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Abstract

We introduce new robustness and efficiency measures based on divergences and use

it to construct equivariant optimal robust M-estimators.
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1 Introduction

Let (Fθ)θ be a parametric model, where θ ∈ Θ ⊂ R
d, and X1, . . . , Xn be a

random sample on Fθ.

A map T which sends an arbitrary distribution function on R
p to Θ is a statis-

tical functional corresponding to an estimator θ̂n of the parameter θ, whenever

θ̂n = T (Fn), Fn being the empirical distribution function. The influence func-
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tion of T is defined as IF(x;T, Fθ) := ∂T (F̃εx)
∂ε

∣∣∣∣
ε=0

, where F̃εx := (1−ε)Fθ +εδx,

δx being the point mass distribution at x. The unstandardized gross error sen-

sitivity (GES) is defined by γ∗u(T, θ) := supx ‖IF(x;T, Fθ)‖. Let θ̂n = T (Fn)

be an estimator of θ. Under regularity conditions it holds

√
n(θ̂n − θ) →D N (0, VT (θ)) (1)

where →D denotes the convergence in distribution and

VT (θ) =
∫

IF(x;T, Fθ)IF(x;T, Fθ)
tdFθ(x) (2)

t denoting the transpose.

The optimal robust M-estimators for multidimensional parametric models

were introduced by Stahel (1981). A part of this estimators are defined by

minimizing the trace of VT (θ) among the M-estimators with γ∗u(T, θ) bounded

by a given constant. These estimators have the drawback that are not equiv-

ariant 1 , since γ∗u(T, θ) is not invariant under model reparametrizations. In

the same paper were proposed some alternative robustness measures, whose

invariance with respect to reparametrizations have led to the construction of

equivariant optimal robust M-estimators. These measures are the self stan-

dardized GES and the information standardized GES. The efficiency assuring

the optimality of the corresponding estimators is attained by choosing ap-

1 Equivariance means that, considering the reparametrization θ := β(θ) and T ∗

1

and T ∗

2 optimal estimators of θ and θ respectively, it holds T ∗

2 = β(T ∗

1 ).
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propriate minimization criterions. The resulting equivariant estimators are

called optimal self standardized robust M-estimators and optimal information

standardized robust M-estimators, respectively. Yohai (2008) proved that the

optimal information standardized robust M-estimators could be also obtained

by solving the variational problem presented in Stahel (1981), by replacing the

robustness and efficiency measures with some new ones based on the use of the

Kullback-Leibler divergence. We mention that, the information standardized

GES has also been considered by He and Simpson (1992) in the context of

direction estimates on sphere.

In this paper we generalize the results from Yohai (2008) by considering large

classes of divergences, namely the Cressie-Read divergences (Cressie and Read

(1994)) and the density power divergences (Basu et al. (1998)). On the basis of

these divergences, we define new robustness and efficiency measures and use it

to construct optimal robust M-estimators. As the Kullback-Leibler divergence,

used by Yohai (2008), the Cressie-Read divergences play in the favor of the

optimal information standardized robust M-estimators. On the other hand,

the robustness and efficiency measures based on the density power divergences

lead to new classes of equivariant optimal robust M-estimators.

2 GES and efficiency measures based on divergences

Let (Fθ)θ be a parametric model and (fθ)θ be the corresponding densities. A

divergence from the Cressie-Read class between Fθ∗ and the true distribution

3
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Fθ is defined by

CRγ(θ
∗, θ) =

∞∫

−∞

ϕγ

(
fθ∗(z)

fθ(z)

)
fθ(z)dz (3)

where ϕγ(z) := zγ
−γz+γ−1
γ(γ−1)

for γ ∈ R \ {0, 1}, ϕ0(z) := − log z + z − 1 and

ϕ1(z) := z log z−z+1. The Kullback-Leibler divergence (KL) is associated to

ϕ1, the modified Kullback-Leibler (KLm) to ϕ0, the χ2 divergence to ϕ2, the

modified χ2 divergence (χ2
m) to ϕ−1 and the Hellinger distance to ϕ1/2.

A density power divergence between Fθ∗ and Fθ is defined by

DPα(θ∗, θ) =

∞∫

−∞

{f 1+α
θ (z) −

(
1 +

1

α

)
fθ∗(z)f

α
θ (z) +

1

α
f 1+α

θ∗ (z)}dz (α > 0).(4)

It is known that the CRγ divergences, as well as the DPα divergences are

invariant with respect to one to one parameter transformations.

