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Abstract

In the context of computer vision, matching can be done with similarity measures. This
paper presents the classification of these measures into five families. In addition,eigh-
teen measures based on robust statistics, previously proposed [1] in order to deal with the
problem of occlusions, are studied and compared to the state of the art. A newevalua-
tion protocol and new analyses are proposed and the results highlight the mostefficient
measures, first, near occlusions, the smooth median powered deviation, and second, near
discontinuities, a non-parametric transform-based measure, CENSUS.
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1 Introduction

In computer vision, similarity metrics are widely employed: in image registra-

tion [2], pattern recognition [3], movement analysis [4], object tracking [5], video

analysis [6] and stereo matching [7]. Consequently, many publications introduce

new similarity measures and some papers give a review of thesemeasures. The

most popular is the taxonomy of Aschwanden and Guggenbül [7] but we can also

mention taxonomies of ordinal measures [8], robust measuresfor matching [9], for
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registration [2] and for classification [10]. For stereo matching, correlation-based

methods are popular, because the implementation is simple,the execution time is

low and their efficiency has been demonstrated [11]. Matching elements can be pix-

els or more complex features [12] such as edges or corners. Inthis paper, we deal

with dense pixel matching. We consider that a correlation measure evaluates the

similarity between two data sets: the grey levels of two pixels and their neighbour-

hoods. Even if some of the correlation measures (classical,derivative-based and

non-parametric transform-based) have been studied and compared [13], the choice

of one measure is difficult. So, it seems important to give a new analysis of the

existing correlation measures.

Stereo matching is difficult because of: intensity distortions, noise, untextured ar-

eas, foreshortening, perspective effects and occlusions.Intensity distortions and

noise have been investigated [7], whereas untextured areasand foreshortening can-

not be overcome with correlation. With perspective effects,fine correlation [5] can

be used. While solving the occlusion problem, adaptive windows [14], multiple-

window methods [15], support-weight approaches [11] or robust measures [9] can

be used. Here, we are particularly concerned with occlusions. In a scene, depth dis-

continuities induce the occlusion problem because it is difficult to match a pixel

whose neighbours have a different depth. One solution is to consider as outliers the

pixels having a different depth from the pixel being studied. The tools of robust

statistics are insensitive to outliers and, consequently,we propose to introduce ro-

bust statistics-based measures. The aim of this work is to evaluate the correlation

measure and not to evaluate the window strategy for the estimation of the similarity

and we do not consider this kind of approach [11,14].

After giving some notations, the commonly used correlationmeasures are pre-

sented. Then, eighteen robust correlation measures are proposed. Finally, an evalu-
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ation protocol is presented and the results are discussed.

2 Notations

We propose to classify the measures into five families, with measures based on:

cross correlation, classical statistics, derivative images, non-parametric statistics

and robust statistics, see notations in Table 1.

Iw The images withw ∈ {l, r} (left and right).

Imax The maximal grey level in the imageI a.

I i,jw ,
pi,j
w

The grey level of the pixelpi,j
w of coordinates(i, j) in imageIw is I i,jw .

Moreover,pv,w
r is the correspondant pixel ofpi,j

l .

Nf ,
Nv, Nh

The number of pixels in the correlation window is denoted by:
Nf = (2Nv + 1) ×(2Nh + 1), Nv, Nh ∈ N

∗.

fw

This vector contains grey levels of pixels in the correlation window (in
imageIw): fw = (· · · I i+p,j+q

w · · · )T = (· · · fk
w · · · )T where T is the

matrix transposition operator,p ∈ [−Nv;Nv], q ∈ [−Nh;Nh].

fk
w The elementk of vectorfw.

fw,
m(fw)

The vector of meansfw containsNf columns and is defined by:

fw = (m(fw) · · · m(fw))
T with m(fw) =

1

Nf

Nf−1∑

k=0

fk
w.

LP
The LP norms are:‖fw‖P =




Nf−1∑

k=0

|fk
w|P




1/P

with P ∈ N
∗.

The Euclidean norm is given by:‖fw‖ = ‖fw‖2.
a In this paperImax ∈ [0; 255].
Table 1
Notations used for the description of the measures.

Tables 2 to 9 present for each measure, the following details: the name of the

measure, the abbreviation of the measure, the formulae, a lower bound and an

upper bound of the interval of variation (VARIATION ). For each measure, with

a, b ∈ R
∗ 1 , and,c, d ∈ R, we define the invariance property:

1 Like N
∗ = N \ {0}, R∗ = R \ {0}
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Gain : M(afl, bfr) = M(fl, fr);
Bias : M(fl + c, fr + d) = M(fl, fr);
Gain and bias : M(afl + c, bfr + d) = M(fl, fr).

In the following description, when no explicit reference isgiven, the reader should

consult Aschwanden and Guggenbül [7].

3 Cross correlation-based measures

TheCROSSfamily (Table 2) is based on the scalar product. The cross correlation:

CC(fl, fr) = fl · fr (1)

can be used only if the vectorsfw are normalised. This normalisation brings gain

invariance [16] and leads to the Normalised Cross Correlation, NCC (similarity

measure). The centred version, called the Zero mean Normalised Cross Correla-

tion, ZNCC, gain and bias invariant, is also known as an estimation of the Pearson

product-moment correlation coefficient. It is more efficient than NCC when there

is a linear relationship between the two sets of grey levels to be compared. The

Moravec [17] similarity measure, MOR, proposed for binary images, uses a dif-

ferent normalisation which is faster to compute than the normalisation of ZNCC.

It has been proposed to solve the problems of ZNCC, when the denominator is

equal to zero, but, consequently, MOR is sensitive to contrast changes and only

bias invariant.
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NAME ABBREVIATION DEFINITION VARIATION

Normalised Cross Correlation NCC fl · fr/‖fl‖‖fr‖ [0; 1]

Zero mean Normalised Cross CorrelationZNCC NCC(fl−fl,fr−fr) [−1; 1]

Moravec [17] MOR
2(fl−fl)·(fr−fr)

‖fl−fl‖2+‖fr−fr‖2 [−1; 1]

Table 2
CROSSfamily.

4 Classical statistics-based measures

TheCLASSICAL family (Table 3) contains classical statistics-based dissimilarities:

the distances, the locally scaled distances [7], the variances [18] and a fourth-order

statistics-based measure [19].

Distances –The principle behind the use of a distance in order to quantify the simi-

larity between two sets of grey levels is to consider them as two points inRNf and to

estimate how distant they are. In other words, it consists incalculating theLP norms

of the vector of the grey level differences [20,21]. The mainmeasures are the Sum

of Absolute Differences, SAD (L1 norm), the Sum of Squared Differences, SSD

(L2 norm), and the Kolmogorov-Smirnov distance, D∞ (L∞ norm). These mea-

sures can be centred to be invariant to bias, leading to Zero mean Distances, ZDP .

The well-known centred measures are the Zero mean Sum of Absolute Differences,

ZSAD (ZD1), and the Zero mean Sum of Squared Differences, ZSSD (ZD2). These

measures can also be normalised, leading to Normalised Distances, NDP , including

the Normalised Sum of Squared Differences, NSSD (ND2), and, centred and nor-

malised, giving the Zero mean Normalised Distances (also bias invariant), ZNDP ,

like the Zero mean Normalised Sum of Squared Differences, ZNSSD (ZND2).

Locally scaled distances –The aim ofLDP measures is to obtain the same mean

of grey levels on each window: each grey level in the right image is scaled by the

ratio between the left and right means. The two known measures are the Locally
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scaled Sum of Absolute Differences, LSAD (LD1), and the Locally scaled Sum of

Squared Differences, LSSD (LD2).

Variances –Two kinds of measures can be distinguished: the Variance of differ-

ences (bias invariant), VD, and the Variance of absoluteP -powered differences,

VADP , which gives the Variance Of Absolute Differences, VOAD (VAD1), and the

Variance Of Squared Differences, VOSD (VAD2).

Fourth-order statistics-based measure –High order statistics have been investi-

gated, and, in particular, by using a fourth-order cumulantof the grey level differ-

ences, K4, designed to be robust against Gaussian noise [19].

NAME ABBREVIATION DEFINITION VARIATION

Distances DP ‖fl−fr‖P P [0; Imax
PNf ]

Zero mean Distances ZDP DP (fl−fl,fr−fr) [0; Imax
PNf ]

Normalised Distances NDP
DP (fl,fr)√

‖fl‖P
P ‖fr‖P

P [0; Imax
PNf ]

Zero mean Normalised
Distances

ZNDP NDP (fl−fl,fr−fr) [0; Imax
PNf ]

Locally scaled Distances [7] LDP DP (fl,(fl/fr)fr) [0; Imax
PNf ]

Variance of Differences [18] VD var(fl−fr) [0; Imax
2]

Variance of AbsoluteP -powered
Differences [18]

VADP var(|fl−fr|P ) [0; Imax
2P ]

Fourth-order statistics-based
measure [19]

K4 m((fl−fr)4) −3m((fl−fr)2)2 [0; Imax
4]

Table 3
CLASSICAL family.

