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In the context of computer vision, matching can be done with similarity measures. This paper presents the classification of these measures into five families. In addition, eighteen measures based on robust statistics, previously proposed [1] in order to deal with the problem of occlusions, are studied and compared to the state of the art. A new evaluation protocol and new analyses are proposed and the results highlight the most efficient measures, first, near occlusions, the smooth median powered deviation, and second, near discontinuities, a non-parametric transform-based measure, CENSUS.

Introduction

In computer vision, similarity metrics are widely employed: in image registration [START_REF] Brown | A Survey of Image Registration Techniques[END_REF], pattern recognition [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF], movement analysis [START_REF] Mulligan | Performance of Stereo for Tele-presence[END_REF], object tracking [START_REF] Garcia | A combined Temporal Tracking and Stereo-correlation Technique for Accurate Measurement of 3D Displacements: Application to Sheet Metal Forming[END_REF], video analysis [START_REF] Porter | Video Indexing using Motion Estimation[END_REF] and stereo matching [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF]. Consequently, many publications introduce new similarity measures and some papers give a review of these measures. The most popular is the taxonomy of Aschwanden and Guggenbül [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF] but we can also mention taxonomies of ordinal measures [START_REF] Giachetti | Matching techniques to compute image motion[END_REF], robust measures for matching [START_REF] Lan | Robust location based partial correlation[END_REF], for Email address: chambon@lcpc (Sylvie Chambon 1,2 (corresponding author) and Alain Crouzil 2 ).

Preprint submitted to Elsevier 8 February 2011 registration [START_REF] Brown | A Survey of Image Registration Techniques[END_REF] and for classification [START_REF] Rubner | Empirical Evaluation of Dissimilarity Measures for Color and Texture, Computer Vision and Image Understanding[END_REF]. For stereo matching, correlation-based methods are popular, because the implementation is simple, the execution time is low and their efficiency has been demonstrated [START_REF] Yoon | Locally Adaptive Support-Weight Approach for Visual Correspondence Search[END_REF]. Matching elements can be pixels or more complex features [START_REF] Jawahar | Generalised correlation for multi-feature correspondence[END_REF] such as edges or corners. In this paper, we deal with dense pixel matching. We consider that a correlation measure evaluates the similarity between two data sets: the grey levels of two pixels and their neighbourhoods. Even if some of the correlation measures (classical, derivative-based and non-parametric transform-based) have been studied and compared [START_REF] Hirschmüller | Evaluation of stereo matching costs on images with radiometric differences[END_REF], the choice of one measure is difficult. So, it seems important to give a new analysis of the existing correlation measures.

Stereo matching is difficult because of: intensity distortions, noise, untextured areas, foreshortening, perspective effects and occlusions. Intensity distortions and noise have been investigated [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF], whereas untextured areas and foreshortening cannot be overcome with correlation. With perspective effects, fine correlation [START_REF] Garcia | A combined Temporal Tracking and Stereo-correlation Technique for Accurate Measurement of 3D Displacements: Application to Sheet Metal Forming[END_REF] can be used. While solving the occlusion problem, adaptive windows [START_REF] Kanade | A Stereo Matching Algorithm with an Adaptive Window: Theory and experiment[END_REF], multiplewindow methods [START_REF] Fusiello | Efficient stereo with multiple windowing[END_REF], support-weight approaches [START_REF] Yoon | Locally Adaptive Support-Weight Approach for Visual Correspondence Search[END_REF] or robust measures [START_REF] Lan | Robust location based partial correlation[END_REF] can be used. Here, we are particularly concerned with occlusions. In a scene, depth discontinuities induce the occlusion problem because it is difficult to match a pixel whose neighbours have a different depth. One solution is to consider as outliers the pixels having a different depth from the pixel being studied. The tools of robust statistics are insensitive to outliers and, consequently, we propose to introduce robust statistics-based measures. The aim of this work is to evaluate the correlation measure and not to evaluate the window strategy for the estimation of the similarity and we do not consider this kind of approach [START_REF] Yoon | Locally Adaptive Support-Weight Approach for Visual Correspondence Search[END_REF][START_REF] Kanade | A Stereo Matching Algorithm with an Adaptive Window: Theory and experiment[END_REF].

After giving some notations, the commonly used correlation measures are presented. Then, eighteen robust correlation measures are proposed. Finally, an evalu-ation protocol is presented and the results are discussed.

Notations

We propose to classify the measures into five families, with measures based on: cross correlation, classical statistics, derivative images, non-parametric statistics and robust statistics, see notations in Table 1.

I w

The images with w ∈ {l, r} (left and right).

I max

The maximal grey level in the image I a .

I i,j w , p i,j w

The grey level of the pixel p i,j w of coordinates (i, j) in image I w is I i,j w . Moreover, p v,w r is the correspondant pixel of p i,j l .

N f , N v , N h
The number of pixels in the correlation window is denoted by:

N f = (2N v + 1) ×(2N h + 1), N v , N h ∈ N * . f w
This vector contains grey levels of pixels in the correlation window (in image I w ):

f w = (• • • I i+p,j+q w • • • ) T = (• • • f k w • • • ) T where T is the matrix transposition operator, p ∈ [-N v ; N v ], q ∈ [-N h ; N h ]. f k w
The element k of vector f w . f w , m(f w )

The vector of means f w contains N f columns and is defined by:

f w = (m(f w ) • • • m(f w )) T with m(f w ) = 1 N f N f -1 k=0 f k w .
L P The L P norms are:

f w P =   N f -1 k=0 |f k w | P   1/P with P ∈ N * .
The Euclidean norm is given by: f w = f w 2 .

a In this paper I max ∈ [0; 255]. Table 1 Notations used for the description of the measures.

Tables 2 to 9 present for each measure, the following details: the name of the measure, the abbreviation of the measure, the formulae, a lower bound and an upper bound of the interval of variation (VARIATION). For each measure, with a, b ∈ R * 1 , and, c, d ∈ R, we define the invariance property:

1 Like N * = N \ {0}, R * = R \ {0}
Gain : M(af l , bf r ) = M(f l , f r );

Bias : M(f l + c, f r + d) = M(f l , f r );
Gain and bias : M(af l + c, bf r + d) = M(f l , f r ).

In the following description, when no explicit reference is given, the reader should consult Aschwanden and Guggenbül [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF].

Cross correlation-based measures

The CROSS family (Table 2) is based on the scalar product. The cross correlation:

CC(f l , f r ) = f l • f r (1) 
can be used only if the vectors f w are normalised. This normalisation brings gain invariance [START_REF] Ferrari | Wide-baseline Multiple-view Correspondences[END_REF] and leads to the Normalised Cross Correlation, NCC (similarity measure). The centred version, called the Zero mean Normalised Cross Correlation, ZNCC, gain and bias invariant, is also known as an estimation of the Pearson product-moment correlation coefficient. It is more efficient than NCC when there is a linear relationship between the two sets of grey levels to be compared. The Moravec [START_REF] Moravec | Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover[END_REF] similarity measure, MOR, proposed for binary images, uses a different normalisation which is faster to compute than the normalisation of ZNCC.

It has been proposed to solve the problems of ZNCC, when the denominator is equal to zero, but, consequently, MOR is sensitive to contrast changes and only bias invariant.

NAME ABBREVIATION DEFINITION VARIATION

Normalised Cross Correlation NCC 

f l • f r / f l f r [0; 1] Zero mean Normalised Cross Correlation ZNCC NCC(f l -f l ,fr-fr) [-1; 1] Moravec [17] MOR 2(f l -f l )•(fr-fr) f l -f l 2 + fr-fr 2 [-1; 1]

Classical statistics-based measures

The CLASSICAL family (Table 3) contains classical statistics-based dissimilarities:

the distances, the locally scaled distances [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF], the variances [START_REF] Cox | Template Matching and Measures of Match in Image Processing[END_REF] and a fourth-order statistics-based measure [START_REF] Rziza | Dense disparity map estimation using cumulants[END_REF].

