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ABSTRACT
In the context of vessel tree structures segmentation with implicit
deformable models, we propose to exploit convolution surfaces to
introduce a novel variational formulation, robust to bifurcations, tan-
gential vessels and aneurysms. Vessels are represented by an implicit
function resulting from the convolution of the centerlines of the ves-
sels, modeled as a second implicit function, with localized kernels
of continuously-varying scales. The advantages of this coupled rep-
resentation are twofold. First, it allows for a joint determination of
the vessels centerlines and radii, with a single model relevant for
segmentation and visualization tasks. Second, it allows us to de-
fine a new shape constraint on the implicit function representing the
centerlines, to enforce the tubular shape of the segmented objects.
The algorithm has been evaluated on the segmentation of the portal
veins in 20 CT-scans of the liver from the 3D-IRCADb-01 database,
achieving an average recovery of 73% of the trees with fast compu-
tational times.

Index Terms— vessel segmentation, convolution surface, ar-
borescent structures, variational methods, shape constraint

1. INTRODUCTION

Fully automatic vascular tree segmentation is a challenging task that
remains an active research field. Various dedicated segmentation for-
mulations have been proposed: model-based (Krissian et al., 2000
[1]), explicit or implicit active contours (Lorigo et al., 1999 [2]) and
stochastic tracking (Florin et al., 2005 [3]), for example (we refer
to Lesage et al., 2009 [4] for an extensive survey on vessel model-
ing and segmentation). Segmentation algorithms usually extract the
vessel boundary and recover the centerline of the vessels in two sep-
arate stages. Few research works, such as those by Deschamps et al.,
2000 [5] or Li et al., 2009 [6], have attempted to address the prob-
lem of their joint extraction. As described in the seminal work by
Bloomenthal et al., 1991 [7], convolution surfaces can be used as an
alternative to model, manipulate and visualize these two geometric
components.

Convolution surfaces are defined as the convolution of a shape
primitive with a set of localized kernels and provide an implicit shape
formulation similar to the envelope of spheres representation used
by Li et al., 2009 [6]. In a recent work by Lefevre et al., 2010 [8],
a single branch vessel model based on convolution surfaces was in-
troduced. However, the explicit parameterization of the centerline
hindered its extension to multi-branch vessel trees. In this paper, we
propose to reformulate the segmentation problem with the use of an
implicit representation of the centerline.

Lorigo et al., 1999 [2] extracted vessel structures via the local-
ization and regularization of its centerlines Γ only, which defined
manifolds of co-dimension 2 in 3D. In practice, the vessel centerline

was defined as the ε-isolevel of a function Φ, Γε = {x|Φ(x) = ε},
where Φ was the signed distance function to a curve C and ε an arbi-
trarily small real positive number.

Using a similar concept, our first contribution consists in mod-
eling the vessel centerlines as the isolevel of an implicit function. It
provides us with a suitable representation that can evolve in a varia-
tional setting (Sect. 2.1). Sect. 2.2 details the initialization and the
evolution of the convolution surface model. Our second contribution
is a novel dedicated geometrical constraint designed to maintain the
tubular shape of the segmented objects (Sect. 2.3). Preliminary re-
sults on 2D and 3D medical image data are presented and discussed
in Sect. 3.

2. VESSEL MODELING AND SEGMENTATION WITH AN
IMPLICIT CENTERLINE

2.1. Shape modeling with convolution surfaces

In Lefevre et al., 2010 [8], the authors introduced the use of convo-
lution surfaces to model tubular structures evolving in a variational
framework. Assuming circular cross-sections, the vessel shape was
encoded with an open parameterized centerline m(s) : [0, 1]→ Rn
convolved with a set of pointwise localized kernels with continu-
ously varying scales σ(s). The corresponding two-parameters level
set function was defined to encode the vessel contours:

Φm,σ(x) =

∫ 1

0

ω

(
‖ x−m(s) ‖

σ(s)

)
‖m′(s) ‖ ds − C , (1)

where C is an arbitrary positive constant used to enforce negative
values outside the vessels, and ω is a non-normalized Gaussian ker-
nel ω(x) = exp(−kx2), driven by the parameter k ∈ R+.

The vessel segmentation problem was then formulated as an op-
timal two-phase partition problem of the domain Ω of an image I , in
which foreground (first phase) and background (second phase) corre-
spond to the vessel tree and the surrounding structures, respectively.
Relying on the intensity distributions pi, i = 1, 2, of the foreground
and the background, both regions were described by log-likelihood
homogeneity measures ri(x) = − log pi(I(x)) previously used in
Mory et al., 2007 [9]. The problem was solved by minimizing the
following functional E over the set of all possible image partitions
{A,Ω \ A}:

E = R(A) +

∫
A
r1(x)dx +

∫
Ω\A

r2(x)dx , (2)

whereR(A) is a regularization term enforcing shape regularity.
In this work, we propose an alternative implicit formulation of

the centerline to allow for natural evolutions of the vessels into ar-
borescent shapes. The vessel boundaries are still modeled as the
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Fig. 1: Implicit representation of a tubular structure in 2D. (a) The
foreground, within the red curve, is modeled as the convolution of
a blue thin area (h > 0) localizing the vessel centerline, with local
kernels ω of radius σ. (b) The area of the centerline lying inside a
local kernel centered at x (on the left) is close to the blue-shaded

area under the Gaussian profile (on the right).

