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Explanation of this revision
Paper number: ACSP-10-0174

First of all, the authors would like to express their sincere thanks to the Editor and the

anonymous reviewer for their helpful comments and suggestions. The explanation of the

modifications as well as corrections in this revision can be arranged as follows (comment

numbers are in 1:1 correspondence with the reviewers’ comments).

Reply to Dr. Andrea Lecchini-Visintini

Thank you very much for your time and efforts in coordinating the review process. Your

comprehensive summary of the review reports is much appreciated. In this revision, all

the comments from the reviewers have been seriously taken into account and thoroughly

implemented.

Reply to Reviewer No. 1

Thanks to this reviewer for the encouraging comments.

1) Page 2, the 3rd paragraph

In this revision, the following comment has been added to point out the advan-

tage and significance comparing with existing papers that addressed the stability of

Markovian jumping systems with incomplete transition probabilities:

“Comparing with [28,29], both the nonlinearities and time-varying delays are con-

sidered for Markovian jumping systems and therefore the model in this paper is more

general. In addition, the reliability issue is studied and a reliable filter is designed

in the presence of possible sensor failures. The main contributions are as follows.

1) The transition probabilities of the jumping process are assumed to be partly un-

known. The developed results are more general since they can be applied to Markovian

jumping systems with completely known, completely unknown and partly unknown

transition probabilities. 2) The nonlinearities are introduced as exogenous nonlin-

ear disturbances which are described by statistical means. 3) The sensor failures

are described by a variable taking values in some interval. Note that such a de-

scription is more practical than the conventional outage case. 4) By using a novel

Lyapunov-Krasovskii functional and delay-partitioning technique, delay-dependent

sufficient conditions are obtained under which the filtering error system is asymptot-

ically mean-square stable with an H∞ disturbance attenuation level γ. 5) An extra

variable is introduced to realize the decoupling between the Lyapunov matrices and

the filtering error system matrices in order to reduce the conservatism.”
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2) Page 2, the 3rd paragraph

In this revision, the following comment has been added to further strengthen the

motivation for this paper.

“Comparing with [28,29], both the nonlinearities and time-varying delays are con-

sidered for Markovian jumping systems and therefore the model in this paper is more

general. In addition, the reliability issue is studied and a reliable filter is designed in

the presence of possible sensor failures. ”

3) Page 16, Conclusion

In this revision, the following comment has been added in the conclusion part on

the future research topics:

“The future research topics would include the extension of the main results devel-

oped in this paper to more general complex systems such as networked systems with

random packet losses, general stochastic systems, polynomial nonlinear systems and

functional differential equations of the neutral type.”

4) Throughout the paper, block-diagonal matrices have been used to make the big ma-

trices in a more compact format and similar LMIs have been rewritten in a uniform

expression, see e.g. inequality (40) on page 13.

5) The references

In this revision, the following papers have been added as references.

Z. Wu, H. Su and J. Chu, H∞ filtering for singular systems with time-varying delay,

International Journal of Robust and Nonlinear Control, vol. 20, no. 11, pp. 1269-

1284, 2010.

Z. Wu, H. Su and J. Chu, H∞ filtering for singular Markovian jump systems with

time delay, International Journal of Robust and Nonlinear Control, vol. 20, no. 8,

pp. 939-957, 2010.

Reply to Reviewer No. 2

Thanks to this reviewer for the very positive comments.

(1) Page 2, the 3rd paragraph

In this revision, the main contributions have been explicitly stated as follows:

“The main contributions are as follows. 1) The transition probabilities of the jump-

ing process are assumed to be partly unknown. The developed results are more general

since they can be applied to Markovian jumping systems with completely known, com-

pletely unknown and partly unknown transition probabilities. 2) The nonlinearities
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are introduced as exogenous nonlinear disturbances which are described by statistical

means. 3) The sensor failures are described by a variable taking values in some in-

terval. Note that such a description is more practical than the conventional outage

case. 4) By using a novel Lyapunov-Krasovskii functional and delay-partitioning

technique, delay-dependent sufficient conditions are obtained under which the filter-

ing error system is asymptotically mean-square stable with an H∞ disturbance atten-

uation level γ. 5) An extra variable is introduced to realize the decoupling between

the Lyapunov matrices and the filtering error system matrices in order to reduce the

conservatism.”

(2) Page 10, Remark 2

In this revision, the following comment has been added in Remark 2 on the parti-

tioning number m and the computational problem:

“If m increases, the dimensions of the LMIs will become larger and the computa-

tional burden will increase. Therefore, the partitioning number m should be chosen

properly.”

(3) Page 4, Remark 1

In this revision, the following remark has been added on the statistically described

nonlinearities:

“Remark 1: The nonlinearities in (2) have been described by statistical means in [36]

and such description could cover several classes of well-studied nonlinear systems,

for example, the nonlinear systems with random sequences whose powers depend on

the sector-bounded nonlinear function of the state. Note that the time-delay term is

involved in (2), and therefore the model studied in this paper is more general than

the corresponding ones in [36].”

(4) Page 16, Conclusion

In this revision, the following comment has been added in the conclusion part on

the future research topics:

“The future research topics would include the extension of the main results devel-

oped in this paper to more general complex systems such as networked systems with

random packet losses, general stochastic systems, polynomial nonlinear systems and

functional differential equations of the neutral type.”

(5) The references

In this revision, the following papers have been added as references.

H. Gao, Y. Zhao, J. Lam, and K. Chen, H∞ fuzzy filtering of nonlinear systems with

intermittent measurements, IEEE Transactions on Fuzzy Systems, vol. 17, no. 2,

pp. 291-300, 2009.
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X. Meng, J. Lamb, B. Du and H. Gao, A delay-partitioning approach to the stability

analysis of discrete-time systems, Automatica, vol. 46, pp. 610-614, 2010.
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Reliable H∞ Filtering for Discrete Time-Delay

Markovian Jump Systems with Partly Unknown

Transition Probabilities
Yisha Liu, Zidong Wang and Wei Wang

Abstract

In this paper, the reliable H∞ filtering problem is studied for a class of discrete nonlinear Markovian jump systems

with sensor failures and time delays. The transition probabilities of the jumping process are assumed to be partly

unknown. The failures of sensors are quantified by a variable taking values in a given interval. The time-varying delay

is unknown with given lower and upper bounds. The purpose of the addressed reliable H∞ filtering problem is to design

a mode-dependent filter such that the filtering error dynamics is asymptotically mean-square stable and also achieves

a prescribed H∞ performance level. By using a new Lyapunov-Krasovskii functional and delay-partitioning technique,

sufficient delay-dependent conditions for the existence of such a filter are obtained. The filter gains are characterized in

terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme

method. A numerical example is provided to demonstrate the effectiveness of the proposed design approach.

