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class of real cubic natural exponential

families
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Abstract In this paper, we give three equivalent properties of the class of multivariate

simple cubic natural exponential families (NEF’s). The first property says that the cu-

mulant function of any basis of the family is a solution of some Monge-Ampère equation,

the second is that the variance function satisfies a differential equation, and the third is

characterized by the equality between two families of prior distributions related to the

NEF. These properties represent the extensions to this class of the properties stated in [1]

and satisfied by the Wishart and the simple quadratic NEF’s. We also show that in the

real case, each of these properties provides a new characterization of the Letac-Mora class

of real cubic NEF’s.

Keywords: Natural exponential family, variance function, cumulant function, Monge-
Ampère equation, prior distribution.

1 Introduction and preliminaries

For the convenance of the reader, we first introduce some notations and recall some facts
concerning the natural exponential families and their variance functions, our notations are
the ones used in [10]. Let E be a linear vector space with finite dimension n, denote by
E∗ its dual, and let E∗ × E → IR : (θ, x) 7→ 〈θ, x〉 be the duality bracket.
If µ is a positive radon measure on E, then

Lµ(θ) =

∫

E
exp(〈θ, x〉)µ(dx) (1.1)

denotes its Laplace transform. We also denote by M(E) the set of measures µ such that
the set

Θ(µ) = interior{θ ∈ E∗; Lµ(θ) < +∞} (1.2)

∗Corresponding author. E-mail address: Abdelhamid.Hassairi@fss.rnu.tn
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is non empty and µ is not concentrated on an affine hyperplane of E. The cumulant
function of an element µ of M(E) is the function defined for θ in Θ(µ) by

kµ(θ) = logLµ(θ).

To each µ in M(E) and θ in Θ(µ), we associate the probability distribution on E

P (θ, µ)(dx) = exp (〈θ, x〉 − kµ(θ))µ(dx).
The set

F = F (µ) = {P (θ, µ); θ ∈ Θ(µ)}

is called the natural exponential family (NEF) generated by µ. We also say that µ is a
basis of F .

The function kµ is strictly convex and real analytic. Its first derivative k′µ defines a

diffeomorphism between Θ(µ) and its image MF . Since k′µ(θ) =

∫

E
xP (θ, µ)(dx), MF is

called the domain of the means of F . The inverse function of k′µ is denoted by ψµ and
setting

P (m,F ) = P (ψµ(m), µ)

the probability of F with mean m, we have

F = {P (m,F ); m ∈MF} ,

which is the parametrization of F by the mean.

Now the covariance operator of P (m,F ) is denoted by VF (m) and the map

MF −→ Ls(E
∗, E); m 7−→ VF (m) = k′′µ(ψµ(m))

is called the variance function of the NEF F . It is easy proved that for all m ∈MF ,

VF (m) = (ψ′

µ(m))−1,

and an important feature of VF is that it characterizes F in the following sense: If F
and F ′ are two NEFs such that VF (m) and VF ′(m) coincide on a nonempty open set of
MF ∩MF ′ , then F = F ′.
Now, let us examine the influence of an affine transformation and a power convolution
on a NEF F = F (µ). If ϕ(x) = a(x) + b, where a ∈ GL(E) and b ∈ E, is an affine
transformation of E, then ϕ(F (µ)) = F (ϕ(µ)), Mϕ(F ) = ϕ(MF ), and

Vϕ(F )(m) = a VF (ϕ
−1(m)) a∗,

where a∗ is the transpose of a. On the other hand the set

Λ(µ) = {λ > 0; ∃ µλ ∈ M(E) such that Lµ
λ
(θ) = (Lµ(θ))

λ for all θ ∈ Θ(µ)}

is called the Jorgensen set of µ and the measure µλ is the λ−power of convolution of µ.
For λ in Λ(µ), we have that

