deflator.

0.130***

16,090

0.399***

0.065***

1.581***

0.065***

0.117***

0.409***
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Table 4. Production Function Estimates for the Computation of Total Factor Productivity (TFP)

N N* OLS OP OLS OP OLS OP

1 Production, processing and preserving of meat 554 370 0.473 0.401 0.037 0.062 0.505 0.517

2 Food products and tobacco 1.928 1.245 0.213 0.189 0.064 0.090 0.715 0.695

3 Beverages 405 258 0.720 0.727 0.079 0.164 0.300 0.343

4 Textiles and wearing apparel 1.884 1.145 0.457 0.404 0.065 0.082 0.445 0.445

5 Leather and leather products 479 255 0.341 0.212 0.065 0.103 0.483 0.576

6 Wood and wood products 475 280 0.564 0.349 0.074 0.052 0.414 0.515

7 Pulp, paper and paper products 544 343 0.396 0.271 0.087 0.115 0.545 0.539

8 Publishing and printing 990 582 0.546 0.534 0.058 0.058 0.458 0.422

9 Chemicals and chemical products 1.369 863 0.444 0.502 0.081 0.094 0.514 0.478

10 Rubber and plastic products 1.057 683 0.512 0.460 0.050 0.049 0.486 0.529

11 Non-metallic mineral products 1.353 850 0.476 0.395 0.074 0.053 0.494 0.543

12 Basic metals 628 429 0.265 0.223 0.096 0.113 0.640 0.638

13 Fabricated metal products 1.688 1.018 0.461 0.391 0.052 0.022 0.503 0.506

14 Machinery and equipment 1.44 896 0.498 0.482 0.017 0.051 0.505 0.503

15-16 Office machinery and electrical machinery 1.719 1.081 0.519 0.480 0.016 0.061 0.538 0.545

17 Motor vehicles, trailers 908 608 0.431 0.396 0.033 0.108 0.552 0.572

18 Other transport equipment 436 287 0.416 0.337 0.017 0.062 0.568 0.583

19 Furniture 870 519 0.475 0.410 0.023 0.029 0.558 0.553

20 Other manufacturing 415 248 0.531 0.476 0.042 0.047 0.489 0.517

Materials coefficient

Notes: Estimates of Eq. (13) using OLS and the Olley and Pakes (1996) method denoted OP. Estimates of the production function at the industry level (2 digit) for the period 

1991-2002 controlling for time effects using year dummies. The dependent variable is gross output and the explanatory variables are labor, capital and materials. N refers to 

the number of observations of the OLS estimations. N* is the number of observations for the OP estimation and is the one from the first stage of the estimation procedure. 

Sector Observations Labor coefficient Capital coefficient
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Table 5. Baseline results: Effect of innovation on export status, random effect probit 

Variable
a R&D 

dummy

R&D 

intensity

Process 

innovation 

dummy

Product 

innovation 

dummy

R&D 

dummy

R&D 

intensity

Process 

innovation 

dummy

Product 

innovation 

dummy

(1) (2) (3) (4) (5) (6) (7) (8)

Innovation measure t- 1 0.085 0.007 0.030 0.040 0.079 0.010 0.033 0.066

(0.013)*** (0.003)*** (0.009)*** (0.010)*** (0.013)*** (0.003)*** (0.011)*** (0.012)***

Control variables

Log total employment t- 1 0.205 0.222 0.215 0.216 0.072 0.081 0.078 0.079

(0.017)*** (0.018)*** (0.018)*** (0.018)*** (0.005)*** (0.005)*** (0.005)*** (0.005)***

Log age t- 1 0.057 0.060 0.061 0.060 0.011 0.012 0.013 0.013

(0.011)*** (0.012)*** (0.011)*** (0.011)*** (0.007)* (0.007)* (0.007)** (0.007)**

Log TFP
b
 t- 1 0.049 0.054 0.049 0.049 0.029 0.035 0.031 0.030

(0.016)*** (0.016)*** (0.016)*** (0.016)*** (0.014)** (0.014)** (0.014)** (0.014)**

Foreign ownership dummy t- 1 0.102 0.104 0.101 0.102 0.055 0.054 0.055 0.054

(0.015)*** (0.015)*** (0.015)*** (0.015)*** (0.016)*** (0.016)*** (0.016)*** (0.016)***

Export status t- 1 - - - - 0.791 0.797 0.797 0.793

(0.007)*** (0.007)*** (0.007)*** (0.007)***

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Industry dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 16,339 16,191 16,336 16,335 16,339 16,191 16,336 16,335

Dependent variable: Export status of firm i  at t 

Simple-period case Multi-period case

Note: ***, **, * indicate significance at the 1%, 5% and 10% level. Robust standard errors are reported in parentheses. All regressions include a

constant. The coefficients are marginal effects and represent the change in probability due to a one-standard deviation increase in the independent

variable at the means of the other variables (or the change from 0-1 in the case of a dummy variable).
a

- Estimates from equation (16).
b

- TFP refers to

total factor productivity. 
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Table 6. Sensitivity analysis Section 5.2.1: Results from alternative estimation techniques