Keywords

H∞ filtering; Reliable filtering; Sensor failure; Markovian jump systems; Partly unknown transition probabilities;

Delay partitioning.

I. Introduction

In the past few years, Markovian jumping systems have received a great deal of attention since this class of

hybrid systems can model different types of dynamic systems subject to abrupt changes in their structures,

e.g. failure prone manufacturing systems, power systems and economics systems. For linear Markovian jumping

systems, many important issues have been studied extensively such as stability and stabilization [8, 17, 25],

control synthesis [1, 4, 28] and filter design [21, 29, 37]. Recently, much effort has been paid to the nonlinear

Markovian jumping systems and some results have been reported [5,23,30], where the nonlinearities are often

introduced in the form of exogenous nonlinear disturbances which may result from the linearization process of

an originally highly nonlinear plant or may be an external nonlinear input. It should be pointed out that all

the results mentioned above have assumed that the transition probabilities of the Markovian jumping process

are completely known. Unfortunately, this is not always the case in reality. For example, in a networked

control system, the transition probabilities themselves may be uncertain or even unknown due primarily

to the random nature of the network-induced phenomenon. Therefore, it is significant and challenging to

study Markovian jumping systems with partly unknown transition probabilities, see [28,29] for some recently

available works.

In practice, time delays are frequently encountered in dynamical systems because of the finite switching

speed of the amplifiers. The existence of time-delays may deteriorate the system performance and even result

Y. Liu and W. Wang are with the Research Centre of Information and Control, Dalian University of Technology, Dalian 116023,

China.
Z. Wang is with the Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH,

United Kingdom. (Email: Zidong.Wang@brunel.ac.uk)
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in the instability of the systems [2, 3, 10, 11, 14, 36]. Specifically, for Markovian jumping systems with time

delays, a great number of results have been reported, see e.g. [5, 6, 27, 32] and the references therein. In

the early results, delay-independent approach was used to deal with time delay and such an approach can be

applicable to delays of arbitrary length. Since the stability of systems is explicitly dependent on the time-delay,

the delay-dependent approach has been widely exploited for Markovian jumping systems, which is generally

less conservative than the delay-independent one especially in situations where delays are small [7,13,30,37].

Recently, the so-called delay partitioning technique has been used to address the stability analysis problem of

time-delay systems, which has proven to be very effective in reducing the possible conservatism of the stability

criteria [8, 12,31,35].

On the other hand, almost all practical control systems comprise a large number of sensors. For example,

networked control systems (NCSs) have been extensively applied in many technological fields and therefore

attracted an increasing research attention. NCSs typically contain numerous sensors, controllers and actuators

among which signals are delivered via network communication. However, in practical applications, temporal

failures may happen to actuators/sensors and, subsequently, the delivered signals may be incomplete. The

occurrence of such a phenomenon may affect the expected control and estimate performance. Hence, it is of

engineering significance to design reliable controllers/filters in the presence of possible actuator/sensor failures.

For linear systems, the reliable design problem has been thoroughly investigated and many results have been

reported, see e.g. [16,20,26]. As for the nonlinear systems, the reliable control/filtering problems with actuator

or sensor failures have also attracted much research interest. For example, in [19], a Hamilton-Jacobi equation

approach has been used to study the reliable control problem for affine uncertain nonlinear systems. Modified

algebraic Riccati equation approach has been developed in [22] to deal with the problem of robust reliable

control design for a class of nonlinear uncertain state-delayed systems. In [9, 15, 18, 34], the reliable control

and filtering problems have been dealt with via the linear matrix inequality (LMI) approach. However, up to

now, the reliable filtering problem for discrete-time nonlinear Markovian jump systems with partly unknown

transition probabilities and time-varying delays has not been fully investigated, and this gives the motivation

of our present investigation.

In this paper, we focus on the reliable H∞ filtering problem against sensor failures for a class of discrete-

time nonlinear Markovian jumping systems with time-varying delays. Comparing with [28, 29], both the

nonlinearities and time-varying delays are considered for Markovian jumping systems and therefore the model

in this paper is more general. In addition, the reliability issue is studied and a reliable filter is designed in

the presence of possible sensor failures. The main contributions are as follows. 1) The transition probabilities

of the jumping process are assumed to be partly unknown. The developed results are more general since

they can be applied to Markovian jumping systems with completely known, completely unknown and partly

unknown transition probabilities. 2) The nonlinearities are introduced as exogenous nonlinear disturbances

which are described by statistical means. 3) The sensor failures are described by a variable taking values

in some interval. Note that such a description is more practical than the conventional outage case. 4) By

using a novel Lyapunov-Krasovskii functional and delay-partitioning technique, delay-dependent sufficient

conditions are obtained under which the filtering error system is asymptotically mean-square stable with an

H∞ disturbance attenuation level γ. 5) An extra variable is introduced to realize the decoupling between the

Lyapunov matrices and the filtering error system matrices in order to reduce the conservatism. Based on the

decoupling idea, we design a mode-dependent reliable H∞ filter whose gain can be obtained by solving a set

of LMIs. Finally, a simulation example is utilized to illustrate the effectiveness of the proposed approach.

Notation The following notation will be used in this paper. Rn denotes the n dimensional Euclidean space.
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The notation X ≥ Y (respectively, X > Y ), where X and Y are symmetric matrices, means that X − Y

is positive semi-definite (respectively, positive definite). E {x} stands for the expectation of the stochastic

variable x. I and 0 represent the identity matrix and a zero matrix with appropriate dimension, respectively.

For a matrix R, RT represents its transpose and diag {R1, R2, ...} denotes a block diagonal matrix whose

diagonal blocks are given by R1, R2, .... In symmetric block matrices, the symbol ∗ is used as an ellipsis

for terms induced by symmetry. Matrices, if they are not explicitly stated, are assumed to have compatible

dimensions.

II. Problem Formulation

Consider the following discrete-time nonlinear system with Markovian jumping parameters:

x (k + 1) = A (rk) x (k) +Ad (rk)x (k − d (k)) +D (rk)w (k) + f (x (k) , x (k − d (k)) , rk) ,

y (k) = C1 (rk) x (k) +D1 (rk)w (k) ,

z (k) = C (rk) x (k) ,

x (k) = ϕ (k) , k = −dM ,−dM + 1, . . . , 0, (1)

where x (k) ∈ R
n is the state; y (k) ∈ R

p is the measured output vector; z (k) ∈ R
r is the signal to be

estimated; and w (k) ∈ R
h is the exogenous disturbance signal which is assumed to belong to l2 [0 ∞). d (k)

denotes the time-varying delay with lower and upper bounds dm ≤ d (k) ≤ dM . Here, the lower bound of delay

dm can always be written by dm = τm, where τ and m are integers. ϕ (k) is the initial state of the system.

