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Abstract

In the context of computer vision, matching can be done with similarity measuinés. T
paper presents the classification of these measures into five families. In adéigbn,
teen measures based on robust statistics, previously proposed [teintordeal with the
problem of occlusions, are studied and compared to the state of the art. Avadua-
tion protocol and new analyses are proposed and the results highlight thefficient
measures, first, near occlusions, the smooth median powered deviationcand,sgear
discontinuities, a non-parametric transform-based measure, CENSUS.
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1 Introduction

In computer vision, similarity metrics are widely employed image registra-
tion [2], pattern recognition [3], movement analysis [4ject tracking [5], video
analysis [6] and stereo matching [7]. Consequently, manyigations introduce
new similarity measures and some papers give a review of tmessures. The
most popular is the taxonomy of Aschwanden and Gugg@kem but we can also

mention taxonomies of ordinal measures [8], robust meadar@satching [9], for
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registration [2] and for classification [10]. For stereo amabg, correlation-based
methods are popular, because the implementation is sitf@esxecution time is
low and their efficiency has been demonstrated [11]. Matghlaments can be pix-
els or more complex features [12] such as edges or cornetisisipaper, we deal
with dense pixel matching. We consider that a correlationsuesevaluates the
similarity between two data sets: the grey levels of two Isixed their neighbour-
hoods. Even if some of the correlation measures (classiealvative-based and
non-parametric transform-based) have been studied angarech[13], the choice
of one measure is difficult. So, it seems important to give & apalysis of the

existing correlation measures.

Stereo matching is difficult because of: intensity distor$i, noise, untextured ar-
eas, foreshortening, perspective effects and occlusiotensity distortions and
noise have been investigated [7], whereas untextured aneaf®reshortening can-
not be overcome with correlation. With perspective effeftt®, correlation [5] can
be used. While solving the occlusion problem, adaptive wivelfl4], multiple-
window methods [15], support-weight approaches [11] ousblmeasures [9] can
be used. Here, we are particularly concerned with occlssiora scene, depth dis-
continuities induce the occlusion problem because it icdit to match a pixel
whose neighbours have a different depth. One solution isnsider as outliers the
pixels having a different depth from the pixel being studi€be tools of robust
statistics are insensitive to outliers and, consequewtypropose to introduce ro-
bust statistics-based measures. The aim of this work isdtuate the correlation
measure and not to evaluate the window strategy for the atimof the similarity

and we do not consider this kind of approach [11,14].

After giving some notations, the commonly used correlatio@asures are pre-

sented. Then, eighteen robust correlation measures ggeg®d. Finally, an evalu-



ation protocol is presented and the results are discussed.

2 Notations

We propose to classify the measures into five families, widasures based on:
cross correlation, classical statistics, derivative igggion-parametric statistics

and robust statistics, see notations in Table 1.

I, The images withv € {l,r} (left and right).

Imax ~ The maximal grey level in the image".

I3, The grey level of the pixgb’’ of coordinates(s, j) in imager, is I;’.
p/  Moreover,p®" is the correspondant pixel @f~.

Ny, The number of pixels in the correlation window is denoted by:
N,, Ny, Nf: (2Nv—|—1) X<2Nh+1),Nv,Nh€N*.

This vector contains grey levels of pixels in the correlatrandow (in
f, imagel,): f, = (---I&pite.. T = (... fk..)\T where T is the
matrix transposition operatas,c [—N,; N,|, ¢ € [—Np; Ny].

fk  The element: of vectorf,,.

The vector of mean§, containsNy columns and is defined by:

fu, | N
m(fo) f, = (m(f,) - m(£,))" withm(f,) = — > fi.
Ny—1 1/11%:0

/ The Lp norms are:||f,llp = | > |fil” with P € N*.
P k=0

The Euclidean norm is given byjif,, || = ||f.]|2-

2 In this papedmax € [0; 255].
Table 1
Notations used for the description of the measures.

Tables 2 to 9 present for each measure, the following dethiés name of the
measure, the abbreviation of the measure, the formulaewer Ibound and an
upper bound of the interval of variation A#IATION). For each measure, with
a, b€ R*!, and,c, d € R, we define the invariance property:

! Like N* = N\ {0}, R* =R\ {0}



Gain : M(afl, bfT) = M(fl7 fT)’
Bias © M(fi 4 ¢ f. +d) = M(f,,£.);
Gain and bias M(af, + ¢, bf, + d) = M(f;, ).

In the following description, when no explicit referencegigen, the reader should

consult Aschwanden and Guggémpr].

3 Cross correlation-based measures

The crossfamily (Table 2) is based on the scalar product. The croselzdion:
CC(f,f.) =1 - f, 1)

can be used only if the vectofs are normalised. This normalisation brings gain
invariance [16] and leads to the Normalised Cross CorrelatifdC (similarity
measure). The centred version, called the Zero mean NaedalCross Correla-
tion, ZNCC, gain and bias invariant, is also known as an esiimaif the Pearson
product-moment correlation coefficient. It is more effititman NCC when there
is a linear relationship between the two sets of grey lewelse compared. The
Moravec [17] similarity measure, MOR, proposed for binaryages, uses a dif-
ferent normalisation which is faster to compute than thenadisation of ZNCC.

It has been proposed to solve the problems of ZNCC, when thendaator is
equal to zero, but, consequently, MOR is sensitive to cehtthanges and only

bias invariant.



NAME ABBREVIATION DEFINITION VARIATION

Normalised Cross Correlation NCC £ -£/|E]f [0;1]
Zero mean Normalised Cross CorrelatioANCC  Ncc(f .6 —f) [—1;1]
2(fi ) (£, —Fr) .
Moravec [17] MOR AT [—1;1]
Table 2
CRrossfamily.

4 Classical statistics-based measures

ThecLAssICAL family (Table 3) contains classical statistics-basediutigarities:
the distances, the locally scaled distances [7], the vees{iL8] and a fourth-order

statistics-based measure [19].

Distances -The principle behind the use of a distance in order to quatité simi-
larity between two sets of grey levels is to consider thenvagibints inR"s and to
estimate how distant they are. In other words, it consistaliculating the.  norms
of the vector of the grey level differences [20,21]. The mamasures are the Sum
of Absolute Differences, SADI(; norm), the Sum of Squared Differences, SSD
(L, norm), and the Kolmogorov-Smirnov distance, L., horm). These mea-
sures can be centred to be invariant to bias, leading to ZeemrDistances, Zp.
The well-known centred measures are the Zero mean Sum ofitbdifferences,
ZSAD (ZD,), and the Zero mean Sum of Squared Differences, ZSSD)(dhese
measures can also be normalised, leading to Normalisedrigiss, NI, including
the Normalised Sum of Squared Differences, NSSD {\NBnd, centred and nor-
malised, giving the Zero mean Normalised Distances (alas invariant), ZND,

like the Zero mean Normalised Sum of Squared Difference§ZDI (ZND;).

Locally scaled distances The aim ofLDp measures is to obtain the same mean
of grey levels on each window: each grey level in the right immegscaled by the

ratio between the left and right means. The two known measanme the Locally



scaled Sum of Absolute Differences, LSAD (LPand the Locally scaled Sum of
Squared Differences, LSSD (L

Variances —Two kinds of measures can be distinguished: the Varianceffef-d
ences (bias invariant), VD, and the Variance of absolpowered differences,
VADp, which gives the Variance Of Absolute Differences, VOAD @8, and the
Variance Of Squared Differences, VOSD (VAD

Fourth-order statistics-based measure -High order statistics have been investi-
gated, and, in particular, by using a fourth-order cumutdrihe grey level differ-

ences, K, designed to be robust against Gaussian noise [19].

NAME ABBREVIATION DEFINITION VARIATION
Distances Dp £ —£, | o7 [0; Imax” N]
Zero mean Distances ZDp Dp(f—F.f—F) [0; Imax” N]
Normalised Dist ND ——pt__ 0; lmax” N
ormalised Distances P NI [0; Imax Ny
Zero mean Normalised _ ' P
Distances ZNDp NDp (f,— £, £, —F,) [0; Imax Ny
Locally scaled Distances [7] LDp Dp (£, /E)E) [0; Imax” ]
Variance of Differences [18] VD var(f;—f,) [0; Tmas’]
Variance of Absolute’-powered - . 9p
Differences [18] VADp var(fi—£r|") (05 lmau” |
Fourth-order statistics-based 4
Ky m(E-£)Y -3m((E—£)%)%  [0; Imax |

measure [19]

Table 3
CLASSICAL family.

