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Model for a sensor inspired by electric fish

Frédéric Boyer, Pol Bernard Gossiaux, Brahim Jawad,

Vincent Lebastard and Mathieu Porez. ∗†‡§¶

1er septembre 2011

Résumé

This article reports the first results from a programme of work aimed at developing a

swimming robot equipped with electric sense. After having presented the principles of a bio-

inspired electric sensor, now working, we will build the models for electrolocation of objects

that are suited to this kind of sensor. The produced models are in a compact analytical

form in order to be tractable on the onboard computers of the future robot. These models

are tested by comparing them with numerical simulations based on the boundary elements

method. The results demonstrate the feasibility of the approach and its compatibility with

online objects electrolocation, another parallel programme of ours.

Electrolocation, active perception, bio-inspired sensor, model reduction, electrokinetics, elec-
trostatics, resistance matrix.

1 Introduction

Discovered in the fifties by Lissmann [1], the electric sense or "electrolocation" is used by
hundreds of fish species that have co-evolved on both the African and South American continents.
This sense is based on the measurement of the perturbations of an electric field fish’s emission
induced by the environment (see Fig. 1). This sense is ideally suited for navigation in the murky
waters of the equatorial forests in which these fishes live. For species of the mormyridae family,
electrolocation, whose range is of the order of a body length, is based on the dipolar field created
by the polarisation of the body relative to an electric organ discharge (EOD) that is situated just
proximal to the tail (Fig. 1). With a higher conductivity than the water, the fish body funnels
the emitted field lines like an "electric lens", and makes them cross its electrosensitive skin.

Thanks to a high number of electro-receptors distributed all along its body, the fish’s brain
processes an instantaneous electric image of its three dimensional environment by a comparison
between the transcutaneous currents in the absence of objects and those measured in their
presence. Applied to "small objects", for which the applied field is near uniform in the region
occupied by the object, typically a sphere of radius a and of center O, the principle of the
electrolocation can be physically explained by the following equation (see [2]) :

δφ = −a3χ
∇φ0.r

r3
, (1)
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Figure 1 – The electric fish, here the Gnathonemus Petersii. The electric field is distorted by
the presence of an object (for instance, an insulating cylinder blocks the field lines whereas a
conductive cube funnels them).

where δE = −∇(δφ) represents the perturbation at the point M of an exogenous uniform
electric field E0 = −∇φ0 induced by the sphere centered at O, with r =

−−→
OM , r = ‖r‖ and χ

a "contrast factor" encoding the relative conductivity of the sphere with respect to the water.
In such a model, and throughout this article, both the water and the objects are considered as
homogenous isotropic ohmic media. It is Rasnow [3] who first applied this perturbation formula
(1) to electrolocation. In this context, φ0 models the field produced by the fish, while δφ represents
the potential difference with and without the objects, measured at a point on the skin of the fish
situated at r from the object. Intensely researched in biology, this active mode of perception has
been little studied in robotics despite its promise for navigation in turbid waters where the high
density of particles precludes the use of sonar.

Recently, Mc Iver et al. [4, 5, 6, 7] have exploited this sense in the context of a bio-inspired
approach in robotics. They built an experimental set up of four point electrodes placed at the
apexes of a rhombus in a rigid moving frame driven by a Cartesian robot [7]. In this system, two
electrodes situated at the opposite apexes of the lozenge are polarized in voltage and play the role
of the electric organ of discharge while the two opposite electrodes play the role of receivers. This
device is a direct implementation of the Rasnow model (1), the generated potential by the two
first electrodes being φ0 in (1), while voltage measurement by the receivers is the perturbation δφ
induced by the objects placed in the scene. Using the Cartesian motion control of this sensor in
a tank, they implemented different electrolocation algorithms for small spheres, demonstrating
the feasibility of the principle.

Pursuing similar objectives, we have developed in [8,9,10,11] an alternative technology. Our
sensor is a mosaic of electrodes measuring currents, distributed in several connected populations
polarized with respect to each other (see Fig. 2 and 3). Hence, in this case, if the electric organ
of discharge is still emulated by a voltage control, the measurement is no longer of voltage (U)
but of current (I) and we define this method as the U -I mode of measurement to distinguish
it from the U -U mode in [7]. One of the contributions of the article is to build, at low cost
for the engineer, an analytical model of object electrolocation by a U -I sensor. The model is
sufficiently concise and reliable to be applied to real-time navigation of a robot (using observer
based algorithms for instance). Furthermore, contrary to (1) which assumes that the electrodes
are of insignificant volume, the proposed solution takes into account the fact that every robot,
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Figure 2 – Schematic view of the sensor.
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Figure 3 – (top) Picture of a 7-electrode slender sensor organized in 4 polarizable rings, 3 of
them being divided in two half rings allowing two lateral (left and right) measurements. (bottom)
General schematic view of the slender sensor with its parametrisation.

including the physical volume of the electrodes, will distort the electric fields in a non negligible
way. Beyond these practical aspects, the proposed approach introduces some modeling tools not
much used by the robotics community, and reveals some fundamental aspects of the electric sense
by immersing its modeling in the general framework of the reflection method as it is developed in
the field of low numbers hydrodynamics [12]. Once adapted to electrokinetics, this method is well
suited for electrolocation. Beyond electric sensing, we believe that it is also well suited for other
active senses, such as echo-location based on the sonar technology. Here restricted to the rigid
slender vehicles widely used in underwater robotics, the proposed modeling approach aims to
be sufficiently generic to represent a first encouraging step towards its future application to the
geometry of a fish-like robot. In particular we will see that at the leading order of approximation
with respect to small quantities in the problem, the model of the slender sensor working in the
mode U -I finally requires two sets of elements. Firstly, an axial conductance matrix and a set of
lateral polarization factors that encode the model of measurement in the absence of any object
and that can be directly measured on the robot. Secondly, the "reflection lateral matrix" and
the "reflection axial matrix" which model the reflection of an incident electric signal projected
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respectively onto the lateral surfaces and to the sensor axis. Finally, beyond a wealth of applica-
tions in bio-robotics, the work proposed here could also contribute a valuable reduction scheme
for the calculation of the resistance operator of various sensors immersed in conductive media
and thus could be applied in other fields.

The article is structured as follows. In section 2, the so-called electric direct problem of elec-
trolocation is stated in a local form. The next section deals with an expansion in successive
perturbations based on the reflection method. Then, (section 4) the starting direct electric pro-
blem is restated in an integral form which uses Green’s identities as does the Boundary Elements
Method (BEM). The integral formulation is also applied to the reflections from the sensor to the
object when the sensor is considered singly. All these results are applied to derive the approxi-
mated models of the emitted signal (from sensor to object (section 5)), reflected signal (from
object to sensor (section 6)), and re-reflected signal (from the sensor to the object (section 7)).
Section 7 ends with the form of the total currents and their reformulation based on the symmetry
properties of the sensor. The model is tested by making comparisons of simulations based on
the BEM and the proposed simplified model in section 8. In section 9, the use of the model
for electrolocation in robotics is illustrated in a simple experimental test. There is a concluding
discussion of the results in section 10.

2 Local formulation of the direct problem of electrolocation

In all the following, for any three dimensional subset S of R
3, we denote by ∂S its boundary

defined as a two dimensional subset of R
3, and So = S − ∂S, the set of interior points to S.

B
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Figure 4 – Schematic view of the general scene.

Let us consider a set of objects O = ∪p
k=1(Ok) each one being constituted of an homoge-

nous isotropic Ohmic material of respective conductivities γ1,2,..p. These objects are immersed
in ordinary water of conductivity γ. We add an active object denoted B to the passive objects
already present in the scene. This object, which is the sensor, is a mosaic of n + 1 electrodes
defined as ideal conductors whose wet boundaries are denoted ei=0,1,...n (see Fig. 2 and 3). These
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electrodes are gathered into m + 1 connected populations denoted Eα, α = 0, 1, 2...m such that
∪i=n

i=0ei = ∪α=m
α=0 Eα. In the current design of Fig. 3, these populations are annular and separated

from each other by insulating axisymmetric connections ∪α=m
α=1 Iα. On each of the ei, we can

measure the current that flows across it. On each of the populations Eα, we can impose an ar-
bitrary potential except on E0, which plays the role of the origin of potentials, or "mass". For
this electrode, we have E0 = e0 (E0 is not divided in electrodes of independent measurement).
The obvious reason for setting all electrodes of a given population at the same potential is to
avoid the electrical short-circuits that unavoidably otherwise result. The wetted domain of the
scene is denoted D. Its boundaries are on the objects (including the sensor) or are infinitely
far from them with an outward normal on ∂D denoted by n. In this context, the equations of
physics, which rule the evolution of the measurements for any scene schematized on Fig. 4, can
be formulated as the following direct electric problem :

Find the electric potential φ verifying the following set of equations :

• Laplace equation for the electric potential :

△φ = 0, ∀x ∈ Do. (2)

• Ohm’s law in water, with j the current density field :

j = −γ∇φ, ∀x ∈ Do. (3)

• Conditions on the boundaries of the sensor :

– On the conductors (electrodes) the potential is known (it is imposed) from :

φ(x) = Uα(t), ∀x ∈ Eα=0,1..m, (4)

where U0(t) = 0, since E0 is the reference electrode which defines the "mass" of the sensor.