Distances -

The principle behind the use of a distance in order to quantify the similarity between two sets of grey levels is to consider them as two points in R N f and to estimate how distant they are. In other words, it consists in calculating the L P norms of the vector of the grey level differences [START_REF] Kanade | A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications[END_REF][START_REF] Okutomi | A Multiple-Baseline Stereo[END_REF]. Fourth-order statistics-based measure -High order statistics have been investigated, and, in particular, by using a fourth-order cumulant of the grey level differences, K 4 , designed to be robust against Gaussian noise [START_REF] Rziza | Dense disparity map estimation using cumulants[END_REF]. [0;

NAME

I max P N f ]
Variance of Differences [START_REF] Cox | Template Matching and Measures of Match in Image Processing[END_REF] VD

var(f l -fr) [0; I max 2 ]
Variance of Absolute P -powered Differences [START_REF] Cox | Template Matching and Measures of Match in Image Processing[END_REF] VAD P var(|f l -fr| P )

[0;

I max 2P ] Fourth-order statistics-based measure [19] K 4 m((f l -fr) 4 ) -3 m((f l -fr) 2 ) 2 [0; I max 4 ]
Table 3 CLASSICAL family.

Derivative-based measures

All the measures of the DERIVATIVE family (Table 4) are based on the grey level distribution. They employ the derivatives of the images at different orders and use the operators of Sobel, Roberts, Kirsch or Pratt. The gradient vector at p i,j w in I w is ∇I i,j w . The norm and the orientation are denoted respectively ∇I i,j w and θ i,j w .

Seitz measures -

The idea [START_REF] Seitz | Using local orientational information as image primitive for robust object recognition[END_REF] of SEO P (SEitz Operator) is to estimate the dissimilarity of the gradient vector directions by calculating the L P norm of the gradient direction differences. These measures are efficient in the case of impulsive noise whereas they are not with Gaussian noise [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF] and they are gain and bias invariant.

We denote these measures by SES P (SEitz Sobel) and SEK P (SEitz Kirsch), with

P = 1, 2.
In fact, SES 1 was introduced in [START_REF] Seitz | Using local orientational information as image primitive for robust object recognition[END_REF] whereas SES 2 , SEK 1 and SEK 2 are improved versions proposed in [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF].

Nishihara correlation, Nack measure and Pratt correlation -Nishihara measure [START_REF] Nishihara | PRISM, a pratical real-time imaging stereo matcher[END_REF], NIS, is the cross correlation, equation (1), of binary Laplacian images (similarity measure). It is not efficient with impulsive noise and occlusions [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF]. For

Nack measures, a convolution with the Roberts operator is applied. For each pixel, the region of interest (ROI) is binarized to take into account only 15% of the ROI (this percentage is empirically chosen by the authors). It allows them to be robust against noises and untextured areas because it takes into account only the most significant part of the ROI. These similarity measures [START_REF] Nack | Temporal registration of multispectral digital satellite images using their edge images[END_REF], NA m , m = 1, 2, are not robust against Gaussian or impulsive noises, but, the larger the correlation window, the better the results are [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF]. In fact, NA 1 was proposed in [START_REF] Nack | Temporal registration of multispectral digital satellite images using their edge images[END_REF] whereas NA 2 is a modified version proposed in [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF] (we have also modified this measure in order to avoid division by zero). The similarity measure [25, pp. 666-667], PRATT, is ZNCC, cf. Table 2, applied to binary Laplacian values contained in R LoG (f w ).

Nishihara measure is very "flexible", i.e. it gives the best score for the corresponding pixels and even for non-corresponding pixels. Consequently, this measure can be robust to occlusions or impulsive noise but can also induce errors. With the following binary vectors (for respectively f l and one possible candidate f r ), with O ∈ {Rob, LoG}:

(a) R O (f l ) = (0 0 1 1 0 1 0 1 1) T and (b) R O (f r ) = (1 0 1 1 0 1 0 1 1) T ,
we obtain:

(r 1 ) NIS(f l , f l ) = NIS(f l , f r ) = 5 whereas (r 2 ) NA 1 (f l , f l ) = 1 and NA 1 (f l , f r ) = 5/6.
For NIS, the best score is obtained with two correspondent vectors and two different vectors. In this example, even if each 0 is replaced by 1 between R O (f l ) and R O (f r ), NIS(f l , f r ) = 5. On the contrary, with:

(c) R O (f ′ r ) = (0 0 0 1 0 1 0 1 1) T ,
we obtain:

(r 1 ) NIS(f l , f l ) = 5 and NIS(f l , f ′ r ) = 4 whereas (r 2 ) NA 1 (f l , f l ) = NA 1 (f l , f ′ r ) = 1.
With the modified version of NA 1 , we obtain:

(r 3 ) NA 2 (f l , f l ) = 1 and NA 2 (f l , f ′ r ) = 1/2.
In this example, even if each 1 is replaced by

0 between R O (f l ) and R O (f ′ r ) until there is at least one 1 in R O (f ′ r ), NA 1 (f l , f ′ r ) = 1.
The measure NA 2 reduces the problem of NA 1 with the introduction of 0. In conclusion, the measures of Nack are less "flexible" than the measure of Nishihara but they are not robust against occlusions.

Orientation code matching correlation -For this similarity measure, the gradient direction code of pixel p i,j w is estimated by [START_REF] Ullah | Orientation Code Matching For Robust Object Search[END_REF]:

C OCM (p i,j w ) =          ⌊θ i,j w /∆ θ ⌋ if ( ∇I i,j w > T Γ ) L otherwise,
where ⌊x⌋ is the integer part of x and C OCM ∈ {0, 1, ..., N OCM = 2π/∆ θ , L}.

The authors have used ∆ θ = π/8, L = 255, T Γ = 10 (when the image range is [0; 255]) and the Sobel operator. The authors used L (here 255) in order to detect low-contrasted regions and, after, in the computation of the similarity cost, to reduce their influence. When the distance between the orientation codes of two pixels is estimated, if this distance is over N OCM (only in the case when one of the two pixels has the value L), a constant value (N OCM /2) is assigned, see Table 4 for the definition of this distance.

Gradient vector field correlation -For the previous measures, the gradient direction is only introduced: this might introduce errors, especially with low norm gradient vectors whose direction is not reliable. Consequently, a dissimilarity measure, the Gradient field Correlation, GC, bias invariant measure, is introduced in [START_REF] Crouzil | A New Correlation Criterion Based on Gradient Fields Similarity[END_REF].

Non-parametric measures

This family (Table 5) is based on non-parametric transformations, i.e. no hypothesis about the grey level distributions is made. We distinguish χ 2 and Jeffrey measures [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF], Kaneko measures [START_REF] Kaneko | Robust Image registration by Increment Sign Correlation[END_REF][START_REF] Kaneko | Using selective correlation coefficient for robust image registration[END_REF], Zabih measures [START_REF] Zabih | Non-parametric Local Transforms for Computing Visual Correspondence[END_REF] and ordinal measures [START_REF] Bhat | Ordinal Measures for Image Correspondence[END_REF].

χ 2 and Jeffrey measures -These dissimilarity measures [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF] are used for segmentation and they seem to be interesting for correlation-based matching. For image

NAME ABBREVIATION DEFINITION VARIATION Seitz [22,7] SEO P R O (f l )-R O (fr) P P [0; I max P N f ] Nishihara [23] NIS R LoG (f l )•R LoG (fr) [0; N f ] Nack 1 [24] NA 1 R Rob (f l )•R Rob (fr) N f m(R Rob (fr)) [0; 1] Nack 2 [7] NA 2 NA 1 (f l ,fr) N f m(R Rob (f l ))-R Rob (f l )•R Rob (fr)+1 [0; 1]
Pratt [START_REF] Pratt | Digital image processing[END_REF] PRATT

ZNCC(R LoG (f l ),R LoG (fr)) [-1; 1]
Orientation Code Matching [START_REF] Ullah | Orientation Code Matching For Robust Object Search[END_REF] OCM 

1 N f D OCM (R OCM (f l ),
(f w ) = (• • • C OCM (f k w ) • • • )
T are the orientation codes in f w , cf. section 5. As the OCM code is cyclic, the maximal distance is N OCM /2 and the distance D OCM (f l , f r ) is

N f -1 k=0 D(f k l , f k r ), with D(a, b) = min {|a -b|, N OCM -|a -b|} if |a -b| < N OCM N OCM /2 otherwise.
retrieval, they are numerically stable, symmetric and robust with respect to noise.