5 Derivative-based measures

All the measures of theeRIVATIVE family (Table 4) are based on the grey level

distribution. They employ the derivatives of the imagesitiecent orders and use



the operators of Sobel, Roberts, Kirsch or Pratt. The grasisstor atp’’ in I, is

VI, The norm and the orientation are denoted respecti\i&fy /|| and 6.

Seitz measures fhe idea [22] of SEQ (SEitz Operator) is to estimate the dissim-
ilarity of the gradient vector directions by calculatinggth, norm of the gradient
direction differences. These measures are efficient in dise of impulsive noise
whereas they are not with Gaussian noise [7] and they areagairbias invariant.
We denote these measures3BS (SEitz Sobel) andEK » (SEitz Kirsch), with

P =1,2. Infact,SES; was introduced in [22] where&d.S,, SEK; andSEK, are

improved versions proposed in [7].

Nishihara correlation, Nack measure and Pratt correlation— Nishihara mea-
sure[23], NIS, is the cross correlation, equation (1), of binagplacian images
(similarity measure). It is not efficient with impulsive seiand occlusions [7]. For
Nack measures convolution with the Roberts operator is applied. For gaxél,
the region of interest (ROI) is binarized to take into acdaaumy 15% of the ROI
(this percentage is empirically chosen by the authors)ldtal them to be robust
against noises and untextured areas because it takes irdoraanly the most
significant part of the ROI. These similarity measures [24},,,, m = 1,2, are
not robust against Gaussian or impulsive noises, but, tgerddne correlation win-
dow, the better the results are [7]. In falstA; was proposed in [24] wherea&\,
is a modified version proposed in [7] (we have also modified theasure in or-
der to avoid division by zero). The similarity measure [2p, §66—667], PRATT,
is ZNCC, cf. Table 2, applied to binary Laplacian values cordiin R, ,¢(f,,).
Nishihara measures very “flexible”, i.e. it gives the best score for the coperd-
ing pixels and even for non-corresponding pixels. Consetyyehis measure can
be robust to occlusions or impulsive noise but can also iedercors. With the

following binary vectors (for respectivelfy and one possible candidafg, with



O € {Rob, LoG}:

(@ Ro(f)=(001101011)" and
(b) Ro(f,) = (10110101 1)7,

we obtain:

(r1) NIS(f}, f;) = NIS(f;, f.) = 5 whereas
(r2) NA{(f;,f,) =1 and NA(f;,f.) = 5/6.

For NIS, the best score is obtained with two correspondenitxeand two different
vectors. In this example, even if each O is replaced by 1 betRegéf;) and R, (f,),
NIS(f;, f.) = 5. On the contrary, with:

(€) Ro(f)=(000101011)7,
we obtain:

(r) NIS(f;,f;) = 5 andNIS(f;, f.) = 4 whereas
(r2) NA(f,f)) = NA(f;,f) = 1.

With the modified version oN A, we obtain:
(r5) NAS(f;, f)) = 1 and NA(f;, f) = 1/2.

In this example, even if each 1 is replaced by 0 betwegffRand Ry(f,) until

there is at least ong in Ro(f.), NA(f;,f,) = 1. The measure NAreduces the
problem of NA with the introduction of 0. In conclusion, the measures otiNa
are less “flexible” than the measure of Nishihara but theyraterobust against

occlusions.

Orientation code matching correlation —For this similarity measure, the gradient



direction code of pixep’/ is estimated by [26]:

. 1057/ Ng] if (| VI ]| > Tr)
Coom(py)) =
L otherwise,

where | z] is the integer part ofr and G € {0, 1,..., Nocnr = 2m/Ag, L}.
The authors have uselNy = /8, L = 255, Tt = 10 (when the image range is
[0; 255]) and the Sobel operator. The authors ugefthere 255) in order to detect
low-contrasted regions and, after, in the computation efgimilarity cost, to re-
duce their influence. When the distance between the orientetides of two pixels
is estimated, if this distance is ov8ipc,, (only in the case when one of the two
pixels has the valué), a constant valueNoc,s/2) is assigned, see Table 4 for the

definition of this distance.

Gradient vector field correlation — For the previous measures, the gradient direc-
tion is only introduced: this might introduce errors, esalwith low norm gradi-
ent vectors whose direction is not reliable. Consequentilyssimilarity measure,

the Gradient field Correlation, GC, bias invariant measur@tisduced in [27].

6 Non-parametric measures

This family (Table 5) is based on non-parametric transfaiong, i.e. no hypoth-
esis about the grey level distributions is made. We disfslgy? and Jeffrey
measures [3], Kaneko measures [28,29], Zabih measuresaf80Jrdinal mea-

sures [31].

x? and Jeffrey measures -These dissimilarity measures [3] are used for segmen-

tation and they seem to be interesting for correlation-thasatching. For image



NAME ABBREVIATION DEFINITION VARIATION

Seitz [22,7] SEOp IR0 (£)—Ro (£:)| p 7 [0; Imax” ]
lehlhara [23] NIS RLoG(fl)‘RLoG(fr) [0, Nf]
Nack 1 [24] NA, Snas(iRaall) [0; 1]

NA1(f,,f) )
NaCk 2 [7] NA2 Nf m(RRob(fl))_}?Rlob(fl)'RRob(f'r)"_l [O’ 1]
Pratt [25] PRATT ZNCC(RLoc (F),RLoc (£1)) [—1;1]
Orientation Code
Matching [26] OCM N%,DOCM(ROCM(fz)vROCM(fr) {0; W}
Gradient vector field Sy ok VIR g et
. GC N N h ; ] [0 OO[
Correlation [27] Doy 2oy, IV L[ ’

Table 4

DerIVATIVE family — The vectors B(f,,) contain the gradient directions ff after using

the Sobel or Kirsch operator, ;R (f,,) is the correlation window in the binary Lapla-
cian images, R.,(f,) contains the binary values after the Roberts transformation and
Roca () = (---Coom (fF)---)T are the orientation codes fiy, cf. section 5. As the
OCM code is cyclic, the maximal distance s /2 and the distance Buy, (f, £,) is

Ny— . . )
k:fo ! D(flk,ff), with D(a,b) = min {|a — b|, Noca — |a —b|} if |a — b] < Nocwm

Nocar/2 otherwise.

retrieval, they are numerically stable, symmetric and sblith respect to noise.

Increment Sign Correlation — The similarity measure, ISC [28], gain and bias

o T
invariant, usesb,, = ( COE ) withk =0--N; — 1 and

w

1 if (k< (Ny— 1)) and(fi+! > fk)

0 otherwise.

If the grey level increases betwegf and f**!, thend” equalsl. The vectors,

andb, are compared to estimate how the variations of the greydeuel similar.

Selective Correlation Coefficient, SCC I his measure is a variant of ISC and has

the same properties [29]. It is based on these weights (deted withb,,):

10



1—|bf —bF| if k=0o0rkeven
e:(...ek...)T’ k:0-~Nf—1, ek:

ekl otherwise.

If grey levels change in the same direction betwggrand £/, and betweery”

and f*+! thenef ande} ™ (k is even) equal.

Rank measures —The rank transformation;k, is the number of pixels irf,
with a grey level lower than the grey level of the central piokf,: rk(pi/) =
card({I.fPJita | [irpite < [4i 1), In consequence, the window transform. &)

is defined by:
Ri(f,) = (... rk(piPiT9) ...),p € [-Ny; Ny|, q € [~ Ny; N;] and

An illustration of the estimation afk(p’/) and R (f,,) is given in Figure 1. Zabih
and Woodfill [30] employ thd.; andL, norms RANKp in Table 5). The measures

are gain and bias invariant.

100 30 20 10 10
120| 10| 25| 15| 10
130| 40| 43 | 46| 40
120 49| 70| 50 | 40
140 40 60 40 40

Fig. 1. lllustration for estimating the Rank transform — If the Rank transformtismated
for the pixel43and its3 x 3 neighborhood (in italic), we obtaim% (p.;/) = 4 for this pixel
and R (f,) = (043246 386)T for his neighborhood.