zero-level set of a function Φ expressed as a convolution surface, but
the centerline primitive is now the Heaviside function of a medial-
ness function h : Rn → R (Fig. 1(a)):

Φh,σ(x) =

∫
Ω

H(h(y))ω

(
‖ x− y ‖
σ(y)

)
dy − C . (3)

We chose to manipulate the Heaviside function of h instead of the
function itself to avoid the risk that many kernels may contribute to
a single point on the vessel surface, which would alter the meaning
of the optimized scale parameter σ. In practice, C is set based on
the assumption that on a straight cylinder, a point xS on the surface
is generated by the contribution of only one kernel, and the distance
to the center of this kernel is exactly σ(xS), hence C = ω(1).

2.2. Extraction of medialness information with gradient diffu-
sion

For well-contrasted images, the initialization of the vessel segmenta-
tion typically consists of a single click inside the object and a corre-
sponding estimation of the radius. However, on typical angiographic
images, it proves crucial to provide a more accurate initialization for
the initial region homogeneity measures. To this end, we resort to
a Gradient Vector Flow (GVF)-based approach similar to the idea
developed by Bauer et al., 2008 [10].

The GVF of an image is the vector field obtained by diffusing
image gradients in uniform regions while keeping strong gradients
untouched. The divergence of the resulting normalized vector field
yields a map where high values characterize discontinuous orienta-
tions of the vector field, whereas small values identify regions with
homogeneous directions. This enables to identify the centerlines of
the structures as a subset of the ridges of this map. Centerlines are
recovered by performing a height ridge traversal step, as described

by Aylward et al., 2002 [11]. More precisely, seeds si are selected
among the local maxima of the map having image intensity values
above the image median value. Using the second derivatives of the
map, we compute an estimation of the local orientation t0i at seed
points. Considering the neighbors xn of si such that t0 ·sixn > 0,
the point xn providing the highest value is selected as part of the
centerline. This point selection is repeated until a point that has al-
ready been traversed is encountered, or until the medialness value
decreases below a given threshold. Then, for each ci on a centerline,
the local radius σ(ci) is estimated by following the GVF vector field
from ci to the first local gradient extremum. A 2D example of the
complete initialization data is illustrated in Fig. 2(b).

2.3. Segmentation: energy functional and associated constraints

Now that the model has been carefully initialized, the evolution is
driven by the competition between the two homogeneity measures
r1 and r2. Introducing our new implicit model into Eq.2, we refor-
mulate the objective function as:

E = R(h, σ) +

∫
Ω

H(Φh,σ(x))r(x)dx , (4)

where r(x) = r1(x)−r2(x). Using standard calculus of variations
and the generalized scaling property of the Dirac distribution, we
derive the following gradient-descent scheme for h and σ:

∇hE(y) = δ(h(y))

∫
{Φ=0}

r̃(x)ω

(
‖x− y‖
σ(y)

)
dx , (5)

∇σE(y) = −H(h(y))

σ(y)2

∫
{Φ=0}

r̃(x)‖x− y‖ω′
(
‖x− y‖
σ(y)

)
dx, (6)

where r̃ = r
‖∇Φ‖ .

In Eq.4, we need to define a regularization constraint on the spa-
tial appearances of h(x) and σ(x). Since the geometry of the vessel
is encoded with continuous spatial variables having smooth varia-
tions within the vessel and strong gradients at the vessel interface,
we penalize the total variation (TV) norm of h and σ:

R(h, σ) = λ

∫
Ω

‖ ∇h(x) ‖ dx + µ

∫
Ω

‖ ∇σ(x) ‖ dx , (7)

where λ, µ ∈ R+. Typically, we set λ = 0.1 and µ = 0.4. High val-
ues of µ generate a smooth surface with slowly-varying radii, but the
model may not be able to propagate into small branches, or to cope
with partial stenosis. On the contrary, small values allow rapid vari-
ations of σ, but at the price of degrading the quality of the surface.
Our initial experiments showed the need for additional constraints
to prevent the medialness function h from systematically spreading
inside the object to be segmented.

Nain et al., 2004 [12] studied similar leakage problems of elon-
gated implicit surfaces and introduced an effective volume constraint
for a level set-based vessel segmentation framework. We are able to
define an even more restrictive constraint by measuring the volume
of h, instead of Φ, inside a neighborhood of locally-adapted size de-
fined by σ. Given a location x where h(x) > 0, h will be tubular
around x if the corresponding local Gaussian kernel ω encompasses
a volume of h close to the volume of a straight tube going through
its center (see Fig. 1(b)). This equivalent theoretical volume can
therefore be expressed analytically as a function Vσ of σ(x):

Vσ(x) = σ(x)

√
π

k
erf(
√
k) , (8)
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Fig. 2: Results on a 2D X-ray angiography with GVF-based initialization. (a) Original image. (b) Estimated centerlines and color-coded radii
for initialization. (c) Final segmentation.