– On the insulating connections we have, :

∂φ

∂n
(x) = 0, ∀x ∈ Iα=1,2...m, (5)

where for any function f , ∂f/∂n = ∇f.n, the dot denoting the scalar product in R
3.

• On the boundaries of the objects (by setting x± = limε→0(x ± εn)) :
– Conservation of normal currents across the boundaries :

γ

(
∂φ

∂n

)
(x−) = γk

(
∂φ

∂n

)
(x+), ∀x ∈ ∂Ok=1,...p. (6)

– Continuity of the potential through the boundaries :

φ(x−) = φ(x+), ∀x ∈ ∂Ok=1,...p. (7)

Finally, to complete the formulation of the direct model, the expressions of the measurements
must be stated. They can be easily deduced from the electric state of the scene φ, as :

For : k = 0, 1, 2...n, Ik = −

∫

ek

j.nds = γ

∫

ek

∂φ

∂n
ds, (8)

where due to the orientation of n, one current is considered positive when it flows out from the
sensor and negative when it enters into it.

5



Ecole des Mines de Nantes Technical Report No.: 11/9/AUTO

3 Principles for the resolution of the direct problem by the me-
thod of successive reflections

3.1 Preliminary restrictions and definitions related to the scene

Before introducing the principle of the method of reflections, we are going to impose some
restrictions to the scene. Firstly, from now on we will adopt the sensor design of Fig. 3. In this
case, its boundary is composed of a cylinder of radius R and of one hemisphere of radius R at
each end. The total length of the sensor is l and its aspect ratio R/l fixes the small quantity with
respect to which all the expansions will be achieved. In other terms, the sensor is axisymmetric
and slender. As regards the sensor boundaries, the independently polarized populations Eα with
α = 1, 2...m−1, are ring-shaped electrodes, while E0 and Em refer to the hemi-spherical electrodes
at each end. All these electrodes have a length lEα ∼ R, and are separated by insulating cylinders
Iβ (β = 1, 2, ...m) of radius R and of length lIβ

. Secondly, the set of objects reduces to a unique
object 1 of typical dimension a considered as small relative to the axial dimension of the sensor
l, i.e. typically of the order of the sensor radius R.

3.2 Presentation of the method with the application to the electrolocation

of object

Despite these simplifications, the exact analytical integration of the direct problem (2-7) is
not possible 2. But because of the strong decrease of the electric interactions with distance, one
can approximate the exact solution of the direct problem by a series expansion as follows :

φ = φ0 + φ1 + φ2 + ... =

∞∑

i=1

φi. (9)

As i increases, |φi| decreases as the inverse of a certain power denoted s (s is a strictly positive
integer) of the typical distance separating the sensor and the object, denoted r and which is such
that r >> R. In practice, for r & 3R the approximation already works, but in order to facilitate
the understanding of the subsequent developments we invite the reader to consider that in all
the following r & l. Under these conditions, such an expansion is accessible by resorting to the
general perturbation schemes well established in theoretical physics [13]. Here we will follow the
method of successive reflections as it is today used in low Reynolds number hydrodynamics for
modeling the interactions between particles of a diphasic flow [12]. In the current context, this
iterative method is applied as following :

1. Step 0 ("Emission by the sensor") : We ignore the object by removing it from the scene
and calculate the response of the sensor which we denote φ0 and which is the solution of
the direct problem with no object :

△φ0 = 0, ∀x ∈ Do. (10)

Boundary conditions :

φ0(x) = Uα(t), ∀x ∈ Eα=0,1..m,

∂φ0

∂n
(x) = 0, ∀x ∈ Iα=1,...m.

(11)

1. The multi object case will be discussed later.
2. So that the generally accepted method would be to resort to rather heavy numerical simulation for each

configuration of the objects.
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2. Step 1 ("First reflection traveling from the object to the sensor") : φ0 being known from
the previous step, we remove the sensor from the scene and calculate φ1 such that the
boundary conditions on the object are verified by φ0 + φ1. The system to solve becomes :

△φ1 = 0, ∀x ∈ Do (12)

with the boundary conditions on the objects in currents :

γ
∂φ1

∂n
(x−) −γk

∂φ1

∂n
(x+) = γk

∂φ0

∂n
(x+) − γ

∂φ0

∂n
(x−)

= (γk − γ)
∂φ0

∂n
(x), ∀x ∈ ∂Ok,

(13)

and in potential, ∀x ∈ ∂O :

φ1(x−) − φ1(x+) = φ0(x+) − φ0(x−) = 0. (14)

3. Step 2 ("Second reflection traveling from the sensor to the object") : Again, φ1 is known
from step 1 and we remove the object and calculate φ2 such that the boundary conditions
on the sensor are verified by φ0 + φ1 + φ2. In other terms, φ2 is solution of the system :

△φ2 = 0, ∀x ∈ Do, (15)

with the boundary conditions :

φ2(x) = −φ1(x), ∀x ∈ ei=0,1,..n,

∂φ2

∂n
(x) = −

∂φ1

∂n
(x), ∀x ∈ Iα=1,2...m.

(16)

... and so on...

The principle of this iterative method is summarized in Fig. 5. This perturbation series
expansion has a natural physical meaning. Each of the φi represents the response to φ0 + φ1 +
...φi−1 alternatively reflected by the object and the sensor through their boundary conditions
as the number of reflections i increases (see Fig. 5). This interpretation of the expansion gives
its name to the method. We naturally recover in this interpretation the attenuation in 1/rs

of the amplitude of the transmitted signals at every traveling between the sensor B and the
object O, with s depending of the size of B and O. More precisely if we define |φi+1/φi| as
the attenuation factor introduced by the ith reflection and measured at some intermediate point
located between the sensor and the object we will see that this factor is of the order of (a/r)3 if
i is even (reflection on the object) or of the order of (R/r) if i is odd (reflection on the sensor).
Finally, let us note that these successive reflections have in fact a strong physical meaning, since
during very short transient times, the celerity of the signal cannot be assumed to be infinite and
the Laplace equation of φ changes into an actual propagation equation. Thus, in this short time
the successive reflections of the method do exist, but very rapidly interfere constructively and
destructively in order to generate the steady solution φ. Note also that for the active acoustic
sense, or echo-location, these transient reflections are of greater duration. Moreover, in this case,
attenuation factors can be decreased by one order since a monopole is physically feasible in
acoustics (and in optics) whereas in electrostatics, the emitters being electrically neutral, they
can be only dipoles at leading order. Finally, by injecting the potential series expansion (9) into
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...
 

φ0 φ0 + φ1

φ0 + φ1 + φ2

Step 0

Emission

Step 1

1st reflection

Step 2

2nd reflection

Figure 5 – The method of the successive reflections. First step (top left) : we ignore the object
and we solve the Laplace equation for φ0. Second step (top right) : this time we ignore the sensor
and we solve the Laplace equation for φ0 + φ1 where φ1 is the perturbation of φ0 induced by
the object. Third step (bottom left) : we solve the Laplace equation for φ0 + φ1 + φ2 ignoring
the object this time, φ2 being the perturbation of φ0 + φ1. Each novel potential field can be
represented as a new contribution (to φ) reflected by the object or the sensor. The method can
be pursued but as the interactions fall with the inverse of a positive power of the distance, there
is no interest in doing so.

the definition of the measured currents (8), every reflection contributes individually to the total
measurement which can be expanded as follows :

I ≃ I(0) + I(1) + I(2) + ... (17)

where every novel contribution is defined for : k = 0, 1, 2...n, and i = 0, 1, 2.. by :

I
(i)
k =

∫

ek

γ
∂φi

∂n
ds. (18)

3.3 Truncation of the expansion : approximation of the second reflection

Because of the strong attenuation factor introduced by each reflection, we will see that it is
reasonable to adopt the following approximation :

φ ≃ φ0 + φ1 + φ2. (19)

The measured currents vector I will be consistently approximated by :

I ≃ I(0) + I(1) + I(2). (20)

Such an approximation is termed in the following the "second reflection approximation".
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4 Integral formulation of the problem

By virtue of the Green identities [2], the direct problem (2-7) can be restated in an integral
formulation which consists in finding the potential φ in any interior point of the wetted domain
(x ∈ Do) defined by :

4πφ(x) =

∫

∂D

(
1

r

∂φ

∂n
− φ

∂(1/r)

∂n

)
ds, (21)

where 3 r = ‖x−y‖, y being an arbitrary point situated on the wetted boundaries of the domain
(y ∈ ∂D). In particular, if we make any interior point x tend towards its immediate neighboring
point on the boundary (along its normal direction), we find the relation valuable for any x ∈ ∂D :

2πφ(x) =

∫

∂D

(
1

r

∂φ

∂n
− φ

∂(1/r)