MF (µλ) = λMF , and VFλ
(m) = λ VF (

m

λ
).
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A very interesting fact is that the most common real and multivariate probability
distributions belong to the natural exponential families such that the variance function
is a polynomial of degree less then or equal to three in the mean m. For instance, up to
affine transformations and power of convolution (up to the type), the Gaussian, Poisson,
gamma, binomial, negative binomial and hyperbolic cosine distributions form the class
of all real NEF’s whose variance function is a polynomial of degree less than or equal
to 2 characterized by Morris [14]. Letac and Mora [11] have added six others types of
distributions, namely, the inverse Gaussian, Ressel, Abel, Tackàs, strict arcsine and large
arcsine, to get the class of real cubic NEF’s, that is the class of NEF’s such that variance
function is a polynomial of degree less than or equal to three. The classification of NEF’s
with polynomial variance function have been extended to the multivariate NEF’s. The
multivariate version of the Morris class, called the class of simple quadratic NEF’s, has
been completely described by Casalis [1], it contains 2n+4 types. Hassairi [6] has defined
and characterized the so-called class of multivariate simple cubic NEF’s which is the
natural extension of the class of real cubic NEF’s. It is worth mentioning here that the
simple quadratic NEF’s are not the only families which have quadratic variance functions,
the Wishart families on symmetric matrices have also quadratic variance functions. The
classifications of NEF’s by the form of the variance function provide an important tool in
the study of distributions. In fact, in many important cases, the variance function is very
simple and is easier to use than the distribution itself or the Laplace transform. Moreover,
the fact that the variance function is quadratic or cubic, is not only a question of form,
but the form corresponds to some very interesting analytical characteristic properties. In
this respect, let us mention that for the Morris class of real quadratic NEF’s, we have the
Meixner characterization based on some families of orthogonal polynomials which generate
exactly the Morris class (see[12]). Another characterization due to Feinsilver[4] states that
a certain class of polynomials naturally associated to a NEF is orthogonal if and only if the
family is in the Morris class. This characterization has been extended to the Casalis class of
simple quadratic NEF’s by Labeye-Voisin, and Pommeret [9]. Concerning the cubic NEF’s,
Hassairi and Zarai [7] introduced a notion of 2-orthogonality for a sequence of polynomials
to give an extended version of the Meixner and Feinsilver characterization which subsume
the Letac-Mora class of real cubic NEF’s. Hassairi and Zarai [8] have also introduced a
notion of trans-orthogonality for a sequence of multivariate polynomials to extend their
characterization result to the class of multivariate simple cubic NEF’s. Besides these
characterizations based essentially on different notions of orthogonality of polynomials,
it is stated in Casalis[1] that the simple quadratic NEF satisfies a property based on
two conjugates families of prior distributions related to the NEF. For a NEF F = F (µ),
consider the family of prior distributions Π introduced by Diaconis and Ylvisaker [3] and
defined by

Π = {πt,m0
(dθ) = Ct,m0

exp t(〈m0, θ〉 − kµ(θ)) 1Θ(µ)(θ)dθ, t > 0,m0 ∈MF } (1.3)

where Ct,m0
is a normalizing constant. Consider also the family Π∗ introduced by Consonni

et al [2], see also [5] and defined by

Π∗ = {π∗t,m0
, t > 0,m0 ∈MF } (1.4)

where
π∗t,m0

(dm) = C∗

t,m0
exp t( 〈m0, ψµ(m)〉 − kµ(ψµ(m)) ) 1MF

(m)dm,
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and the constant C∗

t,m0
is a normalizing constant. Then, when F (µ) is a Wishart or a

simple quadratic NEF, we have that k′µ(Π) = Π∗. It is also shown that this property is
equivalent to two other properties expressed in terms of some differential equations satisfied
by the cumulant function kµ. In the real case, the property characterizes the Morris class
of real quadratic NEF’s, that is k′µ(Π) = Π∗ if and only if the NEF F is in the Morris
class. In the present paper, we extend these results to the class of multivariate simple
cubic NEF’s. We construct two families of prior distributions related to a multivariate
NEF, and we show that these families coincide when the NEF is simple cubic. We then
show that this property is equivalent to the fact that the cumulant function is a solution
of some Monge-Ampère equation and also equivalent to the fact that the variance function
satisfies a differential equation. As a corollary, we obtain three new characterizations of
the Letac-Mora class of real cubic NEF’s.