A (rk), Ad (rk), C (rk), C1 (rk), D (rk) and D1 (rk) are matrix functions of the random jumping process rk.

rk is a Markov chain taking values in a finite state space S = {1, 2, ..., N} with transition probability matrix

Λ = (πij)N×N
given by

Pr {rk+1 = j|rk = i} = πij, ∀i, j ∈ S,

where 0 ≤ πij ≤ 1 (i, j ∈ S) is the transition rate from i to j and
N
∑

j=1
πij = 1,∀i ∈ S. In this paper, the

transition probabilities of the jumping process are assumed to be partly accessed, i.e., some elements in

matrix Λ are unknown. For example, for system (1) with four modes, the transition probability matrix Λ may

be

Λ =













π11 ? π13 ?

? π22 ? ?

π31 ? ? π34

? π42 ? π44













where “?” represents the inaccessible element. For notation clarity, for any i ∈ S, we denote that

ζ iκ
∆
= {j : πij is known} , ζ iuκ

∆
= {j : πij is unknown} .

The nonlinear function f (x (k) , x (k − d (k)) , rk) consisting of x (k) and x (k − d (k)) is bounded in a sta-

tistical sense as follows:

E {f (x (k) , x (k − d (k)) , rk) |x (k) , x (k − d (k)) , rk} = 0,

E
{

f (x (k) , x (k − d (k)) , rk) f
T (x (k) , x (k − d (k)) , rk) |x (k) , x (k − d (k)) , rk

}

=
q
∑

l=1

θl (rk) θ
T
l (rk)

(

xT (k) Ξl (rk) x (k) + xT (k − d (k)) Πl (rk) x (k − d (k))
)

(2)
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where θl (rk) (l = 1, . . . , q) are known mode-dependent column vectors, and Ξl (rk) and Πl (rk) are known

positive-definite mode-dependent matrices.

Remark 1: The nonlinearities in (2) have been described by statistical means in [33] and such description

could cover several classes of well-studied nonlinear systems, for example, the nonlinear systems with ran-

dom sequences whose powers depend on the sector-bounded nonlinear function of the state. Note that the

time-delay term is involved in (2), and therefore the model studied in this paper is more general than the

corresponding ones in [33].

For convenience, in the following, for rk = i, a matrix M (rk) will be denoted by Mi. For example, A (rk)

is denoted by Ai.

When the sensors experience failures, we consider the following sensor failure model to describe the measured

signal sent from sensors:

yF (k) = Gy (k) (3)

where the sensor fault matrix G is defined as follows:

0 ≤ G = diag{g
1
, . . . , g

p
} ≤ G = diag {g1, . . . , gp} ≤ Ḡ = diag {ḡ1, . . . , ḡp} ≤ I (4)

in which the variables gi (i = 1, . . . , p) quantify the failures of the sensors.

Letting

G0 = diag {g01, . . . , g0p} :=
G+ Ḡ

2
= diag

{

g
1
+ ḡ1

2
, . . . ,

g
p
+ ḡp

2

}

, (5)

G̃ = diag {g̃1, . . . , g̃p} :=
Ḡ−G

2
= diag

{

ḡ1 − g
1

2
, . . . ,

ḡp − g
p

2

}

, (6)

we can rewrite G as follows:

G = G0 +∆ = G0 + diag {φ1, . . . , φp} , |φi| ≤ g̃i, (i = 1, . . . , p) . (7)

In this paper, we consider the following reliable filter:

x̂ (k + 1) = Af (rk) x̂ (k) +Bf (rk) y
F (k) ,

ẑ (k) = Cf (rk) x̂ (k) (8)

where Af (rk), Bf (rk) and Cf (rk) are parameters to be determined. By defining η (k) =
[

xT (k) x̂T (k)
]T

,

we have the following filtering error system:

η (k + 1) = Ã (rk) η (k) + Ãd (rk) η (k − d (k)) + B̃ (rk)w (k) + ZTf (Zη (k), Zη (k − d (k)), rk) ,

e (k) = C̃ (rk) η (k) (9)

where e (k) = z (k)− ẑ (k) is the estimated error, and

Ã (rk) =

[

A (rk) 0

Bf (rk)GC1 (rk) Af (rk)

]

, Ãd (rk) =

[

Ad (rk) 0

0 0

]

,

B̃ (rk) =

[

D (rk)

Bf (rk)GD1 (rk)

]

, C̃ (rk) =
[

C (rk) −Cf (rk)
]

, Z =
[

I 0
]

.
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In this paper, we aim to design a reliable filter with the form (8) such that, for all admissible sensor failures,

mode-dependent nonlinearity, time-varying delay and exogenous disturbance, the filtering error system (9)

satisfies the following requirements:

(a) The filtering error system (9) is asymptotically mean-square stable.

(b) Under the zero-initial condition, the estimated error e (k) satisfies

∞
∑

k=0

E

{

‖e (k)‖2
}

< γ2
∞
∑

k=0

E

{

‖w (k)‖2
}

(10)

for all nonzero w (k), where γ > 0 is a prescribed scalar.

III. Main Results

The following lemma is needed in the proofs of our main results in this paper.

Lemma 1: [24] Let x ∈ R
n and y ∈ R

n. Then, for any scalar σ > 0, we have

xT y + yTx ≤ σxTx+ σ−1yT y. (11)

First of all, let us deal with both the stability analysis issue and the H∞ performance analysis issue in the

case that the transition probabilities of the jumping process are completely known and the parameter matrix

describing the sensor failures is known. Sufficient conditions for the addressed problem are obtained by using

the semi-definite programme method.