∂n

)
ds, (22)

where we considered that the boundaries are smooth (without any angular point). This last inte-
gral equation is at the basis of the numerical BEM [14,15]. In this case, it is required to discretize
the boundaries in finite elements and to approximate the potential or current distributions on
any element through nodal interpolations. At the end, one obtains an implicit linear differential
algebraic system whose dimension corresponds to the number of nodes and whose general form
is :

AI +BΦ = 0, (23)

where I and Φ are respectively the current vector and the potential vector evaluated on
the meshing elements, whereas A and B are two matrices which encode the geometry and the
conductivity of the medium. In particular if we approximate the potential on each element by
a constant value (1-node interpolation), every line of this system represents the contribution of
one element to the previous integral equation. Also, since on every element we know either the
potential or the current, we have one unknown per equation and the system can be (numerically)
solved 4. Now let us detail further the previous integral equation in the case which interests us. By
taking into account the specificities of the problem as it was previously defined, i.e. by separating
the sensor’s boundaries from those of the objects (i.e. ∂D = ∂O ∪ ∂B), we find :

∀x ∈ ∂B :

2πφ(x) =

∫

∂B

(
1

r

∂φ

∂n
− φ

∂(1/r)

∂n

)
ds+

∫

∂O

(
1

r

∂φ

∂n
− φ

∂(1/r)

∂n

)
ds, (24)

∀y ∈ ∂O :

2πφ(y) =

∫

∂B

(
1

r

∂φ

∂n
− φ

∂(1/r)

∂n

)
ds+

∫

∂O

(
1

r

∂φ

∂n
− φ

∂(1/r)

∂n

)
ds. (25)

3. In the following r will denote the distance between any couple of points, one being the current point of the
integral and the other being fixed.

4. With A and B defined by Aij = −
R

elti

∂(1/ri)/∂njds and Bij = (1/2)πδij +
R

elti

(1/ri)ds, with x a point

running on the jth element denoted by eltj , xi the node location of elti, ri =‖ x − xi ‖, and nj the normal to
eltj .
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From left to right and from above to below we find in the second members of these two equations :
the influence of the sensor on itself, the influence of the objects on the sensor, the influence of
the sensor on the objects and the influence of the objects on themselves. Finally, (24-25) express
the electric equilibrium of the scene.

4.1 Application to the sensor in the absence of an object

The previous integral formulation will allow us to calculate the measured currents at each
step of the reflection method where we have no object in the scene. Thus, in the second reflection
approximation, (24-25) will be used with the boundary conditions of the emission φ0, and the
second reflection φ2 respectively. Furthermore, in these two cases we have to remove the object
from equation (24) and take into account ∂B = (∪m

α=1Iα)∪ (∪m
α=0Eα) in the resulting equations.

Then, it becomes possible to write the following set of integral equations which are verified on
each electrode, i.e. ∀x ∈ Eα :

2πφi(x) =

m∑

β=1

[∫

Iβ

((
∂φi

∂n

)
1

r
− φi

∂(1/r)

∂n

)
ds

]
+

m∑

β=0

[∫

Eβ

((
∂φi

∂n

)
1

r
− φi

∂(1/r)

∂n

)
ds

]
. (26)

In the following, we will calculate from (26) the electric responses I(i=0,2) of the sensor. Going
further, by injecting in (26) the boundary conditions of φ0 and φ2 given by (11) and (16), we
find the two equations which rule the electric equilibrium of the sensor in the step 0 and 2 :

– Emission from the sensor to the object (φ0) :

2πUα =
m∑

β=0

[∫

Eβ

(
∂φ0

∂n

)
ds

r
−

∫

Eβ

∂(1/r)

∂n
dsUβ

]

−

m∑

β=1

[∫

Iβ

φ0
∂(1/r)

∂n
ds

]
, ∀x ∈ Eα. (27)

– Second reflection from the object to the sensor (φ2) :

2πφ1(x) =

m∑

β=1

[∫

Iβ

(
∂φ1

∂n

)
ds

r
+

∫

Iβ

φ2
∂(1/r)

∂n
ds

]

−

m∑

β=0

[∫

Eβ

(
∂φ2

∂n

)
ds

r
+

∫

Eβ

φ1
∂(1/r)

∂n
ds

]
,∀x ∈ Eα.

(28)

5 Model of the emission from the sensor to the object

The model of emission is set firstly by the model of the measured currents in absence of object
in the scene I(0) (section 5.A), and secondly by the model of the ambient field φ0 produced by
the inner electric activity of the sensor without object (section 5.B).

10



Ecole des Mines de Nantes Technical Report No.: 11/9/AUTO

5.1 Model of the currents I(0)

The goal of this section is to calculate the response of the sensor in terms of the measured
currents in the case where we have no object while the sensor is submitted to the boundary
conditions of φ0. In the following this problem is solved by the BEM. This approach has the
advantage of not requiring any approximation of the geometry of the sensor while the heavy
computations it requires can be done once for all for a given sensor. By meshing the electrodes
Eα and the insulating surfaces Iα by respectively nc and ni elements, the general linear implicit
system (23) can be detailed as :

(
Acc Aci

Aic Aii

)(
I
(0)
c

0

)
+

(
Bcc Bci

Bic Bii

)(
Φ

(0)
c

Φ
(0)
i

)

=

(
0nc

0ni

)
, (29)

where I(0)
c , Φ

(0)
c and Φ

(0)
i represent respectively the vectors of currents and potentials on the

boundaries of the conductors and the insulators in absence of any exterior object. Then we
define the (n + 1) × 1 vector of measured currents as well as the (m + 1) × 1 vector of the
potentials imposed to the electrodes Eα :

Φ(0)
c = Pnc,m+1U , I(0) = P T

nc,n+1I
(0)
c , (30)

where Pnc,m+1 distributes the vector of the m+ 1 imposed potentials on the nc elements which
mesh the borders of the electrodes Eα, and P T

nc,n+1 performs the summation of the nc currents
of the elements which compose the electrodes ei to produce the vector of the n+ 1 independent
measured currents. Then if we use the second line of (29) to express Φi as a function of I(0)

c

and Φ
(0)
c which we then re-inject in the first line of (29), we obtain the reduced implicit linear

system :
ÃccI

(0)
c + B̃ccΦ

(0)
c = 0c, (31)

where : Ãcc = Acc − BciB
−1
ii Aic and B̃cc = Bcc − BciB

−1
ii Bic are two squared matrices. Finally

by using the two projectors (30), we obtain the model of the measured currents :

I(0) = C(0)U, (32)

where we have introduced the (n+1)×(m+1) conductance matrix in the absence of any object :

C(0) = lim(nc,ni)→∞ − P T
nc,n+1Ã

−1
cc B̃ccPnc,m+1, (33)

which can be off-line computed once for all, or alternatively deduced from a preliminary calibra-
tion of the sensor, far from any object. In the following we will also use the (m+1)×(m+1) square

axial conductance matrix defined by C
(0)

= P+C
(0) where P+ = P T

n+1,m+1 projects the currents
crossing the electrodes ei onto those crossing the electrodes Eα (by performing a summation of
the currents ring by ring, which is meant by the index "+") according to :

I
(0)

= P+I
(0). (34)

In (34), I
(0)

refers to the reduced vector of axial currents with no object. To illustrate these
computations, let us apply them to the sensor presented in the picture (see Fig. 3) for which the
electrodes Eα are spliced into two opposite (left/right) half rings and whose dimensions are those
of section VIII. Then, for n+1 = 7 and m+1 = 4 and with a meshing of 2444 1-node triangular

11



Ecole des Mines de Nantes Technical Report No.: 11/9/AUTO

elements, the previous computations give the following axial conductance matrix in the absence
of any object :

C
(0)

≃
γ

100




7.6534 −3.1370 −2.3053 −2.1829
−3.1370 8.3933 −3.2027 −2.0804
−2.3053 −3.2027 7.8032 −2.3190
−2.1829 −2.0804 −2.3190 6.6052


 .

Finally, let us notice that by replacing (32) by the reduced (axial) relation :

I
(0)

= C
(0)
U, (35)

we lose no information if we complete (35) with the distribution relation :

I(0) = D+I
(0)

= D+P+I
(0), (36)

where D+ is a (n+1)×(m+1) matrix said of distribution since in the general case, D+ is defined

by : D+iα = I
(0)
i /I

(0)
α , if ei ⊂ Eα, and D+iα = 0, otherwise. Finally, when the electrodes Eα are

partitioned along the sensor axis into the electrodes ei (as on the example of Fig. 3), then due to
the sensor axisymmetry, D+iα = Ai/Aα where Ai and Aα are the areas of ei and Eα respectively.