Increment Sign Correlation -

The similarity measure, ISC [START_REF] Kaneko | Robust Image registration by Increment Sign Correlation[END_REF], gain and bias invariant, uses: b w = . . . b k w . . .

T with k = 0 • •N f -1 and b k w =          1 if (k < (N f -1)) and (f k+1 w ≥ f k w ) 0 otherwise.
If the grey level increases between f k w and f k+1 w , then b k w equals 1. The vectors b l and b r are compared to estimate how the variations of the grey levels are similar.

Selective Correlation Coefficient, SCC -This measure is a variant of ISC and has the same properties [START_REF] Kaneko | Using selective correlation coefficient for robust image registration[END_REF]. It is based on these weights (determined with b w ):

e = (• • • e k • • • ) T , k = 0 • •N f -1, e k =          1 -|b k l -b k r | if k = 0 or k even e k-1
otherwise.

If grey levels change in the same direction between f k l and f k+1 l , and between f k r and f k+1 r then e k l and e k+1 l (k is even) equal 1.

Rank measures -The rank transformation, rk, is the number of pixels in f w with a grey level lower than the grey level of the central pixel of

f w : rk(p i,j w ) = card({I i+p,j+q w | I i+p,j+q w < I i,j w }). In consequence, the window transform R rk (f w )
is defined by:

R rk (f w ) = (. . . rk(p i+p,j+q w ) . . . ), p ∈ [-N v ; N v ], q ∈ [-N h ; N h ] and
An illustration of the estimation of rk(p i,j w ) and R rk (f w ) is given in Figure 1. Zabih and Woodfill [START_REF] Zabih | Non-parametric Local Transforms for Computing Visual Correspondence[END_REF] employ the L 1 and L 2 norms (RANK P in Table 5). The measures are gain and bias invariant. Census measure -This similarity measure, proposed in [START_REF] Zabih | Non-parametric Local Transforms for Computing Visual Correspondence[END_REF], uses a transform that produces a bit chain which represents the pixels with an intensity lower than the

central pixel: R τ (f w ) = k∈[0;N f -1] ξ(f N f /2 w , f k w ) where ξ(f N f /2 w , f k w ) = 1 if f k w < f N f /2 w
. CENSUS is the sum of the Hamming distances between the codes of each pixel of the correlation window. It is gain and bias invariant.

Ordinal measures -A similarity measure model α, which is gain and bias invariant, is defined by: α

(f l , f r ) = 1 -(2D α (R π (f l ), R π (f r )))/D max , where R π (f w )
contains the ranks of the pixels in f w , D α is a distance and D max is the maximum of D α . In [START_REF] Bhat | Ordinal Measures for Image Correspondence[END_REF], they tested the Hamming distance, the Kendall and the Spearman measures that are not effective and they proposed the following distances.

The ranks of the element of

f w are stored in R π (f w ), a permutation of (1 2 . . . N f ) T .
The element i of a composition of permutations is given by: The element i of the deviation is:

Comp i = R k π (f r ) with k = R i π (f l ) -1 and R π (f l ) -1 is the inverse permutation of R π (f l ).
Dev i = j=i j=0 J(Comp j > (i + 1)) with J(B) =          1 if B is true or 0 otherwise.
With the previous example, we have:

Dev(R π (f l ), R π (f r )) = (1 2 2 2 1 1 1 1 0) T . The κ measure is based on the maximum in Dev = (. . . Dev k . . .) T : κ(f l , f r ) = 1 -(2 max
A variant, less expensive than the κ measure, is the χ measure:

χ(f l , f r ) = 1 -(2Dev N f /2 )/⌊N f /2⌋.
The ordinal measures are invariant to gain and bias and tolerate factionalism, i.e. they are robust against outliers and, so, against occlusions. However, they are "flexible", like the derivative-based measures, and they can produce errors in areas without occlusion. In fact, a maximal correlation score can be obtained even if the two correlation windows are not strictly identical. For example, with 

f l = (
(f l , f l ) = κ(f l , f r ) = 1.
The maximal score is reached with (f l , f l ) but also with (f l , f r ). Consequently, erroneous correspondences can be obtained.

NAME ABBREVIATION DEFINITION VARIATION χ 2 measure [3] χ 2 N f -1 k=0 2(f k l -f k r ) 2 f k l +f k r [0; I max N f ]
Jeffrey measure [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF] JEFF 

N f -1 k=0 f k l log( 2f k l f k l +f k r ) +f k r log( 2f k r f k l +f k r ) [0; I max N f ] Increment Sign Correlation [28] ISC 1 N f -1 (b l •br+(1-b l )•(1-br)) [0; 1] Selective Coefficient Correlation [29] SCC (E(f l -f l )•(fr-fr)) E(f l -f l ) E(fr-fr) [0; 1] Rank [30] RANK P R rk (f l )-R rk (fr) P P [0; N P +1 f ] Census [30] CENSUS N f -1 k=0 D H (Rτ (f l ),Rτ (fr)) [0; N f ] Ordinal measures [31] α 1-2 Dα(Rπ (f l ),Rπ (fr )) Dmax [-1; 1]
(f l , f r ) = N f -1 i=0 sgn |f i l -f i r |, with sgn(x) = 1 if x > 0, 0 if x = 0 or -1 otherwise. The diagonal matrix E contains the values e k , with k ∈ [0; N f -1].

Robust measures

We are particularly concerned with the occlusion problem which appears in the vicinity of a pixel near a depth discontinuity. In fact, some pixels lie on a first level of depth whereas the other pixels lie on a second level. It can disturb the matching process and introduce erroneous matches. To take this problem into account, the measures of the ROBUST family, cf. Tables 6 and9, consider pixels with a depth different to the main pixel as outliers (Figure 2). So, they employ the tools of robust statistics that are less sensitive to outliers than classical ones. Partial correlation -The principle of the similarity partial correlation is to calculate a score with different weights for each pixel pair. These weights are chosen according to the degree of membership of the set of correct correspondent pairs: the higher the degree, the greater the weight. The matrices B w contain the weights

β k w , with k ∈ [0; N f -1], applied to f w and this function is defined: R m (f w ) = B w • f w
where m corresponds to the chosen method for calculating the weights. The measures based on partial correlation are noted RM for Reweighted Measures and, depending on the used measure, RM might be gain and bias invariant. Lan [START_REF] Lan | Robust location based partial correlation[END_REF] supposes that, for two correspondent pixels, the grey levels of the two correlation windows, without occlusion, are linearly dependent. It allows one to take into account the intensity distortions and to include a Gaussian white noise. In other words, if the grey levels of two pixels in the same position in the two windows are considered as the coordinates in a plane, 

a k = (f k l f k r ) T ,
: Prob = 1 -(1 -(1 -ǫ) m )
q , ǫ is the maximal proportion of outliers in the initial data and Prob is the probability that, at least, one subset is correct, i.e.

with no outliers. By choosing a priori ǫ = 0.5 and Prob = 0.95, q is defined by:

q = log(1 -Prob) log (1 -(1 -ǫ) m )
.

Consequently, we have to randomly select 11 subsets for LMS (m = 2) and 23 for MVE (m = 3).

The aim of LMS estimator is to find the parameters of the line which minimise:

med k=0••N f -1 (r k ) 2
where r k is the Euclidean distance between the line and a k . The weights are obtained by thresholding the distance between the point and the line where the threshold is a robust estimation of the standard deviation:

w k LM S =          1 if |r k |/ σ ≤ 2.5 0 otherwise with σ = 1.4826 1 + 5 N f -2 med k=0••N f -1 (r k ) 2 .
The factor 1.4826 permits an estimation without bias with Gaussian noise and the term 1 + 5/(N f -2) allows correction with small subsets [START_REF] Rousseeuw | Robust regression and outlier detection[END_REF].