2 Some equivalent properties

Throughout this section, we suppose that F = F (µ) is a NEF on a linear vector space E
with dimension n. Besides the family Π of prior distributions defined in (1.3), we introduce
another family Π̃ of prior distributions. Let β be in E∗ such that the set

Θ̃ = {θ ∈ Θ(µ); 1 + 〈β, k′µ(θ)〉 > 0}

is nonempty, and denote M̃ = k′µ(Θ̃). Consider the family of prior distributions

Π̃ = { π̃t,m0
; t ∈ IR∗

+ , m0 ∈MF }, (2.5)

where

π̃t,m0
(dm) = C̃t,m0

(1 + 〈β,m〉)−n−2 exp t{〈m0, ψµ(m)〉 − kµ(ψµ(m))} 1
M̃
(m)dm.

With these notations, we next state and prove our first main result.

Theorem 2.1 The three following properties are equivalent

(1) There exists (a, b, c) ∈ E × IR2 such that for all m in MF ,

detVF (m) = (1 + 〈β,m〉)n+2 exp{〈a, ψµ(m)〉+ bkµ(ψµ(m)) + c}.

(2) There exists (a, b) ∈ E × IR such that for all m in MF and any basis, (ei)
n
i=1 of E,

with dual basis (e∗i )
n
i=1, we have

n∑

i=1

[V ′

F (m)(ei)]e
∗

i =
n+ 2

1 + 〈β,m〉
VF (m)(β) + a+ bm. (2.6)

(3) There exists an open subset Ω of IR∗

+ ×MF such that

k′µ(Π) = Π̃Ω = {π̃t,m0
; (t,m0) ∈ Ω}.
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Note that (1) may be stated in terms of the cumulant function as there exists (a, b, c) ∈
E × IR2 such that for all θ in Θ(µ),

det k′′µ(θ) = (1 + 〈β, k′µ(θ)〉)
n+2 exp{〈a, θ〉+ bkµ(θ) + c},

that is the cumulant function is solution of some Monge-Ampère equation (see [15]).
Proof We will show that (1) ⇔ (2) and (1) ⇔ (3).

(1) ⇒ (2) Suppose that VF (m) satisfies (1), then we have

log detVF (m) = (n+ 2) log(1 + 〈β,m〉) + {〈ψµ(m), a〉 + b kµ(ψµ(m)) + c}.

Taking the derivative, we get

trace(V −1
F (m)V

′

F (m)(.)) =
(n+ 2)〈β, .〉

1 + 〈β,m〉
+ 〈ψ

′

µ(m)(.), a〉 + b〈m,ψ
′

µ(m)(.)〉,

which is equivalent to

n∑

i=1

[V ′

F (m)(.)V −1
F (m)(ei)](e

∗

i ) =
(n+ 2)〈β, .〉

1 + 〈β,m〉
+ 〈ψ

′

µ(m)(.), a〉 + b〈m,ψ
′

µ(m)(.)〉.

Replacing (.) by VF (m)(.), and using the condition of symmetry

V ′(m)(V (m)(α))(β) = V ′(m)(V (m)(β))(α) ∀ α, β ∈ E∗ (see [10], page 103),

we obtain

n∑

i=1

[V ′

F (m)(ei)(.)](e
∗

i ) =
(n + 2)〈β, VF (m)(.)〉

1 + 〈β,m〉
+ 〈a, (.)〉 + b〈m, (.)〉. (2.7)

As VF (m) is symmetric, we get

n∑

i=1

[V ′

F (m)(ei)](e
∗

i ) =
(n+ 2)

1 + 〈β,m〉
VF (m)(β) + a+ bm.

(2) ⇒ (1) Suppose that (2) holds. Then, we easily get (2.7).
Replacing, in (2.7), (.) by V −1

F (m)(.), one obtains

n∑

i=1

V ′

F (m)(ei)V
−1
F (m)(.)(e∗i ) =

(n + 2) 〈β, (.)〉

1 + 〈β,m〉
+ 〈a, ψ′

µ(m)(.)〉 + b〈m,ψ′

µ(m)(.)〉.