Census measure Fhis similarity measure, proposed in [30], uses a transthiah

produces a bit chain which represents the pixels with amgit lower than the

central pixel: R(£,) = ®ycjon, 1 E(fu’”, £5) wherec(fa /%, f5) = 1if f£ <
Ny /2

Juw

pixel of the correlation window. It is gain and bias invatian

. CENSUS is the sum of the Hamming distances between the codexchf

11



Ordinal measures —A similarity measure model, which is gain and bias in-
variant, is defined byx(f;,f,) = 1 — (2D, (R:(f;), R:(f.)))/Dmax, Where R.(f,,)

contains the ranks of the pixels ffp, D,, is a distance and R is the maximum
of D,. In [31], they tested the Hamming distance, the Kendall dm@dSpearman

measures that are not effective and they proposed the folipgistances.

The ranks of the element 6f are stored in R(f,,), a permutation of1 2 ... N;)T.
The element of a composition of permutations is given by: CdmpR” (f,.) with
k = R.(f)~' and R.(f;)~! is the inverse permutation of R;). With the example

of Figure 1, the ranks are:

R.(f) =(132456798)7, and if we study this candidate:
£, = (552021 40 18 46 49 15 50)7 with
R.(f.)=(934526718)7, then

Comp(R;(f)),R:(f.)) =(943526781)T.

The element of the deviation is:

o g=i . 1 ifBistrueor
Dev = > J(Comy > (i + 1)) with J(B) =

7=0 0 otherwise.

With the previous example, we have:

Dev(R,(f),R.(f,)) = (122211110)". Thex measure is based on the maximum

inDev = (...Dev®.. )7:

k(f,£,)=1—(2 max Dev)/|N;/2].

k=0..N;—1

12



A variant, less expensive than theneasure, is thg measure:

V(£ ) = 1 — (2DeV¥0/2) /| N /2].

The ordinal measures are invariant to gain and bias andateldactionalism,
i.e. they are robust against outliers and, so, against sicecls. However, they
are “flexible”, like the derivative-based measures, ang tb@n produce errors
in areas without occlusion. In fact, a maximal correlationreccan be obtained
even if the two correlation windows are not strictly ideaticFor example, with
f, = (01223546 58 61 121 123)T andf,. = (0242 60 81 100 123 124 125)T,

we havex (), f;) = x(f;, f.) = 1. The maximal score is reached witfy, f;) but also

with (f;, f.). Consequently, erroneous correspondences can be obtained.

NAME ABBREVIATION  DEFINITION VARIATION
Ne—1o(sk_ ¢ky2
x* measure [3] X Yilo 2(%;}) [0; ImaxV¢]
Ng—1 ok
Silo frlog(—ly)
Jeffrey measure [3] JEFF o S [0; TmaxV /]
of f
_,'_ff IOg(fk:fk)
l s
Increment Sign
Correlation [298] I5C ;=1 (Prbrot(1=by) (1-by)) [0:1]
Selective Coefficient (E(f,—5)-(f.—F,)) )
Correlation [29] SCC (61| [B(E—1)] [0:1]
Rank [30] RANKp IRk (6) Rk (61 7 [0; N7
Census [30] CENSUS Dy (R ()R- () [0; Ny]
Ordinal measures [31] « 1220 Gr (DR () [—1;1]
Table 5

NON-PARAMETRIC family — The Hamming distance i (£, f,) = S>> san | fi— £,
with sgn(x) = 1if = >0, 0if x =0 or —1 otherwise. The diagonal matrR contains
the values:*, with k € [0; Ny — 1].

13



7 Robust measures

We are particularly concerned with the occlusion problemcwlappears in the
vicinity of a pixel near a depth discontinuity. In fact, sopigels lie on a first level
of depth whereas the other pixels lie on a second level. Idtstarb the matching
process and introduce erroneous matches. To take thisgpnabkto account, the
measures of theoBusT family, cf. Tables 6 and 9, consider pixels with a depth
different to the main pixel as outliers (Figure 2). So, theytay the tools of robust

statistics that are less sensitive to outliers than claksites.

Outliers

Fig. 2. Robust measure principle — The small disks are the two correspgrigelst The

squares are the correlation windows and the dashed polygons aretthefpplae correlation
windows which contain very different grey levels. In fact, in the left imdbis part belongs
to the background whereas, in the right, it belongs to the foregrouredeidre, comparing
these two areas is not relevant.

Partial correlation — The principle of the similarity partial correlation is tolea
culate a score with different weights for each pixel paire3éweights are chosen
according to the degree of membership of the set of correrdgpondent pairs: the
higher the degree, the greater the weight. The mati&;esontain the weights”,
with k£ € [0; Ny — 1], applied tof,, and this function is defined:,|Rf,) = B,, - f,,
wherem corresponds to the chosen method for calculating the weigiie mea-
sures based on partial correlation are noted RM for Reweightegisures and,
depending on the used measure, RM might be gain and biasanvaran [9] sup-
poses that, for two correspondent pixels, the grey levellseofwo correlation win-
dows, without occlusion, are linearly dependent. It all@mg to take into account

the intensity distortions and to include a Gaussian whiisendn other words, if

14



the grey levels of two pixels in the same position in the twodwws are considered
as the coordinates in a plaré, = (f} f*)7, then a set of aligned points is obtained
and this cloud of points is only disturbed by “normal” noiffehere are occluded
pixels, it is assumed that the grey levels in the same paositie very different and,
S0, these pairs do not respect the previous model: they #rereuFor that reason,
a line fitting technigue can be employed to detect outliedstato robust estimators
have been proposed: LMS, Least Median of Squares for the gtveei Zero mean
Sum of Squared Differences correlation, RZSSD, and MVE, Murth Volume EI-

lipsoid for the Reweighted Zero mean Normalised Cross ComaladRZNCC.

A random sampling with Monte-Carlo method is needed. Somastobarameter
estimators are based on a minimisation with no explicit tsah) like LMS and
MVE. A firstidea is to build minimal subsets of data (it comi&the lowest number
of data that is needed to calculate the parameters), thestitoage the parameters
for each subsets and finally to select those which minimisgkbbal criterion. The
major drawback is the number of subsetswvith n data and subsets of data,
we haveC combinations. Another possibility is to randomly choosenated
number of subsets. It depends on the risk of not finding thieaglminimum, more
precisely:Prob = 1 — (1 — (1 — €)™)?, € is the maximal proportion of outliers in
the initial data and’rob is the probability that, at least, one subset is correct, i.e
with no outliers. By choosing a prioti= 0.5 andProb = 0.95, ¢ is defined by:

~ log(1 — Prob)
Clog(1—-(1-¢")

q

Consequently, we have to randomly selecsubsets for LMS+# = 2) and23 for
MVE (m = 3).

The aim of LMS estimator is to find the parameters of the linectvminimise:

med—o..v,—1(r*)? wherer* is the Euclidean distance between the line ahdrhe

15



weights are obtained by thresholding the distance betwepaint and the line
where the threshold is a robust estimation of the standaidiiten:

1 if k|5 <25

0 otherwise

) med (r")2.

Ny —2 k=0--Nj—1

The factor1.4826 permits an estimation without bias with Gaussian noise bad t

term1 + 5/(Ny — 2) allows correction with small subsets [32].

For the second measure, the estimation of the MVB& ppoints,a* = (f} )T,
is introduced in [9]. The authors estimate the parametettssofMVE with i points
(here,h = | N;/2| + 1) that are represented by the coordinates of the cantrfe

the ellipsoid and the covariance matéx The parameters have to minimize
det(A) with A = (x3,05)'m”A’ where

m? = ,_med 1(a’c —a)"A’ ! (a* —a). Using 2 allows to produce an estimation
—0-N;—
being robust against Gaussian noise. By introducing Mabdlaristance, weights
are:
Lif (ak - ﬁ)TX_l(ak - ﬁ) < X%;o.975 )
whvp = where thex3,, 475 is @ com-
0 otherwise,

monly used threshold for detecting outliers, amdndA are the estimated param-

eters.
Partial correlations, RZSSD and RZNCC, are robust against siocisi [9].

Robust ZNCC measures -Some measures are a robust version of ZNCC, cf. Ta-
ble 6, like the quadrant correlatioQUAD [33, pp. 204-205], and the measure of
Trujillo [34]. They are gain and bias invariant also. The dy@nt transformation is

applied on the vector§, and gives binary values. For the Truijillo, the mean (used

16



for centering) is replaced by a median and the normalisatitim 2., becomed.;.