5 Derivative-based measures

All the measures of theDERIVATIVE family (Table 4) are based on the grey level

distribution. They employ the derivatives of the images at different orders and use
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the operators of Sobel, Roberts, Kirsch or Pratt. The gradient vector atpi,j
w in Iw is

∇I i,jw . The norm and the orientation are denoted respectively‖∇I i,jw ‖ and θi,jw .

Seitz measures –The idea [22] of SEOP (SEitz Operator) is to estimate the dissim-

ilarity of the gradient vector directions by calculating theLP norm of the gradient

direction differences. These measures are efficient in the case of impulsive noise

whereas they are not with Gaussian noise [7] and they are gainand bias invariant.

We denote these measures bySESP (SEitz Sobel) andSEKP (SEitz Kirsch), with

P = 1, 2. In fact,SES1 was introduced in [22] whereasSES2, SEK1 andSEK2 are

improved versions proposed in [7].

Nishihara correlation, Nack measure and Pratt correlation– Nishihara mea-

sure [23], NIS, is the cross correlation, equation (1), of binaryLaplacian images

(similarity measure). It is not efficient with impulsive noise and occlusions [7]. For

Nack measures, a convolution with the Roberts operator is applied. For eachpixel,

the region of interest (ROI) is binarized to take into account only 15% of the ROI

(this percentage is empirically chosen by the authors). It allows them to be robust

against noises and untextured areas because it takes into account only the most

significant part of the ROI. These similarity measures [24],NAm, m = 1, 2, are

not robust against Gaussian or impulsive noises, but, the larger the correlation win-

dow, the better the results are [7]. In fact,NA1 was proposed in [24] whereasNA2

is a modified version proposed in [7] (we have also modified this measure in or-

der to avoid division by zero). The similarity measure [25, pp. 666–667], PRATT,

is ZNCC, cf. Table 2, applied to binary Laplacian values contained in RLoG(fw).

Nishihara measureis very “flexible”, i.e. it gives the best score for the correspond-

ing pixels and even for non-corresponding pixels. Consequently, this measure can

be robust to occlusions or impulsive noise but can also induce errors. With the

following binary vectors (for respectivelyfl and one possible candidatefr), with
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O ∈ {Rob, LoG}:

(a) RO(fl) = (0 0 1 1 0 1 0 1 1)T and

(b) RO(fr) = (1 0 1 1 0 1 0 1 1)T ,

we obtain:

(r1) NIS(fl, fl) = NIS(fl, fr) = 5 whereas

(r2) NA1(fl, fl) = 1 and NA1(fl, fr) = 5/6.

For NIS, the best score is obtained with two correspondent vectors and two different

vectors. In this example, even if each 0 is replaced by 1 between RO(fl) and RO(fr),

NIS(fl, fr) = 5. On the contrary, with:

(c) RO(f
′

r) = (0 0 0 1 0 1 0 1 1)T ,

we obtain:

(r1) NIS(fl, fl) = 5 andNIS(fl, f
′

r) = 4 whereas

(r2) NA1(fl, fl) = NA1(fl, f
′

r) = 1.

With the modified version ofNA1, we obtain:

(r3) NA2(fl, fl) = 1 and NA2(fl, f
′

r) = 1/2.

In this example, even if each 1 is replaced by 0 between RO(fl) and RO(f
′

r) until

there is at least one1 in RO(f
′

r), NA1(fl, f
′

r) = 1. The measure NA2 reduces the

problem of NA1 with the introduction of 0. In conclusion, the measures of Nack

are less “flexible” than the measure of Nishihara but they arenot robust against

occlusions.

Orientation code matching correlation –For this similarity measure, the gradient
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direction code of pixelpi,j
w is estimated by [26]:

COCM(pi,j
w ) =





⌊θi,jw /∆θ⌋ if (‖∇I i,jw ‖ > TΓ)

L otherwise,

where⌊x⌋ is the integer part ofx and COCM ∈ {0, 1, ..., NOCM = 2π/∆θ, L}.

The authors have used∆θ = π/8, L = 255, TΓ = 10 (when the image range is

[0; 255]) and the Sobel operator. The authors usedL (here 255) in order to detect

low-contrasted regions and, after, in the computation of the similarity cost, to re-

duce their influence. When the distance between the orientation codes of two pixels

is estimated, if this distance is overNOCM (only in the case when one of the two

pixels has the valueL), a constant value (NOCM/2) is assigned, see Table 4 for the

definition of this distance.

Gradient vector field correlation – For the previous measures, the gradient direc-

tion is only introduced: this might introduce errors, especially with low norm gradi-

ent vectors whose direction is not reliable. Consequently, adissimilarity measure,

the Gradient field Correlation, GC, bias invariant measure, isintroduced in [27].

6 Non-parametric measures

This family (Table 5) is based on non-parametric transformations, i.e. no hypoth-

esis about the grey level distributions is made. We distinguish χ2 and Jeffrey

measures [3], Kaneko measures [28,29], Zabih measures [30]and ordinal mea-

sures [31].

χ2 and Jeffrey measures –These dissimilarity measures [3] are used for segmen-

tation and they seem to be interesting for correlation-based matching. For image
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NAME ABBREVIATION DEFINITION VARIATION

Seitz [22,7] SEOP ‖RO(fl)−RO(fr)‖P P [0; Imax
PNf ]

Nishihara [23] NIS RLoG(fl)·RLoG(fr) [0;Nf ]

Nack 1 [24] NA1
RRob(fl)·RRob(fr)
Nf m(RRob(fr))

[0; 1]

Nack 2 [7] NA2
NA1(fl,fr)

Nf m(RRob(fl))−RRob(fl)·RRob(fr)+1 [0; 1]

Pratt [25] PRATT ZNCC(RLoG(fl),RLoG(fr)) [−1; 1]

Orientation Code
Matching [26]

OCM 1
Nf

DOCM (ROCM (fl),ROCM (fr)

[
0; NOCM

2

]

Gradient vector field
Correlation [27]

GC

∑Nv

p=−Nv

∑Nh
q=−Nh

‖∇Ii+p,j+q

l
−∇Iv+p,w+q

r ‖
∑Nv

p=−Nv

∑Nh
q=−Nh

(‖∇Ii+p,j+q

l
‖+‖∇Iv+p,w+q

r ‖) [0;∞[

Table 4
DERIVATIVE family – The vectors RO(fw) contain the gradient directions offw after using
the Sobel or Kirsch operator, RLoG(fw) is the correlation window in the binary Lapla-
cian images, RRob(fw) contains the binary values after the Roberts transformation and
ROCM (fw) = (· · ·COCM (fk

w) · · · )T are the orientation codes infw, cf. section 5. As the
OCM code is cyclic, the maximal distance isNOCM/2 and the distance DOCM (fl, fr) is∑Nf−1

k=0 D(fk
l , f

k
r ), with D(a, b) = min {|a− b|, NOCM − |a− b|} if |a − b| < NOCM

NOCM/2 otherwise.

retrieval, they are numerically stable, symmetric and robust with respect to noise.

Increment Sign Correlation – The similarity measure, ISC [28], gain and bias

invariant, uses:bw =
(
. . . bkw . . .

)T
with k = 0 · ·Nf − 1 and

bkw =





1 if (k < (Nf − 1)) and(fk+1
w ≥ fk

w)

0 otherwise.

If the grey level increases betweenfk
w andfk+1

w , thenbkw equals1. The vectorsbl

andbr are compared to estimate how the variations of the grey levels are similar.

Selective Correlation Coefficient, SCC –This measure is a variant of ISC and has

the same properties [29]. It is based on these weights (determined withbw):
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e = (· · · ek · · · )T , k = 0 · ·Nf − 1, ek =





1− |bkl − bkr | if k = 0 or k even

ek−1 otherwise.

If grey levels change in the same direction betweenfk
l andfk+1

l , and betweenfk
r

andfk+1
r thenekl andek+1

l (k is even) equal1.

Rank measures –The rank transformation,rk, is the number of pixels infw

with a grey level lower than the grey level of the central pixel of fw: rk(pi,j
w ) =

card({I i+p,j+q
w | I i+p,j+q

w < I i,jw }). In consequence, the window transform Rrk(fw)

is defined by:

Rrk(fw) = (. . . rk(pi+p,j+q
w ) . . . ), p ∈ [−Nv;Nv], q ∈ [−Nh;Nh] and

An illustration of the estimation ofrk(pi,j
w ) and Rrk(fw) is given in Figure 1. Zabih

and Woodfill [30] employ theL1 andL2 norms (RANKP in Table 5). The measures

are gain and bias invariant.

100 30 20 10 10

120 10 25 15 10

130 40 43 46 40

120 49 70 50 40

140 40 60 40 40

Fig. 1. Illustration for estimating the Rank transform – If the Rank transform is estimated
for the pixel43and its3×3 neighborhood (in italic), we obtain:rk(pi,j

w ) = 4 for this pixel
and Rrk(fw) = (0 4 3 2 4 6 3 8 6)T for his neighborhood.