This is equivalent to

trace(V −1
F (m)V ′(m)(.)) =

(n+ 2) 〈β, (.)〉

1 + 〈β,m〉
+ 〈a, ψ′

µ(m)(.)〉 + b〈m,ψ′

µ(m)(.)〉.

Integrating, we deduce that there exists c in IR such that

log det(VF (m)) = (n+ 2) log(1 + 〈β,m〉) + {〈ψµ(m), a〉+ b kµ(ψµ(m)) + c},

and the result follows.
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(1) ⇒ (3) Suppose that (1) holds, and define

Ω = {(t,m0) ∈ IR∗

+ ×MF ; t > b and m0 ∈ (1−
b

t
)MF −

a

t
}.

Take (t,m0) in Ω and denote ν the image of π̃t,m0
by ψµ. Then it is easy to verify that

ν(dθ) = C̃t,m0
ec exp{〈tm0 + a, θ〉 − (t− b)kµ(θ)} 1

Θ̃
(θ)dθ.

Since (t,m0) is in Ω, we have that t− b > 0 and
tm0 + a

t− b
∈MF .

Thus taking t1 = t− b and m1 =
tm0 + a

t− b
, we obtain that

ν(dθ) = Ct1,m1
exp{t(〈m1, θ〉 − kµ(θ))} 1

Θ̃
(θ)dθ.

Hence ψµ(Π̃Ω) ⊂ Π, and it follows that Π̃Ω ⊂ k′µ(Π).
Conversely, if πt,m0

is an element of Π, then its image σ by k′µ is given by

σ(dm) = Ct,m0
e−c (1+ 〈β,m〉)−n−2 exp{〈tm0−a, ψµ(m)〉− (t+b)kµ(ψµ(m))} 1

M̃
(m)dm.

Taking t1 = t+ b and m1 =
tm0 − a

t+ b
. Then (t1,m1) is in Ω, and we have

σ(dm) = C̃t1,m1
(1 + 〈β,m〉)−n−2 exp t1{〈m1, ψµ(m)〉 − kµ(ψµ(m))}1

M̃
(m)dm ,

which is an element of Π̃Ω.

(3) ⇒ (1) Suppose that k′µ(Π) = Π̃Ω. Then, for an element πt,m0
of Π, we have on the

one hand,

k′µ(πt,m0
)(dm) = (detVF (m))−1 Ct,m0

exp t{〈m0, ψµ(m)〉 − kµ(ψµ(m))} 1
M̃
(m)dm.

On the other hand, since k′µ(πt,m0
) is in Π̃Ω, there exists (t1,m1) in Ω such that

k′µ(πt,m0
)(dm) = C̃t1,m1

(1 + 〈β,m〉)−n−2 exp t1{〈m1, ψµ(m)〉 − kµ(ψµ(m))} 1
M̃
(m)dm.

Comparing these two expressions of k′µ(πt,m0
) gives

detV (m) = (1 + 〈β,m〉)n+2 exp{〈a, ψµ(m)〉+ bkµ(ψµ(m)) + c},

where a = tm0 − t1m1, b = t1 − t, and c = log(
ct,m0

c̃t1,m1

).

2

3 Characterizations of the Letac-Mora class of

real cubic NEFs

In this section, we prove that a multivariate simple cubic NEF satisfies the properties in
Theorem (2.1), and that the real versions of these properties characterize the real cubic
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NEFs. Recall that a simple cubic NEF is obtained form a simple quadratic NEF by the
so-called action of the linear group GL(IR × E) on the NEFs of E. For more details, we
refer the reader to [6], where a complete description of this class is given. This action
is in fact an extension of the way in which the Letac-Mora class of real cubic NEFs is
obtained from the Morris class of real quadratic NEF’s. For our purposes here, we need
only to mention that, up to affine transformations and power of convolution, a simple
cubic variance function is of the form

V (m) = (1 + 〈β,m〉) (I +m⊗ β) V1(
m

1 + 〈β,m〉
) (I + β ⊗m), (3.8)

where V1 is the variance function of a simple quadratic NEF F1, and m is in (MF1
)β, where

(MF1
)β = {m ∈MF1

; 1 + 〈β,m〉 > 0 and
m

1 + 〈β,m〉
∈MF1

}.