For the second measure, the estimation of the MVE of N f points,

a k = (f k l f k r ) T , is introduced in [9]
. The authors estimate the parameters of the MVE with h points (here, h = ⌊N f /2⌋ + 1) that are represented by the coordinates of the centre a of the ellipsoid and the covariance matrix A. The parameters have to minimize

det(A) with A = (χ 2 2;0.5 ) -1 m 2 A ′ where m 2 = med k=0••N f -1 (a k -a) T A ′ -1 (a k -a)
. Using χ 2 allows to produce an estimation being robust against Gaussian noise. By introducing Mahalanobis distance, weights are:

w k M V E =          1 if (a k -a) T A -1 (a k -a) ≤ χ 2 2;0.975 0 otherwise,
where the χ 2 2;0.975 is a commonly used threshold for detecting outliers, and, a and A are the estimated parameters.

Partial correlations, RZSSD and RZNCC, are robust against occlusions [START_REF] Lan | Robust location based partial correlation[END_REF].

Robust ZNCC measures -Some measures are a robust version of ZNCC, cf. Table 6, like the quadrant correlation, QUAD [33, pp. 204-205], and the measure of Trujillo [START_REF] Trujillo | A robust correlation measure for correspondence estimation[END_REF]. They are gain and bias invariant also. The quadrant transformation is applied on the vectors f w and gives binary values. For the Trujillo, the mean (used for centering) is replaced by a median and the normalisation with L 2 becomes L 1 .

Pseudo-norms -These dissimilarity measures are robust distances [START_REF] Delon | Analytic study of the stereoscopic correlation[END_REF], i.e. L P norms with 0 < P < 1. The adhesion effect occurs at discontinuity boundaries induced by an occlusion and the consequence is the dilation of the occluding object in the disparity map2 . It appears with classical norms while the pseudo-norms alleviate it because, with P > 1, the greater the power, the more important influence of the pixels that induce large grey level differences. With a pseudo-norm, the lower the power (near 0), the less important influence the differences, i.e. they are robust against occlusions. Unfortunately, pseudo-norms generate the erosion of object corners.

NAME ABBREVIATION DEFINITION VARIATION

Partial correlation [START_REF] Lan | Robust location based partial correlation[END_REF] RM m

Mes(Rm(f l ),Rm(fr))

[-1; 1]

Quadrant correlation [START_REF] Huber | Robust statistics[END_REF] QUAD

ZNCC(R quad (f l ),R quad (fr)) [0; 1] Robust ZNCC [34] ZNCC R (f l -med(f l ))•(fr-med(fr)) f l -med(f l ) 1 fr-med(fr) 1 [-1; 1] Pseudo-norm [35] D P f l -fr P P with 0<P <1 [0; +∞[ Table 6
ROBUST family (state of the art) -For the quadrant correlation, the authors suggest to use this transform: R quad (f l ) = sgn

(f l -med(f l ) med |f l -med(f l )| .
In fact, the divisor is anyway positive and does not affect the sign, and, R quad (f l ) = sgn(f lmed(f l )) is more appropriate.

Proposed robust measures

We propose to complete the set of existing robust measures using again the principle illustrated in Figure 2.

Robust variance, MAD -This dissimilarity measure, Median Absolute Deviation, is a robust estimation of the variance of the grey level differences. We can consider it as a robust version of ZNSSD and it is gain and bias invariant.

Least Median of Powers (LMP) -

We proposed the LMP P , a generalisation to P powers, of the least median of squares [START_REF] Rousseeuw | Robust regression and outlier detection[END_REF] . It is a robust version of D P and an alternative to the pseudo-norms, cf. § 7. It is gain and bias invariant.

Least Trimmed Powers (LTP) -It is based on the least trimmed squares [START_REF] Rousseeuw | Robust regression and outlier detection[END_REF] where the squared grey level differences are sorted and the h first values (here, h = N f /2) are summed. Instead of using the squared difference, LTP can be defined with any power difference. It is gain and bias invariant.

Smooth Median Powered Deviation (SMPD) -The Smooth Median Absolute

Deviation, SMAD [START_REF] Rousseeuw | L 1 -Statistical Analysis[END_REF], is also a robust estimation of the variance. The measure SMPD P is a normalised version of LTP P with bias invariance only.

M-estimators -

The least mean of squares estimation is sensitive to outliers, while the M-estimators use a criterion which replaces the square by an object function, ρ m , symmetric with a single minimum at 0 [START_REF] Zhang | Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting[END_REF], less sensitive to outliers because it increases less quickly than the square function. So, we suggest ρ-based dissimilarity measures, ME m , cf. Table 7 and Figure 3, which are bias invariant.

R-estimators -

The principle is to change the square function by weights, given by the J m functions, that depend on the rank of the differences. This principle helps to decrease the influence of the outliers and we propose dissimilarity measures based on R-estimators, RE m , cf. Table 8 and Figure 3 [START_REF] Rousseeuw | Robust regression and outlier detection[END_REF][START_REF] Wang | Optimal, robust R-estimators and test statistics in the linear model[END_REF][START_REF] Wiens | Bounded-influence rank estimation in the linear model[END_REF]. The integral of J m on its definition domain must be equal to 0.These measures are gain and bias invariant.

NAME FUNCTION NAME FUNCTION L 1 -L 2 ρ 1 (x)=( √ 1+x 2 -1)/2 Fair ρ 2 (x)=|x|-log(1+|x|) Cauchy ρ 3 (x)=log(1+x 2 ) Geman- McClure ρ 4 (x)= x 2 2(1+x 2 ) NAME FUNCTION Welsh ρ 5 (x)=(1-e -x 2 )
Tukey

ρ 6 (x)=    (1-(1-x 2 ) 6 ) if |x|≤1
1 otherwise Huber

ρ 7 (x)=    (x 2 )/2 if |x|≤1.345 1.345(|x|-1.345/2) otherwise Rousseeuw ρ 8 (x)=2 log(e x +1)-x-2 log(2)

Table 7

The ρ m functions of the M-estimators measures.

NAME FUNCTION NAME FUNCTION

Wilcoxon

J 1 (t)=t-1/2 Median J 2 (t)=sgn(t-1/2)

NAME FUNCTION

Van der Waerden

J 3 (t)=φ -1 (t)
Optimal B-robust estimator

J 4 (t)=        -1.4634 if 0≤t≤0.39 1.47φ -1 (t) if 0.39<t≤0.61 1.4634 if 0.61<t≤1 Minimax J 5 (t)=        -1.14 if 0≤t≤0.48 φ -1 (0.5+ t-0.5 t-0.1 ) if 0.48<t≤0.52 1.14 if 0.52<t≤1

Table 8

The J m functions of the R-estimator measures -The φ function is the normal distribution function. The values of φ -1 lie on [φ -1 min ; φ -1 max ] and t ∈ [0; 1].

Evaluation and comparison protocol

We propose a protocol designed specifically for comparing correlation-based methods and for describing their behaviour with occlusions, and, we present the tested images, the evaluation areas, the criteria and how all the results are summarized. [0;

I max P ] Least Trimmed Powers [1] LTP P h-1 k=0 (|f l -fr| P ) k:N f -1 [0; I max P h] Smooth Median Powered Deviation [1] SMPD P h-1 k=0 (|f l -fr-med(f l -fr)| P ) k:N f -1 [0; I max P h] M-estimator [1] ME m N f -1 k=0 ρm(f k l -f k r ) [ρ min m N f ; ρ max m N f ] R-estimator [1] RE m N f -1 k=0 J m Rπ(f k l -f k r ) N f -1 (f k l -f k r ) [J min m I max ; J max m I max ] Table 9
ROBUST family (proposed measures) -The ordered values of f w are represented by:

(f w ) 0:N f -1 ≤ . . . ≤ (f w ) N f -1:N f -1 . The notation |f l -f r | P means (. . . |f k l -f k r | P . . .) T .
The terms ρ min m and ρ max m are the lower and the upper bounds of ρ m and J min m and J max m are the lower and the upper bounds of J m on [0; Evaluation areas -The advantage of the protocol is to quantify the behaviour of the methods based on correlation measure near occlusions and discontinuities, this is why we consider these areas, see Figure 6: • Occluded pixels -They are pixels without correspondent:

I max ]. The rank of (f k l -f k r ) is stored in R π (f k l -f k r ).
O(p i,j w ) =          1 if p i,j
w is an occluded pixel 0 otherwise.