Theorem 1: Consider the filtering error system (9) with known sensor failure parameter matrix G, com-

pletely known transition probabilities and a prescribed H∞ performance index γ > 0. If there exist matrices

Pi > 0, Q1 > 0, Q2 > 0, Q3 > 0, S1 > 0, S2 > 0, R1, R2, R3 and scalars εl > 0(l = 1, . . . , q) such that the

following linear matrix inequalities hold for any i ∈ S,















−εl ∗ ∗ ∗
∑

j∈S

πijPjZ
T θli − ∑

j∈S

πijPj ∗ ∗

λ1S1Z
T θli 0 −S1 ∗

λ2S2Z
T θli 0 0 −S2















< 0, l = 1, . . . , q (12)













Ωi ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗

λ2R
T
t 0 −S2 ∗

Ω′

i 0 0 Ω′′

i













< 0, t = 2, 3 (13)

where

Ωi = −W T
P2
PiWP2

+W T
Q1

Q̄1WQ1
+W T

Q2
Q̄2WQ2

+W T
Q3

Q̄3WQ3
− γ2W T

wWw

+R1WR1
+ (R1WR1

)T +R2WR2
+ (R2WR2

)T +R3WR3
+ (R3WR3

)T ,

Ω′

i =

[
(

∑

j∈S

πijPjWP1,i

)T

(λ1S1WP4,i)
T (λ2S2WP4,i)

T
(

Ξ̂iZWP2

)T (

Π̂iZWP3

)T

W T
P5,i

]T

,

Ω′′

i = diag







−
∑

j∈S

πijPj ,−S1,−S2,−E,−E,−I







,
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λ1 =
√
τ , λ2 =

√

dM − τm, λ3 =
√

dM − τm+ 1,

Q̄1 =

[

Q1 0

0 −Q1

]

, Q̄2 =

[

Q2 0

0 −Q2

]

, Q̄3 =

[

Q3 0

0 −Q3

]

,

WP1,i =
[

Ãi 02n,2mn Ãdi 02n B̃i

]

, WP2
=
[

I2n 02n,2mn+4n+h

]

,

WP3
=

[

02n,2mn+2n I2n 02n,2n+h

]

, WP5,i =
[

C̃i 0nC ,2mn+4n+h

]

, WP4,i = WP1,i −WP2
,

WQ1
=

[

I2mn 02mn,6n+h

02mn,2n I2mn 02mn,4n+h

]

, WQ2
=

[

I2n 02n,2mn+4n+h

02n,2mn+4n I2n 02n,h

]

,

WQ3
=

[

λ3I2n 02n,2mn+4n+h

02n,2mn+2n I2n 02n,2n+h

]

,

WR1
=

[

I2n −I2n 02n,2mn+2n+h

]

, WR2
=
[

02n,2mn I2n −I2n 02n,2n+h

]

,

WR3
=

[

02n,2mn+2n I2n −I2n 02n,h

]

, Ww =
[

0h,2mn+6n Ih

]

,

Ξ̂i =

[

ε1Ξ
1

2

1i, . . . , εlΞ
1

2

li

]T

, Π̂i =

[

ε1Π
1

2

1i, . . . , εlΠ
1

2

li

]T

, E = diag {ε1I, . . . , εlI}

in which nC is the number of row in matrix Ci, then the filtering error system (9) is asymptotically mean-square

stable with an H∞ disturbance attenuation level γ.

Proof: Let us first show that, under the zero-initial condition, the estimated error ek satisfies (10) for

all nonzero wk. Choose a new Lyapunov-Krasovskii functional candidate:

V (k) = V1 (k) + V2 (k) + V3 (k) + V4 (k) (14)

where

V1 (k) = ηT (k)P (rk) η (k) ,

V2 (k) =
k−1
∑

α=k−τ

ΓT (α)Q1Γ (α) +
k−1
∑

α=k−dM

ηT (α)Q2η (α) ,

V3 (k) =

−τm+1
∑

β=−dM+1

k−1
∑

α=k−1+β

ηT (α)Q3η (α),

V4 (k) =
−1
∑

β=−τ

k−1
∑

α=k+β

δT (α)S1δ (α) +
−τm−1
∑

β=−dM

k−1
∑

α=k+β

δT (α)S2δ (α)

with

δ (α) = η (α+ 1)− η (α) , Γ (α) =













η (α)

η (α− τ)
...

η (α− (m− 1) τ)













.

For each rk = i ∈ S, calculating the difference of V (k) along the system (9) under the zero-initial condition,

we have :

E {∆V (k)} = E {∆V1 (k)}+ E {∆V2 (k)}+ E {∆V3 (k)}+ E {∆V4 (k)} (15)

Page 10 of 21

http://mc.manuscriptcentral.com/acsp-wiley

International Journal of Adaptive Control and Signal Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

SUBMITTED 7

where

E {∆V1 (k)} = E







[

Ãiη (k) + Ãdiη (k − d (k)) + B̃iw (k)
]T ∑

j∈S

πijPj

×
[

Ãiη (k) + Ãdiη (k − d (k)) + B̃iw (k)
]

− ηT (k)Piη (k)

+

q
∑

l=1

(

ηT (k)ZTΞliZη (k) + ηT (k − d (k))ZTΠliZη (k − d (k))
)

tr



ZT θliθ
T
liZ
∑

j∈S

πijPj











= E







ξT (k)



W T
P1,i

∑

j∈S

πijPjWP1,i +W T
P2

q
∑

l=1

ZTΞliZtr



ZT θliθ
T
liZ
∑

j∈S

πijPj



WP2

+W T
P3

q
∑

l=1

ZTΠliZtr



ZT θliθ
T
liZ
∑

j∈S

πijPj



WP3
−W T

P2
PiWP2



 ξ (k)







, (16)

E {∆V2 (k)} = E

{

ΓT (k)Q1Γ (k)− Γ (k − τ)T Q1Γ (k − τ) + η (k)T Q2η (k)− η (k − dM )T Q2η (k − dM )
}

= E
{

ξT (k)
(

W T
Q1

Q̄1WQ1
+W T

Q2
Q̄2WQ2

)

ξ (k)
}

, (17)

E {∆V3 (k)} = E







(dM − τm+ 1) ηT (k)Q3η (k)−
k−τm
∑

α=k−dM

ηT (α)Q3η (α)







≤ E
{

(dM − τm+ 1) ηT (k)Q3η (k)− ηT (k − d (k))Q3η(k − d (k))
}

= E
{

ξT (k)
(

W T
Q3

Q̄3WQ3

)

ξ (k)
}

, (18)

E {∆V4 (k)} = E

{

δT (k) (τS1 + (dM − τm)S2) δ (k)−
k−1
∑

α=k−τ

δT (α)S1δ (α)

−
k−τm−1
∑

α=k−d(k)

δT (α)S2δ (α)−
k−d(k)−1
∑

α=k−dM

δT (α)S2δ (α)







= E

{

[

Ãiη (k) + Ãdiη (k − d (k)) + B̃iw (k)− η (k)
]T

(τS1 + (dM − τm)S2)

×
[

Ãiη (k) + Ãdiη (k − d (k)) + B̃iw (k)− η (k)
]