Census measure –This similarity measure, proposed in [30], uses a transformthat

produces a bit chain which represents the pixels with an intensity lower than the

central pixel: Rτ (fw) =
⊗

k∈[0;Nf−1] ξ(f
Nf/2
w , fk

w) whereξ(f
Nf/2
w , fk

w) = 1 if fk
w <

f
Nf/2
w . CENSUS is the sum of the Hamming distances between the codes ofeach

pixel of the correlation window. It is gain and bias invariant.
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Ordinal measures –A similarity measure modelα, which is gain and bias in-

variant, is defined by:α(fl, fr) = 1 − (2Dα(Rπ(fl),Rπ(fr)))/Dmax, where Rπ(fw)

contains the ranks of the pixels infw, Dα is a distance and Dmax is the maximum

of Dα. In [31], they tested the Hamming distance, the Kendall and the Spearman

measures that are not effective and they proposed the following distances.

The ranks of the element offw are stored in Rπ(fw), a permutation of(1 2 . . . Nf )
T .

The elementi of a composition of permutations is given by: Compi = Rk
π(fr) with

k = Ri
π(fl)

−1 and Rπ(fl)−1 is the inverse permutation of Rπ(fl). With the example

of Figure 1, the ranks are:

Rπ(fl) = (1 3 2 4 5 6 7 9 8)T , and if we study this candidate:

fr = (55 20 21 40 18 46 49 15 50)T with

Rπ(fr) = (9 3 4 5 2 6 7 1 8)T , then

Comp(Rπ(fl),Rπ(fr)) = (9 4 3 5 2 6 7 8 1)T .

The elementi of the deviation is:

Devi =
j=i∑

j=0

J(Compj > (i+ 1)) with J(B) =





1 if B is true or

0 otherwise.

With the previous example, we have:

Dev(Rπ(fl),Rπ(fr)) = (1 2 2 2 1 1 1 1 0)T . Theκmeasure is based on the maximum

in Dev = (. . .Devk . . .)T :

κ(fl, fr) = 1− (2 max
k=0..Nf−1

Devk)/⌊Nf/2⌋.
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A variant, less expensive than theκ measure, is theχ measure:

χ(fl, fr) = 1− (2DevNf/2)/⌊Nf/2⌋.

The ordinal measures are invariant to gain and bias and tolerate factionalism,

i.e. they are robust against outliers and, so, against occlusions. However, they

are “flexible”, like the derivative-based measures, and they can produce errors

in areas without occlusion. In fact, a maximal correlation score can be obtained

even if the two correlation windows are not strictly identical. For example, with

fl = (0 1 22 35 46 58 61 121 123)T andfr = (0 2 42 60 81 100 123 124 125)T ,

we haveκ(fl, fl) = κ(fl, fr) = 1. The maximal score is reached with(fl, fl) but also

with (fl, fr). Consequently, erroneous correspondences can be obtained.

NAME ABBREVIATION DEFINITION VARIATION

χ2 measure [3] χ2
∑Nf−1

k=0
2(fk

l
−fkr )2

fk
l
+fkr

[0; ImaxNf ]

Jeffrey measure [3] JEFF

∑Nf−1
k=0 fk

l
log(

2fk
l

fk
l
+fkr

)

+fk
r log(

2fkr
fk
l
+fkr

)
[0; ImaxNf ]

Increment Sign
Correlation [28]

ISC 1
Nf−1

(bl·br+(1−bl)·(1−br)) [0; 1]

Selective Coefficient
Correlation [29]

SCC
(E(fl−fl)·(fr−fr))

‖E(fl−fl)‖‖E(fr−fr)‖ [0; 1]

Rank [30] RANKP ‖Rrk(fl)−Rrk(fr)‖P P [0;NP+1
f ]

Census [30] CENSUS
∑Nf−1

k=0
DH(Rτ (fl),Rτ (fr)) [0;Nf ]

Ordinal measures [31] α 1−2
Dα(Rπ(fl),Rπ(fr))

Dmax
[−1; 1]

Table 5
NON-PARAMETRIC family – The Hamming distance is:DH(fl, fr) =

∑Nf−1
i=0 sgn |f i

l −f i
r|,

with sgn(x) = 1 if x > 0, 0 if x = 0 or −1 otherwise. The diagonal matrixE contains
the valuesek, with k ∈ [0;Nf − 1].
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7 Robust measures

We are particularly concerned with the occlusion problem which appears in the

vicinity of a pixel near a depth discontinuity. In fact, somepixels lie on a first level

of depth whereas the other pixels lie on a second level. It candisturb the matching

process and introduce erroneous matches. To take this problem into account, the

measures of theROBUST family, cf. Tables 6 and 9, consider pixels with a depth

different to the main pixel as outliers (Figure 2). So, they employ the tools of robust

statistics that are less sensitive to outliers than classical ones.

Outliers

Correspondents

Correlation windowsLeft image Right image

Fig. 2. Robust measure principle – The small disks are the two correspondentpixels. The
squares are the correlation windows and the dashed polygons are the parts of the correlation
windows which contain very different grey levels. In fact, in the left image, this part belongs
to the background whereas, in the right, it belongs to the foreground. Therefore, comparing
these two areas is not relevant.

Partial correlation – The principle of the similarity partial correlation is to cal-

culate a score with different weights for each pixel pair. These weights are chosen

according to the degree of membership of the set of correct correspondent pairs: the

higher the degree, the greater the weight. The matricesBw contain the weightsβk
w,

with k ∈ [0;Nf − 1], applied tofw and this function is defined: Rm(fw) = Bw · fw
wherem corresponds to the chosen method for calculating the weights. The mea-

sures based on partial correlation are noted RM for ReweightedMeasures and,

depending on the used measure, RM might be gain and bias invariant. Lan [9] sup-

poses that, for two correspondent pixels, the grey levels ofthe two correlation win-

dows, without occlusion, are linearly dependent. It allowsone to take into account

the intensity distortions and to include a Gaussian white noise. In other words, if
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the grey levels of two pixels in the same position in the two windows are considered

as the coordinates in a plane,ak = (fk
l fk

r )
T , then a set of aligned points is obtained

and this cloud of points is only disturbed by “normal” noise.If there are occluded

pixels, it is assumed that the grey levels in the same position are very different and,

so, these pairs do not respect the previous model: they are outliers. For that reason,

a line fitting technique can be employed to detect outliers and two robust estimators

have been proposed: LMS, Least Median of Squares for the Reweigthed Zero mean

Sum of Squared Differences correlation, RZSSD, and MVE, Minimum Volume El-

lipsoid for the Reweighted Zero mean Normalised Cross Correlation, RZNCC.

A random sampling with Monte-Carlo method is needed. Some robust parameter

estimators are based on a minimisation with no explicit solution, like LMS and

MVE. A first idea is to build minimal subsets of data (it contains the lowest number

of data that is needed to calculate the parameters), then to estimate the parameters

for each subsets and finally to select those which minimise the global criterion. The

major drawback is the number of subsetsq: with n data and subsets ofm data,

we haveCn
m combinations. Another possibility is to randomly choose a limited

number of subsets. It depends on the risk of not finding the global minimum, more

precisely:Prob = 1 − (1− (1− ǫ)m)
q, ǫ is the maximal proportion of outliers in

the initial data andProb is the probability that, at least, one subset is correct, i.e.

with no outliers. By choosing a prioriǫ = 0.5 andProb = 0.95, q is defined by:

q =
log(1− Prob)

log (1− (1− ǫ)m)
.

Consequently, we have to randomly select11 subsets for LMS (m = 2) and23 for

MVE (m = 3).

The aim of LMS estimator is to find the parameters of the line which minimise:

medk=0··Nf−1(r
k)2 whererk is the Euclidean distance between the line andak. The

15



weights are obtained by thresholding the distance between the point and the line

where the threshold is a robust estimation of the standard deviation:

wk
LMS =





1 if |rk|/σ̂ ≤ 2.5

0 otherwise

with σ̂ = 1.4826

(
1 +

5

Nf − 2

)√
med

k=0··Nf−1
(rk)2.

The factor1.4826 permits an estimation without bias with Gaussian noise and the

term1 + 5/(Nf − 2) allows correction with small subsets [32].

For the second measure, the estimation of the MVE ofNf points,ak = (fk
l fk

r )
T ,

is introduced in [9]. The authors estimate the parameters ofthe MVE withh points

(here,h = ⌊Nf/2⌋ + 1) that are represented by the coordinates of the centrea of

the ellipsoid and the covariance matrixA. The parameters have to minimize

√
det(A) with A = (χ2

2;0.5)
−1m2A′ where

m2 = med
k=0··Nf−1

(ak − a)TA′−1
(ak − a). Usingχ2 allows to produce an estimation

being robust against Gaussian noise. By introducing Mahalanobis distance, weights

are:

wk
MV E =





1 if (ak − â)T Â−1(ak − â) ≤ χ2
2;0.975

0 otherwise,

where theχ2
2;0.975 is a com-

monly used threshold for detecting outliers, and,â andÂ are the estimated param-

eters.