Pseudo-norms —-These dissimilarity measures are robust distances [35]L}
norms with0 < P < 1. The adhesion effect occurs at discontinuity boundaries
induced by an occlusion and the consequence is the dilatitreaccluding ob-
ject in the disparity map. It appears with classical norms while the pseudo-norms
alleviate it because, witl? > 1, the greater the power, the more important influ-
ence of the pixels that induce large grey level different®gh a pseudo-norm,
the lower the power (nea), the less important influence the differences, i.e. they
are robust against occlusions. Unfortunately, pseudoagenerate the erosion of

object corners.

NAME ABBREVIATION DEFINITION VARIATION
Partial correlation [9] RN, Mes (R (£),Rom (1)) [—1;1]
Quadrant correlation [33[QUAD ZNCC(Ryuad(£1);Ryuaa(fr)) 0; 1]
(fi—med(f}))-(fr —med(f;)) 1.
Robust ZNCC [34] ZNCGg T “med(8) 11T —med (£ [—1;1]
Pseudo-norm [35] P £, £, pT with 0<P<1 0; +o00]
Table 6

RoBusT family (state of the art) — For the quadrant correlation, the authors suggese

this transform: R,.q(f;) = sgn (%). In fact, the divisor is anyway positive

and does not affect the sign, and,R(f;)) = sgn(f; — med(f;)) is more appropriate.

8 Proposed robust measures

We propose to complete the set of existing robust measuneg again the princi-

ple illustrated in Figure 2.

Robust variance, MAD —This dissimilarity measure, Median Absolute Deviation,

is a robust estimation of the variance of the grey level déffiees. We can consider

2 Disparity is the displacement between a pixel in one of the image and its comaeut
in the other image.
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it as a robust version of ZNSSD and it is gain and bias invarian

Least Median of Powers (LMP) —We proposed the LMP, a generalisation t®
powers, of the least median of squares [32] . It is a robudieerof Dp and an

alternative to the pseudo-norms, 7. It is gain and bias invariant.

Least Trimmed Powers (LTP) — It is based on the least trimmed squares [32]
where the squared grey level differences are sorted andfilst values (here, =
N;/2) are summed. Instead of using the squared difference, Liifbealefined

with any power difference. It is gain and bias invariant.

Smooth Median Powered Deviation (SMPD) -The Smooth Median Absolute
Deviation, SMAD [36], is also a robust estimation of the wae. The measure

SMPDp is a normalised version afT'P » with bias invariance only.

M-estimators — The least mean of squares estimation is sensitive to agjtldrile
the M-estimators use a criterion which replaces the squantobject function,
Pm, Symmetric with a single minimum &t[37], less sensitive to outliers because it
increases less quickly than the square function. So, weestigtpased dissimilarity

measures)E,,, cf. Table 7 and Figure 3, which are bias invariant.

R-estimators —The principle is to change the square function by weightemgby
the J,,, functions, that depend on the rank of the differences. Tiple helps to
decrease the influence of the outliers and we propose diasitmimeasures based
on R-estimatorsRE,,, cf. Table 8 and Figure 3 [32,38,39]. The integralf on

its definition domain must be equal to 0.These measures aragdibias invariant.
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NAME FUNCTION NAME FUNCTION
Ly — Ly p1(x)=(VI+a2-1)/2 Fair pa(2)=|x|—log(1+a|)
Geman- 2
CaUChy p3(z)=log(1+22) McClure p4(x):m
NAME FUNCTION
Welsh ps(z)=(1—~=")
(1—(1—22)%) if |z[<1
Tukey pa(r)={
1 otherwise
x2)/2 if |2/<1.345
Huber p7(l’){( / el
1.345(|x|—1.345/2)  otherwise

Rousseeuw ps(z)=2log(e*+1)—z—21og(2)

Table 7
The p,,, functions of the M-estimators measures.

NAME FUNCTION NAME FUNCTION
Wilcoxon Ji(t)=t—1/2 Median Jo(t)=sgn(t—1/2)
NAME FUNCTION
Van der Waerden J3(t)=¢~1(t)
—1.4634 if 0<t<0.39
Optimal B-robust estimator Ja(t)=9 1.47¢71(t)  if 0.39<t<0.61
1.4634 if 0.61<t<1
—1.14 if 0<¢<0.48
Minimax Js(H)=4 ¢=1(0.5+1=25)  if 0.48<¢<0.52
1.14 if 0.52<t<1
Table 8

The J,,, functions of the R-estimator measures — Fhieinction is the normal distribution
function. The values ap~! lie on ¢, ; dmd,] andt € [0; 1].

9 Evaluation and comparison protocol

We propose a protocol designed specifically for comparimgetation-based meth-
ods and for describing their behaviour with occlusions,, anel present the tested

images, the evaluation areas, the criteria and how all thdtseeare summarized.
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NAME ABBREVIATION DEFINITION VARIATION

Robust variance [1] MAD med | (£, —£,) —med (f;—£,)| 0; +00]
Least Median of . P
Powers [1] EMPr med (651 0 ma’]
Least Trimmed . P

Powers [1] LTPp Zzo(lfl_fr|P)k:Nf—l [0; | max h]
Smooth Median h—1 » . P

Powered Deviation [1] SMPDp k=0 (8t —med (i) g1 (03 Ima )
min .

M-estimator [1] ME,, o pm(FE— ) [pnﬁr;x]]\\[ffj
Pm IVf

_ k_ sk in .

R-estimator [1] RE, AL (W) (FF=1h) [J:éxlmax’

! J,]:L Imax]

Table 9

RoBuUST family (proposed measures) — The ordered value$, ofire represented by:
(fw)on;—1 < ... < (fw)N;—1:N,~1. The notatiorlf; — £.|” means(. .. £} — ££|F . )T,
The termsp™" and pM are the lower and the upper boundsgf and .J™" and .Jma

m m

are the lower and the upper boundsJgf on [0; Imay. The rank of(fF — fF) is stored in

Re(f = f7).

4 T T T T
‘,1.2 /7
\ " /

35 f\
P2 /

3r \ / 1

\ 3
251 \ . Pa

-
Pm(@), R

(@) (b)

Fig. 3. Visualisation of the functions used by M-estimators (a) and R-estimdiprs I
highlights how the influence of the highest grey level differences is extlbyg using these
functions compared to square function (for M-estimator, in (a), this functierbban plot-
ted).

Tested images -Forty two images are tested (examples are given in Figure 5):
a random-dot stereogram (number 1), two synthetic pairsmfaus 2 and 3), one
real pair made by Bocquilloh (number 4) and thirty eight real pairs introduced by

3 http://wwv. irit.fr/ Benoit.Bocquill on/ MYCVR/ research. php
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Scharstein and Szeliski: six have been proposed in 200 @jber 7 to 12), two
in 2003 [41] (numbers 13 and 14), six in 2005 [42] (humbersdlB8d) and twenty
two in 2006 [43] (numbers 21 to 42). The last ones, the set 6620hd 2006, are
the most complex images. Compared to the protocol of Schaistei Szeliski, our
protocol has the advantage of presenting the results autdor forty-two images
and not only for four images. In section 10, for reason of spaeeonly present
a sample of the obtained results but all the tests have bess alo all the cited
images. Moreover, to test robustness against Gaussia@ andgimpulsive noise,
auto-correlation has been performed for two kinds of imagesndomimage and
a real imageSand of size128 x 128, with 5% and10% of impulsive noise or a

Signal to Noise Ratio (SNR) equal ol and0.2 for Gaussian noise, cf. Figure 4.

Random Impulsive  Gaussian Sand Impulsive  Gaussian
image noise noise image noise noise

Fig. 4. Tested images with different type of noises.

NAME IMAGE DISPARITY | NAME IMAGE DISPARITY
Walls
. Cones
synthetic .
. real pair
pair
Books Moebius
real pair real pair

Fig. 5. Examples of data used in our tests (left images and disparities).

Evaluation areas —The advantage of the protocol is to quantify the behaviour of
the methods based on correlation measure near occlusidrdismontinuities, this

is why we consider these areas, see Figure 6:
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Occluded pixels- They are pixels without correspondent:

N 1 if p% is an occluded pixel
O(py/) =
0 otherwise.

Occlusion area- OA(,,) contains all the occluded pixels ip:

OA(L,) = {pl/ | O(p) =1}.