• Occlusion area -OA(I w ) contains all the occluded pixels in I w :

OA(I w ) = p i,j w | O(p i,j w ) = 1 .
• Pixels near occluded pixels -They are the pixels in the neighbourhood of occluded pixels. This vicinity is related to the size of the correlation window: it corresponds to the morphological dilation of the occlusion area using the correlation window as structuring element:

NO(p i,j w ) =              1 if (O(p i,j w ) = 0) and (V(p i,j w ) = p i ′ ,j ′ w ∈W(p i,j w ) O(p i ′ ,j ′ w )) > 0) 0 otherwise,
where W(p i,j w ) is the set that contains all the pixels of the correlation window.

• Occlusion influence area -OIA(I w ) contains all the pixels near occluded pixels in I w : OIA(I w ) = {p i,j w | NO(p i,j w ) = 1} .

• Whole occlusion area -WOA(I w ) is the union of OA and OIA for I w :

WOA(I w ) = OA(I w ) ∪ OIA(I w ) = {p i,j w | (O(p i,j w ) = 1) or (NO(p i,j w ) = 1)} .
• Pixels near discontinuity -They are in the vicinity of a discontinuity:

ND(p i,j w ) =          1 if ∃ p i ′ ,j ′ w ∈ W(p i,j w ) d(p i ′ ,j ′ w ) -d(p i,j w ) ≥ 1 0 otherwise,
where d(p i,j w ) is the disparity of p i,j w . We select all the pixels that induce a differ-ence of disparity in its neighborhood (this is why the threshold equals 1).

• Discontinuity area -It corresponds to: DA(I w ) = {p i,j w | ND(p i,j w ) = 1} . Evaluation criteria -The theoretical disparity function is d ref and the error is

Err i,j w = d(p i,j w ) -d ref (p i,j w ) , significant only if d(p i,j w ) = occ and d ref (p i,j w ) = occ,
where occ is the value for occluded pixels. We calculate the following percentages:

(1) Correct matches, COR -A match is correct if Err i,j w < 1.

(2) Accepted matches, ACC -A match is accepted if 1 ≤ Err i,j w < 2.

(3) Bad matches, BAD -A match is bad if 2 ≤ Err i,j w < 3.

(4) Erroneous matches, ERR -A match is erroneous if Err i,j w ≥ 3.

(5) False positive, false negative, FPO and FNE -The method estimates that the pixel is matched whereas it is not matched and vice versa. A match is a false positive (respectively a false negative

) if d(p i,j w ) = d ref (p i,j w ) and d ref (p i,j w ) = occ (respectively d(p i,j w ) = d ref (p i,j w ) and d(p i,j w ) = occ).
The use of the criteria (1) to (3) has been introduced by the authors of [START_REF] Lan | Robust location based partial correlation[END_REF]. The criterion (1) is calculated for each evaluation area. We present visual results with an error map:

• If the pixel is white, the correspondence is erroneous or bad.

• If the pixels is black it is a true negative.

• If the pixel is grey, the correspondence is correct.

The main advantage of this set of criteria, compared to the Scharstein and Szeliski protocol, is that it is more complete and it allows to evaluate precisely the efficiency in occlusion and discontinuity areas.

Whole Rank (WR) and Family Rank (FR) -Like Scharstein and Szeliski4 , methods are classified according to the mean of the ranks attributed to the measure for each evaluation criterion. Compared to their protocol, the number of criteria is more important in ours. In the tables, we note WR for indicating the whole rank of each correlation -compared to all the other correlation measures -and FR the rank into its own family -compared to the measures of the same family. In Table 14, these ranks are given for the cones pair, whereas in Table 15, they are presented for all the pairs: each rank is the mean of the ranks on all the images and each WR and FR are estimated on the mean of these mean ranks.

Experimental results

The measures presented in sections 3 to 8 have been tested and we used the bidirectional constraint that consists in estimating correspondences from left to right and then from right to left and in considering non-coherent matches as occluded pixels (these occluded pixels are shown in black in disparity maps).

In this section, we give some examples of the results but interested readers can find the details of the results for each of 42 images on this web site:

http://perso.lcpc.fr/sylvie.chambon/correlationResults.html. The smaller the window, the more difficult to distinguish two different neighbourhoods and, moreover, the larger the window, the more possible to take into account pixels with different disparities. Consequently, the number of erroneous matches in the occlusion areas increases as the window size increases and, as expected, best results in Whole Occlusion Area (WOA), Occlusion Area (OA) and DA (Discontinuity Area) are obtained with small windows, lower than 9 × 9, for most of the measures. Moreover, Figure 7 illustrates the fact that for a 9 × 9 window, the percentage of correct matches is optimal for five selected measures (one of the best measures for each family) and that the smaller the window, the better the results in the WOA. These two results are in contradiction and with a fixed size strategy, it seems difficult to select the most suitable size of windows.

Influence of the size of the correlation window -

WHOLE IMAGE (COR) WHOLE OCCLUSION AREA (WOA) Fig. 7. Variation of the mean of two criteria over all the images for five measures -We show the results only for the most significant measures for each family, i.e. measures with rank 1 for the global results, cf. Table 15. The left graph represents the percentage of correct matches in the whole image whereas the right graph illustrates the percentage of good results in the WOA. The robustness of SMPD 2 is illustrated by its results in the WOA.

However, in order to reduce the size of data to analyse, we decided to focus on the results obtained with the percentage of correct matches in the whole image, COR, and in the WOA (Whole Occlusions Area), cf. Figure 7. It seems reasonable to compare the results with a 9 × 9 window for each similarity measure that is evaluated, because, the percentage COR is the best (or near the best) and the results in WOA are quite good (in most of the cases). Clearly, it corresponds to maximizing the correct matches in the whole image, for classical measures, without degrading (too much) the efficiency in WOA. Moreover, with a bigger window, the percentages of correct matches are not improved a lot for the other kind of measures, whereas, the percentages of correct matches in WOA are significantly decreased. This size coincidentally corresponds to maximizing erroneous matches, cf. Table 10. Moreover, this size is also a standard for this data set in the literature [START_REF] Scharstein | A taxomomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF][START_REF] Hirschmüller | Real-time correlation-based vision with reduced border errors[END_REF].

Execution time -The first three families have reasonable execution times whereas the two last ones are expensive, cf. Table 11 Execution times (in seconds, for the image of Figure 6, with a 9×9 window with a processor intel R core TM 2 duo of 2 GHz) -Measures are classified according to growing execution time. It gives only some indications because the implementation (for some of them, like SAD) has not been optimized and, for example, box-filter techniques [START_REF] Faugeras | Real time correlation-based stereo: Algorithm, implementation and applications[END_REF][START_REF] Mayer | Analysis of Means to Improve Cooperative Disparity Estimation[END_REF] can be used.

Gaussian and impulsive noises -For Gaussian noise, the lower the signal-tonoise ratio, the larger the window to obtain 100% correct matches. The CROSS and CLASSICAL families are robust against Gaussian noise. In the DERIVATIVE family, only GC is efficient, and some measures of the NON-PARAMETRIC and ROBUST families are not efficient: RANK P , the partial correlation, QUAD and MAD. The most robust measures against Gaussian noise are: SSD, ME 1 and ME 7 . The study of results obtained in the presence of impulsive noise gives a first approximation of the behaviour of the measures with occlusions: damaged pixels can be considered as occluded pixels. The CROSS and CLASSICAL families are not robust. The measures of the DERIVATIVE family have a good behaviour except PRATT. Two problems occur: first, the PRATT convolution, with these two images, gives an image with repetitive patterns and, second, it is highly sensitive to only one erroneous pixel.