Partial correlations, RZSSD and RZNCC, are robust against occlusions [9].

Robust ZNCC measures –Some measures are a robust version of ZNCC, cf. Ta-

ble 6, like the quadrant correlation,QUAD [33, pp. 204–205], and the measure of

Trujillo [34]. They are gain and bias invariant also. The quadrant transformation is

applied on the vectorsfw and gives binary values. For the Trujillo, the mean (used
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for centering) is replaced by a median and the normalisationwith L2 becomesL1.

Pseudo-norms –These dissimilarity measures are robust distances [35], i.e. LP

norms with0 < P < 1. The adhesion effect occurs at discontinuity boundaries

induced by an occlusion and the consequence is the dilation of the occluding ob-

ject in the disparity map2 . It appears with classical norms while the pseudo-norms

alleviate it because, withP > 1, the greater the power, the more important influ-

ence of the pixels that induce large grey level differences.With a pseudo-norm,

the lower the power (near0), the less important influence the differences, i.e. they

are robust against occlusions. Unfortunately, pseudo-norms generate the erosion of

object corners.

NAME ABBREVIATION DEFINITION VARIATION

Partial correlation [9] RMm Mes(Rm(fl),Rm(fr)) [−1; 1]

Quadrant correlation [33]QUAD ZNCC(Rquad(fl),Rquad(fr)) [0; 1]

Robust ZNCC [34] ZNCCR
(fl−med(fl))·(fr−med(fr))

‖fl−med(fl)‖1‖fr−med(fr)‖1 [−1; 1]

Pseudo-norm [35] DP ‖fl−fr‖PP with 0<P<1 [0; +∞[

Table 6
ROBUST family (state of the art) – For the quadrant correlation, the authors suggestto use

this transform: Rquad(fl) = sgn
(

(fl−med(fl)
med |fl−med(fl)|

)
. In fact, the divisor is anyway positive

and does not affect the sign, and, Rquad(fl) = sgn(fl −med(fl)) is more appropriate.

8 Proposed robust measures

We propose to complete the set of existing robust measures using again the princi-

ple illustrated in Figure 2.

Robust variance, MAD –This dissimilarity measure, Median Absolute Deviation,

is a robust estimation of the variance of the grey level differences. We can consider

2 Disparity is the displacement between a pixel in one of the image and its correspondent
in the other image.
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it as a robust version of ZNSSD and it is gain and bias invariant.

Least Median of Powers (LMP) –We proposed the LMPP , a generalisation toP

powers, of the least median of squares [32] . It is a robust version of DP and an

alternative to the pseudo-norms, cf.§ 7. It is gain and bias invariant.

Least Trimmed Powers (LTP) – It is based on the least trimmed squares [32]

where the squared grey level differences are sorted and theh first values (here,h =

Nf/2) are summed. Instead of using the squared difference, LTP can be defined

with any power difference. It is gain and bias invariant.

Smooth Median Powered Deviation (SMPD) –The Smooth Median Absolute

Deviation, SMAD [36], is also a robust estimation of the variance. The measure

SMPDP is a normalised version ofLTPP with bias invariance only.

M-estimators –The least mean of squares estimation is sensitive to outliers, while

the M-estimators use a criterion which replaces the square by an object function,

ρm, symmetric with a single minimum at0 [37], less sensitive to outliers because it

increases less quickly than the square function. So, we suggestρ-based dissimilarity

measures,MEm, cf. Table 7 and Figure 3, which are bias invariant.

R-estimators –The principle is to change the square function by weights, given by

theJm functions, that depend on the rank of the differences. This principle helps to

decrease the influence of the outliers and we propose dissimilarity measures based

on R-estimators,REm, cf. Table 8 and Figure 3 [32,38,39]. The integral ofJm on

its definition domain must be equal to 0.These measures are gain and bias invariant.
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NAME FUNCTION NAME FUNCTION

L1 − L2 ρ1(x)=(
√
1+x2−1)/2 Fair ρ2(x)=|x|−log(1+|x|)

Cauchy ρ3(x)=log(1+x2)
Geman-
McClure

ρ4(x)=
x2

2(1+x2)

NAME FUNCTION

Welsh ρ5(x)=(1−e−x2 )

Tukey ρ6(x)=





(1−(1−x2)6) if |x|≤1

1 otherwise

Huber ρ7(x)=





(x2)/2 if |x|≤1.345

1.345(|x|−1.345/2) otherwise

Rousseeuw ρ8(x)=2 log(ex+1)−x−2 log(2)

Table 7
Theρm functions of the M-estimators measures.

NAME FUNCTION NAME FUNCTION

Wilcoxon J1(t)=t−1/2 Median J2(t)=sgn(t−1/2)

NAME FUNCTION

Van der Waerden J3(t)=φ−1(t)

Optimal B-robust estimator J4(t)=





−1.4634 if 0≤t≤0.39

1.47φ−1(t) if 0.39<t≤0.61

1.4634 if 0.61<t≤1

Minimax J5(t)=





−1.14 if 0≤t≤0.48

φ−1(0.5+ t−0.5
t−0.1

) if 0.48<t≤0.52

1.14 if 0.52<t≤1

Table 8
TheJm functions of the R-estimator measures – Theφ function is the normal distribution
function. The values ofφ−1 lie on [φ−1

min;φ
−1
max] andt ∈ [0; 1].

9 Evaluation and comparison protocol

We propose a protocol designed specifically for comparing correlation-based meth-

ods and for describing their behaviour with occlusions, and, we present the tested

images, the evaluation areas, the criteria and how all the results are summarized.
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NAME ABBREVIATION DEFINITION VARIATION

Robust variance [1] MAD med |(fl−fr)−med(fl−fr)| [0; +∞[

Least Median of
Powers [1]

LMPP med (|fl−fr |P ) [0; Imax
P ]

Least Trimmed
Powers [1]

LTPP
∑h−1

k=0
(|fl−fr|P )k:Nf−1 [0; Imax

Ph]

Smooth Median
Powered Deviation [1]

SMPDP
∑h−1

k=0 (|fl−fr−med(fl−fr)|P )k:Nf−1 [0; Imax
Ph]

M-estimator [1] MEm
∑Nf−1

k=0
ρm(fk

l
−fk

r )
[ρmin

m Nf ;
ρmax
m Nf ]

R-estimator [1] REm
∑Nf−1

k=0 Jm

(
Rπ(fk

l
−fk

r )

Nf−1

)
(fk

l
−fk

r )
[Jmin
m Imax;

Jmax
m Imax]

Table 9
ROBUST family (proposed measures) – The ordered values offw are represented by:
(fw)0:Nf−1 ≤ . . . ≤ (fw)Nf−1:Nf−1. The notation|fl − fr|P means(. . . |fkl − fkr |P . . .)T .
The termsρmin

m andρmax
m are the lower and the upper bounds ofρm andJmin

m andJmax
m

are the lower and the upper bounds ofJm on [0; Imax]. The rank of(fk
l − fk

r ) is stored in
Rπ(f

k
l − fk

r ).
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Fig. 3. Visualisation of the functions used by M-estimators (a) and R-estimators (b) – It
highlights how the influence of the highest grey level differences is reduced by using these
functions compared to square function (for M-estimator, in (a), this function has been plot-
ted).

Tested images –Forty two images are tested (examples are given in Figure 5):

a random-dot stereogram (number 1), two synthetic pairs (numbers 2 and 3), one

real pair made by Bocquillon3 (number 4) and thirty eight real pairs introduced by

3 http://www.irit.fr/ Benoit.Bocquillon/MYCVR/research.php
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Scharstein and Szeliski: six have been proposed in 2002 [40](number 7 to 12), two

in 2003 [41] (numbers 13 and 14), six in 2005 [42] (numbers 15 to 20) and twenty

two in 2006 [43] (numbers 21 to 42). The last ones, the set of 2005 and 2006, are

the most complex images. Compared to the protocol of Scharstein and Szeliski, our

protocol has the advantage of presenting the results obtained for forty-two images

and not only for four images. In section 10, for reason of space, we only present

a sample of the obtained results but all the tests have been done on all the cited

images. Moreover, to test robustness against Gaussian noise and impulsive noise,

auto-correlation has been performed for two kinds of images: a randomimage and

a real image,Sand, of size128 × 128, with 5% and10% of impulsive noise or a

Signal to Noise Ratio (SNR) equal to0.1 and0.2 for Gaussian noise, cf. Figure 4.

Random
image

Impulsive
noise

Gaussian
noise

Sand
image

Impulsive
noise

Gaussian
noise

Fig. 4. Tested images with different type of noises.