+

q
∑

l=1

(

ηT (k)ZTΞliZη (k) + ηT (k − d (k))ZTΠliZη (k − d (k))
)

×tr
(

ZT θliθ
T
liZ (τS1 + (dM − τm)S2)

)

−
k−1
∑

α=k−τ

δT (α)S1δ (α) −
k−τm−1
∑

α=k−d(k)

δT (α)S2δ (α)−
k−d(k)−1
∑

α=k−dM

δT (α)S2δ (α)






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= E
{

ξT (k)
(

τW T
P4,i

S1WP4,i + (dM − τm)W T
P4,i

S2WP4,i

+W T
P2

q
∑

l=1

ZTΞliZtr
(

ZT θliθ
T
liZ (τS1 + (dM − τm)S2)

)

WP2

+W T
P3

q
∑

l=1

ZTΠliZtr
(

ZT θliθ
T
liZ (τS1 + (dM − τm)S2)

)

WP3

)

ξ (k)

−
k−1
∑

α=k−τ

δT (α)S1δ (α) −
k−τm−1
∑

α=k−d(k)

δT (α)S2δ (α)−
k−d(k)−1
∑

α=k−dM

δT (α)S2δ (α)







, (19)

with

ξ (k) =
[

ΓT (k) ηT (k − τm) ηT (k − d (k)) ηT (k − dM ) wT (k)
]T

.

According to the definition of δ (α), for any matrices R1, R2 and R3, the following equations always hold

2ξ (k)T R1

[

η (k)− η (k − τ)−
k−1
∑

α=k−τ

δ (α)

]

= 0, (20)

2ξ (k)T R2



η (k − τm)− η (k − d (k))−
k−τm−1
∑

α=k−d(k)

δ (α)



 = 0, (21)

2ξ (k)T R3



η (k − d (k))− η (k − dM )−
k−d(k)−1
∑

α=k−dM

δ (α)



 = 0. (22)

From (12), it is easy to get that

tr



ZT θliθ
T
liZ





∑

j∈S

πijPj + τS1 + (dM − τm)S2







 < εl (l = 1, . . . , q) . (23)

To analyze the H∞ performance of the filtering error system (9), we introduce the following index:

J (e, w) =
∞
∑

k=0

E
{

eT (k) e (k)− γ2wT (k)w (k)
}

=
∞
∑

k=0

E
{

eT (k) e (k)− γ2wT (k)w (k) + ∆V (k)
}

+ E {V0} − E {V∞}

≤
∞
∑

k=0

E
{

eT (k) e (k)− γ2wT (k)w (k) + ∆V (k)
}

. (24)
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From (15)-(23), we have

E
{

eT (k) e (k)− γ2wT (k)w (k) + ∆V (k)
}

≤ E







ξT (k)







Ωi +W T
P1,i

∑

j∈S

πijPjWP1,i+ τW T
P4,i

S1WP4,i + (dM − τm)W T
P4,i

S2WP4,i +W T
P5,i

WP5,i

+W T
P2

q
∑

l=1

ZTΞliZtr



ZT θliθ
T
liZ





∑

j∈S

πijPj + τS1 + (dM − τm)S2







WP2

+W T
P3

q
∑

l=1

ZTΠliZtr



ZT θliθ
T
liZ





∑

j∈S

πijPj + τS1 + (dM − τm)S2







WP3

+τR1S
−1
1 RT

1 + (d (k)− τm)R2S
−1
2 RT

2 + (dM − d (k))R3S
−1
2 RT

3

}

ξ (k)
}

−
k−1
∑

α=k−τ

(

S1δ (α) +RT
1 ξ (k)

)T
S−1
1

(

S1δ (α) +RT
1 ξ (k)

)

−
k−τm−1
∑

α=k−d(k)

(

S2δ (α) +RT
2 ξ (k)

)T
S−1
2

(

S2δ (α) +RT
2 ξ (k)

)

−
k−d(k)−1
∑

α=k−dM

(

S2δ (α) +RT
3 ξ (k)

)T
S−1
2

(

S2δ (α) +RT
3 ξ (k)

)

≤ E







ξT (k)







Ωi +W T
P1,i

∑

j∈S

πijPjWP1,i+ τW T
P4,i

S1WP4,i + (dM − τm)W T
P4,i

S2WP4,i +W T
P5,i

WP5,i

+W T
P2

q
∑

l=1

εlZ
TΞliZWP2

+W T
P3

q
∑

l=1

εlZ
TΠliZWP3

+τR1S
−1
1 RT

1 + (d (k)− τm)R2S
−1
2 RT

2 + (dM − d (k))R3S
−1
2 RT

3

}

ξ (k)
}

= E







ξT (k)







(

d (k)− τm

dM − τm

)



Ωi +W T
P1,i

∑

j∈S

πijPjWP1,i + τW T
P4,i

S1WP4,i + (dM − τm)W T
P4,i

S2WP4,i

+W T
P5,i

WP5,i +W T
P2

q
∑

l=1

εlZ
TΞliZWP2

+W T
P3

q
∑

l=1

εlZ
TΠliZWP3

+ τR1S
−1
1 RT

1 + (dM − τm)R2S
−1
2 RT

2

)

+

(

dM − d (k)

dM − τm

)



Ωi +W T
P1,i

∑

j∈S

πijPjWP1,i + τW T
P4,i

S1WP4,i + (dM − τm)W T
P4,i

S2WP4,i +W T
P5,i

WP5,i

+W T
P2

q
∑

l=1

εlZ
TΞliZWP2

+W T
P3

q
∑

l=1

εlZ
TΠliZWP3

+ τR1S
−1
1 RT

1 + (dM − τm)R3S
−1
2 RT

3

)}

ξ (k)

}

. (25)

By Schur complement, it follows from (13) that E
{

eT (k) e (k)− γ2wT (k)w (k) + ∆V (k)
}

< 0, which

implies that J (e, w) < 0. Therefore, the inequality (10) holds for all nonzero w (k). Similar to the above

deduction, we can show that the forward difference of V (k) with w = 0 satisfies ∆V (k) < 0, which indicates

the filtering error system (9) is asymptotically mean-square stable. This completes the proof.

Remark 2: Based on the delay partitioning technique, asymptotically mean-square stability conditions of

the filtering error system with a prescribed H∞ performance level have been obtained in Theorem 1. The

conditions can be checked by solving a set of LMIs. Note that the delay-fractioning approach has proven to be
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effective in reducing the possible conservatism but at the cost of added computation complexity. It is noticed

that the dimensions of the LMIs depend on the partitioning number m. If m increases, the dimensions of the

LMIs will become larger and the computational burden will increase. Therefore, the partitioning number m

should be chosen properly.