The NON-PARAMETRIC family is effective but, the larger the proportion of noise, the larger the correlation window to obtain good results. The ROBUST family is, as expected, the most efficient. Some results are in Table 12 where we give the smallest size of windows for having good performances with Gaussian and impulsive noises with one of the best measures for each family (for the robust one, two measures: a known measure and a proposed one). Table 12 Results for random (first columns) and sand (second columns) presented in Figure 4 (SNR: Signal to Noise Ratio) -We present the smallest size of the window necessary to obtain 100% of correct matches. Tested window sizes vary between 3 × 3 and 25 × 25. In some cases, denoted by * , the measure never reaches this performance.

Performance analysis -In Table 13, we present the averages and the variances of the results on the 42 pairs with the best measure for each family. Variances are high for correct matches, it is around 14%. It illustrates how the data set is heterogeneous. Moreover, the results for the Cones pair are detailed in Table 14 and Figure 9. These images are less difficult than the others because there are no low textured areas and the occlusion areas are numerous but small. For these reasons, the CROSS and CLASSICAL families perform better than with the other images.

In Figure 8, we present the variations of the percentage of correct matches on the whole image and on the Whole Occlusion Area (WOA), for the 42 images, for five significant measures, with a 9 × 9 window. It illustrates the matching difficulties in all the images (the set of 2006 contains images with important illumination changes, low textured areas, complex scenes), and, it demonstrates that SMPD 2 is very efficient in the WOA and close to the best measures in the whole image. 8) 65 ( 11) 80 ( 17) 45 ( 10) 54 [START_REF] Yoon | Locally Adaptive Support-Weight Approach for Visual Correspondence Search[END_REF] LD 1 78 (13) 2 (2) 0 (1) 2 ( 4) 1 (1) 13 ( 8) 66 ( 11) 80 ( 17) 48 ( 10) 57 [START_REF] Jawahar | Generalised correlation for multi-feature correspondence[END_REF] GC 80 ( 12) 2 (3) 0 (0) 3 ( 5) 1 (1) 11 [START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF] 68 ( 11) 78 ( 17) 53 ( 10) 61 ( 12)

CENSUS 81 (12) 2 (3) 0 (0) 2 (2) 
1 (1) 12 ( 8) 71 ( 9) 84 ( 10) 55 ( 13) 67 [START_REF] Rubner | Empirical Evaluation of Dissimilarity Measures for Color and Texture, Computer Vision and Image Understanding[END_REF] SMPD 2 74 ( 15) 13) 73 (11) 85 ( 14) 57 [START_REF] Hirschmüller | Evaluation of stereo matching costs on images with radiometric differences[END_REF] 64 [START_REF] Kanade | A Stereo Matching Algorithm with an Adaptive Window: Theory and experiment[END_REF] Table 13 Averages and variances (in parentheses) of the percentages obtained for most of the criteria with different scenes ((W)OA: (Whole) Occlusion Area, OIA: Occlusion Influence Area, DA: Discontinuity Area) with 9 × 9 correlation window for the 42 pairs. Bold letters correspond to the best results over the 5 presented results. 1.12 [START_REF] Okutomi | A Multiple-Baseline Stereo[END_REF] 70.74 [START_REF] Scharstein | Learning conditional random fields for stereo[END_REF] 74.36 [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF] 80.24 [START_REF] Brown | A Survey of Image Registration Techniques[END_REF] 3 ISC 82.87 [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF] 0.37 [START_REF] Scharstein | A taxomomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] 0.31 [START_REF] Rousseeuw | L 1 -Statistical Analysis[END_REF] 2.34 [START_REF] Ferrari | Wide-baseline Multiple-view Correspondences[END_REF] 3.18 [START_REF] Okutomi | A Multiple-Baseline Stereo[END_REF] 10.92 [START_REF] Rubner | Empirical Evaluation of Dissimilarity Measures for Color and Texture, Computer Vision and Image Understanding[END_REF] 73.79 [START_REF] Brown | A Survey of Image Registration Techniques[END_REF] 77.26 [START_REF] Rziza | Dense disparity map estimation using cumulants[END_REF] 71.37 [START_REF] Mulligan | Performance of Stereo for Tele-presence[END_REF] 76.81 [START_REF] Mulligan | Performance of Stereo for Tele-presence[END_REF] 2

1 (2) 0 (0) 1 (3) 0 (1) 19 (
SMPD 2

85.86

[1] 0.46 [START_REF] Wiens | Bounded-influence rank estimation in the linear model[END_REF] 0.2 [START_REF] Scharstein | Learning conditional random fields for stereo[END_REF] 1.22 [START_REF] Garcia | A combined Temporal Tracking and Stereo-correlation Technique for Accurate Measurement of 3D Displacements: Application to Sheet Metal Forming[END_REF] 2.91 [START_REF] Rziza | Dense disparity map estimation using cumulants[END_REF] 9.07 [START_REF] Porter | Video Indexing using Motion Estimation[END_REF] 

[1]

79.2 [START_REF] Moravec | Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover[END_REF] 76.14 [1] 78.87 [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF] 1

Table 14 Results achieved with the cones pair ((W)OA: (Whole) Occlusion Area, OIA: Occlusion Influence Area, DA: Discontinuity Area, WR: Whole Rank) -We give the results of the best correlation measure in each family (in brackets, the WR on the criterion). The complete results, i.e. are available in Table 18. We specify the rank for the results of each measure over all the measures (WR). If we compare with the results on the 42 images, cf. Table 15, the best measures of the first and the fourth families are not the same (NCC, CENSUS).

Table 15 summarizes the results for the best measures. For each criterion, we present the rank based on the mean of the ranks on all the tested images, then the classification per family (FR) and the global rank (for all the criteria, WR). More details can be found on our web page 5 .

We present a global analysis of the results: Fig. 8. Variations of percentage of correct matches on all the images for the best measure per family -The numbers of the images correspond to the order of the presentation in the § tested images, section 9. The first graph illustrates the variation on the whole image whereas the second one only concerns the correct matches on the Whole Occlusion Area (WOA). These graphs illustrate how the results can be different from an image to another and also that SMPD 2 is most of the time the best (30/42 images) in the WOA whereas it is not the case for the percentage of correct matches in the whole image.

• For each family:

• CROSS -NCC is the best but in fact, these measures hold similar results, and belong to the ten best measures for the percentage of correct matches.

• CLASSICAL -LD 1 (LSAD) is the best even if ZD 1 (ZSAD) reaches the best percentage of correct matches. These measures have an interesting rank except K 4 which was designed to be insensitive to Gaussian noise but is highly sensitive to outliers (powers of 4 and 2 are used).

• DERIVATIVE -GC is the best and gives the best percentage of correct matches and false negatives. The other measures are not well ranked.

• NON-PARAMETRIC -CENSUS is the best. RANK 1 is the second one and reaches a good percentage of correct matches in the occlusion influence area and the discontinuity area. We can also notice the ISC measure that gives interesting results. In particular, it is the best measure of the family for the results obtained with cones pair.

• ROBUST -SMPD 2 is the best and it obtains the best percentage of correct matches in the whole occlusion area. LTP 2 also furnishes good results.

• In conclusion of this evaluation, the best measure is CENSUS, and except it, GC and RANK 1 , the ten best measures belong to the ROBUST family. As expected, SMPD 2 , which is designed for, obtains the best results in the whole occlusion area.

• In general, best measures in non-occluded areas, like NCC, do not perform well in the whole occlusion area, and, the best measures in the whole occlusion area, like SMPD 2 , do not achieve good results with non-occluded areas.

For reason of space, we cannot show all the results for each pair, however, we can conclude that even if CENSUS is the first measure in our evaluation, it is not always the best measure on each image separately. Moreover, SMPD 2 is not always the first but it always belongs to the ten best measures, except with one pair, plastic (rank 18) which possesses large low textured areas, and SMPD 2 is not efficient with these areas. In the same way, CENSUS is not always in the ten best measures, and in six images highly textured, cloth 1 (rank 28), cloth 3 (rank 18), cloth 4 (rank 19), flowerpots (rank 24), stereo (rank 42) and wood 2 (rank 13). In fact, in this kind of images, CENSUS gives a lot of false positives. 