with erf is the error function and k is the constant parameter of the
Gaussian kernel (see Sect. 2.1). The effective volume of h encom-
passed within ω is:

V (x) =

∫
Ω

H(h(y))ω

(
‖ x− y ‖
σ(x)

)
dy . (9)

Penalizing deviations from the expected value, we propose a
novel volume constraint relying on the following elastic energy:

Ev =
1

2

∫
Ω

(V (x)− Vσ(x))2dx . (10)

Finally, we introduce a third term enforcing local alignment of
the gradient of h with the locally smoothed and normalized gradient
of the image, at scale σ: nσ = ∇(I ? Gσ)/ ‖ ∇(I ? Gσ) ‖. This
term is defined as:

Em =
1

2

∫
Ω

‖ ∇h(x)− nσ(x) ‖2 dx . (11)

Similarly to the gradient diffusion used during the initialization
stage, this constraint quantifies the local asymmetry of the image
gradients. Smoothing normalized gradients allows to identify basins
where strong and aligned gradients prevail, and the boundaries be-
tween two such basins correspond to the locations of medial struc-
tures such as centerlines.

3. PRELIMINARY RESULTS AND DISCUSSION

In this section, we illustrate the performance of the proposed seg-
mentation framework on 2D and 3D angiographic medical images
(Fig. 2,3). An example of an initial set of centerlines and radii
estimation for a 2D X-ray angiography is depicted in Fig. 2(b).
The GVF-based initialization yields weak responses at bifurcations,
especially when the intensities vary within the branches involved,
which leads to disconnected centerlines. Fig. 2(c) illustrates the
ability of our model to propagate into bifurcations and to reconnect
branches of the vascular tree.

In Fig. 2(c), one can nevertheless notice how the tracking pro-
cess misses a few bifurcations. This is due to the difficult trade-
off between regularity and accuracy on σ. On the one hand, allow-
ing strong and rapid variations of the radii is paramount to recover
small vessels branching off from much larger arteries. Regularity

and shape constraints, on the other hand, are mandatory to maintain
the consistency of the model, i.e. an equivalence between σ and the
real radius of the structures. Depending on the application, one may
favor one or the other and set the weights of the different constraints
accordingly.

Fig. 3 illustrates the above discussion with some preliminary
3D results on rotational angiographies (size 256x256x256, spatial
resolution 0.41x0.41x0.41 mm3) and 3D-CT scans of the liver (size
512x512x224, spatial resolution 0.78x.078x1.6 mm3) from the 3D-
IRCADb-01 database [13]. In the case of Fig. 3(a), strong con-
straints were applied to the model, resulting in a smooth segmen-
tation and meaningful radii values. On the contrary, the segmenta-
tion in Fig. 3(b) was obtained using small weights for the volume
constraint and the regularization over σ. Albeit more complete, the
centerline of the recovered tree may spread into the whole vessels,
especially into small branches (see for example the horizontal branch
in the middle of Fig. 3(b) with a very ragged surface appearance due
to many overlapping kernels). Fig. 3(c), 3(d) and 3(e) illustrate sim-
ilar results for the segmentation of the portal veins in 3D-CT scans
of the liver. Our first evaluation shows that 73% of the trees are re-
covered, on average. Small branches are often missed, due to the
choice of parameters and the use of downsampled images.

Despite the challenging balance between the parameters of the
model, the close-up pictures provided in Fig. 3(a) and 3(b) highlight
two additional interesting features of the present work. Separating
tangent vessels is often a difficult task since there is little or no con-
trast between the structures. Fig. 3 demonstrates that our model is
robust to this setting and is able to generate distinct surfaces for tan-
gent vessels. Moreover, our model can deal with aneurysms, which
are finely segmented, with a smooth transition of σ values.

4. CONCLUSION

We presented a novel region-based segmentation framework for tree-
like structures, based on a convolution surface representation, with
two coupled implicit surfaces evolving in a level set setting. This
representation is able to propagate naturally through bifurcations.
The use of a continuous scale parameter allows us to estimate ac-
curately the radii of the vessels. We showed that our approach per-
forms well in challenging configurations such as tangent vessels and
aneurysms. Ongoing work focuses on thorough quantitative evalu-
ation of the segmentation results. Besides, we showed that, in the
current model, the quality of the segmentation and of the underlying
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Fig. 3: (Top row) Results on two 3D rotational angiographies of the skull. For both segmentations of the arterial tree, we provide a 3D surface
rendering view and two close-ups to demonstrate the ability of the algorithm to separate tangent vessels (top) and to cope with aneurysms
(bottom). (Bottom row) Segmentation of the portal veins on 3D-CT scans of the liver (size 512x512x224, spatial resolution 0.78x.078x1.6

mm3). The segmentation is done on downsampled images, thus only branches larger than 2 voxels are recovered.

representation highly depends on the balance between the different
regularization parameters. In the future, efforts should be put on de-
veloping a hierarchical approach to deal with structures presenting
a wide range of scales, and to be robust to vessels presenting total
occlusions.
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