Pixels near occluded pixels They are the pixels in the neighbourhood of oc-
cluded pixels. This vicinity is related to the size of theretation window: it
corresponds to the morphological dilation of the occlusicga using the corre-

lation window as structuring element:

1 if (O(py) =0)and(V(py/)= >  O(pi?)) >0)
NO(p%/) = pi? EW(pl)

0 otherwise,

where Wp'/) is the set that contains all the pixels of the correlationdeim.
Occlusion influence area OIA(I,,) contains all the pixels near occluded pixels
in 1,: OTA(I,) = {p%/ | NO(p%/) = 1}.

Whole occlusion area- WOA(/,,) is the union of OA and OIA forl,:
WOA(Z,) = OA(L,) UOIA(Ly) = {p;/ | (O(p/) =1) or (NO(p;/) =1)}.

Pixels near discontinuity They are in the vicinity of a discontinuity:

|1 it 3pl e Wipl) | [ld(pl) - d(pi)] = 1
ND(p,/) =
0 otherwise,

whered(p%/) is the disparity ob’/. We select all the pixels that induce a differ-

22



ence of disparity in its neighborhood (this is why the thddlequals 1).

e Discontinuity area- It corresponds taDA(7,,) = {p%/ | ND(p%/) = 1} .

(a) Leftimage (b) Disparity (c) Occlusion (d) Discontinuit

(L

Fig. 6. Occlusion areas — We have calculated the Whole OcclusionWi@a (c), with
the ground truth (b), a disparity map (each pixel represents the dispanige defined by
the distance between the position of the pixel in the left image and its corremmandhe
rightimage. The brighter the pixel, the closer the point to the image plane ataddlethe
disparity). In (c), grey pixels are in the Occlusion Influence A@BA, and black pixels
are in the occlusion are®A. In (d), grey pixels are pixels near discontinuities.

Evaluation criteria — The theoretical disparity function ige and the error is

Errd = ||d(pL7) — drer(p%?) ||, significant only ifd(pl7) # occ andder(pl) # oce,

whereocc is the value for occluded pixels. We calculate the followmoggcentages:

(1) Correct matchescor— A match is correct ifirr’/ < 1.

(2) Accepted matchescc — A match is accepted if < Err’/ < 2.

(3) Bad matchesBAD — A match is bad i < Err’/ < 3.

(4) Erroneous matche€RR— A match is erroneous irr’/ > 3.

(5) False positive, false negativEPo and FNe — The method estimates that the
pixel is matched whereas it is not matched and vice versa. #&hma a false
positive (respectively a false negativeXiifp’/) # dref(p’’) anddes(ph/) =

occ (respectivelyd(p’/) # det(pL?) andd(p%’) = occ).

The use of the criteria (1) to (3) has been introduced by tlieoas of [9]. The
criterion (1) is calculated for each evaluation area. Wesgmé visual results with

an error map:

e If the pixel is white, the correspondence is erroneous or bad
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¢ If the pixels is black it is a true negative.

e If the pixel is grey, the correspondence is correct.

The main advantage of this set of criteria, compared to theStein and Szeliski
protocol, is that it is more complete and it allows to evadyarecisely the efficiency

in occlusion and discontinuity areas.

Whole Rank (WR) and Family Rank (FR) — Like Scharstein and Szeliski
methods are classified according to the mean of the rankisuattd to the measure
for each evaluation criterion. Compared to their protodw, number of criteria is
more important in ours. In the tables, we note WR for indigatime whole rank of
each correlation — compared to all the other correlationsmes — and FR the rank
into its own family — compared to the measures of the samelyami Table 14,
these ranks are given for tikenespair, whereas in Table 15, they are presented for
all the pairs: each rank is the mean of the ranks on all the@nagd each WR and

FR are estimated on the mean of these mean ranks.

10 Experimental results

The measures presented in sections 3 to 8 have been testee asdd the bidirec-
tional constraint that consists in estimating correspoodsifirom left to right and
then from right to left and in considering non-coherent rmagcas occluded pixels

(these occluded pixels are shown in black in disparity maps)

In this section, we give some examples of the results butasted readers can find

the details of the results for each of 42 images on this web sit

4 http://cat.mddl ebury. edu/ st ereo/
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Influence of the size of the correlation window -\We have tested window size
between3 x 3 and15 x 15 to study the behavior of the measures with different
window sizes. In Table 10, we give for each family, the meabest window sizes,
i.e. the size that permits the best values of the criterimneéch criterion on all the
42 tested images. A more complete version of this table caole in the web
page cited at the beginning of this section. We can noticgftinahe percentage of
correct matches, the most efficient measures with a reakowaidow size T x 7
or9 x 9) are: the measures of famigross ZD,, LD, VD, GC, CENSUS, MAD

and R’2’475.

FAMILY Cor Acc Bab ERR FPo FNE WOA OA OlA DA
CROSS 9 11 11 9 5 13 3 5 13 7
CLASSICAL 9 11 11 9 5 13 3 5 13 7
DERIVATIVE 15 11 7 13 11 15 5 9 15 15
NON-PARAMETRIC 13 11 7 13 9 15 5 7 15 11
ROBUST 13 11 9 13 9 15 5 7 15 11

-I\I;Iaeb;i t? best window sizes for each criterion ((W)OA: (Whole) Occlnsioea, OIA:
Occlusion Influence Area, DA: Discontinuity Area) on all the 42 tested imagdsfar
each family.

The smaller the window, the more difficult to distinguish tdifferent neighbour-
hoods and, moreover, the larger the window, the more p@stitibke into account
pixels with different disparities. Consequently, the numifesrroneous matches in
the occlusion areas increases as the window size increadeasexpected, best
results in Whole Occlusion Area (WOA), Occlusion Area (OAgd»A (Discon-
tinuity Area) are obtained with small windows, lower th@arx 9, for most of the

measures. Moreover, Figure 7 illustrates the fact that for<ad window, the per-

centage of correct matches is optimal for five selected nmeagone of the best
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measures for each family) and that the smaller the windasb#iter the results in
the WOA. These two results are in contradiction and with a fisied strategy, it

seems difficult to select the most suitable size of windows.

WHOLE IMAGE (COR) WHOLE OCCLUSION AREA(WOA)
90 fL]
T4 *
e ﬂ-'{ﬁ_&h"ﬂ_
- 3 “, -
i e e TR . a' jpasam—
5 i g
§ ; i _
2 ; -8 3 \\
g ."'r - WIC ¥ o NG
ESIJ / ——Df EE-!- ——:;T
[ } GE [ B H"\-»._
-y =1 o
N &l
o]
] kil

1 3 5 T E il 13 15 7 1 E 5 T -] " 13 15 b

Canelstion wirdow size Canlstion wirdow size

Fig. 7. Variation of the mean of two criteria over all the images for five measiésshow
the results only for the most significant measures for each family, i.e. measitherank 1

for the global results, cf. Table 15. The left graph represents theeptge of correct
matches in the whole image whereas the right graph illustrates the percentggedof
results in the WOA. The robustness of SMPB illustrated by its results in the WOA.
However, in order to reduce the size of data to analyse, wieleldéto focus on the
results obtained with the percentage of correct matchdseinvhole image, OR,
and in the WOA (Whole Occlusions Area), cf. Figure 7. It seesasonable to com-
pare the results with & x 9 window for each similarity measure that is evaluated,
because, the percentageKis the best (or near the best) and the results in WOA
are quite good (in most of the cases). Clearly, it correspeodaaximizing the
correct matches in the whole image, for classical measwitsmut degrading (too
much) the efficiency in WOA. Moreover, with a bigger windohetpercentages of
correct matches are not improved a lot for the other kind aisnees, whereas, the
percentages of correct matches in WOA are significantlyeseszd. This size coin-

cidentally corresponds to maximizing erroneous matchieJable 10. Moreover,

this size is also a standard for this data set in the liteed0,44].

Execution time —The first three families have reasonable execution timeseeser
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the two last ones are expensive, cf. Table 11. Our implertient&s not optimal,

howeverx, x, CENSUS andRZNCC, even optimised, are very expensive.