Discussion

The results illustrate the interesting performances of CENSUS and SMPD 2 but we have also noticed that the ten best measures include other of the proposed robust measures: LTP 2 , ME 3 , R 1 , R • CENSUS (14 images): barn2, books, bowling1, bull, journaux, livres, laundry, lampshade1, lampshade2, midd2, poster, plastic, reindeer, venus ;

• SMPD 2 (13 images): art, baby2, cloth1 to cloth4, cones, dolls, moebius, monopoly, rocks2, sawtooth, stereo;

• RANK 1 (6 images): aloe, baby1, baby3, bowling2, rocks1, wood1;

• LTP 2 (5 images): barn1, map, murs, teddy, tsukuba;

• GC: wood2;

• ME 3 : midd1, plante;

• LD 1 : flowerpots.

The 13 images where SMPD 2 has obtained the best results represent highly complex and textured scenes with a lot of occlusions, which confirms its superiority in this case. When no intensity change is observed between the two images, it is more appropriate to use the non-centered version: LTP 2 . The CENSUS and the RANK 1 measures are the most efficient in the case of scenes with low textured areas and radiometric distortions (it is one of the properties of this measure which has been introduced to be independent from the magnitude of the intensities). In very difficult images, with high ambiguities (due to low textured areas), like flowerpots, it is hard to conclude which measure is well adapted but it seems that M-estimator would be an interesting choice. Table 15 Classification ((W)OA: (Whole) Occlusion Area, OIA: Occlusion Influence Area, DA: Discontinuity Area) -We summarize the results over the 42 image pairs for the ten best measures and also the best measure for each family. Moreover, we add the results of well known measures to compare our work to the state of the art: ZNCC and D 1 (SAD). The complete results can be find here: http://perso.lcpc.fr/sylvie.chambon/correlationResults.html.

For each evaluation criterion, the rank is estimated with the mean of the ranks obtained with all the images. The Whole Rank (WR) is estimated by comparing the mean of these mean ranks on all the correlation measures whereas the Family Rank (FR) takes into account only the measures of the same family.

Finally, a summary is given in tables 16 and 17 in order to propose keys to choose the most adapted measure for each application. In Table 16, we show performances against execution time: it appears that the measure RANK 1 offers the best compromise. This measure can be used if the presence of false positives is not important for the application (high percentage of false positive is the drawback of this measure).

In Table 17, we summarize performances in occluded areas against non-occluded areas: it reveals that NCC, GC, RANK 1 , R 1 to R 4 , and CENSUS are good compromises to obtain both acceptable results in occluded and non-occluded areas.

with non-occluded areas. This behavior is coherent with the definition: it allows the method to be insensitive to large differences induced by an occlusion and, in consequence, it is ambiguous in non-occluded regions, because, many candidates can obtain the maximal correlation score (the true correspondent but also many wrong correspondents). The discussion about all the results tries to give some advices about which robust measure should be used for a given application. First, R-estimator is the most interesting when acceptable results are needed in occluded areas but also in non-occluded areas (these measures are not as efficient as SMPD 2 in occluded areas but they are both better in occluded and non-occluded areas than classic measures). Second, M-estimator measures seem to be promising with very ambiguous scenes (low textured with occlusions). Finally, CENSUS is the first one but detailed results highlight the fact that it is not the most efficient in highly textured images and it can present a lot of false positives.

An extension of this work will include the study of a more efficient measure that should combine the advantages of a robust measure, like SMPD 2 , and a classical measure, GC or CENSUS. To do this work, a study of the complementarity of these measures is needed. In particular, we will evaluate the different areas in the images where each measure can give, alone, the true correspondent. Then, it seems difficult to propose a single measure that can have both the advantages of the two measures (because the definitions are incompatible) but we hope to improve the performances by using the two measures together (and maybe more measures to be more robust).

An algorithm based on merging disparity maps has been implemented and gives encouraging results. Our work will focus on this kind of approach. 16) 62 ( 28) 72 ( 39) 56 ( 23) 57 ( 18 36) 0 (37) 1 (4) 2 ( 14) 14 ( 21) 68 ( 7) 80 ( 14) 60 ( 8) 60 (9) 6 2 χ 77 ( 22) 0 (30) 0 (38) 1 ( 6) 2 ( 5) 17 ( 26) 66 ( 10) 81 ( 5) 56 ( 24) 56 (20) 11 4

ROBUST RM LM S 81 (10) 0 (39) 0 (43) 0 (1) 2 (4) 14 ( 20) 71 ( 2) 82 ( 4) 64 ( 4) 66 (4) 2 2 QUAD 81 (11) 0 (37) 0 (40) 1 ( 5) 2 ( 8) 13 ( 19) 68 ( 6) 81 ( 7) 59 ( 9) 60 (10) 3 3 ZNCC R 68 (30) 0 (33) 0 (30) 1 (7) 2 (12) 25 [START_REF] Trujillo | A robust correlation measure for correspondence estimation[END_REF] 58 [START_REF] Rousseeuw | L 1 -Statistical Analysis[END_REF] 12) 65 ( 14) 75 ( 27) 57 ( 11) 60 (11) 10 6

Table 18 Percentages for each criterion and each measure obtained with the pair of images cones (with 9 × 9 correlation window size, (W)OA: (Whole) Occlusion Area, OIA: Occlusion Influence Area, DA: Discontinuity Area) -The Whole Rank (WR) is estimated by comparing, between each measure, the mean of the ranks on all the criteria whereas the Family Rank (FR) takes into account only the measures of the same family. Moreover, results in brackets correspond to the rank of the evaluation criterion compared to the other measures, for each criterion.

  The main measures are the Sum of Absolute Differences, SAD (L 1 norm), the Sum of Squared Differences, SSD (L 2 norm), and the Kolmogorov-Smirnov distance, D ∞ (L ∞ norm). These measures can be centred to be invariant to bias, leading to Zero mean Distances, ZD P . The well-known centred measures are the Zero mean Sum of Absolute Differences, ZSAD (ZD 1 ), and the Zero mean Sum of Squared Differences, ZSSD (ZD 2 ). These measures can also be normalised, leading to Normalised Distances, ND P , including the Normalised Sum of Squared Differences, NSSD (ND 2 ), and, centred and normalised, giving the Zero mean Normalised Distances (also bias invariant), ZND P , like the Zero mean Normalised Sum of Squared Differences, ZNSSD (ZND 2 ). Locally scaled distances -The aim of LD P measures is to obtain the same mean of grey levels on each window: each grey level in the right image is scaled by the ratio between the left and right means. The two known measures are the Locally scaled Sum of Absolute Differences, LSAD (LD 1 ), and the Locally scaled Sum of Squared Differences, LSSD (LD 2 ). Variances -Two kinds of measures can be distinguished: the Variance of differences (bias invariant), VD, and the Variance of absolute P -powered differences, VAD P , which gives the Variance Of Absolute Differences, VOAD (VAD 1 ), and the Variance Of Squared Differences, VOSD (VAD 2 ).

  I max P N f ] Zero mean Distances ZD P D P (f l -f l ,fr-fr) P (f l -f l ,fr-f r ) [0; I max P N f ]Locally scaled Distances[START_REF] Aschwanden | Experimental results from a comparative study on correlation type registration algorithms[END_REF] LD P D P (f l ,(f l /f r )fr)

Fig. 1 .

 1 Fig.1. Illustration for estimating the Rank transform -If the Rank transform is estimated for the pixel 43 and its 3 × 3 neighborhood (in italic), we obtain: rk(p i,j w ) = 4 for this pixel and R rk (f w ) = (0 4 3 2 4 6 3 8 6) T for his neighborhood.

  With the example of Figure 1, the ranks are: R π (f l ) = (1 3 2 4 5 6 7 9 8) T , and if we study this candidate: f r = (55 20 21 40 18 46 49 15 50) T with R π (f r ) = (9 3 4 5 2 6 7 1 8) T , then Comp(R π (f l ), R π (f r )) = (9 4 3 5 2 6 7 8 1) T .