Theorem 2: Consider the filtering error system (9) with known sensor failure parameter matrix G, com-

pletely known transition probabilities and a prescribed H∞ performance index γ > 0. If there exist matrices

Pi > 0, Q1 > 0, Q2 > 0, Q3 > 0, S1 > 0, S2 > 0, R1, R2, R3, Hi and scalars εl > 0(l = 1, . . . , q) such that the

following linear matrix inequalities hold for any i ∈ S,

Ψ1i =













−εl ∗ ∗ ∗
HT

i Z
T θli HP,i ∗ ∗

λ1H
T
i Z

T θli 0 HS1,i ∗
λ2H

T
i Z

T θli 0 0 HS2,i













< 0, l = 1, . . . , q (26)

Ψti =













Ωi ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗

λ2R
T
t 0 −S2 ∗

Ω̃′

i 0 0 Ω̃′′

i













< 0, t = 2, 3 (27)

where

HP,i =
∑

j∈S

πijPj −Hi −HT
i , HS1,i = S1 −Hi −HT

i , HS2,i = S2 −Hi −HT
i ,

Ω̃′

i =

[

(

HT
i WP1,i

)T (

λ1H
T
i WP4,i

)T (

λ2H
T
i WP4,i

)T
(

Ξ̂iZWP2

)T (

Π̂iZWP3

)T

W T
P5,i

]T

,

Ω̃′′

i = diag {HP,i,HS1,i,HS2,i,−E,−E,−I} ,

Ωi, WP1,i, WP2
, WP3

, WP4,i, WP5,i, λ1, λ2, E, Ξ̂i and Π̂i are defined as in Theorem 1, then the filtering error

system (9) is asymptotically mean-square stable with an H∞ disturbance attenuation level γ.

Proof: Using the fact
∑

j∈S

πijPj − Hi − HT
i ≥ −HT

i (
∑

j∈S

πijPj)
−1Hi, S1 − Hi − HT

i ≥ −HT
i S

−1
1 Hi and

S2 −Hi −HT
i ≥ −HT

i S
−1
2 Hi, we can obtain that













Ωi ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗

λ2R
T
t 0 −S2 ∗

Ω̃′

i 0 0 Ω̃′′′

i













< 0, t = 2, 3. (28)

where

Ω̃′′′

i = diag







−HT
i (
∑

j∈S

πijPj)
−1Hi,−HT

i S
−1
1 Hi,−HT

i S
−1
2 Hi,−E,−E,−I







.

Then, pre- and post-multiplying (28) by diag

{

I, I, I,
∑

j∈S

πijPjH
−T
i , S1H

−T
i , S2H

−T
i , I, I, I

}

and its transpose

lead to (13). Similar to the above deduction, we can obtain that (26) can imply (12), respectively. Thus, the

proof is completed.
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Remark 3: In Theorem 2, by introducing a variable H, the coupling between the Lyapunov matrices and

the filtering error system matrices is eliminated. Such a newly introduced variable H does not present any

structural constraint such as symmetry, but is supposed to give potentially less conservative results.

In the case that the transition probabilities of the jumping process are partly unknown, the following

theorem will present the conditions under which the filtering error system (9) is asymptotically mean-square

stable with an H∞ disturbance attenuation level γ.

Theorem 3: Consider the filtering error system (9) with known sensor failure parameter matrix G, partly

unknown transition probabilities and a prescribed H∞ performance index γ > 0. If there exist matrices

Pi > 0, Q1 > 0, Q2 > 0, Q3 > 0, S1 > 0, S2 > 0, R1, R2, R3, Hi and scalars εl > 0(l = 1, . . . , q) such that the

following linear matrix inequalities hold for any i ∈ S,

⌣

Ψ1i =













−εl ∗ ∗ ∗
HT

i Z
T θli

⌣

HP,i ∗ ∗
λ1H

T
i Z

T θli 0 HS1,i ∗
λ2H

T
i Z

T θli 0 0 HS2,i













< 0, l = 1, . . . , q (29)

⌣

Ψti =













Ωi ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗

λ2R
T
t 0 −S2 ∗

Ω̃′

i 0 0 Ω̃′′′′

i













< 0, t = 2, 3 (30)

where

⌣

HP,i = Υj −Hi −HT
i ,

Ω̃′′′′

i = diag
{

⌣

HP,i,HS1,i,HS2,i,−E,−E,−I
}

,

Ωi, WP1,i, WP2
, WP3

, WP4,i, WP5,i, λ1, λ2, E, Ξ̂i and Π̂i are defined as in Theorem 1, Ω̃′

i, HS1,i and HS2,i are

defined as in Theorem 2 and if ζ iκ = ∅, Υj = Pj , otherwise,






Υj = (
∑

j∈ζiκ

πij)
−1
∑

j∈ζiκ

πijPj ,

Υj = Pj , j ∈ ζ iuκ ,

then the filtering error system (9) is asymptotically mean-square stable with an H∞ disturbance attenuation

level γ.

Proof: For any i ∈ S, Ψti in (27) can be rewritten as

Ψti =
∑

j∈ζiuκ

πij
⌣

Ψti|Υj=Pj
+
∑

j∈ζiκ

πij
⌣

Ψti|Υj=(
∑

j∈ζiκ

πij)
−1

∑

j∈ζiκ

πijPj
, t = 2, 3. (31)

From (30), we can obtain that

⌣

Ψti|Υj=Pj
< 0, j ∈ ζ iuκ , (32)

⌣

Ψti|Υj=(
∑

j∈ζiκ

πij)
−1

∑

j∈ζiκ

πijPj
< 0, t = 2, 3.

Therefore, Ψti < 0, t = 2, 3. Similarly, we can have Ψ1i < 0 from (29), respectively. Thus, the filtering error

system (9) is asymptotically mean-square stable with partly unknown transition probabilities and an H∞

disturbance attenuation level γ. This completes the proof.
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Remark 4: In Theorem 3, the mean-square asymptotic stability conditions have been presented for the

Markovian jump system (1) with partly unknown transition probabilities. If ζ iuκ = ∅,∀i ∈ S, the considered

system is the one with completed known transition probabilities and the stability conditions in Theorem 3 are

reduced to the ones in Theorem 2. If ζ iκ = ∅,∀i ∈ S, that is, all transition probabilities are unknown, it can

be seen that Theorem 3 is still available. Judging from this, the developed results are much more general.

Based on Theorem 3, let us solve the problem of reliable H∞ filter design.