The relation (3.8) is invertible and conversely, we have

V1(M) = (1− 〈β,M〉) (I −M ⊗ β) V (
M

1− 〈β,M〉
) (I − β ⊗M), (3.9)

where M is in (MF )−β.
We also mention that the relation between a simple cubic NEF F (µ) and a simple quadratic
NEF F (ν) may also be expressed in terms of the cumulant functions by





kµ(λ) = kν(θ)− k0

λ = −βkν(θ) + θ − λ0

(3.10)

or equivalently by





kν(θ) = kµ(λ)− k1

θ = βkµ(λ) + λ− θ1

(3.11)

where (k0, λ0) and (k1, θ1) are constants in IR× E. Note that if β = 0 in (3.8) we obtain
the simple quadratic class. Then for more accuracy we exclude this case and we keep only
β in E∗ \ {0}.
We now prove that the multivariate simple cubic NEF’s satisfy the properties in Theorem
2.1.

Proposition 3.1 Let F = F (µ) be a simple cubic NEF on E, then there exists (a, b, c)
in E∗ × IR2 such that

det(VF (m)) = (1 + 〈β,m〉)n+2 exp{〈ψµ(m), a〉+ b kµ(ψµ(m)) + c}.

Proof Given that the family F is simple cubic, then there exist β in E∗ and F1 = F (ν) a
simple quadratic NEF such that

VF (m) = (1 + 〈β,m〉) (I +m⊗ β) VF1
(

m

1 + 〈β,m〉
) (I + β ⊗m),
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see (3.8). As det(I +m⊗ β) = 1 + 〈β,m〉, we obtain

det(VF (m)) = (1 + 〈β,m〉)n+2 det(VF1
(

m

1 + 〈β,m〉
)).

We now use the fact for a simple quadratic NEF F1 (see [1]), there exist a′ in E∗ and b′, c′

in IR such that, for all M in MF1
,

det(VF1
(M)) = exp{〈a′, ψν(M)〉+ b′kν(ψν(M)) + c′}.

It follows that

det(VF (m)) = (1 + 〈β,m〉)n+2 exp{〈ψν(
m

1 + 〈β,m〉
), a′〉+ b′ kν(ψν(

m

1 + 〈β,m〉
)) + c′}.

From (3.10), putting λ = ψµ(m) and θ = ψν(
m

1 + 〈β,m〉
), we get

kν(ψν(
m

1 + 〈β,m〉
)) = kµ(ψµ(m)) + k0,

ψν(
m

1 + 〈β,m〉
) = ψµ(m) + βkµ(ψµ(m)) + βk0 + λ0.

Then

detVF (m) = (1 + 〈β,m〉)n+2 exp{〈ψµ(m), a′〉+ (b′ + 〈a′, β〉)kµ(ψµ(m))

+(b′k0 + 〈a′, βk0 + λ0〉+ c′)}.

Setting a = a′, b = b′ + 〈a′, β〉 and c = b′k0 + 〈a′, βk0 + λ0〉 + c′, we obtain the desired
result. 2

As the Letac-Mora class of real cubic NEFs is nothing but the simple cubic class,
when the dimension n is equal to 1, this class satisfies the real version of the properties in
Theorem 2.1. We will show that, in this case, these properties are characteristic.

Theorem 3.2 Let F = F (µ) be a NEF on the real line, then F is cubic if and only if
k′µ(Π) = Π̃.

Proof Suppose that k′µ(Π) = Π̃. Then according to Theorem(2.1), the variance function
VF (m) satisfies the differential equation

(1 + βm)V ′

F (m)− 3β VF (m) = (a+ bm)(1 + βm).

Solving this differential equation by standard methods gives

VF (m) = λ (1 + βm)3 −
b

β2
(1 + βm)2 +

b− βa

2β2
(1 + βm),

which is a polynomial of degree less then or equal to 3. 2
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