  0 1 22 35 46 58 61 121 123) T and f r = (0 2 42 60 81 100 123 124 125) T , we have κ

Fig. 2 .

 2 Fig.2. Robust measure principle -The small disks are the two correspondent pixels. The squares are the correlation windows and the dashed polygons are the parts of the correlation windows which contain very different grey levels. In fact, in the left image, this part belongs to the background whereas, in the right, it belongs to the foreground. Therefore, comparing these two areas is not relevant.

  ABBREVIATION DEFINITION VARIATIONRobust variance [1] MAD

Fig. 3 .

 3 Fig. 3. Visualisation of the functions used by M-estimators (a) and R-estimators (b) -It highlights how the influence of the highest grey level differences is reduced by using these functions compared to square function (for M-estimator, in (a), this function has been plotted). Tested images -Forty two images are tested (examples are given in Figure 5): a random-dot stereogram (number 1), two synthetic pairs (numbers 2 and 3), one real pair made by Bocquillon 3 (number 4) and thirty eight real pairs introduced by

Fig. 4 .Fig. 5 .

 45 Fig. 4. Tested images with different type of noises.

Fig. 6 .

 6 Fig. 6. Occlusion areas -We have calculated the Whole Occlusion Area WOA (c), with the ground truth (b), a disparity map (each pixel represents the disparity range defined by the distance between the position of the pixel in the left image and its correspondent in the right image. The brighter the pixel, the closer the point to the image plane and the larger the disparity). In (c), grey pixels are in the Occlusion Influence Area, OIA, and black pixels are in the occlusion area, OA. In (d), grey pixels are pixels near discontinuities.

Fig. 9 .

 9 Fig.9. Maps obtained with the cones pair -Differences between the disparity maps are not very significant. However, we can notice the good results of SMPD 2 in the occlusion areas.

  ) 30 6 RANK 1 83 (3) 0 (35) 0 (33) 3 (25) 4 (43) 7 (1) 66 (9) 65 (43) 67 (3) 68 (3) 16 5 CENSUS 84 (2) 0 (34) 0 (32) 2 (12) 3 (40) 8 (2) 70 (3) 71 (40) 69 (2) 69 (2) 7 3 κ 80 (17) 0 (

  

  

Table 4

 4 DERIVATIVE family -The vectors R O (f w ) contain the gradient directions of f w after using the Sobel or Kirsch operator, R LoG (f w ) is the correlation window in the binary Laplacian images, R Rob (f w ) contains the binary values after the Roberts transformation and R OCM

Table 5 NON

 5 

-PARAMETRIC family -The Hamming distance is: D H

  then a set of aligned points is obtained and this cloud of points is only disturbed by "normal" noise. If there are occluded pixels, it is assumed that the grey levels in the same position are very different and, so, these pairs do not respect the previous model: they are outliers. For that reason, a line fitting technique can be employed to detect outliers and two robust estimators have been proposed: LMS, Least Median of Squares for the Reweigthed Zero mean Sum of Squared Differences correlation, RZSSD, and MVE, Minimum Volume Ellipsoid for the Reweighted Zero mean Normalised Cross Correlation, RZNCC.

A random sampling with Monte-Carlo method is needed. Some robust parameter estimators are based on a minimisation with no explicit solution, like LMS and MVE. A first idea is to build minimal subsets of data (it contains the lowest number of data that is needed to calculate the parameters), then to estimate the parameters for each subsets and finally to select those which minimise the global criterion. The major drawback is the number of subsets q: with n data and subsets of m data, we have C n m combinations. Another possibility is to randomly choose a limited number of subsets. It depends on the risk of not finding the global minimum, more precisely

  We have tested window size between 3 × 3 and 15 × 15 to study the behavior of the measures with different window sizes. In Table10, we give for each family, the mean of best window sizes, i.e. the size that permits the best values of the criterion, for each criterion on all the 42 tested images. A more complete version of this table can be found in the web page cited at the beginning of this section. We can notice that for the percentage of correct matches, the most efficient measures with a reasonable window size (7 × 7 or 9 × 9) are: the measures of family CROSS, ZD 1 , LD 1 , VD, GC, CENSUS, MAD and R 1,2,4,5 .

	FAMILY	COR	ACC	BAD	ERR	FPO	FNE WOA OA	OIA	DA
	CROSS	9	11	11	9	5	13	3	5	13	7
	CLASSICAL	9	11	11	9	5	13	3	5	13	7
	DERIVATIVE	15	11	7	13	11	15	5	9	15	15
	NON-PARAMETRIC	13	11	7	13	9	15	5	7	15	11
	ROBUST	13	11	9	13	9	15	5	7	15	11

Table 10 Mean

 10 

of best window sizes for each criterion ((W)OA: (Whole) Occlusion Area, OIA: Occlusion Influence Area, DA: Discontinuity Area) on all the 42 tested images and for each family.

Table 11 .

 11 Our implementation is not optimal, however, κ, χ, CENSUS and RZNCC, even optimised, are very expensive.

	MEASURE TIME MEASURE TIME MEASURE TIME MEASURE TIME MEASURE TIME
	NIS	2.38	PRATT	5.33	ME 1	6.25	ME 2	33.06	R 4	43.64
	VAD	2.77	ZD 1	5.23	OCM	6.37	MAD	33.23	ME 5	49.48
	NCC	3.09	SEK 1	4.83	ISC	6.67	R 1	35.5	D 0.1	74.88
	MOR	3.91	ZNCC	5.4	ME 7	11.0	ZNCC R	35.55	JEFF	83.84
	SES 1	4	LD 1	5.44	SCC	13.02	R 2	38.1	QUAD	91.35
	D 1	4.13	ME 4	5.89	LMP 2	16.65	R 5	38.33	κ	167.27
	NA 1	4.57	χ 2	5.93	GC	17.6	ME 8	39.46	χ	179.82
	NA 2	4.61	ME 6	5.94	ME 3	24.1	SMPD 2	39.77	CENSUS 305.67
	RANK 1	4.73	K 4	6.1	LTP 2	25.44	R 3	40.44	RZNCC	725.7

  [START_REF] Puzicha | Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval[END_REF] , R 4 and R 5 . Compared to SMPD 2 , the main advantage of the R-estimator measures is that they outperform SMPD 2 in the non-occluded areas (with better results than classical measures in occluded areas and less false positives than the ten best other measures). In consequence, if it is important to obtain acceptable performances in these two different areas, Restimator measures are well suited and R 1 has the smallest execution time. If the execution time is not critical, CENSUS obtains better results than R 1 both in occluded and non-occluded areas. In fact, it seems that CENSUS is more interesting than SMPD 2 with low textured images whereas SMPD 2 is more interesting than CENSUS in well textured images. It can be explained by this fact: CENSUS allows to use more information (80 bits for 9 × 9 window) than SMPD 2 (only 8 bits for a gray level difference) for each pixel. In consequence, in low textured areas, the CENSUS descriptor is more discriminant than the gray level used in SMPD 2 to find the right correspondences. It is the reverse in well textured areas. This remark is corroborated by the individual results on each image. We have identified the images for which each measure gives the best results, i.e. obtains WR= 1 (see Scharstein and Szeliski website for more details about the images http://cat.middlebury.edu/stereo/):

k=0..N f -1 Dev k )/⌊N f /2⌋.

Disparity is the displacement between a pixel in one of the image and its correspondent in the other image.

http://www.irit.fr/ Benoit.Bocquillon/MYCVR/research.php

http://cat.middlebury.edu/stereo/

http://perso.lcpc.fr/sylvie.chambon/correlationResults.html

H H H H

Table 16

Summary of the performances (R: rank) versus the execution time (T) -Time is short when it is less than 10 s, it is acceptable when less than 1 minute and high over. Rank is good if the measure is in the top 10 and bad in the last 10. 

Conclusion

In the context of similarity matching, we have presented a review of the correlation