5.2 Model of φ0, model of the applied field E0

The potential field generated by the electric activity of the sensor in the absence of any object
is simply defined by removing the influence of the objects in the integral equation (24), which
gives :

4πφ0(y) =
m∑

α=0

∫

Eα

(
∂φ0

∂n

)
1

r
ds

−

m∑

α=0

(∫

Eα

∂(1/rα)

∂n
ds

)
Uα −

m∑

α=1

∫

Iα

φ0
∂(1/r)

∂n
ds, (37)

where y refers now to any point of the domain (without object) exterior to the sensor, and n

now points toward the water. By performing a perturbation series expansion of (37) with respect
to the small quantity R/r ≃ R/l, we can show (see Appendix A for more details) that :

φ0(y) =
1

4π

m∑

α=0

I
(0)
α

γrα
+O

(
R

r

)
. (38)

Thus, the electric field applied by the sensor in any point of the space and in particular at the
point yc which is the center of the object O, can be written at the leading order in R/r :

E0(yc) =
−1

4γπ

m∑

α=0

(
∇y

1

r

)
I
(0)
α =

1

4γπ

m∑

α=0

I
(0)
α rα

‖rα‖3
, (39)

where each rα refers to the position vector of yc with respect to the center of the conducting ring
Eα. Finally, let us notice that the applied field (39) is nothing but that which would be produced
by a distribution of punctual charges ρ(x) =

∑m
α=0 qα δ(x − xcα) located at the centers of the

electrodes xcα and of equivalent intensities qα = ǫI
(0)

α /γ where ǫ is the electrical permittivity
of the water. One should note that this result is not so trivial as it may appear at first view,
since other physical charges are also present on the sensor (located on the insulating cylinders for
instance, or on the internal faces of its electrodes). It is precisely the purpose of Appendix A to
demonstrate that those charges do not contribute at leading order due to the slender geometry
of the sensor.

12
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6 Model of the first reflection (from the object to the sensor)

This model requires the calculation of the potential φ1 reflected by the perturbative object
(section 6.1), here supposed to be reduced to a unique object O and to the vector of currents
I(1) produced by φ1 (section 6.2).

6.1 Model of φ1, calculation of the response of a small object introduced into

an external field E0

To calculate φ1, one can consider directly the partial differential equations which rule it,
and in particular the boundary conditions (13-14) into which we inject the general form of the
solutions to the Laplace equations expanded in a basis of spherical harmonics. Regarding the
second member of (13-14), we suppose that the object is small enough to reasonably approximate
E0 in the whole domain of the object by its value in its center y = yc, given by (39). Finally,
a term by term identification process on the basis of the spherical harmonics gives the following
electric response of the object to the external field :

φ = φ0 + φ1 = −E0.r +
p(E0).r

r3
, (40)

where p is the dipolar moment vector of the object O induced by the application of the external
field E0. In the case of two Ohmic materials (one constituting the small object, the other being
water), its response is totally encoded into the linear relation :

p(E0) = P.E0, (41)

where P is the so-called two order tensor of polarizability of the object (here O). It encodes both
the geometry of the object and the electric properties of its material with respect to those of its
surroundings. For instance, in the case of a sphere of small size, the isotropic geometry of the
object does not privilege any polarization direction and we simply have :

P = χa31, (42)

where χ = (γ1 − γ)/(2γ − γ1) is the contrast factor of the two materials composing the scene,
i.e. the water of conductivity γ and the object O of conductivity γ1, a is the radius of the sphere
and 1 is the Kronecker tensor.

6.2 Model of the currents I(1)

In this section, n refers to the outward normal vector on the sensor. Also, the currents I(1)

can be deduced from the integral relations (8) after one has changed its sign :

I
(1)
k = −γ

∫

ek

∂φ1

∂n
ds. (43)

which represents the geometric flux of the electric field reflected by the object. Finally, a calcu-
lation based on the perturbations series expansion of (43) with respect to the lateral dimensions
of the sensor (detailed in Appendix B) gives at the leading order where the first reflection field
is approximately uniform on the Eα :

I(1) ≃ LI
(0)

= LC
(0)
U, (44)

where we have introduced the lateral reflection matrix :

Lkβ = −
Ak

4πr3α(k)

(2cνkerα(k) + cµkeθα(k)).P.

(
rβ

r3β

)
, (45)

13
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α(k) being the index of the ring Eα to which ek belongs, while all other parameters of (45) are
represented in Fig. 6 and introduced along the calculations of the Appendix B.

erα

xcα

νk
nk

µk

eθα

Eα

p

yc

θα

ek

Figure 6 – The perturbation I(1). A schematic view of one perturbated Eα of the sensor is
depicted. The perturbation I(1) gives lateral information by measuring the net flux of γE1 across
the electrodes ei. Like the fish, the sensor is able to know which "side" of its body is more affected
by the presence of the object.

Starting from (45) it is useful to split the model of the currents I(1) into two sub models :

the axial model (denoted I(1)
ax ) and the lateral model (denoted I(1)

lat ), respectively associated with
the flow of γE1 entering in parallel and perpendicularly to the axis of the sensor. To do this, we
can rewrite n in (43) as n = sλeρ + cλeX = n⊥ + n‖, where we have introduced the cylindrical
coordinates (ρ, ψ,X) of the sensor such that ic = eX , and where λ(X) is the deviation angle
relative to the axis of the sensor of all the normal vectors to the surface of a lateral strip of length
dX centered in X. It then remains to re-apply the previous computations to obtain the model
I
(1)
lat and I(1)

ax in the matrix form (45), i.e. :

I(1)
ax ≃ LaxC

(0)
U , I

(1)
lat ≃ LlatC

(0)
U, (46)

where we have introduced the reflection axial matrix and the reflection lateral matrix, which can
be detailed as :

Lax,kβ =
−Ak‖

4πr3α(k)

(2cνk‖erα(k) + cµk‖eθα(k)).P.

(
rβ

r3β

)
, (47)

as well as :

Llat,kβ =
−Ak⊥

4πr3α(k)

(2cνk⊥erα(k) + cµk⊥eθα(k)).P.

(
rβ

r3β

)
, (48)

with cνk⊥ = erα.nk⊥, cµk⊥ = eθα.nk⊥, cνk‖ = erα.nk‖, cµk‖ = eθα.nk‖, as well as Ak‖nk‖ =
∫
ek
cλeXds, and : Ak⊥nk⊥ =

∫
ek
sλeρds. In the next section, we will establish that I(1)

ax is a

sub-dominant contribution of the total axial current, while I(1)
lat is a dominant contribution to the

so-called lateral currents that permits the resolution of the azimuthal ambiguity of the object
position.

14
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7 Second reflection (from the sensor to the object), the full model
in the approximation of the second reflection

7.1 Model of I(2)

The goal consists here in calculating the currents produced by the second reflection by the
sensor (φ2), i.e. the component I(2) of I (total). For that purpose, we have to reconsider the
integral equations (28) which encode the response (in terms of currents) of the sensor to the
polarization imposed by the reflected potential φ1. We look for this response under the form
I(2) = I

(2)
ax + I

(2)
lat where the first component is due to the polarization along the sensor axis (i.e.

due to the differences of φ1 along the sensor axis), while the second component represents the
response of the sensor to the lateral polarization (i.e. the gradient of φ1 perpendicular to the
sensor axis).

7.1.1 Model of I
(2)
ax

Keeping the leading order of a perturbation expansion of (28) with respect to the lateral
dimensions of the sensor (see Appendix C) shows that the first integral contribution due to the
insulating boundaries is negligible while on each Eα, φ1 can be approximated as being uniform
and equal to φ1(xcα). Thus, at the leading order, (28) takes the same expression as (27), with
φ2 replacing φ0 and for α = 0, 1, · · · ,m, −φ1(xcα) replacing Uα. Hence, at the leading order

the calculation of I
(2)

= P+I
(2) can be simply deduced from the model of I

(0)
, by replacing

U = (0, U1, U2, ...Um)T in (35) by the vector −Φ1 = −(Φ1,0,Φ1,1, ...Φ1,m)T defined by :

For α = 0, 1...m : Φ1,α = φ1(xcα), (49)

which yields :

I
(2)

= −C
(0)

Φ1. (50)

Then, if we refer to the expression of φ1 given by (40) in which we first inject the expression (39)
of E0, we find, with all position vectors pointing from the sensor to the object :

Φ1α =
rα.P.E0

‖rα‖3
= −

1

4πγ

m∑

β=0

(
rα.P.rβ

‖rα‖3‖rβ‖3

)
I
(0)
β , (51)

which can be rewritten in the matrix form :

Φ1 = KI
(0)
, (52)

where K is a matrix whose components can be detailed as :

Kαβ = −
1

4πγ

rα.P.rβ

‖rα‖3‖rβ‖3
. (53)

In the following K is named the axial reflection matrix since it encodes how the potentials
reflected by the object are applied onto the electrodes Eα aligned along the sensor axis. Finally,
these reflected potentials will then create a reaction of the currents of the sensor, once again
modeled by the axial conductance matrix in the absence of any object :

I
(2)

= −C
(0)
KI

(0)
= −C

(0)
KC

(0)
U. (54)

This simple relation, which requires no additional knowledge of the sensor, is a virtue of its
slenderness (see Appendix C for more details). Finally, remarking that (36) can be prolonged to
the case of any axisymmetric boundary conditions applied to the sensor with no object, we have

at the leading order of approximation : I(2)
ax = D+I

(2)
.
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7.1.2 Model of I
(2)
lat

Next, pushing the expansion of (28) with respect to the lateral dimensions at the next order

(see Appendix D), allows one to capture the lateral response I(2)
lat such that I(2) = I

(2)
ax + I

(2)
lat .