MEASURE TIME | MEASURE TIME | MEASURE TIME | MEASURE TIME | MEASURE TIME

NIS 2.38 PRATT 5.33 ME1 6.25 ME2 33.06 R4 43.64
VAD 2.77 7Dy 5.23 OCM 6.37 MAD 33.23 MEs 49.48
NCC 3.09 SEK{ 4.83 ISC 6.67 Ry 355 Do.1 74.88

MOR 3.91 ZNCC 54 ME~7 11.0 | ZNCCr 35.55 JEFF 83.84

SES1 4 LDy 5.44 SCC 13.02 R2 38.1 QUAD 91.35
D1 4.13 ME4 5.89 LMP» 16.65 Rs 38.33 K 167.27
NA; 4.57 x? 5.93 GC 17.6 MEg 39.46 X 179.82

NA> 4.61 MEg 5.94 ME3 24.1 | SMPD> 39.77| CENSUS 305.67

RANK; 4.73 K4 6.1 LTP»> 25.44 R3 40.44| RZNCC  725.7

Table 11

Execution times (in seconds, for the image of Figure 6, wiitkk8 window with a processor
intel®core’M2 duo of2 GHz) — Measures are classified according to growing execution
time. It gives only some indications because the implementation (for some of them, like
SAD) has not been optimized and, for example, box-filter techniques [U&aftbe used.

Gaussian and impulsive noises +or Gaussian noise, the lower the signal-to-
noise ratio, the larger the window to obtdi®0% correct matches. Therossand
CLASSICAL families are robust against Gaussian noise. IrBrRIVATIVE family,
only GC is efficient, and some measures of theN-PARAMETRIC andROBUST
families are not efficientRANK p, the partial correlationQUAD and MAD. The
most robust measures against Gaussian noise areNsBandME;. The study of
results obtained in the presence of impulsive noise givestapproximation of the
behaviour of the measures with occlusions: damaged pixelde considered as
occluded pixels. TherRossandcLASSICAL families are not robust. The measures
of the DERIVATIVE family have a good behaviour except PRATT. Two problems
occur: first, the PRATT convolution, with these two imagesggian image with
repetitive patterns and, second, it is highly sensitiverily @ne erroneous pixel.

The NON-PARAMETRIC family is effective but, the larger the proportion of noise,
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the larger the correlation window to obtain good resulte RbBUSTfamily is, as

expected, the most efficient. Some results are in Table 1Pawviregive the smallest
size of windows for having good performances with Gaussmhimpulsive noises
with one of the best measures for each family (for the robost two measures: a

known measure and a proposed one).

GAUsSsIAN, SNR =0.1 | GAUssIAN, SNR =0.2 IMPULSIVE, 5% IMPULSIVE, 10%

ZNCC 3 5 21 9 7 25% 9 25%
Dy 7 5 21 9 7 23 5 25%

GC 7 5 25 9 7 3 9 25*
ISC 11 7 25 13 9 5 9 9
Do.1 11 7 25 25 3 5 3 5
MEs 5 5 25 15 3 3 3 5

Table 12

Results forandom(first columns) angand(second columns) presented in Figure 4 (SNR:
Signal to Noise Ratio) — We present the smallest size of the window necdesaiyain
100% of correct matches. Tested window sizes vary betweern3 and25 x 25. In some
cases, denoted By the measure never reaches this performance.

Performance analysis -In Table 13, we present the averages and the variances
of the results on the 42 pairs with the best measure for eaullyfavariances

are high for correct matches, it is around’. It illustrates how the data set is
heterogeneous. Moreover, the results for@Glomesair are detailed in Table 14 and
Figure 9. These images are less difficult than the others bedhere are no low
textured areas and the occlusion areas are numerous but Borahese reasons,

thecrossandcLAssICAL families perform better than with the other images.

In Figure 8, we present the variations of the percentage wécbmatches on the
whole image and on the Whole Occlusion Area (WOA), for the 4ages, for
five significant measures, with%ax 9 window. It illustrates the matching difficul-
ties in all the images (the set of 2006 contains images wiffontant illumination
changes, low textured areas, complex scenes), and, it dgratas that SMPDis

very efficient in the WOA and close to the best measures in ti@evimage.
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MEASURE COR Acc BAD ERR FPo FNE WOA OA OIA DA

NCC 78(12) 22 00 23 1(1) 13(8) 65(11) 80(17) 45(10) 5a)
LDy 78(13) 2(2) 0() 2@4) 1(1) 13(8) 66(11) 80(17) 48(10) 57 (12)
GC 80(12) 2@3) 0(0) 3() 1(1) 11(7) 68(11) 78(17) 53(10) 61(12)

CENSUS 81(12) 2@3) 0(0) 22 1(1) 12(8) 71(9) 84(10) 55 (13)67(10)

SMPD;, 74(15) 1(2) 0(0) 13 0(1) 19(13) 73(11) 85(14) 57(13) 64 (14)
Table 13

Averages and variances (in parentheses) of the percentages didtaimeost of the cri-
teria with different scenes ((W)OA: (Whole) Occlusion Area, OIA: Osahn Influence
Area, DA: Discontinuity Area) witt9 x 9 correlation window for the 42 pairs. Bold letters
correspond to the best results over the 5 presented results.

MEASURE COR Acc BAD ERR FPoO FNE WOA OA OIA DA WR

81.08 1.12 0.55 2.67 3.83 10.75 6359 72.63 57.30 59.46

NCC o) Ry po) Ry B9 18] 23] 89 (7] (8

LD, 81.84 0.98 0.47 2.14 3.42 11.14 64.58 75.56 56.94 58.97 12
B (23] [26] [12] [26] [10] [19 [271 [19]  [16]

GC 82.66 1.23 0.5 2.54 4.09 8.98 72.87 70.74 74.36 80.24 3
4 07 R4 19 (44 5 @4 M2 @ [

ISC 82.87 0.37 0.31 2.34 3.18 10.92 73.79 77.26 71.37 76.81 2
B o] [36] (16 [21] (100 [2] [9] (4 [

85.86 0.46 0.2 1.22 2.91 9.07 77.4 79.2 76.14 78.87
SMPD2 ") o] @20 51 @l € @ @i [ [l !
Table 14

Results achieved with theonespair ((W)OA: (Whole) Occlusion Area, OIA: Occlusion
Influence Area, DA: Discontinuity Area, WR: Whole Rank) — We give theutts of the
best correlation measure in each family (in brackets, the WR on the criteflemomplete
results, i.e. are available in Table 18. We specify the rank for the resuétaabf measure
over all the measures (WR). If we compare with the results on the 42 imagé&abtf 15,
the best measures of the first and the fourth families are not the same (MENSUS).

Table 15 summarizes the results for the best measures. Ebroggerion, we
present the rank based on the mean of the ranks on all the testges, then the
classification per family (FR) and the global rank (for all ttréeria, WR). More

details can be found on our web pdge

We present a global analysis of the results:

> http://perso.lcpc.fr/sylvie.chanbon/correl ati onResul ts. htni
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Fig. 8. Variations of percentage of correct matches on all the images festaneasure
per family — The numbers of the images correspond to the order of the ptsern
the § tested imagessection 9. The first graph illustrates the variation on the whole image
whereas the second one only concerns the correct matches on the @dotlision Area
(WOA). These graphs illustrate how the results can be different from agerwanother
and also that SMPPis most of the time the best (30/42 images) in the WOA whereas it is
not the case for the percentage of correct matches in the whole image.

e For each family:

- CROSs— NCC is the best but in fact, these measures hold similartsgsuid
belong to the ten best measures for the percentage of canegches.

- CLASSICAL — LD, (LSAD) is the best even i¥.D; (ZSAD) reaches the best
percentage of correct matches. These measures have agsiimgmrank ex-
cept K; which was designed to be insensitive to Gaussian noise gy
sensitive to outliers (powers of 4 and 2 are used).

- DERIVATIVE — GC is the best and gives the best percentage of correct esatch

and false negatives. The other measures are not well ranked.
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- NON-PARAMETRIC — CENSUS is the besRANK; is the second one and
reaches a good percentage of correct matches in the oatluafioence area
and the discontinuity area. We can also notice the ISC medisat gives inter-
esting results. In particular, it is the best measure of ameilfy for the results
obtained withconegpair.

- RoBUST — SMPD; is the best and it obtains the best percentage of correct
matches in the whole occlusion aréd’P, also furnishes good results.