NAME IMAGE DISPARITY NAME IMAGE DISPARITY

Walls
synthetic

pair

Cones
real pair

Books
real pair

Moebius
real pair

Fig. 5. Examples of data used in our tests (left images and disparities).

Evaluation areas –The advantage of the protocol is to quantify the behaviour of

the methods based on correlation measure near occlusions and discontinuities, this

is why we consider these areas, see Figure 6:
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• Occluded pixels– They are pixels without correspondent:

O(pi,j
w ) =





1 if pi,j
w is an occluded pixel

0 otherwise.

• Occlusion area–OA(Iw) contains all the occluded pixels inIw:

OA(Iw) =
{
pi,j
w | O(pi,j

w ) = 1
}
.

• Pixels near occluded pixels– They are the pixels in the neighbourhood of oc-

cluded pixels. This vicinity is related to the size of the correlation window: it

corresponds to the morphological dilation of the occlusionarea using the corre-

lation window as structuring element:

NO(pi,j
w ) =





1 if (O(pi,j
w ) = 0) and(V(pi,j

w ) =
∑

p
i′,j′
w ∈W(pi,j

w )

O(pi′,j′

w )) > 0)

0 otherwise,

where W(pi,j
w ) is the set that contains all the pixels of the correlation window.

• Occlusion influence area– OIA(Iw) contains all the pixels near occluded pixels

in Iw: OIA(Iw) = {pi,j
w | NO(pi,j

w ) = 1} .

• Whole occlusion area– WOA(Iw) is the union of OA and OIA forIw:

WOA(Iw) = OA(Iw)∪OIA(Iw) = {pi,j
w | (O(pi,j

w ) = 1) or (NO(pi,j
w ) = 1)} .

• Pixels near discontinuity– They are in the vicinity of a discontinuity:

ND(pi,j
w ) =





1 if ∃ pi′,j′

w ∈ W(pi,j
w )

∣∣∣ ‖d(pi′,j′

w )− d(pi,j
w )‖ ≥ 1

0 otherwise,

whered(pi,j
w ) is the disparity ofpi,j

w . We select all the pixels that induce a differ-
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ence of disparity in its neighborhood (this is why the threshold equals 1).

• Discontinuity area– It corresponds to:DA(Iw) = {pi,j
w | ND(pi,j

w ) = 1} .

(a) Left image (b) Disparity (c) Occlusion (d) Discontinuity

Fig. 6. Occlusion areas – We have calculated the Whole Occlusion AreaWOA (c), with
the ground truth (b), a disparity map (each pixel represents the disparity range defined by
the distance between the position of the pixel in the left image and its correspondent in the
right image. The brighter the pixel, the closer the point to the image plane and thelarger the
disparity). In (c), grey pixels are in the Occlusion Influence Area,OIA, and black pixels
are in the occlusion area,OA. In (d), grey pixels are pixels near discontinuities.

Evaluation criteria – The theoretical disparity function isdref and the error is

Erri,jw = ‖d(pi,j
w )− dref(p

i,j
w )‖, significant only ifd(pi,j

w ) 6= occ anddref(p
i,j
w ) 6= occ,

whereocc is the value for occluded pixels. We calculate the followingpercentages:

(1) Correct matches, COR – A match is correct ifErri,jw < 1.

(2) Accepted matches, ACC – A match is accepted if1 ≤ Erri,jw < 2.

(3) Bad matches, BAD – A match is bad if2 ≤ Erri,jw < 3.

(4) Erroneous matches, ERR – A match is erroneous ifErri,jw ≥ 3.

(5) False positive, false negative, FPO and FNE – The method estimates that the

pixel is matched whereas it is not matched and vice versa. A match is a false

positive (respectively a false negative) ifd(pi,j
w ) 6= dref(p

i,j
w ) anddref(p

i,j
w ) =

occ (respectivelyd(pi,j
w ) 6= dref(p

i,j
w ) andd(pi,j

w ) = occ).

The use of the criteria (1) to (3) has been introduced by the authors of [9]. The

criterion (1) is calculated for each evaluation area. We present visual results with

an error map:

• If the pixel is white, the correspondence is erroneous or bad.
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• If the pixels is black it is a true negative.

• If the pixel is grey, the correspondence is correct.

The main advantage of this set of criteria, compared to the Scharstein and Szeliski

protocol, is that it is more complete and it allows to evaluate precisely the efficiency

in occlusion and discontinuity areas.

Whole Rank (WR) and Family Rank (FR) – Like Scharstein and Szeliski4 ,

methods are classified according to the mean of the ranks attributed to the measure

for each evaluation criterion. Compared to their protocol, the number of criteria is

more important in ours. In the tables, we note WR for indicating the whole rank of

each correlation – compared to all the other correlation measures – and FR the rank

into its own family – compared to the measures of the same family. In Table 14,

these ranks are given for theconespair, whereas in Table 15, they are presented for

all the pairs: each rank is the mean of the ranks on all the images and each WR and

FR are estimated on the mean of these mean ranks.

10 Experimental results

The measures presented in sections 3 to 8 have been tested andwe used the bidirec-

tional constraint that consists in estimating correspondences from left to right and

then from right to left and in considering non-coherent matches as occluded pixels

(these occluded pixels are shown in black in disparity maps).

In this section, we give some examples of the results but interested readers can find

the details of the results for each of 42 images on this web site:

4 http://cat.middlebury.edu/stereo/
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http://perso.lcpc.fr/sylvie.chambon/correlationResults.html.

Influence of the size of the correlation window –We have tested window size

between3 × 3 and15 × 15 to study the behavior of the measures with different

window sizes. In Table 10, we give for each family, the mean ofbest window sizes,

i.e. the size that permits the best values of the criterion, for each criterion on all the

42 tested images. A more complete version of this table can befound in the web

page cited at the beginning of this section. We can notice that for the percentage of

correct matches, the most efficient measures with a reasonable window size (7× 7

or 9× 9) are: the measures of familyCROSS, ZD1, LD1, VD, GC, CENSUS, MAD

and R1,2,4,5.

FAMILY COR ACC BAD ERR FPO FNE WOA OA OIA DA

CROSS 9 11 11 9 5 13 3 5 13 7

CLASSICAL 9 11 11 9 5 13 3 5 13 7

DERIVATIVE 15 11 7 13 11 15 5 9 15 15

NON-PARAMETRIC 13 11 7 13 9 15 5 7 15 11

ROBUST 13 11 9 13 9 15 5 7 15 11

Table 10
Mean of best window sizes for each criterion ((W)OA: (Whole) Occlusion Area, OIA:
Occlusion Influence Area, DA: Discontinuity Area) on all the 42 tested images and for
each family.

The smaller the window, the more difficult to distinguish twodifferent neighbour-

hoods and, moreover, the larger the window, the more possible to take into account

pixels with different disparities. Consequently, the number of erroneous matches in

the occlusion areas increases as the window size increases and, as expected, best

results in Whole Occlusion Area (WOA), Occlusion Area (OA) and DA (Discon-

tinuity Area) are obtained with small windows, lower than9 × 9, for most of the

measures. Moreover, Figure 7 illustrates the fact that for a9 × 9 window, the per-

centage of correct matches is optimal for five selected measures (one of the best
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measures for each family) and that the smaller the window, the better the results in

the WOA. These two results are in contradiction and with a fixedsize strategy, it

seems difficult to select the most suitable size of windows.

WHOLE IMAGE (COR) WHOLE OCCLUSION AREA(WOA)

Fig. 7. Variation of the mean of two criteria over all the images for five measures –We show
the results only for the most significant measures for each family, i.e. measures with rank 1
for the global results, cf. Table 15. The left graph represents the percentage of correct
matches in the whole image whereas the right graph illustrates the percentage ofgood
results in the WOA. The robustness of SMPD2 is illustrated by its results in the WOA.

However, in order to reduce the size of data to analyse, we decided to focus on the

results obtained with the percentage of correct matches in the whole image, COR,

and in the WOA (Whole Occlusions Area), cf. Figure 7. It seems reasonable to com-

pare the results with a9 × 9 window for each similarity measure that is evaluated,

because, the percentage COR is the best (or near the best) and the results in WOA

are quite good (in most of the cases). Clearly, it correspondsto maximizing the

correct matches in the whole image, for classical measures,without degrading (too

much) the efficiency in WOA. Moreover, with a bigger window, the percentages of

correct matches are not improved a lot for the other kind of measures, whereas, the

percentages of correct matches in WOA are significantly decreased. This size coin-

cidentally corresponds to maximizing erroneous matches, cf. Table 10. Moreover,

this size is also a standard for this data set in the literature [40,44].

Execution time –The first three families have reasonable execution times whereas
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the two last ones are expensive, cf. Table 11. Our implementation is not optimal,

however,κ, χ, CENSUS andRZNCC, even optimised, are very expensive.