In fact, from such an expansion, it is easy to show that the electric field of the second reflection
is related to that of the first reflection through simple linear relations, which once inserted into
(17) and based on considerations exploiting the axisymmetry of the sensor give :

I
(2)
lat = S⊥ I

(1)
lat . (55)

In (55), S⊥ is a diagonal matrix whose components, denoted by s⊥α(k), are positive and identical
for all the electrodes ek of the same Eα. From a physical point of view, the S⊥ matrix models
the reinforcement of the current I(1)

k by the lateral polarization of Eα(k) superimposed to the
funneling effect of the insulating boundaries neighboring Eα(k). In section 8, we will see how it is
possible to directly measure the S⊥ matrix through a preliminary calibration.

7.2 Approximation of the second reflection, axial-lateral decomposition of

the currents

7.2.1 Justification of the second reflection approximation

We have now at our disposal all the results required to justify the second reflection ap-
proximation (19) and (20). As regards the potentials, combining (39) and (36), and because

C
(0)
γ−1 = O(R) (which can be easily shown by expanding (27) with respect to the lateral

dimensions of the sensor), it appears that, reflection after reflection, when the signal passes
the sensor it decreases by a factor R/r (i.e. of one order of magnitude). On the other hand,
examining (41-43) shows that when the signal passes in transit by the object, it is attenua-
ted by a factor of order (R/r)3 (i.e. of 3 orders). Also, we have |φ0/U | = |φ2/φ1| = O(R/r)
while |φ1/φ0| = O((R/r)3). Inspecting the currents is even more simple since it suffices to
consider (45) and (55) to find, with from (46), (54) L = O((R/r)5) and γK = O(R3/r4) :
|I(1)/I(0)| = O((R/r)5) and |I(2)/I(0)| = O((R/r)4). Finally, pushing the method to the next re-
flection would add contributions such that |I(4)/I(0)| = O((R/r)8) and |I(3)/I(0)| = O((R/r)10).
Compared to the neglected terms brought by the second reflection, these additional terms are
entirely negligible.

7.2.2 Taking advantage of the symmetries

According to the previous results, the truncated model of total currents (20) in presence of
the object can be detailed as follows :

I = I(0) + I(1) + I(2)

= I(0) + I(1)
ax + I

(1)
lat + I(2)

ax + I
(2)
lat

(56)

Then, let us notice that the currents I(0) + I
(1)
ax + I

(2)
ax are axisymmetric. To convince oneself of

that, we note that I(0) + I
(2)
ax is generated by differences of uniform potentials applied onto the

rings Eα (imposed by the control, for I(0), or by the potential reflected by the object for I(2)).

Similarly, I(1)
ax presents the same symmetry but for different reasons. In this case it is the flow of

the field E1 reflected by the object and projected in parallel to the axis which creates the current.
Also, this field being uniform on the rings and n‖ being axisymmetric, I(1)

ax is axisymmetric too.

Regarding the component I(1)
lat , it also obeys a symmetry property. I(1)

lat represents the lateral flow
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of the field E1 reflected by the object and in particular, taking into account the fact that E1 can
be reasonably considered as uniform on every ring, we have for any k = 0, 1...n :

I
(1)
lat,k = γ

∫

ek

E1.n⊥ds ≃ γE1.

∫

ek

n⊥ds. (57)

Thus, if every ring is pairwise divided into opposed identical angular segments, then for every
pair of azimuthally opposed ei, the measured currents have the same strength but are of opposite
sign. Moreover, due to (55) and S⊥ = diag(s⊥α(k)), I

(2)
lat and finally Ilat = I

(1)
lat +I

(2)
lat = (1+S⊥)I

(1)
lat

inherit the same symmetry property. Consequently, the currents of Ilat follow a luminous analogy,
the surface of the electrodes facing a conducting object being lit by currents flowing in, while
the electrodes on the opposite side of the sensor are in the shadow of the outward currents.
Conversely, with an insulating object the nearer side of the sensor is shadowed while the opposite
side is in the light. Furthermore, it is possible to extract Ilat from I. To do this, we just have
to perform the difference of the currents crossing the couples of azimuthally opposed sections
ei since, the other components of I being axisymmetric, their difference is null. Finally, since
the emission electrode e0 = E0 is not divided into opposed sections, such an operation can be
encoded in the projection matrix P− of dimensions ((n/2) + 1)× (n+ 1), which once applied to
I = (I0, I1, I2, ...In)T , gives the reduced vector : (I0, I2 − I1, I4 − I3, ...In − In−1)

T , in the case
where the numbering of the electrodes ei (i > 1), is such that the (ei, ei+1) are opposed pairs in
the same Eα. In addition, as the current intensities |Ii| and |Ii+1| are equal it becomes easy to
recover the currents vector Ilat by applying a distribution matrix D− to the left of P− in such
a manner that D−P− = 1(n+1)×(n+1). This can be summarized by the extraction formula of the
lateral currents from the total currents :

Ilat = D−P−I. (58)

Moreover, the axisymmetric geometry of the sensor also imposes for every Eα :

∑

k(α)

I
(1)
lat,k(α) ≃ γE1.

∑

k(α)

∫

ek(α)

n⊥ds

= γE1.

∫

Eα

n⊥ds = E1.0 = 0, (59)

which allows one to write from (55) the matrix relation :

P+Ilat = 0. (60)

Now if we introduce Iax, the vector of the axial currents of the sensor, it becomes possible to set
it apart by the simple relation :

Iax = I − Ilat = D+P+I. (61)

Finally, taking advantage of the symmetry properties of the sensor allows one to separate the
measured currents into two types : the axial components and the lateral components. In the
following we will detail further the model of these components.

7.2.3 Axial model of the currents in the approximation of the second reflection

If we project (56) onto the electrodes Eα, by virtue of (60) the lateral currents disappear and

we have at the leading order (with | I
(1)
ax /I

(2)
ax |= O(R/l)) :

P+I = I
(0)

+ I
(2)

+ P+I
(1)
ax

≃ I
(0)

+ I
(2)

= (C
(0)

− C
(0)
KC

(0)
)U.

(62)
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Now, if we introduce R
(0)

, the axial resistance matrix of the sensor with no object which verifies

1 = C
(0)
R

(0)
, 1 being the (m+ 1)× (m+ 1) identity matrix, we recognize in (62) the first order

approximation of the total resistance matrix of the scene 5, which we denote R. In fact :

R
−1

≃ (R
(0)

+K)−1

≃ C
(0)

− C
(0)
KC

(0)
, C

(0)
+ C

(1)
,

(63)

where we denote C
(1)

the conductance perturbation caused by the introduction of a small object
into the scene. It follows that in the case of a unique object, the matrix K is nothing but the

resistive perturbation (which we denote R
(1)

) induced by the presence of the object. For instance,
if the object is an insulating sphere then χ < 0 in (42), and K is then positive, so increasing
the total resistance of the scene. Conversely, if the object is a conductive object, χ > 0, and its
presence decreases the total resistance of the scene. Moreover, by virtue of the superimposition
principle, if the objects are far enough from each other to not influence themselves electrically,
every object will create a perturbation of the same nature, the whole perturbation being identified
as the sum of the individual perturbations. And so we obtain for p objects :

R = R
(0)

+R
(1)

= R
(0)

+

p∑

i=1

Ki, (64)

where R
(1)

denotes now the perturbative resistance induced by the direct reflection of all the
objects existing in the scene. Continuing with the framework of the reflection method, the possible
electric influences between the objects can be interpreted on R by the addition of coupling
resistances which would be approximated by the reflections between the objects. Furthermore,
each small object introducing a strong attenuation factor, the effect of the reflections between
objects can be neglected except when the objects are in contact. But in this case the electric
continuity makes of the objects a unique one so leading one to the case of a unique object.

7.2.4 Model of the lateral currents in the approximation of the second reflection

The model of the lateral currents is complementary to the previous one. To measure it, we
can apply (58). It then remains to equate those measurements to their expressions obtained from
the previous modeling, to obtain :

Ilat = (1 + S⊥)I
(1)
lat = (1 + S⊥)LlatC

(0)
U, (65)

with 1 the identity matrix. Finally, when we have several objects in the scene, for similar reasons
to those previously evoked, one can neglect their mutual interactions. Also, the (direct) reflections
which every object reflects summate and we obtain Llat =

∑p
i=1 Llat,i, where every Llat,i encodes

the direct reflection rejected by the ith object which the sensor receives laterally.

8 Application to the analytical modeling of the 7-electrode slen-
der sensor

In this section, we apply the previous modeling approach to the case of the 7-electrode
slender sensor of Fig. 3 and compare its predictions in ideal unbounded conditions with the
BEM simulations.