Variable
a R&D 

dummy

R&D 

intensity

Process 

innovation 

dummy

Product 

innovation 

dummy

R&D 

dummy

R&D 

intensity

Process 

innovation 

dummy

Product 

innovation 

dummy

(1) (2) (3) (4) (5) (6) (7) (8)

Row 1: RE Probit, clustered errors 

Effect of innovation measure t-1 0.180 0.018 0.071 0.158 0.079 0.010 0.033 0.066

(0.016)*** (0.005)*** (0.012)*** (0.014)*** (0.012)*** (0.332)*** (0.011)*** (0.012)***

Export status t- 1 - - - - 0.791 0.797 0.797 0.793

(0.009)*** (0.009)*** (0.009)*** (0.009)***

Row 2: LPM, clustered errors 

Effect of innovation measure t- 1 0.139 0.012 0.051 0.111 0.024 0.004 0.010 0.020

(0.014)*** (0.003)*** (0.010)*** (0.011)*** (0.005)*** (0.001)*** (0.004)*** (0.004)***

Export status t- 1 - - - - 0.793 0.795 0.796 0.794

(0.008)*** (0.008)*** (0.008)*** (0.008)***

Row 3: LPM, fixed-effects

Effect of innovation measure t-1 0.015 0.002 0.018 0.003 0.007 0.002 0.011 0.000

(0.007)** (0.001) (0.005)*** (0.006) (0.007) (0.001) (0.005)** (0.005)

Export status t- 1 - - - - 0.339 0.340 0.338 0.338

(0.008)*** (0.008)*** (0.008)*** (0.008)***

Controls as in Table 5
b

Yes Yes Yes Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes Yes Yes Yes

Industry Effects
c

Yes Yes Yes Yes Yes Yes Yes Yes

Observations 16,339 16,191 16,336 16,335 16,339 16,191 16,336 16,335

Note: ***, **, * indicate significance at the 1%, 5% and 10% level. RE Probit refers to random effects probit. LPM refers to linear probability model.

Robust standard errors are reported in parentheses, and when indicated clustered at the firm-level. All regressions include a constant. The coefficients

of the probit model are marginal effects and represent the change in probability due to a one-standard deviation increase in the independent variable at

the means of the other variables (or the change from 0-1 in the case of a dummy variable).
a

- Estimates from equation (16).
b

- The control variables

are: log of total employment, log of age, log of total factor productivity (TFP), foreign ownership dummy, all lagged one period.
c
- The fixed effects

models don't include industry dummies and the foreign ownership dummy. 

Dependent variable: Export status of firm i  at t 

Simple-period case Multi-period case
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Table 7. Sensitivity analysis Section 5.2.2: Addressing Potential Endogeneity Concerns 

Variable
a R&D 

dummy

R&D 

intensity

Process 

innovation 

dummy

Product 

innovation 

dummy

R&D dummy
R&D 

intensity

Process 

innovation 

dummy

Product 

innovation 

dummy

(1) (2) (3) (4) (5) (6) (7) (8)

Innovation measure t- 1 0.085 0.708 0.185 0.190 0.051 0.803 0.029 0.03

(0.037)** (0.744)** (0.082)** (0.082)** (0.017)*** (0.376)** (0.015)* (0.018)*

Export status t- 1 - - - - 0.542 0.532 0.668 0.554

(0.042)*** (0.040)*** (0.038)*** (0.042)***

First-stage
b
 instrument: dummy 

public support R&D t- 1
0.421 0.022 0.192 0.188 - - - -

(0.015)*** (0.002)*** (0.019)*** (0.021)***

F-test first-stage 745.37***  134.42***  102.16*** 79.19*** - - - -

Partial R-squared 0.09  0.0993 0.0138  0.0153  - - - -

Total R-squared 0.39 0.19 0.19 0.19 - - - -

Anderson LR statistic 1507.04*** 1691.50***  227.26***  251.33*** - - - -

Sargan chi-squared (p) - - - -  368 (0.353)  368 ( 0.354)  378 ( 0.488) 369 ( 0.340)

Controls as in Table 5
c Yes Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 16,311 16,169 16,308 16,307 16,311 16,169 16,308 16,307

Dependent variable: Export status of firm i  at t 

Simple-period case: 2SLS Multi-period case: GMM

Note: ***, **, * indicate significance at the 1%, 5% and 10% level. Robust standard errors are clustered at the firm-level. The estimates are the results from estimating

equation (16) using instrumental variables to control for potential endogeneity between exporting and innovation. The GMM estimates were obtained using the Arellano

and Bond (1991) first-difference GMM estimator, where the instruments are all right-hand -side variables lagged twice or more. a - Estimates from equation (16). b -

First-stage refers to the results from the first-stage 2SLS regression. c -The control variables are the same as in Table 5, except for the foreign ownership dummy: log of

total employment, log of age, log of total factor productivity (TFP), all lagged one period.  
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Note: All graphs are Kernel distributions of mean values of the log weighted (by firm output over the total in each firm
sector) total factor productivity in 2002, the last year of the sample.

Figure 1. Productivity distributions for different groups of firms in 2002
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