Let T be a statistical functional corresponding to an estimator of θ. The CRγ

divergence between FT (F ) and Fθ is

CRγ(T (F ), θ) =

∞∫

−∞

ϕγ

(
fT (F )(z)

fθ(z)

)
fθ(z)dz (5)

while the DPα divergence between FT (F ) and Fθ is

DPα(T (F ), θ) =

∞∫

−∞

{f 1+α
θ (z) −

(
1 +

1

α

)
fT (F )(z)f

α
θ (z) +

1

α
f 1+α

T (F )(z)}dz.(6)

If T is Fisher consistent, then CRγ(T (Fθ), θ)=0 and DPα(T (Fθ), θ)=0. There-

fore, in order to asses the robustness of T (F ) under infinitesimal outlier con-
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taminations, in the next lemmas we compute the first and second Gateaux

derivatives of the functionals CRγ(T (F ), θ) and DPα(T (F ), θ). Derivation with

respect to ε yields:

Lemma 1 It hold

(i) ∂CRγ(T (F̃εx),θ)
∂ε

∣∣∣∣
ε=0

= 0.

(ii) ∂2CRγ(T (F̃εx),θ)
∂ε2

∣∣∣∣
ε=0

= IF(x;T, Fθ)
tI(θ)IF(x;T, Fθ), where I(θ) =

∫ ḟθ(z)ḟθ(z)t

fθ(z)
dz

is the information matrix and ḟθ denotes the derivative withe respect to θ.

Lemma 2 It hold

(i) ∂DPα(T (F̃εx),θ)
∂ε

∣∣∣∣
ε=0

= 0.

(ii) ∂2DPα(T (F̃εx),θ)
∂ε2

∣∣∣∣
ε=0

= IF(x;T, Fθ)
tMα(θ)IF(x;T, Fθ),

where Mα(θ) = (1 + α)
∫
fα−1

θ (z)ḟθ(z)ḟθ(z)
tdz.

These two lemmas allow to consider, for small ε, the following approximations

CRγ(T (F̃εx), θ)≃ IF(x;T, Fθ)
tI(θ)IF(x;T, Fθ)ε

2

DPα(T (F̃εx), θ)≃ IF(x;T, Fθ)
tMα(θ)IF(x;T, Fθ)ε

2.

Then we define the GES based on the CRγ divergence of the functional T as

γ∗CRγ
(T, θ) = sup

x
IF(x;T, Fθ)

tI(θ)IF(x;T, Fθ) (7)

respectively the GES based on the DPα divergence of the functional T as

γ∗DPα
(T, θ) = sup

x
IF(x;T, Fθ)

tMα(θ)IF(x;T, Fθ). (8)

5
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Observe that γ∗CRγ
is independent upon the γ choice and coincide with the well

known information standardized GES, while γ∗DPα
, α > 0, define a new class

of standardized GES. It is known that the information standardized GES is

invariant with respect to differentiable one to one parameter transformations.

In the following we show that every γ∗DPα
enjoy the same property.

Indeed, let θ := β(θ) be a one to one differentiable transformation and J(θ) :=

∂β(θ)
∂θ

be its Jacobian. The transformed model writes as (F θ)θ with F θ := Fθ.

Then the densities, scores and the matrices Mα(θ) transform to

f θ(z) = fθ(z),
ḟ θ(z)

f θ(z)
= J(θ)−t ḟθ(z)

fθ(z)
, Mα(θ) = J(θ)−tMα(θ)J(θ)−1 (9)

(A−t means (A−1)t). If T is an estimating functional of θ, then is natural to

examine T := β(T ) as an estimating functional of θ. Then IF(x;T , Fθ) =

J(θ)IF(x;T, Fθ). Consequently, replacing all these quantities in γ∗DPα
, it holds

γ∗DPα
(T , θ) = γ∗DPα

(T, θ).

Let θ̂n be an estimator of θ satisfying (1) with VT (θ) given by (2).

Lemma 3 It holds nEθ(‖θ̂n − θ‖2
I(θ)) → tr{I(θ)VT (θ)}, where Eθ denotes the

expectation with respect to Fθ and tr denotes the trace.