MEASURE TIME MEASURE TIME MEASURE TIME MEASURE TIME MEASURE TIME

NIS 2.38 PRATT 5.33 ME1 6.25 ME2 33.06 R4 43.64

VAD 2.77 ZD1 5.23 OCM 6.37 MAD 33.23 ME5 49.48

NCC 3.09 SEK1 4.83 ISC 6.67 R1 35.5 D0.1 74.88

MOR 3.91 ZNCC 5.4 ME7 11.0 ZNCCR 35.55 JEFF 83.84

SES1 4 LD1 5.44 SCC 13.02 R2 38.1 QUAD 91.35

D1 4.13 ME4 5.89 LMP2 16.65 R5 38.33 κ 167.27

NA1 4.57 χ2 5.93 GC 17.6 ME8 39.46 χ 179.82

NA2 4.61 ME6 5.94 ME3 24.1 SMPD2 39.77 CENSUS 305.67

RANK1 4.73 K4 6.1 LTP2 25.44 R3 40.44 RZNCC 725.7

Table 11
Execution times (in seconds, for the image of Figure 6, with a9×9 window with a processor
intel R©coreTM2 duo of2 GHz) – Measures are classified according to growing execution
time. It gives only some indications because the implementation (for some of them, like
SAD) has not been optimized and, for example, box-filter techniques [45,46] can be used.

Gaussian and impulsive noises –For Gaussian noise, the lower the signal-to-

noise ratio, the larger the window to obtain100% correct matches. TheCROSSand

CLASSICAL families are robust against Gaussian noise. In theDERIVATIVE family,

only GC is efficient, and some measures of theNON-PARAMETRIC andROBUST

families are not efficient:RANKP , the partial correlation,QUAD and MAD. The

most robust measures against Gaussian noise are: SSD,ME1 andME7. The study of

results obtained in the presence of impulsive noise gives a first approximation of the

behaviour of the measures with occlusions: damaged pixels can be considered as

occluded pixels. TheCROSSandCLASSICAL families are not robust. The measures

of the DERIVATIVE family have a good behaviour except PRATT. Two problems

occur: first, the PRATT convolution, with these two images, gives an image with

repetitive patterns and, second, it is highly sensitive to only one erroneous pixel.

The NON-PARAMETRIC family is effective but, the larger the proportion of noise,
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the larger the correlation window to obtain good results. The ROBUST family is, as

expected, the most efficient. Some results are in Table 12 where we give the smallest

size of windows for having good performances with Gaussian and impulsive noises

with one of the best measures for each family (for the robust one, two measures: a

known measure and a proposed one).

GAUSSIAN, SNR =0.1 GAUSSIAN, SNR =0.2 IMPULSIVE, 5% IMPULSIVE, 10%

ZNCC 3 5 21 9 7 25∗ 9 25∗

D1 7 5 21 9 7 23 5 25∗

GC 7 5 25 9 7 3 9 25∗

ISC 11 7 25 13 9 5 9 9

D0.1 11 7 25 25 3 5 3 5

ME5 5 5 25 15 3 3 3 5

Table 12
Results forrandom(first columns) andsand(second columns) presented in Figure 4 (SNR:
Signal to Noise Ratio) – We present the smallest size of the window necessaryto obtain
100% of correct matches. Tested window sizes vary between3 × 3 and25 × 25. In some
cases, denoted by∗, the measure never reaches this performance.

Performance analysis –In Table 13, we present the averages and the variances

of the results on the 42 pairs with the best measure for each family. Variances

are high for correct matches, it is around14%. It illustrates how the data set is

heterogeneous. Moreover, the results for theConespair are detailed in Table 14 and

Figure 9. These images are less difficult than the others because there are no low

textured areas and the occlusion areas are numerous but small. For these reasons,

theCROSSandCLASSICAL families perform better than with the other images.

In Figure 8, we present the variations of the percentage of correct matches on the

whole image and on the Whole Occlusion Area (WOA), for the 42 images, for

five significant measures, with a9 × 9 window. It illustrates the matching difficul-

ties in all the images (the set of 2006 contains images with important illumination

changes, low textured areas, complex scenes), and, it demonstrates that SMPD2 is

very efficient in the WOA and close to the best measures in the whole image.
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MEASURE COR ACC BAD ERR FPO FNE WOA OA OIA DA

NCC 78 (12) 2 (2) 0 (0) 2 (3) 1 (1) 13 (8) 65 (11) 80 (17) 45 (10) 54 (11)

LD1 78 (13) 2 (2) 0 (1) 2 (4) 1 (1) 13 (8) 66 (11) 80 (17) 48 (10) 57 (12)

GC 80 (12) 2 (3) 0 (0) 3 (5) 1 (1) 11 (7) 68 (11) 78 (17) 53 (10) 61 (12)

CENSUS 81 (12) 2 (3) 0 (0) 2 (2) 1 (1) 12 (8) 71 (9) 84 (10) 55 (13)67 (10)

SMPD2 74 (15) 1 (2) 0 (0) 1 (3) 0 (1) 19 (13) 73 (11) 85 (14) 57 (13) 64 (14)

Table 13
Averages and variances (in parentheses) of the percentages obtained for most of the cri-
teria with different scenes ((W)OA: (Whole) Occlusion Area, OIA: Occlusion Influence
Area, DA: Discontinuity Area) with9× 9 correlation window for the 42 pairs. Bold letters
correspond to the best results over the 5 presented results.

MEASURE COR ACC BAD ERR FPO FNE WOA OA OIA DA WR

ZNCC
81.08
[12]

1.12
[21]

0.55
[20]

2.67
[21]

3.83
[39]

10.75
[6]

63.59
[23]

72.63
[39]

57.30
[17]

59.46
[12]

18

LD1
81.84
[8]

0.98
[23]

0.47
[26]

2.14
[12]

3.42
[26]

11.14
[10]

64.58
[19]

75.56
[27]

56.94
[19]

58.97
[16]

12

GC
82.66
[4]

1.23
[17]

0.5
[24]

2.54
[19]

4.09
[44]

8.98
[5]

72.87
[4]

70.74
[42]

74.36
[3]

80.24
[2]

3

ISC
82.87
[3]

0.37
[40]

0.31
[36]

2.34
[16]

3.18
[21]

10.92
[10]

73.79
[2]

77.26
[19]

71.37
[4]

76.81
[4]

2

SMPD2
85.86
[1]

0.46
[39]

0.2
[42]

1.22
[5]

2.91
[19]

9.07
[6]

77.4
[1]

79.2
[17]

76.14
[1]

78.87
[3]

1

Table 14
Results achieved with theconespair ((W)OA: (Whole) Occlusion Area, OIA: Occlusion
Influence Area, DA: Discontinuity Area, WR: Whole Rank) – We give the results of the
best correlation measure in each family (in brackets, the WR on the criterion).The complete
results, i.e. are available in Table 18. We specify the rank for the results ofeach measure
over all the measures (WR). If we compare with the results on the 42 images, cf. Table 15,
the best measures of the first and the fourth families are not the same (NCC,CENSUS).

Table 15 summarizes the results for the best measures. For each criterion, we

present the rank based on the mean of the ranks on all the tested images, then the

classification per family (FR) and the global rank (for all thecriteria, WR). More

details can be found on our web page5 .

We present a global analysis of the results:

5 http://perso.lcpc.fr/sylvie.chambon/correlationResults.html

29

http://perso.lcpc.fr/sylvie.chambon/correlationResults.html


Fig. 8. Variations of percentage of correct matches on all the images for thebest measure
per family – The numbers of the images correspond to the order of the presentation in
the§ tested images, section 9. The first graph illustrates the variation on the whole image
whereas the second one only concerns the correct matches on the WholeOcclusion Area
(WOA). These graphs illustrate how the results can be different from an image to another
and also that SMPD2 is most of the time the best (30/42 images) in the WOA whereas it is
not the case for the percentage of correct matches in the whole image.

• For each family:

· CROSS– NCC is the best but in fact, these measures hold similar results, and

belong to the ten best measures for the percentage of correctmatches.

· CLASSICAL – LD1 (LSAD) is the best even ifZD1 (ZSAD) reaches the best

percentage of correct matches. These measures have an interesting rank ex-

cept K4 which was designed to be insensitive to Gaussian noise but ishighly

sensitive to outliers (powers of 4 and 2 are used).

· DERIVATIVE – GC is the best and gives the best percentage of correct matches

and false negatives. The other measures are not well ranked.
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· NON-PARAMETRIC – CENSUS is the best.RANK1 is the second one and

reaches a good percentage of correct matches in the occlusion influence area

and the discontinuity area. We can also notice the ISC measure that gives inter-

esting results. In particular, it is the best measure of the family for the results

obtained withconespair.

· ROBUST – SMPD2 is the best and it obtains the best percentage of correct

matches in the whole occlusion area.LTP2 also furnishes good results.

• In conclusion of this evaluation, the best measure is CENSUS,and except it, GC

and RANK1, the ten best measures belong to theROBUST family. As expected,

SMPD2, which is designed for, obtains the best results in the wholeocclusion

area.