Theorem 4: Consider the filtering error system (9) with known sensor failure parameter matrix G, partly

unknown transition probabilities and a prescribed H∞ performance index γ > 0. If there exist matrices

P1i > 0, P2i, P3i > 0, Q1 > 0, Q2 > 0, Q3 > 0, S11 > 0, S12, S13 > 0, S21 > 0, S22, S23 > 0, R1, R2, R3, H1i,

H2i, H3i, Âi, B̂i, Ĉi and scalars εl > 0(l = 1, . . . , q) such that the following linear matrix inequalities hold for

any i ∈ S,

Ψ̂1i =













−εl ∗ ∗ ∗
Φ4i Φ1i ∗ ∗

λ1Φ4i 0 Φ2i ∗
λ2Φ4i 0 0 Φ3i













< 0, l = 1, . . . , q (33)

Ψ̂ti =













Φ7i ∗ ∗
λ1R

T
1 −Φ5 ∗ ∗

λ2R
T
t 0 −Φ6 ∗

Ω̂′

i 0 0 Ω̂′′

i













< 0, t = 2, 3 (34)

where

Φ1i =

[

Υ1j −H1i −HT
1i ∗

Υ2j −H2i −HT
3i Υ3j −H2i −HT

2i

]

, Φ2i =

[

S11 −H1i −HT
1i ∗

S12 −H2i −HT
3i S13 −H2i −HT

2i

]

,

Φ3i =

[

S21 −H1i −HT
1i ∗

S22 −H2i −HT
3i S23 −H2i −HT

2i

]

, Φ4i =

[

HT
1iθli

HT
3iθli

]

,

Φ5 =

[

S11 ∗
S12 S13

]

, Φ6 =

[

S21 ∗
S22 S23

]

, Φ7i = Ωi, Pi =

[

P1i ∗
P2i P3i

]

,

Φ8i =

[

HT
1iAi + B̂iGC1i Âi 0n,2mn HT

1iAdi 0n,3n HT
1iDi + B̂iGD1i

HT
3iAi + B̂iGC1i Âi 0n,2mn HT

3iAdi 0n,3n HT
3iDi + B̂iGD1i

]

,

Φ9i =

[

HT
1iAi −HT

1i + B̂iGC1i Âi −HT
2i 0n,2mn HT

1iAdi 0n,3n HT
1iDi + B̂iGD1i

HT
3iAi −HT

3i + B̂iGC1i Âi −HT
2i 0n,2mn HT

3iAdi 0n,3n HT
3iDi + B̂iGD1i

]

,

Φ10i =











ε1Ξ
1

2

1i 0n,2mn+5n+h

...
...

εlΞ
1

2

li 0n,2mn+5n+h











, Φ11i =











0n,2mn+2n ε1Π
1

2

1i 0n,3n+h

...
...

...

0n,2mn+2n εlΠ
1

2

li 0n,3n+h











,

Φ12i =
[

Ci −Ĉi 0nC ,2mn+4n+h

]

,

Ω̂′

i =
[

ΦT
8i λ1Φ

T
9i λ2Φ

T
9i ΦT

10i ΦT
11i ΦT

12i

]T

, Ω̂′′

i = diag {Φ1i,Φ2i,Φ3i,−E,−E, I} ,
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Ωi, E, λ1 and λ2 are defined as in Theorem 1, and if ζ iκ = ∅, Υ1j = P1j , Υ2j = P2j ,Υ3j = P3j , otherwise,



























Υ1j = (
∑

j∈ζiκ

πij)
−1
∑

j∈ζiκ

πijP1j

Υ2j = (
∑

j∈ζiκ

πij)
−1
∑

j∈ζiκ

πijP2j

Υ3j = (
∑

j∈ζiκ

πij)
−1
∑

j∈ζiκ

πijP3j

,











Υ1j = P1j

Υ2j = P2j

Υ3j = P3j

, j ∈ ζ iuκ

then the filtering error system (9) is asymptotically mean-square stable with an H∞ disturbance attenuation

level γ. Moreover, the parameters of the desired filter are given as follows:

Afi = H−T
2i Âi, Bfi = H−T

2i B̂i, Cfi = Ĉi. (35)

Proof: First, let us partition Hi as

Hi =

[

H1i H3i

H2i H2i

]

(36)

where H2i is nonsingular without loss of generality. Furthermore, partition Pi, S1 and S2 as

Pi =

[

P1i ∗
P2i P3i

]

, S1 =

[

S11 ∗
S12 S13

]

, S2 =

[

S21 ∗
S22 S23

]

. (37)

Substituting (35)-(37) into (29) and (30), we can get (33) and (34) immediately. This completes the proof.

In the following theorem, a design procedure for the desired filter parameters will be provided in the case

that the failure parameter matrix is unknown but satisfies the constraints (4)-(7).

Theorem 5: Consider the filtering error system (9) with partly unknown transition probabilities and a

prescribed H∞ performance index γ > 0. If there exist matrices P1i > 0, P2i, P3i > 0, Q1 > 0, Q2 > 0,

Q3 > 0, S11 > 0, S12, S13 > 0, S21 > 0, S22, S23 > 0, R1, R2, R3, H1i, H2i, H3i, Âi, B̂i, Ĉi and scalars

εl > 0(l = 1, . . . , q), σ > 0 such that the following linear matrix inequalities hold for any i ∈ S,

Ψ̃1i =













−εl ∗ ∗ ∗
Φ4i Φ1i ∗ ∗

λ1Φ4i 0 Φ2i ∗
λ2Φ4i 0 0 Φ3i













< 0, l = 1, . . . , q (38)

Ψ̃ti =





















Φ7i ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −Φ5 ∗ ∗ ∗ ∗

λ2R
T
t 0 −Φ6 ∗ ∗ ∗

Ω̂′′′ 0 0 Ω̂′′ ∗ ∗
0 0 0 Ω̂′′′′ −σG̃−2 ∗

σΦ14i 0 0 0 0 −σI





















< 0, t = 2, 3 (39)
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where

Φ̃8i =

[

HT
1iAi + B̂iG0C1i Âi 0n,2mn HT

1iAdi 0n,3n HT
1iDi + B̂iG0D1i

HT
3iAi + B̂iG0C1i Âi 0n,2mn HT

3iAdi 0n,3n HT
3iDi + B̂iG0D1i

]

,

Φ̃9i =

[

HT
1iAi −HT

1i + B̂iG0C1i Âi −HT
2i 0n,2mn HT

1iAdi 0n,3n HT
1iDi + B̂iG0D1i

HT
3iAi −HT

3i + B̂iG0C1i Âi −HT
2i 0n,2mn HT

3iAdi 0n,3n HT
3iDi + B̂iG0D1i

]