¢ In conclusion of this evaluation, the best measure is CEN@d&gexcept it, GC
and RANK;, the ten best measures belong to #@BUST family. As expected,

SMPD,, which is designed for, obtains the best results in the wbhotdusion

area.

e In general, best measures in non-occluded areas, like NCQytdzerform well
in the whole occlusion area, and, the best measures in thiewholusion area,

like SMPD,, do not achieve good results with non-occluded areas.

For reason of space, we cannot show all the results for eachhoavever, we
can conclude that even if CENSUS is the first measure in ouvatiah, it is not
always the best measure on each image separately. Mor8d{EI), is not always
the first but it always belongs to the ten best measures, exaipone pairplastic
(rank 18) which possesses large low textured areas; ®iitD, is not efficient with
these areas. In the same way, CENSUS is not always in the tembasures, and
in six images highly textureajoth 1 (rank 28),cloth 3(rank 18),cloth 4(rank 19),
flowerpots(rank 24),stereo(rank 42) andvood 2(rank 13). In fact, in this kind of

images, CENSUS gives a lot of false positives.
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DISPARITY OCCLUSION DISCONTINUITY

Cones

Fig. 9. Maps obtained with theonegpair — Differences between the disparity maps are not
very significant. However, we can notice the good result\dPD- in the occlusion areas.

11 Discussion

The results illustrate the interesting performances of CBSI&ndSMPD, but
we have also noticed that the ten best measures include afttiee proposed ro-
bust measured:TP,, ME3, R, R3, R, and R. Compared t&8MPD,, the main
advantage of the R-estimator measures is that they outpei$aiPD, in the
non-occluded areas (with better results than classicakunea in occluded ar-
eas and less false positives than the ten best other mepdaresnsequence, if
it is important to obtain acceptable performances in thesedifferent areas, R-
estimator measures are well suited andnas the smallest execution time. If the
execution time is not critical, CENSUS obtains better restiian R both in oc-
cluded and non-occluded areas. In fact, it seems that CENS©®rie interesting
thanSMPD, with low textured images where&PD, is more interesting than
CENSUS in well textured images. It can be explained by this fl@ENSUS al-

lows to use more information (80 bits f@rx 9 window) thanSMPD, (only 8
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bits for a gray level difference) for each pixel. In conseme in low textured
areas, the CENSUS descriptor is more discriminant than thg lgvel used in
SMPD, to find the right correspondences. It is the reverse in weliuted ar-
eas. This remark is corroborated by the individual resuiteach image. We have
identified the images for which each measure gives the besttsei.e. obtains
WR= 1 (see Scharstein and Szeliski website for more details abeutmages

http://cat. n ddl ebury. edu/ stereo/):

e CENSUS (14 images)barn2, books, bowlingl, buljpurnaux livres, laundry,
lampshadel, lampshade2, midd2, poster, plastic, reindeaus ;

e SMPD, (13 images): art, baby2, clothl to cloth4, cones, dolls, moebius,
monopoly, rocks2, sawtoothtereq

e RANK, (6 images): aloe, babyl, baby3, bowling2, rocks1, wood1l;

e LTP, (5images): barnl, mapmurs teddy, tsukuba;

e GC: wood2;

e ME3: middl,plante

e LD,: flowerpots.

The 13 images whergMPD, has obtained the best results represent highly com-
plex and textured scenes with a lot of occlusions, which cmsfits superiority in
this case. When no intensity change is observed between thenages, it is more
appropriate to use the non-centered verslorP,. The CENSUS and thRANK;
measures are the most efficient in the case of scenes withelkdwéd areas and
radiometric distortions (it is one of the properties of ttmeasure which has been
introduced to be independent from the magnitude of the gities). In very diffi-
cult images, with high ambiguities (due to low textured ayelise flowerpots, it
is hard to conclude which measure is well adapted but it sekatdV-estimator

would be an interesting choice.
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FAMILY MEASURE COR Acc BAD ERrR FPo FNE WOA OA OIA DA WR FR

NCC 5 25 23 10 31 8 31 32 27 22 231

CROSS
ZNCC 13 31 31 13 36 13 27 38 19 19 30 3
D; 23 11 12 29 25 20 19 27 15 17 19 3

CLASSICAL
LD, 6 26 22 16 22 7 24 26 20 13 13 1
DERIVATIVE GC 4 19 20 20 38 3 10 39 9 3 8 1
NON- RANK; 8 19 34 12 35 9 5 36 3 3 7 2

PARAMETRIC CENSUS 1 17 37 5 38 2 2 11 2 1 1 1

RMivs 2 38 41 2 2 29 3 2 7 12 6 5
LTP, 29 6 7 34 11 26 4 12 5 10 3 2
SMPD, 15 34 38 3 7 17 1 6 1 2 2 1

ME3 26 9 9 32 14 22 6 17 6 6 5 4
ROBUST
Rs 4 29 27 11 20 5 14 23 8 5 4 3
Ra 10 33 32 9 19 12 18 22 11 8 10 7
Rs 12 28 25 20 21 11 16 25 9 7 9 6
Table 15

Classification ((W)OA: (Whole) Occlusion Area, OIA: Occlusion Influenérea,

DA: Discontinuity Area) — We summarize the results over the image pairs

for the ten best measures and also the best measure for each family- More
over, we add the results of well known measures to compare our work to the
state of the art: ZNCC and D(SAD). The complete results can be find here:
http://perso.lcpc.fr/sylvie.chanbon/correlati onResults. htm .

For each evaluation criterion, the rank is estimated with the mean of the rankseobta
with all the images. The Whole Rank (WR) is estimated by comparing the mean of these
mean ranks on all the correlation measures whereas the Family Rank (FR)iriédke
account only the measures of the same family.

Finally, a summary is given in tables 16 and 17 in order to psapkeys to choose
the most adapted measure for each application. In Tabled 6haw performances
against execution time: it appears that the meaBW¥K; offers the best compro-
mise. This measure can be used if the presence of falsevessginot important for
the application (high percentage of false positive is tlautlack of this measure).
In Table 17, we summarize performances in occluded areassageon-occluded
areas: it reveals that NCC, GBANK, R; to Ry, and CENSUS are good compro-

mises to obtain both acceptable results in occluded andnoolded areas.
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R
\ BAD ACCEPTABLE GoobD

HIGH JEFF QUAD, &, x RMp s, CENSUS

SCC, Dy.1, LMPy, ME2, ME5, | GC, LTP3, Rs, SMPDay,

ACCEPTABLE
ZNCCr ME7, MEg, MAD, R1, Ro ME3, Rs, Ry

NIS, SES:, SEK1, PRATT, | ZNCC, NCC, MOR, O, ZD,
K4, OCM, MEg LDq, VAD, x2, ISC,ME;, ME4

SHORT RANK;

Table 16

Summary of the performanceR:(rank) versus the execution tim€)(— Time is short when
it is less than 10 s, it is acceptable when less than 1 minute and high overisRgodd if
the measure is in the top 10 and bad in the last 10.

Non Occ.
Occ BAD ACCEPTABLE GooD

BAD K4, SESi, SEKy, NIS, OCM,

PRATT, JEFFZNCCp, MEg ZNCC, VAD, x2 MOR

Dy,ZD1,LDy,ISC,SCCx, | NCC, GC, RANKj,
ACCEPTABLE LMP2, MEs X: Do.1, LTP2, ME1, ME2, | Ri, Rz, Rs, Ra, CEN-
MEs, ME4, ME7, MEg, Rs | SUS

Goob MAD RMrms, QUAD, SMPD2
Table 17

Summary of the performances in non-occluded aras (Occ) versus the performancesin
occluded areagicc) — Result in non-occluded areas is good if the ranks for correct matche
and false negatives, cf. Table 15, are better than 10 and bad if theytheelast 10. Result

in occluded areas is good if the ranks for correct matches in the whdlesgmt areas and
false positives are better than 10 and bad if they are in the last 10. Inibotdrespond

to the best compromises to obtain good results both in occluded areas aodahoeted
areas.