Proof. Let B(θ) = V
1/2
T (θ) and zn = n1/2B(θ)−1(θ̂n−θ). Then zn →D N (0, Id)

where Id is the identity matrix. Then

n‖θ̂n − θ‖2
I(θ) = n(θ̂n − θ)tI(θ)(θ̂n − θ) = zt

nB(θ)tI(θ)B(θ)zn. (10)

6
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Let V (θ) and Λ(θ) be the eigenvectors and the eigenvalues of B(θ)tI(θ)B(θ)

and put wn := V (θ)tzn. Then wn →D N (0, Id) and

n‖θ̂n − θ‖2
I(θ) = wt

nΛ(θ)wn →D

d∑

i=1

λi(θ)v
2
i (11)

where v1, . . . , vd are i.i.d. variables with distribution N (0, 1) and λi(θ), 1 ≤

i ≤ d, are the eigenvalues of I(θ)VT (θ). Then, in virtue of Helly-Bray lemma

nEθ(‖θ̂n − θ‖2
I(θ)) →

d∑

i=1

λi(θ) = tr{I(θ)VT (θ)}. (12)

Remark 1 The mean square error of the estimator θ̂n, evaluated in the metric

given by the inverse of the information matrix, which in its asymptotic form

is used to make the criterion to be minimized, is asymptotically equivalent to

2Eθ(CRγ(θ̂n, θ)), independently upon the γ choice.

Indeed, some simple calculation shows that

∂CRγ(θ
∗, θ)

∂θ∗

∣∣∣∣∣
θ∗=θ

= 0 and
∂2CRγ(θ

∗, θ)

∂θ∗2

∣∣∣∣∣
θ∗=θ

= I(θ). (13)

Then a Taylor expansion of order two yields

nCRγ(θ̂n, θ) =
n

2
(θ̂n − θ)tI(θ)(θ̂n − θ) + no(‖θ̂n − θ‖2). (14)

Since no(‖θ̂n − θ‖2) → 0 in probability, from (11) and (14) it follows that

2nCRγ(θ̂n, θ) →D
∑d

i=1 λi(θ)v
2
i . Consequently 2nEθ(CRγ(θ̂n, θ)) → tr{I(θ)VT (θ)}

by the Helly-Bray lemma.

Lemma 4 It holds 2nEθ(‖θ̂n − θ‖2
Mα(θ)) → tr{Mα(θ)VT (θ)}.

7
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The proof is similar to that of Lemma 3. Remark 1 adapts accordingly, saying

that the mean square error of the estimator θ̂n, evaluated in the metric given

by the inverse of Mα(θ), is asymptotically equivalent to 2Eθ(DPα(θ̂n, θ)).

Hence, the criterion to be minimized in order to obtain optimal robust M-

estimators is tr{I(θ)VT (θ)} when using γ∗CRγ
as sensitivity measure, respec-

tively tr{Mα(θ)VT (θ)} when using the sensitivity γ∗DPα
(see also Remark 1 p.

242 and the discussion at the end of p. 243 from Hampel et al. (1986) for

comments on the minimization criterion used in the construction of optimal

robust M-estimators).

3 Optimal robust M-estimators

Let θ be a fixed parameter. Making use of the robustness and efficiency mea-

sures previously defined, equivariant optimal robust M-estimators of the pa-

rameter θ arise as solutions to the following problems:

1. Find an M-estimator such that its ψ-function verifies

∫
ψ(x, θ)s(x, θ)tdFθ(x) = I1/2(θ)

∫
ψ(x, θ)dFθ(x) = 0

where s(x, θ) is the score function, and such that its corresponding functional T

minimizes tr{I(θ)VT (θ)} subject to γ∗CRγ
(T, θ) ≤ c, where c is a given constant.

2. Let α be fixed. Find an M-estimator such that its ψ-function verifies

8
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∫
ψ(x, θ)s(x, θ)tdFθ(x) = M1/2

α (θ)
∫
ψ(x, θ)dFθ(x) = 0

and such that its corresponding functional T minimizes tr{Mα(θ)VT (θ)} sub-

ject to γ∗DPα
(T, θ) ≤ c, where c is a given constant.

The solution to the first problem is unique and is precisely the solution

obtained by Stahel (1981) as optimal information standardized robust M-

estimator and by Yohai (2008) as optimal robust M-estimator using the Kullback-

Leibler divergence. In the following, we determine the solution to the second

problem. To this purpose we use the context of the optimal unstandardized

robust M-estimators.