• In general, best measures in non-occluded areas, like NCC, do not perform well

in the whole occlusion area, and, the best measures in the whole occlusion area,

like SMPD2, do not achieve good results with non-occluded areas.

For reason of space, we cannot show all the results for each pair, however, we

can conclude that even if CENSUS is the first measure in our evaluation, it is not

always the best measure on each image separately. Moreover,SMPD2 is not always

the first but it always belongs to the ten best measures, except with one pair,plastic

(rank 18) which possesses large low textured areas, andSMPD2 is not efficient with

these areas. In the same way, CENSUS is not always in the ten bestmeasures, and

in six images highly textured,cloth 1(rank 28),cloth 3(rank 18),cloth 4(rank 19),

flowerpots(rank 24),stereo(rank 42) andwood 2(rank 13). In fact, in this kind of

images, CENSUS gives a lot of false positives.

31



LEFT RIGHT DISPARITY OCCLUSION DISCONTINUITY

Cones

ZNCC LD1 GC ISC SMPD2

DISPARITY

MAP

ERROR

MAP

Fig. 9. Maps obtained with theconespair – Differences between the disparity maps are not
very significant. However, we can notice the good results ofSMPD2 in the occlusion areas.

11 Discussion

The results illustrate the interesting performances of CENSUS andSMPD2 but

we have also noticed that the ten best measures include otherof the proposed ro-

bust measures:LTP2, ME3, R1, R3, R4 and R5. Compared toSMPD2, the main

advantage of the R-estimator measures is that they outperform SMPD2 in the

non-occluded areas (with better results than classical measures in occluded ar-

eas and less false positives than the ten best other measures). In consequence, if

it is important to obtain acceptable performances in these two different areas, R-

estimator measures are well suited and R1 has the smallest execution time. If the

execution time is not critical, CENSUS obtains better results than R1 both in oc-

cluded and non-occluded areas. In fact, it seems that CENSUS is more interesting

thanSMPD2 with low textured images whereasSMPD2 is more interesting than

CENSUS in well textured images. It can be explained by this fact: CENSUS al-

lows to use more information (80 bits for9 × 9 window) thanSMPD2 (only 8
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bits for a gray level difference) for each pixel. In consequence, in low textured

areas, the CENSUS descriptor is more discriminant than the gray level used in

SMPD2 to find the right correspondences. It is the reverse in well textured ar-

eas. This remark is corroborated by the individual results on each image. We have

identified the images for which each measure gives the best results, i.e. obtains

WR= 1 (see Scharstein and Szeliski website for more details aboutthe images

http://cat.middlebury.edu/stereo/):

• CENSUS (14 images): barn2, books, bowling1, bull,journaux, livres, laundry,

lampshade1, lampshade2, midd2, poster, plastic, reindeer, venus ;

• SMPD2 (13 images): art, baby2, cloth1 to cloth4, cones, dolls, moebius,

monopoly, rocks2, sawtooth,stereo;

• RANK 1 (6 images): aloe, baby1, baby3, bowling2, rocks1, wood1;

• LTP2 (5 images): barn1, map,murs, teddy, tsukuba;

• GC: wood2;

• ME3: midd1,plante;

• LD1: flowerpots.

The 13 images whereSMPD2 has obtained the best results represent highly com-

plex and textured scenes with a lot of occlusions, which confirms its superiority in

this case. When no intensity change is observed between the two images, it is more

appropriate to use the non-centered version:LTP2. The CENSUS and theRANK1

measures are the most efficient in the case of scenes with low textured areas and

radiometric distortions (it is one of the properties of thismeasure which has been

introduced to be independent from the magnitude of the intensities). In very diffi-

cult images, with high ambiguities (due to low textured areas), like flowerpots, it

is hard to conclude which measure is well adapted but it seemsthat M-estimator

would be an interesting choice.
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FAMILY MEASURE COR ACC BAD ERR FPO FNE WOA OA OIA DA WR FR

CROSS
NCC 5 25 23 10 31 8 31 32 27 22 23 1

ZNCC 13 31 31 13 36 13 27 38 19 19 30 3

CLASSICAL
D1 23 11 12 29 25 20 19 27 15 17 19 3

LD1 6 26 22 16 22 7 24 26 20 13 13 1

DERIVATIVE GC 4 19 20 20 38 3 10 39 9 3 8 1

NON-
PARAMETRIC

RANK1 8 19 34 12 35 9 5 36 3 3 7 2

CENSUS 1 17 37 5 38 2 2 11 2 1 1 1

ROBUST

RMLMS 2 38 41 2 2 29 3 2 7 12 6 5

LTP2 29 6 7 34 11 26 4 12 5 10 3 2

SMPD2 15 34 38 3 7 17 1 6 1 2 2 1

ME3 26 9 9 32 14 22 6 17 6 6 5 4

R3 4 29 27 11 20 5 14 23 8 5 4 3

R4 10 33 32 9 19 12 18 22 11 8 10 7

R5 12 28 25 20 21 11 16 25 9 7 9 6

Table 15
Classification ((W)OA: (Whole) Occlusion Area, OIA: Occlusion Influence Area,
DA: Discontinuity Area) – We summarize the results over the42 image pairs
for the ten best measures and also the best measure for each family. More-
over, we add the results of well known measures to compare our work to the
state of the art: ZNCC and D1 (SAD). The complete results can be find here:
http://perso.lcpc.fr/sylvie.chambon/correlationResults.html.
For each evaluation criterion, the rank is estimated with the mean of the ranks obtained
with all the images. The Whole Rank (WR) is estimated by comparing the mean of these
mean ranks on all the correlation measures whereas the Family Rank (FR) takes into
account only the measures of the same family.

Finally, a summary is given in tables 16 and 17 in order to propose keys to choose

the most adapted measure for each application. In Table 16, we show performances

against execution time: it appears that the measureRANK1 offers the best compro-

mise. This measure can be used if the presence of false positives is not important for

the application (high percentage of false positive is the drawback of this measure).

In Table 17, we summarize performances in occluded areas against non-occluded

areas: it reveals that NCC, GC,RANK1, R1 to R4, and CENSUS are good compro-

mises to obtain both acceptable results in occluded and non-occluded areas.
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H
H
H
H

T
R

BAD ACCEPTABLE GOOD

HIGH JEFF QUAD, κ, χ RMLMS , CENSUS

ACCEPTABLE ZNCCR
SCC, D0.1, LMP2, ME2, ME5,
ME7, ME8, MAD, R1, R2

GC, LTP2, R5, SMPD2,
ME3, R3, R4

SHORT NIS, SES1, SEK1, PRATT,
K4, OCM,ME6

ZNCC, NCC, MOR, D1, ZD1,
LD1, VAD, χ2, ISC,ME1, ME4

RANK1

Table 16
Summary of the performances (R: rank) versus the execution time (T) – Time is short when
it is less than 10 s, it is acceptable when less than 1 minute and high over. Rankis good if
the measure is in the top 10 and bad in the last 10.

XXXXXXXX
Occ.

Non Occ.
BAD ACCEPTABLE GOOD

BAD K4, SES1, SEK1, NIS, OCM,
PRATT, JEFF,ZNCCR, ME6

ZNCC, VAD, χ2 MOR

ACCEPTABLE LMP2, ME5

D1,ZD1,LD1, ISC, SCC,κ,
χ, D0.1, LTP2, ME1, ME2,
ME3,ME4,ME7,ME8, R5

NCC, GC, RANK1,
R1, R2, R3, R4, CEN-
SUS

GOOD MAD RMLMS, QUAD, SMPD2

Table 17
Summary of the performances in non-occluded areas (Non Occ) versus the performances in
occluded areas (Occ) – Result in non-occluded areas is good if the ranks for correct matches
and false negatives, cf. Table 15, are better than 10 and bad if they arein the last 10. Result
in occluded areas is good if the ranks for correct matches in the whole occlusion areas and
false positives are better than 10 and bad if they are in the last 10. In bold,it correspond
to the best compromises to obtain good results both in occluded areas and non-occluded
areas.

12 Conclusion

In the context of similarity matching, we have presented a review of the correlation

measures: forty measures have been detailed and classified into five families in-

cluding six types of correlation measures based on robust statistics tools previously

proposed in order to take into account the occlusion problem. We have set up an

evaluation and comparison protocol adapted to study the behaviour of correlation-

based methods and, in particular near occlusion and discontinuity areas. The results

highlight the best measure near occlusion:SMPD2 and near discontinuity: CEN-

SUS. It also demonstrates the drawbacks of the robust measures: the difficulties
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with non-occluded areas. This behavior is coherent with thedefinition: it allows

the method to be insensitive to large differences induced byan occlusion and, in

consequence, it is ambiguous in non-occluded regions, because, many candidates

can obtain the maximal correlation score (the true correspondent but also many

wrong correspondents). The discussion about all the results tries to give some ad-

vices about which robust measure should be used for a given application. First,

R-estimator is the most interesting when acceptable resultsare needed in occluded

areas but also in non-occluded areas (these measures are notas efficient asSMPD2

in occluded areas but they are both better in occluded and non-occluded areas than

classic measures). Second, M-estimator measures seem to bepromising with very

ambiguous scenes (low textured with occlusions). Finally,CENSUS is the first one

but detailed results highlight the fact that it is not the most efficient in highly tex-

tured images and it can present a lot of false positives.