5. Let us recall that for any invertible matrix M first order perturbated with δM : (M + δM)−1 = M−1 −
M−1δMM−1 + O(‖δM‖2)
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8.1 Experimental conditions

The sensor of Fig. 3 and 7 is such that m = 3 and n = 6 while its dimensions are : l = 22 cm,
lEα = R = 1 cm for α = 0, 1, 2, 3 ; lI1 = 13 cm, lI2 = lI3 = 2.5 cm. We place in the environment
an object of small dimension in comparison with the sensor length (see Fig. 7). The object is
a sphere of radius a = R/2 = 0.5 cm which we move along a parallel or orthogonal line to the
sensor axis (see Fig. 7). While the sphere is moved from −∞ to +∞ along this line, the currents
entering into the electrodes are measured on each position with the sensor set to a constant
voltage (1 V for the emitter and 0 V for the receivers). In order to qualify the accuracy of the
analytical model, the experiment is repeated with the BEM simulator. In both cases, the water
conductivity is set to γ = 0.04 S/m.

Figure 7 – (top) Schematic view of the benchmark : To test our models we have submitted the
sensor to a perturbation by a small sphere. The measurements are compared with both the BEM
simulator and the model for different positions of the sphere parallel and perpendicular to the
sensor axis. (bottom) The geometry and numbering of measurement electrodes.

8.2 Results

Fig. 8 and 9 show the currents measured by the BEM and the model when the sphere is moved
from −∞ to +∞ parallel to the sensor axis at distance d. In the BEM, the lateral currents are
deduced from I invoking Ilat = D−P−I, and reported on Fig. 8 for d = 5 cm and d = 8
cm respectively. Due to (55), in both cases the analytical model of (65) and (45) is used with
(1+s⊥α(k))Ak replacing Ak and 1+s⊥α(k) a shape factor, deduced from a preliminary calibration
(here d = 5 cm for which we found 1 + s⊥α(k) = 3.5 if ek is a half-ring and 1 + s⊥α(k) = 3.5, if
ek a quarter of sphere). Besides this calibration, the geometry of Ilat is adequately modeled by
the reflection axial matrix L. In particular, on each of the rings, the maximum (or minimum)
of signal appears when the sphere faces the electrode (X = Xα). As regards the axial currents,

they are deduced from Iax = I − Ilat. Then we calculate I(2)
ax + I

(1)
ax = Iax − I(0) (Fig. 9), where

I(0) was first evaluated once and for all with no object in the scene. The results presented in
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Fig. 10(a) and 10(b) show the currents measured for the second test (i.e. when the sphere is
moved from 15 mm to +∞ along a perpendicular line to the sensor axis in front of the electrodes
ei=3,4). The next plots reported on Fig. 10(a) present the lateral currents measured by ei=3,4 for
different positions of the sphere along this trajectory. Note that E2 = e3 ∪ e4 faces the sphere.
Finally, Fig. 10(b) presents the axial current measured by the ring E2 for different positions of
the sphere along the lateral trajectory.
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Figure 8 – Currents Ilat in function of X at Y = d = 5 and 7 cm measured by the electrodes
ei=1,2,..6, (solid lines : model, dotted lines : BEM).
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Figure 9 – Currents Iax in function of X at Y = d = 5 and 7 cm measured by Eα=1,2,3, (solid
lines : model, dotted lines : BEM).

9 Experimental electrolocation of a sphere with the 7-electrode
sensor

In this section we present a preliminary test whose purpose is to illustrate the applicability
of the reduced analytical model to real-time electrolocation in robotics.

9.1 The experimental test bench

The test is performed on an experimental test bench pictured in Fig.11. This set-up is a cubic
1 m3 tank on which is placed a Cartesian robot that moves in the two directions of the horizontal
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(a) Currents of Ilat in function of Y measured by the electrodes ei=3,4.
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(b) Current of Iax in function of Y measured by the electrode E2

Figure 10 – Currents measured by the electrodes E2, (solid lines : model, dotted lines : BEM).

plane and rotates a vertical stick at whose tip the probe is fixed. This device is controlled and
monitored with a dSPACEr system which allows the movement of the probe to be controlled
in real-time using the exteroceptive feedback of the electric measurements. By placing objects
of different shapes and electric properties we can test our electrolocation algorithms in various
situations.

9.2 Conditions and results of the experiment

The aim of this experimental test is to use the previous analytical model (of the 7- electrode)
with a Kalman filter (detailed in simulation in [10]) in order to reconstruct the geometric para-
meters of a sphere. As in the previous section, a sphere (insulating or conductive) is placed in
the plane of the sensor which is constrained to move forward parallel to its axis with a constant
axial velocity V = 0.1 m/s and no yawing velocity, i.e. Ω = 0 rad/s. The parameters of the scene
are : the radius a of the sphere, the length r = ‖r‖ of the vector linking the center of the sphere
and that of the probe, and the angle between r and the sensor axis (see figure 7). In order to
reconstruct these parameters, the Kalman filter is used with as inputs V and Ω as well as the
axial component Iax of the measured currents while the outputs are the estimated parameters of
the scene r̂, ϑ̂ and â. As regards the initialization of the filter, the variation of |I − I(0)| up to a
given threshold activates the detection of the presence of an object in the sensor’s surroundings.
Then, since the model of the lateral currents is unable to distinguish between an insulating object
and a conductive object situated at the same distance from the sensor axis on its two sides while
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Figure 11 – The experimental set-up. The cartesian robot permits a movement in an horizontal
plane with a precision equal to 0.1 mm.

the axial model can do it, Iax is used first to assess the two possible lateral positions and the
electric nature of the object. Then, once the electric properties of the object are known, Ilat can
be used to determine on which side of the sensor the object is. All of these preliminaries could
be used to restrict the search space in a static optimization phase which allows an initial state
of the filter to be computed. In the test presented below, the sphere is insulating (χ = −1/2),
while the initial estimated and actual states of the scene are fixed to be : r = 0.25 m, ϑ = 0.266
rad and a = 0.0305 m and r̂ = 0.32 m, ϑ̂ = 0.336 rad and â = 0.002 m. Figure 12 shows the
state of the actual and the estimated sphere with respect to time. We can see that the state
reconstructed by the filter does converge toward the actual one while figure 13 represents the
actual and the estimated scene at different times during the test.
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Figure 12 – Evolution of the actual (red) and estimated (blue) states of the sphere.
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Figure 13 – Actual and estimated scene.

10 Concluding remarks

xcαxcα

icic

jcjc

kc kc

ρρ

ψ

Figure 14 – The role played by the components Iax (left) and Ilat (right) for electrolocation.
Iax is the stronger component of the current perturbation, and gives information on the height
along direction ic and the distance ρ from the sensor axis at which we can locate the object while
Ilat disambiguates the azimuth angle ψ.

As demonstrated in the two previous sections, the analytical reduction scheme is in good
agreement with the reference BEM, while being tractable for real-time electrolocation. Beyond
these pragmatic aspects, it gives new insights which are useful for the understanding of the electric
sense. First, in the context of the reflection method, the presence of an object in the scene brings
two contributions to the total measured currents. The first one, which we have denoted I(1), is
produced by the electric field reflected by the object E1 which penetrates the geometry of the
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sensor laterally while it is removed from the scene. The second, I(2), is produced by the sensor in
order to recover its electric equilibrium while it is submitted to the reflected potential φ1. These

two contributions require from the sensor the knowledge of E0, the conductance matrix C
(0)

,
which encodes the model of the measured currents in the absence of an object, as well as the
apparent areas (1 + s⊥α(k))Ak of the receiving electrodes ek, through which the lateral currents
flow, and where the s⊥ factors model the lateral polarizability of the electrodes. Moreover, while

E0 is approximated analytically, C
(0)

and s⊥α(k) can be measured once for all in a preliminary
calibration phase. The other parameters of the model depend only on the geometry of the scene
and obey simple relations which are easily usable for online calculations, such as those required
by observer based electrolocation algorithms. Exploiting the symmetries of the sensor, Iax and
Ilat can be easily extracted from the total currents vector I by simple arithmetic combinations of
its components. In further detail, Iax encodes the response in currents of the sensor to the axial
voltage imbalance due to the induced potential φ1, while Ilat encodes the lateral polarization
of the rings induced by the presence of the object. That being said, it becomes obvious that if
(ρ, ψ,X) represent the cylindrical coordinates of the object center in the frame attached to the
sensor, then as Iax does not depend on the azimuth angle ψ, the same object placed anywhere on
a circle perpendicular to the sensor axis and centered on it, will produce the same Iax whereas Ilat

is richer since it depends on all three coordinates (see Fig. 14). Pursuing this discussion further,
the lateral currents obey purely geometric projection laws as suggested by the biologists [16],[17].
In particular, the object is simply located on the axis perpendicular to the surface of the sensor
and centered in the area of maximum intensity of the transcutaneous measures. This advantage
will be exploited in future to address the problem of electrolocation. We can also mention that
the second contribution Iax is nothing but the so-called "polyspherical model" of the currents
obtained in [8] or [9] with a simplified sensor geometry where all the electrodes are considered
as simple spheres and where the role of the insulators is modeled through the effective radius of
the spheres. Finally, the combination of the axial and lateral models offers numerous strategies
for electrolocation that we are now exploring. All together, we believe the reduction scheme
presented in the article constitutes a real breakthrough towards rigorous and quick modeling of
electrolocation problems in robotics.