Let T r
θ be the set of functionals (corresponding to M-estimators) defined by

T r
θ :=

{
T : IF(·;T, Fθ) exists,

∫
IF(x;T, Fθ)dFθ(x) = 0,

∫
IF(x;T, Fθ)s(x, θ)

tdFθ(x) = Id and VT (θ) exists
}
.

The problem is to find a functional T from T u
c,θ := {T ∈ T r

θ : γ∗u(T, θ) ≤ c} that

minimizes tr{VT (θ)}. Then the corresponding estimator will be the optimal

unstandardized robust M-estimator. The solution to this problem is presented

in chapter 4 from Hampel et al. (1986), the conclusion being the following.

The optimal unstandardized robust M-estimator is defined by the ψ-function

ψA(θ),a(θ)
c (x, θ) = hc{A(θ)[s(x, θ) − a(θ)]} (15)

9
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where hc(z) := zmin(1, c/‖z‖) is the multidimensional function of Huber and

the pair (A(θ), a(θ)), where A(θ) is d × d nonsingular matrix and a(θ) ∈ R
d,

is the unique solution of the system

∫
ψA(θ),a(θ)

c (x, θ)s(x, θ)tdFθ(x) = Id
∫
ψA(θ),a(θ)

c (x, θ)dFθ(x) = 0.

The associated functional T u
c takes part from T u

c,θ and minimizes tr{VT (θ)} on

this set.

Definition 1 Let α > 0 be fixed. Suppose that there exists a differentiable

solution (Aα(θ), aα(θ)) of the system

∫
ψAα(θ),aα(θ)

c (x, θ)s(x, θ)tdFθ(x) = M1/2
α (θ)

∫
ψAα(θ),aα(θ)

c (x, θ)dFθ(x) = 0

where ψAα(θ),aα(θ)
c is of the form (15). Then ψAα(θ),aα(θ)

c is called the ψ-function

of the optimal Mα(θ) standardized robust M-estimator and is denoted by ψDPα
c .

The corresponding functional is denoted TDPα
c .

We prove that ψDPα
c as defined above exists and is unique and that the func-

tional TDPα
c minimizes tr{Mα(θ)VT (θ)} in the class T DPα

c,θ ⊂ T r
θ defined by the

regular functional with the sensitivity γ∗DPα
not exceeding a given bound c.

This entails the fact that the optimal Mα(θ) standardized robust M-estimator

is the solution to the second problem enounced at the beginning of this section.

Let θ := β(θ) = M1/2
α (θ)θ. The optimal unstandardized robust M-estimator

10
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of the parameter θ is characterized by the ψ-function

ψA(θ),a(θ)
c (x, θ) = hc{A(θ)[s(x, θ) − a(θ)]} (16)

that verifies the restrictions

∫
ψA(θ),a(θ)

c (x, θ)s(x, θ)tdFθ(x) = Id (17)
∫
ψA(θ),a(θ)

c (x, θ)dFθ(x) = 0 (18)

and its functional T u minimizes tr{VT (θ)} in the class T u
c,θ

.

Coming back to the parameter θ, for which we construct the optimal Mα(θ)

standardized robust M-estimator, the ψ-function (16) rewrites as

hc{A(θ)[M−1/2
α (θ)s(x, θ) − a(θ)]} = hc{Aα(θ)[s(x, θ) − aα(θ)]} (19)

where Aα(θ) := A(M1/2
α (θ)θ)M−1/2

α (θ) and aα(θ) := M1/2
α (θ)a(M1/2

α (θ)θ), and

is precisely the ψ-function ψDPα
c since it verifies the system from Definition 1,

as results from (17) and (18). The existence and the unicity of this ψ-function

is assured by the existence and unicity of the pair (A(θ), a(θ)) solution of the

system given by (17) and (18).

On the other hand, the functional TDPα
c has the form TDPα

c = β−1(T u).

Then using the fact that IF(x;T u, Fθ) = M1/2
α (θ)IF(x;TDPα

c , Fθ), we obtain

γ∗u(T
u, θ) = γ∗DPα

(TDPα
c , θ) and tr{VT u(θ)} = tr{Mα(θ)VTDPα

c
(θ)}. These equal-

ities entail that the functional TDPα
c is from the set T DPα

c,θ and minimizes

tr{Mα(θ)VT (θ)} on this set.

11
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