An extension of this work will include the study of a more efficient measure that

should combine the advantages of a robust measure, likeSMPD2, and a classical

measure, GC or CENSUS. To do this work, a study of the complementarity of these

measures is needed. In particular, we will evaluate the different areas in the images

where each measure can give, alone, the true correspondent.Then, it seems difficult

to propose a single measure that can have both the advantagesof the two measures

(because the definitions are incompatible) but we hope to improve the performances

by using the two measures together (and maybe more measures to be more robust).

An algorithm based on merging disparity maps has been implemented and gives

encouraging results. Our work will focus on this kind of approach.
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FAMILY MEASURE COR ACC BAD ERR FPO FNE WOA OA OIA DA WR FR

CROSS
NCC 80 (16) 1 (19) 0 (21) 2 (15) 3 (29) 11 (13) 62 (29) 75 (30) 53 (28) 55 (23) 24 2

ZNCC 81 (13) 1 (21) 0 (20) 2 (21) 3 (38) 10 (7) 63 (24) 72 (38) 57 (18) 59 (13) 19 1
MOR 80 (15) 1 (18) 0 (18) 2 (23) 3 (41) 10 (5) 63 (26) 71 (41) 56 (22) 59 (16) 26 3

CLASSIC

D1 74 (25) 1 (12) 0 (12) 3 (28) 3 (34) 16 (24) 64 (19) 74 (33) 57 (17) 55 (24) 27 4
ZD1 81 (8) 1 (22) 0 (25) 2 (13) 3 (31) 11 (9) 64 (22) 75 (31) 56 (19) 59 (15) 15 2
LD1 81 (9) 0 (23) 0 (26) 2 (11) 3 (26) 11 (11) 64 (20) 75 (26) 56 (20) 58(17) 13 1
VAD 79 (19) 1 (16) 0 (17) 2 (16) 3 (23) 12 (17) 60 (32) 75 (23) 49 (32) 52 (28) 23 3
K4 50 (38) 2 (7) 1 (7) 10 (41) 3 (21) 31 (37) 48 (42) 77 (21) 27 (41) 30(40) 40 5

DERIVATIVE

SES1 55 (37) 0 (25) 0 (35) 2 (19) 1 (2) 39 (42) 53 (39) 90 (2) 27 (42) 30 (41) 38 2
SEK1 56 (36) 0 (27) 0 (34) 5 (35) 2 (3) 34 (39) 52 (40) 83 (3) 30 (39) 34 (39) 41 4
NIS 18 (43) 0 (43) 0 (39) 5 (34) 0 (1) 74 (43) 40 (43) 93 (1) 3 (43) 4(43) 43 6

OCM 71 (28) 0 (32) 0 (31) 4 (32) 3 (22) 19 (28) 58 (35) 76 (22) 45 (35) 51 (30) 39 3
PRATT 65 (32) 0 (42) 1 (9) 7 (38) 3 (19) 22 (31) 54 (38) 77 (19) 38 (38) 44 (34) 42 5

GC 82 (5) 1 (20) 0 (23) 2 (18) 4 (42) 8 (3) 67 (8) 70 (42) 64 (5) 65 (5)8 1

NON-
PARAMETRIC

JEFF 67 (31) 2 (8) 1 (8) 5 (33) 3 (37) 19 (27) 61 (31) 73 (37) 52 (29) 51 (31) 36 8
χ2 77 (21) 1 (15) 0 (16) 2 (24) 3 (36) 13 (18) 62 (27) 74 (36) 54 (27) 55 (26) 33 7
ISC 83 (4) 0 (40) 0 (36) 2 (14) 3 (17) 10 (8) 69 (5) 78 (17) 63 (6) 65(6) 4 1
SCC 79 (20) 1 (17) 0 (19) 2 (22) 3 (39) 12 (16) 62 (28) 72 (39) 56 (23) 57 (18) 30 6

RANK1 83 (3) 0 (35) 0 (33) 3 (25) 4 (43) 7 (1) 66 (9) 65 (43) 67 (3) 68 (3) 165
CENSUS 84 (2) 0 (34) 0 (32) 2 (12) 3 (40) 8 (2) 70 (3) 71 (40) 69 (2)69 (2) 7 3

κ 80 (17) 0 (36) 0 (37) 1 (4) 2 (14) 14 (21) 68 (7) 80 (14) 60 (8) 60 (9) 6 2
χ 77 (22) 0 (30) 0 (38) 1 (6) 2 (5) 17 (26) 66 (10) 81 (5) 56 (24) 56 (20) 11 4

ROBUST

RMLMS 81 (10) 0 (39) 0 (43) 0 (1) 2 (4) 14 (20) 71 (2) 82 (4) 64 (4) 66 (4) 22
QUAD 81 (11) 0 (37) 0 (40) 1 (5) 2 (8) 13 (19) 68 (6) 81 (7) 59 (9) 60(10) 3 3

ZNCCR 68 (30) 0 (33) 0 (30) 1 (7) 2 (12) 25 (34) 58 (36) 80 (12) 42 (36) 42(37) 35 20
D0.1 57 (34) 4 (5) 2 (5) 7 (37) 3 (18) 24 (33) 62 (30) 78 (18) 51 (30) 48 (32) 32 18
MAD 74 (26) 0 (41) 0 (42) 1 (2) 2 (10) 21 (30) 70 (4) 81 (10) 62 (7) 60 (7) 9 5
LMP2 56 (35) 1 (11) 0 (13) 3 (30) 2 (7) 34 (40) 63 (25) 81 (8) 50 (31) 45 (33) 28 15
LTP2 59 (33) 4 (6) 2 (6) 6 (36) 2 (15) 24 (32) 65 (13) 80 (15) 54 (26) 51 (29) 18 10

SMPD2 86 (1) 0 (38) 0 (41) 1 (3) 2 (16) 9 (4) 74 (1) 79 (16) 71 (1) 71 (1) 1 1
ME1 75 (23) 1 (14) 0 (15) 3 (26) 3 (35) 15 (22) 64 (17) 74 (35) 57 (13) 56 (21) 20 11
ME2 73 (27) 1 (10) 0 (11) 3 (29) 3 (32) 16 (25) 64 (16) 75 (32) 57 (15) 55 (25) 22 13
ME3 69 (29) 2 (9) 1 (10) 4 (31) 3 (20) 19 (29) 65 (11) 77 (20) 57 (12) 54(27) 17 9
ME4 50 (39) 6 (4) 2 (4) 8 (39) 2 (9) 29 (35) 60 (34) 81 (9) 45 (33) 43 (35) 31 17
ME5 42 (41) 7 (1) 3 (2) 11 (42) 2 (11) 32 (38) 56 (37) 81 (11) 39 (37) 36(38) 34 19
ME6 32 (42) 6 (2) 3 (1) 14 (43) 2 (13) 39 (41) 50 (41) 80 (13) 29 (40) 27(42) 37 21
ME7 74 (24) 1 (13) 0 (14) 3 (27) 3 (33) 16 (23) 64 (18) 74 (34) 57 (16) 56 (22) 25 14
ME8 49 (40) 6 (3) 2 (3) 8 (40) 2 (6) 29 (36) 60 (33) 81 (6) 45 (34) 43 (36) 29 16
R1 81 (7) 0 (26) 0 (24) 2 (10) 3 (30) 11 (10) 64 (21) 75 (29) 56 (21) 59(14) 14 8
R2 80 (18) 0 (24) 0 (22) 2 (20) 3 (28) 12 (14) 63 (23) 75 (28) 55 (25) 57 (19) 21 12
R3 82 (6) 0 (28) 0 (28) 2 (9) 3 (27) 10 (6) 65 (12) 75 (25) 58 (10) 60 (8) 5 4
R4 81 (14) 0 (31) 0 (29) 2 (8) 3 (24) 12 (15) 65 (15) 75 (24) 57 (14) 59(12) 12 7
R5 81 (12) 0 (29) 0 (27) 2 (17) 3 (25) 11 (12) 65 (14) 75 (27) 57 (11) 60 (11) 10 6

Table 18
Percentages for each criterion and each measure obtained with the pair ofimagescones
(with 9 × 9 correlation window size, (W)OA: (Whole) Occlusion Area, OIA: Occlusion
Influence Area, DA: Discontinuity Area) – The Whole Rank (WR) is estimated by com-
paring, between each measure, the mean of the ranks on all the criteria whereas the Family
Rank (FR) takes into account only the measures of the same family. Moreover, results in
brackets correspond to the rank of the evaluation criterion compared to the other measures,
for each criterion.
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