Appendix A : Proof of (38)

To continue the reduction of (37), we will use the following notations : x will denote a point
on the border of the sensor of abscissa X along the symmetry axis of the sensor (positively
measured from the extremity of the hemisphere E0) and x⊥(X) will represent its orthogonal
projection to the axis of the sensor. A lateral section centered on x⊥(X) will be denoted CX

while the center of Eα will be denoted xcα, Xα being the abscissa of the central section of xcα

on the sensor axis (see Fig. 3). Then, exploiting the axisymmetry of the emitting electrodes and
the insulating surfaces it becomes natural to write in (37) :

∫

Eα

. ds =

∫

LEα

(∫

CX

. dCX

)
dX,

∫

Iα

. ds =

∫

LIα

(∫

CX

. dCX

)
dX, (66)

where LEα = [Xα − (lEα/2),Xα + (lEα/2)], LIα = [Xα − (lIα/2),Xα + (lIα/2)] while dCX =
Rdψ, and ψ denotes the azimuth angle of the sensor cylindrical coordinates : (x1, x2, x3) =
(X, ρcψ, ρsψ). Now, let us apply a multipolar expansion to the three integrals of (37) that we
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rewrite 4πφ0(y) = J1 − J2 − J3. We obtain for the first of them :

J1 =

m∑

α=0

∫

LEα

(∫

CX

∂φ0

∂n

(
1

r
+
x′ixi

r3

)
dCX

)
dX +

m∑

α=0

∫

LEα

(∫

CX

∂φ0

∂n

(
1

2

(
−
δij
r3

+ 3
xixj

r5

)
x′ix

′
j

)
dCX

)
dX,

where (x1, x2, x3) and (x′1, x
′
2, x

′
3) denote respectively the coordinates of y − x⊥(X) = r and

x−x⊥(X) in the frame attached to the section CX of center x⊥(X). By integrating on the cross
sections, one obtains :

J1 =

m∑

α=0

∫

LEα

(
1

r
l(0) + l

(1)
i

(xi

r3

))
dX

+
m∑

α=0

∫

LEα

(
1

2

(
−
δij
r3

+ 3
xixj

r5

)
l
(2)
ij

)
dX, (67)

the expression in which we introduced the cross-sectional moments of the distribution of currents :

l(0) =

∫

CX

∂φ0

∂n
dCX , l(1)i =

∫

CX

∂φ0

∂n
x′idCX ,

l
(2)
ij =

∫

CX

∂φ0

∂n
x′ix

′
j
dCX , (68)

where γl(0) represents the currents density crossing the electrodes per unit of sensor length in
the absence of an object. In the following, this current density is denoted j

(0)
α when it refers to

the ring Eα (i.e. CX ⊂ Eα) and verifies :
∫

LEα

j(0)α dX = I
(0)
α . (69)

Moreover, due to the axisymmetry of the sensor boundary and of its polarization, φ0 and then
∂φ0/∂n are functions of the axial variable X only. Thus, we can extract them from the integrals
(68) and rewrite (67) as :

J1 =

m∑

α=0

∫

LEα

(
∂φ0

∂n

)(
1

r
m(0) +m

(1)
i

(xi

r3

))
dX

+
m∑

α=0

∫

LEα

(
1

2

(
−
δij
r3

+ 3
xixj

r5

)
m

(2)
ij

)
dX, (70)

where we have introduced the multipolar moments of the sections geometry :

m(0) =

∫

CX

dCX = 2πR,

m
(1)
i (X) =

∫

CX

x′idCX = O(R2), (71)

m
(2)
ij (X) =

∫

CX

x′ix
′
j dCX = O(R3).

Then, because the first order moments are null and those of the following order ones are propor-
tional to O(R3) we have :

J1 =

m∑

α=0

∫

LEα

γ−1j(0)α

(
1

r
+O

(
R3

r3

))
dX. (72)
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If we re-apply a multipolar expansion to the leading order term of (72) but this time with respect
to the axial dimension X, we obtain by writing rα = ‖y−xcα‖ and by denoting x1 the projection
of y − xcα on the axis of the sensor :

m∑

α=0

∫

LEα

γ−1j(0)α

1

r(X)
dX =

m∑

α=0

∫

LEα

γ−1j(0)α

(
1

rα
+
x1

r3α
(X −Xα)

)
dX, (73)

and from (69) :

J1 =
m∑

α=0

1

γrα
I

(0)
α

(
1 +O

(
l2Eα

r2α

))
. (74)

Using once again the fact that the emitting electrodes and the insulating surfaces are axisym-
metric, it becomes natural to rewrite the two other terms of (37) as :

J2 =

m∑

α=0

Uα

∫

LEα

(∫

CX

∂(1/r)

∂n
dCX

)
dX,

J3 =
m∑

α=1

∫

LIα

(∫

CX

φ0
∂(1/r)

∂n
dCX

)
dX. (75)

When we expand the previous integrals into multipolar moments, we find :

J2 =
∑m

α=0 Uα

∫
LEα

(∫
CX

∂
∂n

(
1
r

)
dCX

)
dX+

∑m
α=0 Uα

∫
LEα

(∫
CX

∂
∂n

(
x′

ixi

r3

)
dCX

)
dX+

∑m
α=0 Uα

∫
LEα

(∫
CX

∂
∂n

((
−

δij

r3 + 3
xixj

r5

)
x′

ix
′
j

2

)
dCX

)
dX,

J3 =
∑m

α=1

∫
LIα

(∫
CX
φ0

∂
∂n

(
1
r +

x′
ixi

r3

)
dCX

)
dX+

∑m
α=1

∫
LIα

(∫
CX
φ0

∂
∂n

((
−

δij

r3 + 3
xixj

r5

)
x′

ix
′
j

2

)
dCX

)
dX,

where (x1, x2, x3) and (x′1, x
′
2, x

′
3) respectively denote the coordinates of y − x⊥(X) = r and of

x−x⊥(X) = r′ in the frame attached to the section CX of center x⊥(X). Again, introducing the
multipolar moments in the cross-sections, we obtain :

J2 =
m∑

α=0

Uα

∫

LEα

(
n

(1)
i

(
xi

r3

))
dX + (76)

m∑

α=0

Uα

∫

LEα

(
1

2
n

(2)
ij

(
−
δij
r3

+ 3
xixj

r5

))
dX,

where we have introduced the normal multipolar moments of the cross-sections :

n
(1)
i (X) =

∫

CX

∂x′i
∂n

dCX = O(R),

n
(2)
ij (X) =

∫

CX

∂(x′ix
′
j)

∂n
dCX = O(R2). (77)

In the same manner :

J3 =

m∑

α=1

∫

LIα

φ0

(
n

(1)
i

(
xi

r3

))
dX + (78)

m∑

α=1

∫

LIα

φ0

(
1

2
n

(2)
ij

(
−
δij
r3

+ 3
xixj

r5

))
dX.

26



Ecole des Mines de Nantes Technical Report No.: 11/9/AUTO

Finally, the symmetry of the sections allows to remove the first order geometric moments from
(78). Thus, by denoting lIα the length of every insulating connection cylinder Iα, we have :

J2 =

m∑

α=0

Uα

∫

LEα

(
1

2
n

(2)
ij

(
−
δij
r3

+ 3
xixj

r5

))
dX

=
m∑

α=0

O

(
Uα

R2lEα

r3α

)
, (79)

But then, with rα =‖ y − xcα ‖, Uα = sup(|Uα−1|, |Uα|), Uα = inf(|Uα−1|, |Uα|), and since
∀x ∈ Iα : Uα ≤| φ0(x) |≤ Uα, we have also :

J3 =
m∑

α=1

∫

LIα

φ0

(
1

2
n

(2)
ij

(
−
δij
r3

+ 3
xixj

r5

))
dX

=

m∑

α=1

O

(
Uα

R2lIα

r3α

)
. (80)

If by extension lI0 = 0, then (37) can be rewritten as :

4πφ0(y) =

m∑

α=0

(
γ−1I

(0)
α

(
1 +O

(
l2Eα

r2α

)))
+ (81)

m∑

α=0

(
O

(
Uα

R2lEα

r3α

)
+O

(
Uα

R2lIα

r3α

))
.

Finally, the relative order of magnitude of the Uα (or the Uα) with respect to the I
(0)
α must

be evaluated. It is sufficient to evaluate the order of magnitude of the resistance in absence

of object R
(0)

for this. In fact it is possible to show that this order of magnitude is that of a
simplified sensor where the ring-shaped electrodes are considered as spheres of radius R. But in
this case the maximal resistance between the electrodes is the resistance between one electrode
and itself for which the Gauss theorem permits one to write : 4πR2E = qα/ǫ = I

(0)
α /γ (with

qα the total charge of the electrode Eα and E the intensity of the (normal) field on its surface).