12 Conclusion

In the context of similarity matching, we have presented/gere of the correlation
measures: forty measures have been detailed and classiftetivie families in-
cluding six types of correlation measures based on robasstts tools previously
proposed in order to take into account the occlusion probl&mhave set up an
evaluation and comparison protocol adapted to study thavi@lr of correlation-
based methods and, in particular near occlusion and discitytareas. The results
highlight the best measure near occlusiBhtPD, and near discontinuity: CEN-

SUS. It also demonstrates the drawbacks of the robust nesaghe difficulties
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with non-occluded areas. This behavior is coherent withdesnition: it allows
the method to be insensitive to large differences inducedrbgcclusion and, in
conseguence, it is ambiguous in non-occluded regionsusecanany candidates
can obtain the maximal correlation score (the true cornedeot but also many
wrong correspondents). The discussion about all the seBids to give some ad-
vices about which robust measure should be used for a givelicagon. First,
R-estimator is the most interesting when acceptable restdtaeeded in occluded
areas but also in non-occluded areas (these measures aeaffitient aSMPD,

in occluded areas but they are both better in occluded anebodnded areas than
classic measures). Second, M-estimator measures seenptorbising with very
ambiguous scenes (low textured with occlusions). FInGBIEINSUS is the first one
but detailed results highlight the fact that it is not the trefficient in highly tex-

tured images and it can present a lot of false positives.

An extension of this work will include the study of a more a#itt measure that
should combine the advantages of a robust measureShkeD,, and a classical
measure, GC or CENSUS. To do this work, a study of the compl@rignof these
measures is needed. In particular, we will evaluate thewdifft areas in the images
where each measure can give, alone, the true correspoitient.it seems difficult
to propose a single measure that can have both the advaofapeswo measures
(because the definitions are incompatible) but we hope toawegthe performances
by using the two measures together (and maybe more measuresriore robust).
An algorithm based on merging disparity maps has been ingidsd and gives

encouraging results. Our work will focus on this kind of agguch.
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FAMILY MEASURE CoOR Acc BaD ERR FPo FNE WOA OA OIA DA WR FR

NCC  80(16) 1(19) 0(21) 2(15) 3(29) 11 (13) 62(29) 75 (30) 53)(B5(23) 24 2
Cross ZNCC 81(13) 1(21) 0(20) 2(21) 3(38) 10(7) 63(24) 72 (38) 53)(B9 (13) 19
MOR  80(15) 1(18) 0(18) 2(23) 3(41) 10(5) 63(26) 71(41) 56)(Z® (16) 26 3

=

D1 74(25) 1(12) 0(12) 3(28) 3(34) 16(24) 64 (19) 74 (33) 57 (LB)(H) 27 4
ZD; 81(8) 1(22) 0(25) 2(13) 3(31) 11(9) 64(22) 75(31) 56 (19) 59)(15 2

CLassic LD, 81(9) 0(23) 0(26) 2(11) 3(26) 11(11) 64 (20) 75 (26) 56 (20)(58 13 1
VAD  79(19) 1(16) 0(17) 2(16) 3(23) 12(17) 60 (32) 75(23) 49XH2 (28) 23 3

Ky 50(38) 2(7) 1(7) 10(41) 3(21) 31(37) 48(42) 77 (21) 27 (41)(80) 40 5

SES 55(37) 0(25) 0(35) 2(19) 1(2) 39(42) 53(39) 90(2) 27 (42) B0)(38 2

SEK; 56(36) 0(27) 0(34) 5(35) 2(3) 34(39) 52(40) 83(3) 30(39) 3@)(41 4

NIS  18(43) 0(43) 0(39) 5(34) O0(l) 74(43) 40(43) 93 (1) 3(43)(48) 43 6

DERIVATIVE  ocM 71(28) 0(32) 0(31) 4(32) 3(22) 19(28) 58 (35) 76 (22) 45)(B1(30) 39 3
PRATT 65(32) 0(42) 1(9) 7(38) 3(19) 22(31) 54(38) 77 (19) 38)(44 (34) 42 5

GC 82(5) 1(20) 0(23) 2(18) 4(42) 8(3) 67(8) 70(42) 64(5) 65(® 1

JEFF  67(31) 2(8) 1(8) 5(33) 3(37) 19(27) 61(31) 73(37) 52(82(31) 36 8

X2 77(21) 1(15) 0(16) 2(24) 3(36) 13(18) 62 (27) 74 (36) 54 (2B)(B6) 33 7

ISC 83(4) 0(40) 0(36) 2(14) 3(17) 10(8) 69(5) 78(17) 63(6) (6p 4 1

NON- SCC  79(20) 1(17) 0(19) 2(22) 3(39) 12(16) 62(28) 72(39) 5H (87 (18) 30 6
PARAMETRIC RANK; 83(3) 0(35) 0(33) 3(25) 4(43) 7(1) 66(9) 65(43) 67(3) 68(3) BB
CENSUS 84(2) 0(34) 0(32) 2(12) 3(40) 8(2) 70(3) 71(40) 69(BP(2) 7 3

K 80(17) 0(36) 0(37) 1(4) 2(14) 14(21) 68(7) 80(14) 60(8) 6D (B 2

X 77(22) 0(30) 0(38) 1(6) 2(5) 17(26) 66(10) 81(5) 56 (24) 56)(21 4

RMras 81(10) 0(39) 0(43) 0(1) 2(4) 14(20) 71(2) 82(4) 64(4) 66(4) 2
QUAD 81(11) 0(37) 0(40) 1(5) 2(8) 13(19) 68(6) 81(7) 59(9) @G0) 3 3
ZNCCr 68(30) 0(33) 0(30) 1(7) 2(12) 25(34) 58(36) 80 (12) 42 (36)(3D) 35 20
Do: 57(34) 4(5) 2(5) 7(37) 3(18) 24(33) 62(30) 78 (18) 51 (30) 2aB)(32 18
MAD  74(26) 0(41) 0(42) 1(2) 2(10) 21(30) 70(4) 81(10) 62(7)0@®) 9 5
LMP, 56(35) 1(11) 0(13) 3(30) 2(7) 34(40) 63(25) 81(8) 50(31) aB)(28 15
LTP, 59(33) 4(6) 2(6) 6(36) 2(15) 24(32) 65(13) 80 (15) 54 (26) Ba)(18 10
SMPD, 86(l) 0(38) 0(41) 1(3) 2(16) 9(4) 74(1) 79(16) 71(1) 71 (1) 1 1
ME; 75(23) 1(14) 0(15) 3(26) 3(35) 15(22) 64 (17) 74(35) 57 (1B)(BL) 20 11
MEs  73(27) 1(10) 0(11) 3(29) 3(32) 16(25) 64 (16) 75(32) 57 (15)(%) 22 13

ROBUST Ve, 69(20) 2(9) 1(10) 4(31) 3(20) 19(29) 65 (11) 77 (20) 57 (12)(BA 17 9
ME, 50(39) 6(4) 2(4) 8(39) 2(9) 29(35) 60(34) 81(9) 45(33) 43)(FW 17
ME; 42(41) 7(1) 3(2) 11(42) 2(11) 32(38) 56 (37) 81 (L1) 39 (37)(3®) 34 19
MEs; 32(42) 6(2) 3(1) 14(43) 2(13) 39 (41) 50 (41) 80 (13) 29 (40)(&Z) 37 21
ME;  74(24) 1(13) 0(14) 3(27) 3(33) 16(23) 64 (18) 74 (34) 57 (16)(%2) 25 14
MEs  49(40) 6(3) 2(3) 8(40) 2(6) 29(36) 60(33) 8L(6) 45(34) 43)(I 16
R, 81(7) 0(26) 0(24) 2(10) 3(30) 11(10) 64 (21) 75(29) 56 (21)(59 14 8
R,  80(18) 0(24) 0(22) 2(20) 3(28) 12(14) 63 (23) 75 (28) 55 (25)(80) 21 12
Rs  82(6) 0(28) 0(28) 2(9) 3(27) 10(6) 65(12) 75(25) 58 (10) 6D (& 4
R, 81(14) 0(31) 0(29) 2(8 3(24) 12(15) 65 (15) 75(24) 57 (14)(E®) 12 7
Rs  81(12) 0(29) 0(27) 2(17) 3(25) 11(12) 65(14) 75(27) 57 (1D)(BL) 10 6
Table 18

Percentages for each criterion and each measure obtained with the paagsscones
(with 9 x 9 correlation window size, (W)OA: (Whole) Occlusion Area, OIA: Occlusion
Influence Area, DA: Discontinuity Area) — The Whole Rank (WR) is estimateddm-
paring, between each measure, the mean of the ranks on all the critereaw/lige Family
Rank (FR) takes into account only the measures of the same family. Moyeeselts in
brackets correspond to the rank of the evaluation criterion compared to #ramtasures,
for each criterion.
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