,

Φ13i =
[

B̂T
i B̂T

i

]

, Φ14i =
[

C1i 0nC1
,2mn+5n D1i

]

,

Ω̂′′′

i =
[

Φ̃T
8i λ1Φ̃

T
9i λ2Φ̃

T
9i ΦT

10i ΦT
11i ΦT

12i

]T

,

Ω̂′′′′

i =
[

Φ13i λ1Φ13i λ2Φ13i 0 0 0
]

,

nC1
is the number of row in matrix C1i, Ω̂

′′, Φ1i, Φ2i, Φ3i, Φ4i, Φ5, Φ6, Φ7i, Φ10i, Φ11i and Φ12i are defined as in

Theorem 4, and E, λ1 and λ2 are defined as in Theorem 1, then the filtering error system (9) is asymptotically

mean-square stable with an H∞ disturbance attenuation level γ. Moreover, the parameters of the desired

filter are given as follows:

Afi = H−T
2i Âi, Bfi = H−T

2i B̂i, Cfi = Ĉi. (40)

Proof: From (7), we know that Ψ̂ti in (34) can be rewritten as

Ψ̂ti = Ψ̂′

ti +W T∆V + V T∆W, (41)

where

Ψ̂′

ti =













Φ7i ∗ ∗ ∗
λ1R

T
1 −Φ5 ∗ ∗

λ2R
T
t 0 −Φ6 ∗

Ω̂′′′ 0 0 Ω̂′′













< 0, t = 2, 3

W =
[

0 0 0 Ω̂′′′′

]

, V =
[

Φ14i 0 0 0
]

.

From Lemma 1 and (7), we have

Ψ̂ti ≤ Ψ̂′

ti + σ−1W T G̃2W + σV TV = Θ, t = 2, 3. (42)

By Schur complement, (39) implies that Ψ̂ti ≤ Θ < 0, t = 2, 3. Therefore, the filtering error system (9)

is asymptotically mean-square stable with partly unknown transition probabilities and an H∞ disturbance

attenuation level γ. This completes the proof.

Remark 5: It is worth pointing out that the optimal H∞ performance index γ∗ depends on the number

of known transition probabilities. Specifically, if more elements in the transition probability matrix can be

obtained which are exactly known, a smaller index can be achieved for the optimal H∞ performance. This

will be illustrated via a numerical example in the next section.

IV. An Illustrative Example

In this section, we present a numerical example to demonstrate the effectiveness of the proposed method.
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Consider a discrete Markovian jump system of form (1) with four modes and the following parameters:

A1 =

[

0 −0.2

0.8 0.8

]

, A2 =

[

0 −0.3

0.8 0.9

]

, A3 =

[

0 −0.2

0.8 0.7

]

, A4 =

[

0 −0.1

0.8 0.6

]

,

Ad1 = Ad2 = Ad3 = Ad4 =

[

0.1 0

0 0.2

]

, C1 = C2 = C3 = C4 =
[

0.1 0
]

,

D1 = D2 = D3 = D4 =

[

0.5

0

]

, C11 = C12 = C13 = C14 =
[

0.1 0.2
]

,

D11 = D12 = D13 = D14 = 0.5, θ1 = θ2 = θ3 = θ4 =

[

0.1

0.1

]

,

Ξ1 = Ξ2 = Ξ3 = Ξ4 =

[

0.01 0

0 0.01

]

, Π1 = Π2 = Π3 = Π4 =

[

0.01 0

0 0.01

]

.

The transition probability matrices for four different cases are given by

Λ1 =













0.5 0.2 0.2 0.1

0.4 0.2 0.3 0.1

0.2 0.3 0.2 0.3

0.2 0.2 0.2 0.4













, Λ2 =













0.5 0.2 0.2 0.1

0.4 ? 0.3 ?

0.2 0.3 0.2 0.3

? ? 0.2 0.4













,

Λ3 =













0.5 0.2 0.2 0.1

0.4 ? 0.3 ?

0.2 ? ? ?

? ? 0.2 0.4













, Λ4 =













? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?













.

The time-varying delay dk satisfies 1 ≤ dk ≤ 2 and let m = 1. The sensor fault matrix G is assumed to

satisfy 0.5 ≤ G ≤ 0.9, and then we can obtain that G0 = 0.7 and G̃ = 0.2.

Table I presents the optimal H∞ performance indices γ∗ for the four cases of different transition proba-

bilities. From Table I, it can be seen that the more transition probabilities we know, the smaller optimal

H∞ performance index the system can be achieved, which means that there exist tradeoffs between the cost

of obtaining transition probabilities and the expectation of the system performance. On the other hand, for

the system with the transition probability matrix Λ3, by solving (39)-(38) in Theorem 5, the desired filter

parameters can be obtained as

Af1 =

[

0.3311 −0.0405

0.3260 0.6109

]

, Bf1=

[

0.2266

−0.2894

]

, Cf1 =
[

−0.0424 0.0115
]

,

Af2 =

[

0.2643 −0.1517

0.5572 0.7149

]

, Bf2=

[

0.5826

−0.8306

]

, Cf2 =
[

−0.0815 0.0083
]

,

Af3 =

[

0.2633 −0.0711

0.4487 0.4719

]

, Bf3=

[

0.2161

−0.1650

]

, Cf3 =
[

−0.0465 0.0289
]

,

Af4 =

[

0.2404 −0.0029

0.4893 0.4544

]

, Bf4=

[

0.0005

0.1873

]

, Cf4 =
[

−0.0531 0.0232
]

.
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TABLE I

Minimum γ∗ for different transition probabilities cases

Transition probabilities Λ1 Λ2 Λ3 Λ4

γ∗ 0.2398 0.2904 0.2911 0.2924

V. Conclusions

In this paper, the reliable H∞ filtering problem has been investigated for a class of discrete-time nonlinear

Markovian jump systems with sensor failures, time-varying delay and partly unknown transition probabilities.

The systems under consideration are more general, which cover the Markovian jump systems with completely

known and completely unknown transition probabilities as two special cases. A new Lyapunov-Krasovskii

functional and delay-partitioning technique have been used to design a mode-dependent filter for all admis-

sible uncertainties such that the filtering error system is asymptotically mean-square stable and achieves a

prescribed H∞ performance level. The filter gains have been characterized by the solution of a set of LMIs.

An illustrative example has been exploited to show the usefulness of the results obtained. The future research

topics would include the extension of the main results developed in this paper to more general complex sys-

tems such as networked systems with random packet losses, general stochastic systems, polynomial nonlinear

systems and functional differential equations of the neutral type.
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