Thus, for any couple of electrodes (Eα, Eβ), we have : R
(0)
αβ < 1/(γR), which once used in (81)

with Uα =
∑β=m

β=0 R
(0)
αβI

(0)
β , allows one to write :

4πφ0(y) =

m∑

α=0

I
(0)
α

γrα


1 +O

(
l2Eα

r2α

)
+

m∑

β=0

O

(
RlEβ

r2β

)


+
m∑

α=0

I
(0)
α

γrα




m∑

β=0

O

(
RlIβ

r2β

)
 . (82)

Since
∑m

α=0 lEα +
∑m

β=1 lIβ
= l = O(rα) = O(rβ) = O(r) we finally obtain (38).

Appendix B : Proof of (44)

From (43), we notice that an expansion of E1 on each Eα with respect to the dimensions of
Eα allows one to write :

I
(1)
k = −γ (∇φ1(xcα)).

∫

ek

nds+O

(
R

r

)
, (83)
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where ∇φ1(xcα) is the leading order term of the expansion of −E1 in any point of ek ⊂ Eα. In
the following, we will denote α(k) as the index of the ring to which ek belongs. Also, by writing∫
ek

nds = Aknk with nk a unit vector which we place at the center of the receiver ek :

I
(1)
k = −γAk (∇φ1(xcα(k))).nk +O

(
R

r

)
. (84)

By placing the object frame (yc, e1, e2, e3) in order that p = p e3 (where p > 0) and introducing
r, θ and φ the spherical coordinates of a point of Eα in such a frame, we obtain from (40) :
φ1 = pcθf(r) with θ the meridian angle of x ∈ ek in the object frame and f(r) = 1/r2. Then,
because for any function h the normal derivative can be written as following :

∂h

∂n
= ∇h.n =

(
∂h

∂r
er +

1

r

∂h

∂θ
eθ +

1

rsθ

∂h

∂φ
eφ

)
.n, (85)

we have :

I
(1)
k = −Akγ∇φ1(xcα(k)).nk (86)

= γAkp

(
cθα(k)

∂f

∂r
erα(k) − sθα(k)

f(rα(k))

rα(k)
eθα(k)

)
.nk.

Thus, having also cθα(k) = e3.erα(k) and sθα(k) = e3.eθα(k) we can write :

I
(1)
k ≃ −γAk

∂f

∂r
(erα(k).nk)(erα(k).p)

+ γAk

f(rα(k))

rα(k)
(eθα(k).nk)(eθα(k).p). (87)

Then by introducing the notations cosνk = nk.erα(k) and cosµk = nk.eθα(k) and p = P.E0 we
have :

I
(1)
k ≃

Ak

4π

(
cνk

∂f

∂r
erα(k) + cµk

f(rα(k))

rα(k)
eθα(k)

)
.P.E0.

And as f(r) = 1/r2 we obtain, from (39) and with all position vectors pointing from the sensor
to the object :

I
(1)
k ≃

m∑

β=0

−Ak

4πr3α(k)

(
2cνkerα(k) + cµkeθα(k)

)
.P.

(
rβ

r3β

)
I
(0)
β , (88)

which can be rewritten in the matrix form (44).

Appendix C : Proof of (50)

To prove expression (50), let us first observe that, because of the slenderness of the sensor,
the gradient of φ1 which we denote E1, can be expanded in perturbations with respect to the
lateral dimensions of each section CX . Also, we can rewrite the first term of the right hand side
of (28), where let us remind that r =‖ r ‖=‖ x′ − x ‖ and x ∈ Eα, as :

m∑

β=1

∫

Iβ

(
∂φ1

∂n

)
1

r
ds = (89)

m∑

β=1

∫

LIβ

E1(x⊥(X ′)).

∫

CX′

n

r
dCXdX

′ (1 +O(R/r)),
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where X and X ′ denote the abscissa of x and x′ along (O, ic) while lX(X ′) = X ′ − X and
ξX(X ′) = |R/lX(X ′)|. Now, by writing : r = x′ − x = (x′ − x′

⊥) + (x′
⊥ − x⊥) + (x⊥ − x) =

d + lX(X ′)ic − d, and by taking the cylindrical coordinates of x′ : (ρ′, ψ′,X ′ − X) in a frame
attached to the sensor, centered on x⊥ and such that d.d′ = R2cψ′, we also have :

1

r
=

1

(l2X + 2R2(1 − cψ′))1/2
=

(1/|lX |)

(1 + 2ξ2X(1 − cψ′))1/2

=
1

|lX |

(
1 − ξ2X(1 − cψ′)

)
+O(ξ4X). (90)

This can rewritten as :
m∑

β=1

∫

Iβ

(
∂φ1

∂n

)
1

r
ds =

m∑

β=1

∫

LIβ

RE1

|lX |
. (91)

∫ 2π

0
n(1 − ξ2X + ξ2Xcψ

′ +O(ξ4X)) dψ′dX ′.

Moreover, since n = cψ′jc + sψ′kc, we obtain :
m∑

β=1

∫

Iβ

(
∂φ1

∂n

)
1

r
ds =

m∑

β=1

∫

LIβ

E1.(0 + O(ξ3X))dX ′

= 0 +O(ξ3X). (92)

Therefore, if each Eα is sufficiently far from the others, the term (89) has no influence on (28)
except on a small strip neighboring the electrode Eα which generates a contribution modeled by
pushing the expansion of (28) at the next order as in Appendix D. Finally, due to the smallness
of the electrodes Eα, at leading order the field φ1 is approximated as uniform on each of them,
and so we have also for any x ∈ CXα ⊂ Eα :

2πφ1(x) = 2πφ1(xcα) (1 +O(R/r)), (93)

and :
m∑

β=0

∫

Eβ

φ1
∂(1/r)

∂n
ds = (94)

m∑

β=0

φ1(xcβ)

∫

Eβ

∂(1/r)

∂n
ds (1 +O(R/r)).

Hence at the leading order, equation (28) can be approximated as follows :

2π(−φ1(xcα)) ≃
m∑

β=0

[∫

Eβ

(
∂φ2

∂n

)
1

r
ds

]
− (95)

m∑

β=0

[∫

Eβ

∂(1/r)

∂n
ds(−φ1(xcβ))

]

−

m∑

β=1

∫

Iβ

φ2
∂(1/r)

∂n
ds,

where we recognize the same expression as (27), with φ2 replacing φ0 and for α = 0, 1, · · · ,m,

−φ1(xcα) replacing Uα. Consequently, the calculation of I
(2)

is similar to the calculation of I
(0)

.

Also, at the leading order, the axial conductance matrix C
(0)

in the absence of an object is once
again sufficient to calculate the response of the sensor submitted to a potential φ1 since we obtain
(50).
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Appendix D : Proof of (55)

Now let us consider the approximation of (28) at the next order. In this case, the values of
the electric fields can be considered as uniform on each of the electrodes Eα. By prolonging these
values to the narrow insulating rings which bound the electrodes, and contribute to (28) in a
non-negligible way, we can rewrite (28) for any x ∈ Eα :

α∑

β=α−1

[∫

Iβ

∂(1/r)

∂n
(x′ − xcβ) ds

]
.E2(xcβ) +

m∑

β=0

[∫

Eβ

n

r
ds

]
.E2(xcβ)

≃

m∑

β=0

[∫

Eβ

∂(1/r)

∂n
(x′ − xcβ)ds + 2π(x − xcβ)δαβ

]

.E1(xcβ) +
α∑

β=α−1

[∫

Iβ

n

r
ds

]
.E1(xcβ), (96)

that once written in one point of each of the Eα, can be put formally in the explicit linear form :

For α = 0, 1, ...m : E2(xcα) =

m∑

β=0

Sαβ .E1(xcβ), (97)

where the Sαβ define a set of second order tensors of R
3 ⊗ R

3 modeling the polarization of
the sensor to the electric field reflected by the object. Now, following the same expansion as in
Appendix C (with respect to ξXα), the mutual influences terms between different electrodes Eα

are negligible with respect to the self influence ones, and we have :

E2(xcα) ≃ Sαα.E1(xcα), (98)

where due to the axisymmetry of the sensor, the tensors Sαα take the form :

Sαα = s‖α(ic ⊗ ic) + s⊥α(jc ⊗ jc) + s⊥α(kc ⊗ kc) (99)

with s‖α and s⊥α two positive eigen values. Finally, invoking the definition (18) of I(2), we have
for any ek ⊂ Eα(k) and with n = n‖ + n⊥ as in Appendix B :

I
(2)
k = γ

∫

ek

(Sα(k)α(k).E1).nds (100)

= γ

∫

ek

s‖α(k)E1.n‖ds+ γ

∫

ek

s⊥α(k)E1.n⊥ds.

Now, it is obvious that the first contribution (from left to right) is axisymmetric while the second

has a lateral symmetry. Thus, the first term contributes to I(2)
ax but in a negligible way with respect

to the leading order term of Appendix C. On the other hand the second contribution has to be
added to I(1)

lat to which it contributes at the same order. Hence, we will have in this case :

Ilat,k = I
(1)
lat,k + I

(2)
lat,k = γE1.

∫

ek

(1 + s⊥α(k))n⊥ds

= (1 + s⊥α(k))I
(1)
lat,k, (101)

or again in matrix form :
Ilat = (1 + S⊥)I

(1)
lat , (102)

which corresponds to (56) with S⊥ = diag(s⊥α(k)).
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